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Abstract 17 

The primary literature on human genetic diseases with high penetrance includes descriptions of 18 

large numbers of pathogenic variants that can be essential for clinical diagnosis. Variant 19 

databases such as ClinVar and HGMD collect pathogenic variants by manual curation of either 20 

voluntary submissions or the published literature. AVADA (Automatically curated VAriant 21 

DAtabase) represents the first automated tool designed to construct a comprehensive database of 22 

highly penetrant genetic variants directly from full-text articles about human genetic disease. 23 
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AVADA was able to automatically curate almost 60% of the pathogenic variants deposited in 24 

HGMD, over 4 times more than approaches parsing only PubMed abstracts. AVADA also 25 

contains more than 60,000 pathogenic variants that are in HGMD, but not in ClinVar. Despite 26 

being fully automated, 9 of AVADA’s top 10 yielding journals are shared with HGMD’s top 10, 27 

and its mutation type distribution strongly resembles that of both HGMD and ClinVar. We 28 

demonstrate the utility of AVADA in clinical practice on a cohort of 245 patients with already 29 

diagnosed genetic diseases. Out of 260 causative variants originally reported for these patients, 30 

AVADA contained 38 variants described in the literature prior to publication of the patient 31 

cohort, compared to 43 using HGMD, 20 using ClinVar and only 13 (wholly subsumed by 32 

AVADA’s) using an automated abstracts-only based approach. The database of automatically 33 

curated variants will be made available upon publication at 34 

http://bejerano.stanford.edu/AVADA. 35 

Introduction 36 

Rare genetic diseases affect 7 million infants born every year worldwide1. Exome or genome 37 

sequencing is now entering clinical practice in relation to the identification of molecular causes 38 

of highly penetrant genetic diseases, and in particular Mendelian disorders (genetic diseases 39 

caused by mutations in a single gene2–5). In a Mendelian context, typically one or two of the 40 

patient’s genetic variants in a single gene are causative of the patient’s disease. After following 41 

standard variant filtering procedures, a typical singleton patient exome contains 200-500 rare 42 

functional variants6. Identifying causative variants is therefore very time-consuming, as 43 

investigating each variant and deciding whether or not it is causative can take up to an hour 44 

[GILL: This sounds like best practice to me! Surely most labs would take much longer]7. Various 45 

approaches are in development to accelerate this process8–11. Identifying causative variants can 46 

be greatly accelerated if the patient’s genome contains a previously reported pathogenic variant 47 

that partly or fully explains their phenotype. The American College of Medical Genetics 48 

(ACMG) guidelines for the interpretation of sequence variants recommend variant annotation 49 

using databases of reported pathogenic variants12. 50 

The rapidly growing literature on human genetic diseases13, the costly process of manual variant 51 

curation14, and improved computational access to the full text of primary literature15,16 serve to 52 
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incentivize automatic variant curation. Creating a variant database from the primary literature 53 

involves finding variant descriptions (such as “c.123A>G”), linking them to a transcript of the 54 

correct gene mention, and converting them to genomic coordinates (chromosome, position, 55 

reference and alternative alleles) so they can be readily intersected with any patient variants. 56 

Previous work on automatic variant discovery in the literature has largely focused on finding 57 

variant descriptions in paper titles and abstracts with high accuracy without converting the 58 

discovered variants to genomic coordinates17–23.  Previous automatic variant curation tools have 59 

focused on mapping variant mentions to dbSNP24 variant identifiers (rsIDs). Mapping textual 60 

variant descriptions directly to reference genome coordinates requires significant effort, and has 61 

thus far largely been left to manually curated databases such as HGMD25 and ClinVar26, which 62 

devote many thousands of wo/man-hours to the task of collecting genetic variants from either the 63 

scientific literature or clinical laboratories. 64 

We posed the question as to whether manual variant curation to genome coordinates could be 65 

accelerated with the help of machine learning approaches by first training an automatic curation 66 

system on a sample of manually curated variants (from ClinVar and HGMD), and then applying 67 

the trained system to the entire body of PubMed indexed literature for automatic curation of 68 

published variants. AVADA (Automatically curated VAriant DAtabase), our automated variant 69 

extractor, identifies variants in genetic disease literature and converts all detected variants into a 70 

database of genomic (hg19) coordinates, reference and alternative alleles. We show that 71 

AVADA improves on the state of the art in automated variant extraction, by comparing it to 72 

tmVar 2.027, a best-in-class tool used to harvest variants from PubMed abstracts. Combining the 73 

free ClinVar and AVADA variant databases, we find that we can recover a significant fraction of 74 

diagnostic disease-causing variants in a cohort of 245 patients with Mendelian diseases.  75 

Materials and Methods 76 

Identification of relevant literature 77 

PubMed is a database containing titles and abstracts of biomedical articles, only a subset of 78 

which contain descriptions of variants that cause human genetic disease. A document classifier is 79 

a machine learning classifier that takes as its input arbitrary text and classifies it as “positive” 80 

(here, meaning an article about genetic disease) or “negative” (otherwise). We trained a scikit-81 
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learn28 LogisticRegression29 classifier to identify relevant documents using positive input texts 82 

(titles and abstracts of articles cited in OMIM30 and HGMD25) and negative input texts (random 83 

titles and abstracts from PubMed). Machine learning classifiers take as input a real-valued vector 84 

(the “feature vector”) describing the input numerically. Input texts were converted into a feature 85 

vector by means of a scikit-learn CountVectorizer followed by a TF-IDF31 transformer (an 86 

operation that converts input text to a feature vector based on the frequency of words in input 87 

documents). After training the title/abstract document classifier, we applied it to all 25,793,020 88 

titles and abstracts in PubMed to identify articles that might be relevant to the diagnosis of 89 

genetic diseases. Full text PDFs of relevant articles were then downloaded and converted to text 90 

using pdftotext32 version 0.26.5. Because identifying potentially relevant articles based upon title 91 

and abstract alone often yields articles whose full text does not turn out to be relevant for the 92 

diagnosis of genetic diseases, we subsequently trained a full-text scikit-learn LogisticRegression 93 

classifier to classify downloaded full-text documents as “relevant” or “irrelevant” based upon the 94 

article’s full text. As with the title/abstract classifier, full text documents were converted to a 95 

feature vector by means of a CountVectorizer followed by a TF-IDF transformer. Filtering full-96 

text articles for relevance resulted in a subset of downloaded articles more relevant to the 97 

diagnosis of genetic disease (Supplemental Methods). A total of 133,410 articles were 98 

downloaded and subsequently classified as relevant to the diagnosis of human genetic diseases 99 

based on the articles’ full text. We refer to this set of articles as the “AVADA full-text articles” 100 

(Figure 1). 101 

Variant and gene mention detection 102 

In order to extract genetic variants from the full-text articles about human genetic disease and 103 

convert them to genomic coordinates, it is necessary to detect both mentions of genes and variant 104 

descriptions in articles about genetic disease. Extracting variant descriptions alone does not 105 

suffice, because variant descriptions in HGVS notation, such as “c.123A>G”, can only be 106 

converted to genomic coordinates if a transcript of the gene that the variant refers to is identified 107 

(Table 1). 108 

AVADA extracts gene mentions from articles’ full text using a custom-built database of gene 109 

names containing gene name entries from the HUGO Gene Nomenclature Committee (HGNC) 110 

and UniProt databases. Gene and protein names from these were matched case-insensitive to 111 
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word groups of length 1-8 in the document to identify gene mentions. To identify variant 112 

mentions, we manually developed a set of 47 regular expressions based on commonly observed 113 

HGVS-like variant notations in articles about human genetic disease (Supplemental Methods, 114 

Supplemental Table S1 and Figure 2A). At this step, we refer to every string that matches one of 115 

the 47 regular expressions as a “variant description”. In the AVADA full-text articles, variant 116 

descriptions in 92,436 articles were identified, with a mean of 11.1 variant descriptions per 117 

article (Figure 1). 118 

Mentioned genes form gene-variant candidate mappings with all mentioned variants 119 

that “fit” the gene 120 

Having identified gene mentions and variant descriptions in text, it is now necessary to link 121 

variant descriptions with the genes that they refer to. Articles often mention variant descriptions 122 

without explicitly stating to which gene each variant description maps. The gene to which each 123 

variant description maps can be inferred by expert readers of the article. However, an automatic 124 

algorithm cannot easily infer to which gene a variant description maps, because gene mention 125 

and variant description do not necessarily occur in the same sentence or even the same paragraph 126 

or page. 127 

To identify which variant description maps to which mentioned gene in the article, AVADA first 128 

forms so-called gene-variant candidate mappings between each variant description and each 129 

mentioned gene if the variant appears to “fit” at least one RefSeq33 transcript of the gene. Given 130 

an extracted variant description “c.123A>G”, the variant description forms gene-variant 131 

candidate mappings with all mentioned genes that have an “A” at coding position 123 of at least 132 

one transcript (Supplemental Methods and Figure 2B). A variant description can form gene-133 

variant candidate mappings with multiple genes, which are filtered in the next step. Gene-variant 134 

candidate mappings are converted to genomic coordinates in the hg19/GRCh37 reference 135 

assembly. In the AVADA full-text articles, an extracted variant description initially mapped to a 136 

mean of 4.6 different genomic coordinates (Figure 1). 137 

Machine learning classifier selects the correct gene-variant mapping out of multiple 138 

gene-variant candidate mappings 139 

AVADA uses a machine learning framework to decide which gene-variant candidate mappings 140 

are likely to be correct. The machine learning classifier is a scikit-learn28 141 
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GradientBoostingClassifier34. The training set for the classifier comprised positive gene-variant 142 

mappings curated from the literature in ClinVar, and a set of negative gene-variant mappings 143 

created by assigning variants from the positive training set to genes mentioned in the paper to 144 

which they did not map. Each gene-variant mapping was converted to a feature vector, based 145 

upon which the classifier decided if the gene-variant candidate mapping was true or false. The 146 

feature vector included the Euclidean distance between the 2D coordinates (consisting of page 147 

number, x and y coordinates of a mention) of the closest mentions of the variant and the gene in 148 

the PDF, the number of words between variant and gene mentions, the number of short 149 

“stopwords” (like “and”, “or”, “of”, …) around gene and variant mentions, and a number of 150 

other textual features containing information about the relationship between gene and variant 151 

mentions (Supplemental Methods and Figure 2C; performance analyzed below).  152 

The classifier successfully reduced 4.6 candidate gene-variant mappings per variant description 153 

to a mean of 1.2 genomic positions in the AVADA full-text articles (Supplemental Methods and 154 

Figures 1, 2D). 155 

Results 156 

AVADA identified 203,608 variants in 5,827 genes from 61,117 articles 157 

A total of 61,117 articles made it into the final AVADA database, with a mean of 8.8 identified 158 

variant descriptions per article. From these articles, 203,608 distinct genetic variants in 5,827 159 

genes were automatically curated (Figure 1), comprising a variety of different variant types in a 160 

distribution strikingly similar to that of manually curated HGMD and ClinVar: for each of 6 161 

categories of variant (stoploss, nonframeshift, splicing, stopgain, frameshift, missense), the 162 

fraction of variants AVADA extracted are between the fraction of the respective category in 163 

HGMD and ClinVar ±1% (Table 2). The articles used to construct AVADA are from a variety of 164 

journals, which are similar to the journals targeted by HGMD to curate its variants (9 out of the 165 

top 10 journals being the same between AVADA and HGMD; Figure 3A,B).  166 

Each variant, defined by chromosome, position, reference and alternative allele, is annotated 167 

with: PubMed ID(s) of publications where this variant was extracted from; HUGO Gene 168 

Nomenclature Committee35 (HGNC) gene symbol, Ensembl ID36, and Entrez ID37 of the gene in 169 

which the variant is found, the inferrvariant effect [GILL: what do you mean?] (e.g., 170 
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“missense”), the RefSeq ID of the gene’s transcript to which the variant was mapped (e.g., 171 

NM_005101.3), and the exact variant description from the original article (e.g., “c.163C.T”). The 172 

latter allows clinicians to later rapidly locate mentions of this variant within the body of the 173 

article.  174 

AVADA is 72% precise 175 

To estimate the precision (the fraction of extracted variants that are correctly extracted), 100 176 

distinct random variants in AVADA were manually examined. AVADA variants were manually 177 

counted as true extractions whenever the scientist reading the paper (using all lines of evidence 178 

in the paper such as Sanger sequencing reads, UCSC genome browser shots etc.) independently 179 

mapped the paper’s variant mention to the same genomic coordinates as AVADA. Of the 100 180 

distinct random variants, 72% were extracted and mapped to the correct genomic position 181 

without error by AVADA (Supplemental Table S2). 182 

AVADA recovers nearly 60% of disease-causing HGMD variants directly from the 183 

primary literature 184 

We compared AVADA to HGMD and ClinVar versions with synchronized time stamps 185 

(Supplemental Methods). 85,888 AVADA variants coincided with variants identified in HGMD 186 

and marked as disease-causing (“DM”), corresponding to 61% of all disease-causing variants in 187 

HGMD. From this set of 85,888 AVADA variants, we selected 100 random variants and 188 

manually verified that the genomic coordinates (chromosome, position, reference and alternative 189 

alleles) were correctly extracted and the variant was reported as disease-causing.  Of the 100 190 

variants examined, 97% fulfilled these criteria (Supplemental Table S3). Thus, we infer that 191 

AVADA contains 59% of all disease-causing variants identified by HGMD.  192 

We compared AVADA’s performance to the best previously published automatic variant 193 

curation tool, tmVar 2.0, which attempts to map variant mentions in all PubMed abstracts to 194 

dbSNP identifiers (rsIDs). tmVar extracted only 19,424 disease-causing HGMD variants, or 14% 195 

of HGMD (Supplemental Figure 1 and Figure 3C). 196 

Considering only single nucleotide variants (SNVs), the largest class of known pathogenic 197 

variant, AVADA contains 70% of all DM SNVs in HGMD, of which an estimated 97% were 198 

extracted correctly. Similarly, AVADA contains 55% of all likely pathogenic or pathogenic 199 

variants in ClinVar (clinical significance level 4 or 5) and 62% of pathogenic or likely 200 
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pathogenic SNVs in ClinVar. tmVar 2.0 extracted only 13,664, or 31%, of pathogenic or likely 201 

pathogenic variants in ClinVar.  202 

Strikingly, AVADA contains 63,521 variants that are in HGMD (“DM” only) but not in ClinVar 203 

(clinical significance level 4 or 5). An analysis of a representative subset of 100 of the remaining 204 

115,612 variants that were extracted by AVADA, but not reported as disease-causing in either 205 

HGMD or ClinVar, revealed them to be mostly benign or incorrectly extracted variants 206 

(Supplemental Table S4). 207 

Diagnosis of patients with Mendelian diseases using AVADA 208 

We analyzed the accuracy of patient variant annotation with AVADA, tmVar, ClinVar and 209 

HGMD using a set of 245 patients from the Deciphering Developmental Disorders38 (DDD) 210 

study, harboring 260 causative variants reported by the original DDD study. De-identified DDD 211 

data were obtained from EGA39 study number EGAS00001000775  (Supplemental Methods). 212 

The DDD study is a large-scale sequencing study in which children affected with developmental 213 

disorders were sequenced with a view to attempting a diagnosis. Disease-causing variants 214 

reported in DDD were obtained from Supplemental Table 4 in reference 38. 215 

Sensitivity of variant annotation using AVADA, tmVar, HGMD and ClinVar 216 

The more complete a variant database is, the higher its sensitivity when annotating patient 217 

genomes and the higher the likelihood of finding a causative variant in the patient’s genome. We 218 

determined how many of the 260 causative DDD variants were found in AVADA, tmVar, 219 

HGMD and ClinVar. The more causative variants are found in a database, the more rapidly a 220 

given patient can be diagnosed. For the DDD patient variant annotation comparison, we subset 221 

AVADA and tmVar 2.0 to reference only articles until 2014 (before the publication of the DDD 222 

study), HGMD use only variants added until 2014 [GILL: not sure if this makes sense. used only 223 

HGMD variants….?], and took the latest ClinVar version from 2014 (ClinVar version 224 

20141202). 225 

Of 260 different causative variants reported by the DDD study, a total of 45 variants were found 226 

by AVADA in the scientific literature. For each of these variants, all articles from which the 227 

variant was extracted were manually inspected. If at least one article was found in which the 228 

variant’s genomic coordinates (chromosome, position, reference and alternative allele) were 229 
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correctly extracted, the variant was reported as causative and the article did not cite the DDD 230 

study, the variant was counted as correct. 38 of the 45 variants found by AVADA fulfilled these 231 

criteria (Supplemental Table S5). 232 

Only 20 variants reported to be causative by the DDD study were listed in ClinVar and ascribed 233 

a pathogenicity level such as “pathogenic” or “likely pathogenic”. 43 variants were in HGMD, 234 

reported as “DM” (disease-causing). tmVar 2.0 contained 13 causative variants (Supplemental 235 

Table S6). AVADA and ClinVar together contained 41 causative variants. All of tmVar’s 236 

variants were either in AVADA or ClinVar. Thus, combining the free variant databases AVADA 237 

and ClinVar resulted in our annotating almost as many causative variants as are listed in HGMD. 238 

Combining all three databases yielded 51 variants (Figure 3D). 239 

Discussion 240 

We present AVADA, an automated approach to constructing a highly penetrant variant database 241 

from full-text articles about human genetic diseases. AVADA automatically curated nearly a 242 

hundred thousand disease-causing variants from tens of thousands of downloaded and parsed 243 

full-text articles. All AVADA mutations are stored in a Variant Call Format40 (VCF) file that 244 

includes the chromosome, position, reference and alternative alleles, variant strings as reported 245 

in the original article, and PubMed IDs of the original articles mentioning the variants. AVADA 246 

recovers nearly 60% of all disease-causing variants deposited in HGMD at a fraction of the cost 247 

of constructing a manually curated database41, over 4 times as many as the tmVar 2.0 database 248 

that relies on PubMed abstracts, and maps only to dbSNP rsIDs. From a cohort of 245 previously 249 

diagnosed patients from the Deciphering Developmental Disorders (DDD) project, AVADA 250 

pinpoints 38 DDD-reported disease-causing variants, fewer than HGMD (43) but almost twice as 251 

many as ClinVar (20) and almost three times as many as tmVar 2.0 (13), showing that this new 252 

resource will be useful in clinical practice. Combining the free variant databases AVADA and 253 

ClinVar recovers 41 diagnostic variants.  254 

Multiple lessons were learned from AVADA. First, curating variants from full text articles 255 

scattered between dozens of publishers’ web portals is worth the extra effort. However, while 256 

gene to variant linking is often relatively simple in the context of an abstract, this task is much 257 

more challenging in the context of sprawling full texts that may well discuss many additional 258 
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genes beyond the causal few. A two-pronged approach is therefore necessary to further improve 259 

AVADA’s precision. First, our ability to link variants to the correct transcripts and genes can be 260 

improved. Second, non-pathogenic mentioned variants need to be better distinguished from 261 

pathogenic mentioned variants. Implementing patterns for more exotic variant notations and 262 

parsing supplements of articles would improve sensitivity, but would decrease precision. 263 

AVADA curates variants without costly human input and can be re-run continually to discover 264 

newly reported variants without incurring significant additional cost. While the approach cannot 265 

currently replicate manual curation efforts, it is nevertheless well suited to supporting the work 266 

of manual curators in improving and extending existing variant databases. Blending the AVADA 267 

automatic variant curation approach with manual verification should facilitate rapid variant 268 

classification42 and the cost-effective annotation of patient variants.  269 

Publishers could help to further improve the automatic variant curation process by supplying 270 

database curation tools with simpler, stable programmatic access to full text and supplemental 271 

data of appropriate articles, a win-win step that would lead to both better variant databases, and 272 

increase the circulation of articles among their target audience. Requiring authors to abide by 273 

strict HGVS notation would also help. Moreover, the approach presented here can be extended to 274 

the automatic curation of genetic variants  [GILL: HGVS is not appropriate for animal models or 275 

non-model organisms] or related notation from other valuable modalities beyond human patients, 276 

such as animal models, cell lines, or non-model organisms with reference genomes and 277 

transcripts. The approach described could therefore support the rapid and cost-effective creation 278 

and upkeep of multiple different variant databases beyond human genetic diseases43 directly 279 

from the primary literature [GILL: You could also mention somatic mutations in cancer genes?]. 280 

By comprehensively annotating each variant with information from the original articles (such as 281 

the originally reported variant string), AVADA enables rapid re-discovery and verification of a 282 

large fraction of previously reported variants in the scientific literature. AVADA shows that 283 

automatic variant curation from the literature is feasible and useful with regard to accelerating 284 

the creation of genetic variant databases that enable rapid diagnostics in a clinical setting. 285 

Previously, manual curation efforts such as HGMD25 have demonstrated the power of systematic 286 

manual curation of pathogenic variants from the primary literature. Combining automatic 287 

curation approaches like AVADA with manual curation will enable the rapid construction of 288 
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clinically useful variant databases from the primary literature enabling both rapid diagnosis42 and 289 

reanalysis13. 290 

Supplemental Data 291 

Supplemental Methods describe the AVADA variant curation process in detail. Supplemental 292 

Tables S1-S8 contain additional data referenced in main text and Supplemental Methods. 293 
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Figures 478 

Figure 1 479 

 480 

Figure 1. Construction of the automated variant database AVADA. Identification of 481 

relevant literature: Step 0: titles and abstracts of articles are downloaded from PubMed. Step  482 

1: a suitable subset of relevant literature is identified by a document classifier that classifies titles 483 

and abstracts deposited in PubMed as possibly relevant or irrelevant to genetic disease. Step 2: 484 
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full text PDFs of potentially relevant articles are downloaded wherever possible and converted to 485 

text. Step 3: the full text of potentially relevant articles is filtered by a separate full-text 486 

document classifier that again tests for relevance to genetic diseases. Variant mapping: Step 1: 487 

gene mentions are detected using a list of gene names, and variant mentions are detected using 488 

47 manually built regular expressions (Figure 2A). Step 2: a super-set of possible gene-variant 489 

candidate mappings is constructed out of all mentioned variants and genes in a paper where the 490 

variant appears to “fit” the gene: e.g., if a variant description is “c.123A>G”, the variant fits all 491 

genes mentioned in the paper that have at least one transcript with an “A” at coding position 123 492 

(Figure 2B). Step 3: A machine learning classifier using a number of textual features (Figure 2C) 493 

describing the relationship between variant and gene mention in the article’s full text decides 494 

which of the previously constructed gene-variant candidate mappings are true, i.e., which variant 495 

actually refers to which gene (Figure 2D). AVADA extracts 203,608 distinct genetic variants in 496 

5,827 genes from 61,117 articles.  497 

  498 
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Figure 2 499 

 500 

Figure 2. Automatic conversion of variant mentions to genomic coordinates from full-text 501 

literature. (A) AVADA uses regular expressions to detect variants in articles. Regular 502 

expressions are designed in forms of regular expression generators such as 503 

“{sep}c\.{pos}{space}?{plusMinus}{space}?{offset}[,]*?{origDna}{space}?{arrow}{space}?{mutDna}”.  504 

These regular expression generators contain named matching group generators, such as 505 

“{origDna}” (reference nucleotide, such as “A” or “T”) or “{pos}” (numeric position of the 506 
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mutated nucleotide relative to the start of the transcript). Named matching group generators 507 

describe parts of the HGVS description that contain information about the mutation. Regular 508 

expression generators are expanded into regular expressions by replacing the matching group 509 

generators, such as “{pos}”, into a named matching group, such as “(?P<pos>[1-9][0-9]*)”. 510 

Expanding all named matching group generators into named matching groups gives a full regular 511 

expression. If a full regular expression matches any string in a given article, the matched string is 512 

assumed to be a variant description. (B) Given a detected variant description and a set of genes 513 

detected in the text of an article, AVADA first checks if the variant matches any of the gene’s 514 

transcripts. In the current example, the variant p.M34T matches transcripts of the genes GJB2 515 

and GJB6 because both have a methionine residue at position 34, but not the gene RPL14 (with 516 

an asparagine at position 34). The variant p.M34T therefore forms gene-variant candidate 517 

mappings (p.M34T, GJB2) and (p.M34T, GJB6), which are filtered in the next step.  (C) Given a 518 

gene-variant candidate mapping (variant=p.M34T and gene=GJB2 in this example, highlighted 519 

in green), AVADA lets a Gradient Boosting classifier decide if the variant refers to the candidate 520 

gene using a set of 125 numerical features that contain information about the textual relationship 521 

between the variant mention and the closest mentions of the candidate gene (GJB2), as well as 522 

the closest mentions [GILL: what does ‘closest mentions’ mean?] of alternative nearby 523 

mentioned genes (connexin 30 (encoded by GJB6) in the example, in red). The 125 features are 524 

based on the relative positions of the closest candidate gene mentions to the variant mention, 525 

closest alternative gene mentions to the variant mention, information about the genes’ 526 

importance in the article, and words and characters surrounding the gene and variant mentions. 527 

(D) The Gradient Boosting classifier takes these 125 features as input and returns a probability 528 

between 0 and 100% indicating the classifier’s assessment of whether the variant actually refers 529 

to the given candidate gene. If the classifier returns a likelihood greater than 90%, the gene-530 

variant candidate mapping is transformed to Variant Call Format (chromosome, position, 531 

reference and alternative alleles) and entered into the AVADA database. In the present example, 532 

AVADA correctly decides that p.M34T only maps to GJB2 and not connexin 30 (encoded by the 533 

gene GJB6). Example taken from PubMed ID 23808595. 534 

  535 
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Figure 3 536 

 537 
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Figure 3. Automatic variant curation results. (A) Journals with most articles with AVADA 538 

curated variants. AVADA extracted variants from 3,159 articles in “Human Mutation”, 2,330 539 

articles in “American Journal of Human Genetics”, 2,042 articles in “Human Molecular 540 

Genetics” etc. (B) Journals with most articles containing variants curated by HGMD. Similarly 541 

to AVADA, the top three journals are “Human Mutation”, the “American Journal of Human 542 

Genetics”, and “Human Molecular Genetics”. The two lists share 9 of the top 10 journals even 543 

though HGMD is manually curated whereas AVADA is entirely based on automated curation. 544 

(C) Extracted variants in AVADA intersected with all disease-causing variants in HGMD and 545 

ClinVar. AVADA extracts 85,888 variants in literature-based HGMD (subset to disease-causing 546 

variants) and 24,475 variants in submission-based ClinVar (subset to pathogenic and likely 547 

pathogenic variants). (D) Comparison of the fraction of Deciphering Developmental Disorders 548 

(DDD) causative variants found in various combinations of databases. 260 different variants 549 

were reported to be causative of 245 patients’ diseases in the DDD project, a large-scale 550 

diagnostic sequencing research project. We subset AVADA, HGMD, ClinVar and the 551 

automatically curated variant database tmVar 2.0 to sources pre-dating the publication of the 552 

DDD patient set. Of the causative variants, tmVar 2.0 which automatically parses on PubMed 553 

abstracts, contained 5%, ClinVar contained 8% reported as (likely) pathogenic, full text-based 554 

AVADA contained 15% and HGMD contained 17% reported as disease-causing. All tmVar 2.0 555 

variants were either in AVADA or ClinVar. Combining the free (bars in red) AVADA and 556 

ClinVar databases recovers 16% of causative variants. Combining all databases facilitates rapid 557 

diagnosis for 20% of causative variants. 558 

  559 
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Tables 560 

Table 1 561 

HGVS(-like) 

variant 

descriptions  

(alternatives 

describing same 

genetic event) 

Explanation of HGVS variant 

description 

Disease caused by variant 

(cited literature uses all  

variant notations shown in 

left column) 

NM_175073.2 

593C>T 

(NP_778243.1 

p.A198V) 

DNA single nucleotide substitution 

reference C replaced by alternative T at 

position 593 in the transcript 

NM_175073.2 

Cerebellar ataxia with 

oculomotor apraxia type 144,45 

NM_006005.3 

460+1G→A  

(NM_006005.3 

IVS4+1G>A) 

Splicing variant 

reference G replaced by alternative A at 

the genomic position 1 basepairs 

downstream of the 3’ end of the exon of 

transcript NM_006005.3 that ends at 

position 460 

Wolfram syndrome46,47 

NP_000518.1 

p.Asp221Thrfs*44 

(NM_000527.4 

c.660delC;  

NP_000518.1 

p.Pro220Profsx45) 

Protein frameshift variant 

reference aspartic acid at residue number 

221 in transcript NP_000518.1 impacted 

by an indel resulting in an alternative 

threonine, with the rest of the protein 

being frameshifted, introducing a stop 

codon 44 amino acid residues 

downstream of residue number 221 

Familial 

hypercholesterolaemia48,49 

 562 
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Table 1. Examples of HGVS or common HGVS-like variant descriptions. Each row contains 563 

examples of a disease-causing variant description in HGVS or a common HGVS-like notation. 564 

Each of these variant descriptions describes a single genetic event causing a disease, usually by 565 

giving at least the position of the change in the gene’s transcript, an optional reference sequence 566 

and a novel alternative (mutated) sequence. All given variants can be described using multiple 567 

commonly used notations. Examples of alternatives to the notations are shown in the left hand 568 

column that denote the exact same genetic variants. Transcript identifiers for variant 569 

descriptions, which enable the mapping of a variant to a reference genome, are usually omitted 570 

by article authors. Therefore, an automated method like AVADA must identify the gene’s 571 

transcript that the variant occurs in [GILL: unclear! The variant may occur within multiple 572 

transcripts associated with the gene in question. Do you mean the predominant transcript in a 573 

given tissue? Do you mean the longest known transcript associated with that gene?]. The right 574 

hand column lists the disease along with two articles using the variant descriptions given in the 575 

left hand column. The difficulty of parsing different variant notations that refer to the same 576 

genetic event warrants the development of automated approaches for variant curation from the 577 

literature. 578 

  579 
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Table 2 580 

Variant type AVADA HGMD ClinVar 

stoploss 0.30% 0.14% 0.10% 

nonframeshift 2% 3% 3% 

splicing 8% 7% 4% 

stopgain 12% 14% 9% 

frameshift 14% 22% 11% 

missense 65% 53% 74% 

Table 2. Variant type percentages in AVADA, HGMD and ClinVar. Despite being based 581 

purely on automatic Natural Language Processing methods, AVADA variant type fractions are 582 

always within the range between manually curated HGMD and ClinVar ± 1%. [GILL: Hmmm! 583 

Not sure I like this spin! In three cases, AVADA variant type fractions lie outwith the range 584 

between HGMD and ClinVar] 585 

  586 
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Supplemental Methods 587 

Variant Extraction Directly from Primary Literature  588 

Download of literature 589 

Articles were identified as potentially relevant based upon title and abstract in PubMed as 590 

previously described10. Briefly, all 25,793,020 available titles and abstracts from PubMed were 591 

downloaded. Subsequently, we trained a scikit-learn28 LogisticRegression29 classifier featurized 592 

by TF-IDF-transformed words (a common transformation of word frequencies into a feature 593 

vector). The training set for the title/abstract document classifier was based on 51,637 positive 594 

titles and abstracts cited in OMIM “Allelic Variants” sections or HGMD PRO version 2016.02, 595 

and 66,424 random negative titles and abstracts from PubMed. PDFs of articles were 596 

downloaded directly from publishers using PubMunch50. 597 

Identification of relevant articles based on the full text of articles 598 

We created a full-text classifier that assigns a score between 0 and 1 to each downloaded article, 599 

providing an estimate of the article’s likelihood of containing human pathogenic mutation data. 600 

To create a TF-IDF feature vector, for use by a machine learning classifier, out of an article’s full 601 

text, each article was transformed by means of a scikit-learn28 CountVectorizer with parameters 602 

max_df=0.95 and min_df=100 followed by a TfidfTransformer with default parameters. The 603 

training set was based on 267,267 random articles in PubMed that were downloaded as a 604 

negative training set, and 46,291 full text articles cited in OMIM “Allelic Variants” sections or 605 

HGMD PRO version 2016.02. Based on this training set, a scikit-learn28 LogisticRegression29 606 

classifier was trained.  607 

Identifying candidate gene mentions in full text 608 

Identification of candidate genes in full text was performed as previously described10. Briefly, a 609 

list of 188,975 gene and protein names was compiled from HGNC35 and UniProt51. Gene and 610 

protein names in this list were matched to word groups in the PDF text. Extractions were 611 

supplemented by PubTator52 gene extractions where available by matching gene names 612 

deposited in PubTator for a particular article to words occurring in that article.  613 

Identifying candidate variant descriptions in full text 614 

Candidate variant descriptions in Human Genome Variation Society (HGVS) or HGVS-like 615 



 

27 

notation53 were identified using 47 regular expressions (Supplemental Table S1 and 616 

Supplemental Table S7). We partition mentioned variants into 3 broad categories: cDNA 617 

variants (“c.” variants, such as “c.123T>C”), protein variants (“p.” variants such as “p.T34Y”) 618 

and splicing variants (“c.” variants with a position and an offset, such as “c.123-2A>G” or “IVS” 619 

variants, such as “IVS4-2A>G”). Variant descriptions generally consist of a subset of the 620 

following components: variant type (cDNA, protein, splicing), position of the mutation relative 621 

to the given transcript, reference nucleotide or amino acid, mutated nucleotide or amino acid, and 622 

type of genetic event (deletion, insertion, …). Using regular expression matching groups, 623 

information about all of these components is saved for each identified variant. 624 

To create Figure 1, when counting the number of variant descriptions in articles, we removed all 625 

non-alphanumeric characters from variant descriptions because inconsistencies throughout the 626 

article with respect to spacing and parentheses used can otherwise lead to double-counting 627 

variant descriptions. 628 

Mapping variants to candidate genes 629 

A gene-variant candidate mapping of a variant onto a gene is a tuple (g, v) comprising a variant 630 

description v and a gene g such that there is at least one transcript t of g that has the variant’s 631 

given reference nucleotide/amino acid at the position given in the variant description v. If this is 632 

the case, the variant v is supported by the gene g, and (g, v) forms a candidate mapping.  633 

To identify all gene-variant candidate mappings in an article with a set of mentioned variant 634 

descriptions V and a set of mentioned genes G, AVADA examines each pairwise combination (g, 635 

v) of a variant v in V and a gene g in G to determine if they form a candidate mapping. Each gene 636 

is represented by its set of transcripts deposited in the RefSeq33 database. All known RefSeq 637 

transcripts of g are successively examined to establish if g supports v. Most variants are written 638 

in a form that includes the position of the mutation inside the gene’s transcript, the reference 639 

sequence, and the mutated sequence (e.g., “c.123A>G”: the position is “123”, the reference 640 

sequence is “A” and the mutated sequence is “G”). However, some variants only contain a 641 

position and a mutated sequence, not the original reference sequence (e.g., “c.153_154insGG”: 642 

the reference sequence is not included, just the novel insertion of “GG” between positions 153 643 

and 154 inside the transcript). If the variant description v does not contain a reference sequence, 644 

all candidate genes form candidate gene-variant mappings with the variant. These gene-variant 645 
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candidate mappings are further filtered using a machine learning classifier in the next section. 646 

All gene-variant candidate mappings are converted to genomic coordinates (chromosome, 647 

position, reference allele and alternative allele). A conversion attempt is unsuccessful if the 648 

underlying nucleotide change cannot be identified given the variant description: e.g., this is the 649 

case for frameshift variants in “p.” notation such as “p.Val330fsX30”. Here, the precise 650 

underlying nucleotide change cannot be inferred from the variant description because the given 651 

frameshift may be caused by a very large number of possible nucleotide indel mutations. 652 

In the case of a missense protein variant (e.g., NM_000025.2:p.Trp64Arg), the variant was 653 

translated to all possible single nucleotide variants that could cause such an amino acid change at 654 

the given position in the transcript. Since the Trp at position 64 in NM_000025.2 is encoded by 655 

the nucleotides TGG, both changing the T to a C (CGG) and the T to an A (AGG) result in an 656 

Arg codon. All further analysis was performed only on variants where conversion to genomic 657 

coordinates was successful. 658 

Distinguishing true from false candidate gene-variant mappings 659 

Given a set of candidate gene-variant mappings {(g1, v), (g2, v), (g3, v), (g4, v), …}, most of the 660 

genes gi associated with v through a candidate mapping are false: the variant v does not map to 661 

gene gi. We constructed a machine learning classifier that distinguishes true gene-variant 662 

candidate mappings from false gene-variant candidate mappings. This classifier uses a number of 663 

real-valued [GILL: real-value?] numbers, called features, to determine if a gene-variant 664 

candidate mapping is true or false. In order to describe these features, some terminology must 665 

first be introduced: 666 

 A “stopword” is a short word such as “by”, “of”, “there”, “if”, “or”, etc. The variant 667 

classifier uses a list of 122 stopwords (Supplemental Table S8).  668 

 An alphanumeric character is a character in the ranges a-z, A-Z, and 0-9.  669 

 A 2D position of a description in a PDF file consists of a page number and x and y 670 

coordinates of the mention on the page.  671 

 A word position of a description in a PDF file consists of a single integer that gives the 672 

index of a word in the PDF document that contains the description.  673 
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 The Euclidean distance of two mentions associated with x and y coordinates (x1, y1) and 674 

(x2, y2) is defined as √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 675 

 The word distance between two mentions m1 and m2 of some genes or variants in an 676 

article A is defined as |w2 -w1|. 677 

 A mention m1 occurs “above” a mention m2 in the document if the page number of the 2D 678 

position of mention m1 is smaller than the page number of the 2D position of m2. If the 679 

page numbers of the two mentions are the same, m1 occurs before m2 if the y coordinate 680 

of m1 in the PDF is smaller than the y coordinate of m2 in the PDF. 681 

Contextual information about a gene or variant mention in a PDF file is defined to consist of the 682 

following:  683 

 the number of stopwords among the 20 words preceding the mention in the article’s text 684 

 the number of stopwords among the 20 words following the mention in the article’s text 685 

 the number of alphanumeric characters among the 20 characters preceding the mention in 686 

the article’s text 687 

 the number of alphanumeric characters among the 20 characters following the mention in 688 

the article’s text. 689 

Each gene g is mentioned 1 to n times in an article. Let mention(g)1… mention(g)n be the 690 

mentions of the gene g in the article. Similarly, each variant v is mentioned 1 to m times in an 691 

article. Let mention(v)1… mention(v)m be the mentions of the variant v in the article. 692 

The machine learning classifier used by AVADA to distinguish true from false gene-variant 693 

candidate mappings is a  scikit-learn28 GradientBoostingClassifier34. To decide whether a given 694 

gene-variant candidate mapping is true or false, the GradientBoostingClassifier takes a list of 125 695 

numerical features containing information about the relationship between mentions of the gene 696 

and mentions of the variant in the original article. Based on these features, the classifier returns a 697 

number between 0 and 1 that gives the likelihood of the gene-variant mapping being true or not. 698 

The 125 features are constructed in 8 different feature groups describing the textual and 699 

geometric relationship between the candidate gene and candidate variant mention, and other 700 

genes mentioned close to the candidate variant mention. Further information is available in the 701 
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accompanying code (see “variant_classifier_features.py”, functions “relationship_2d” and 702 

“relationship_wordspace”). 703 

The variant classifier decides if mention(v)j maps to gene g for 1 ≤ j ≤ m based on these 125 704 

features. The value of these features is determined separately for each variant mention 705 

mention(v)j. If the classifier decides that any variant mention in mention(v)1…mention(v)m maps 706 

to g with classifier score greater or equal to 0.9, the variant v is considered to map to the gene g. 707 

To train the classifier, it was presented with a large number of annotated true and false gene-708 

variant candidate mappings, called a training set. The training set for the classifier was created as 709 

follows: gene-variant candidate mappings (g, v) discovered by AVADA in a given article A were 710 

converted to genomic coordinates in form of chromosome, position, reference and alternative 711 

allele. If the genomic coordinates of a gene-variant candidate mapping extracted from A were 712 

deposited in ClinVar version 20170228 and annotated as curated from A, the mapping (g, v) was 713 

supervised true and all mappings of other genes to the same variant v in the article were 714 

supervised false. Otherwise, the variant was discarded. Synonymous variants (e.g., 715 

“p.Trp88Trp”) were also discarded due to the fact that they were largely not disease-causing, or 716 

were false extractions. This strategy yielded a training set comprising 25,218 positive training 717 

examples and 91,742 negative training examples from 7,823 articles. The importance assigned to 718 

each of the 125 features by the GradientBoostingClassifier is listed in Supplemental Table S9. 719 

All extracted variants in AVADA were pre-processed using bcftools54 to normalize all variants 720 

(left-align indels and exclude variants where the RefSeq reference nucleotide did not match the 721 

hg19 nucleotide): 722 

bcftools norm --check-ref x -f human_g1k_v37.fasta -o avada.vcf 723 

avada_non_normalized.vcf 724 

Comparison of AVADA to HGMD, ClinVar, and tmVar 2.0 725 

The first version of AVADA was created on articles downloaded until June 2016. To ensure a 726 

fair comparison, we compare AVADA with HGMD PRO version 2016.02 and ClinVar version 727 

20160705 [GILL: date accessed?]. These were obtained from 728 

http://www.hgmd.cf.ac.uk/ac/index.php and ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/ 729 

, respectively. tmVar 2.0 variants were obtained from 730 

http://www.hgmd.cf.ac.uk/ac/index.php
ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/
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ftp://ftp.ncbi.nlm.nih.gov/pub/lu/PubTator/mutation2pubtator.gz . The tmVar file was subset to 731 

contain only tmVar-extracted variants in articles from 2016 and before (same set of articles used 732 

as input to AVADA). tmVar-extracted rsIDs were converted to genome coordinates by joining 733 

with the official dbSNP database mapping rsIDs to genome coordinates at 734 

ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/All_20180423.v735 

cf.gz . 736 

Variants reported in AVADA, HGMD, ClinVar, and tmVar 2.0 were normalized (as above) 737 

using bcftools: 738 

bcftools norm --check-ref x -f human_g1k_v37.fasta -o 739 

<database_normalized>.vcf <database>.vcf 740 

Variants were counted to be in two variant databases if the full variant description (chromosome, 741 

position, reference and alternative alleles) in both databases matched exactly. HGMD contained 742 

165,051 distinct variants, of which 141,926 were marked as disease-causing [GILL: DMs only? 743 

DMs plus DM?s ?]. ClinVar contained 142,396 distinct variants, of which 44,631 were marked 744 

as “pathogenic” or “likely pathogenic”. tmVar 2.0 contained 80,159 distinct variants. 745 

Variant types contained in AVADA 746 

To count the fractions of variant types contained in AVADA, each variant was assigned one of 747 

the types “missense” (single nucleotide variants changing an amino acid in the mapped gene), 748 

“nonframeshift” (insertion, deletion and indel variants adding a multiple of 3 nucleotides to a 749 

coding exon), “frameshift” (all other insertion, deletion and indel variants in coding exons), 750 

“splicing” (splice-site variants), “stopgain” (single nucleotide variants changing an amino acid 751 

codon in a coding exon to a stop codon) and “stoploss” (single nucleotide variants changing a 752 

stop codon to an amino acid codon) by automatically analyzing the effect of the variant on the 753 

mapped transcript. Variants of all types were summed, and fractions of variant types were 754 

calculated as the number of variants of a particular type over the total number of variants of all 755 

types in AVADA. 756 

Variant types contained in ClinVar and HGMD 757 

To generate fractions of variant types in HGMD and ClinVar, variants in these databases were 758 

annotated with semantic effect using ANNOVAR55. All HGMD or ClinVar variants that had a 759 

missense, stoploss, stopgain, splice-site, frameshift or nonframeshift effect in ENSEMBL36 and 760 

ftp://ftp.ncbi.nlm.nih.gov/pub/lu/PubTator/mutation2pubtator.gz
ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/All_20180423.vcf.gz
ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/All_20180423.vcf.gz
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RefSeq33 coding exons, and had a variant frequency of less than 3% in ExAC56 v0.3 and the 761 

1000 Genomes Project57 phase 3 were counted, and percentages of each variant type were 762 

calculated as the number of variants of a particular type over the total number of missense, 763 

stoploss, stopgain, splice-site, frameshift and nonframeshift variants in HGMD and ClinVar, 764 

respectively.  765 

Diagnosis of patients with Mendelian diseases using AVADA 766 

DDD patient Variant Call Format (VCF) files were obtained from the European Genome-767 

Phenome Archive39 (EGA) study number EGAS00001000775. We identified VCF files for 768 

affected patients by matching the phenotypes that each VCF file was annotated with the 769 

phenotypes that each patient identifier and causative variant were annotated with, and verifying 770 

that the causative variant was contained in the patient’s associated VCF file. If unique 771 

identification of a patient’s VCF file was not possible, we omitted the patient. Reported disease-772 

causing variants that were not found in a VCF file were omitted. Bcftools were used to normalize 773 

all variants in DDD VCF files using the following command: 774 

bcftools norm -f human_g1k_v37.fasta -o <normed DDD VCF file> 775 

<original DDD VCF file> 776 

Sensitivity of variant annotation using AVADA, HGMD, ClinVar, and tmVar 2.0 777 

ANNOVAR55 was used to annotate variants with a predicted effect on protein-coding genes from 778 

ENSEMBL36 and RefSeq33, and allele frequencies from the ExAC56 v0.3, the 1000 Genomes 779 

Project57 phase 3 and the UK10K58 ALSPAC and TWINS sub-cohorts. All variants with a 780 

frequency of at most 0.5% in all sub-populations of ExAC v0.3, 1000 Genomes Project and the 781 

UK10K ALSPAC and TWINS sub-cohorts, that affected a protein-coding gene and were 782 

missense, stopgain, stoploss, frameshift indel, nonframeshift indel or splice-site disrupting were 783 

retained.  784 

AVADA and tmVar 2.0 were subset to variants from articles until 2014 by associating each 785 

article with the publication date stored in PubMed and subsetting to articles until 2014. HGMD 786 

variants were subset to 2014 by removing all variants with a “new_date” greater than 2014. 787 

ClinVar version 20141202 was obtained from 788 

ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/archive_1.0/2014/ . 789 

ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/archive_1.0/2014/
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Specificity of variant annotation using AVADA, HGMD, ClinVar, and tmVar 2.0 790 

Candidate causative variants in patient’s exomes were defined using the same variant filtering 791 

criteria as above (0.5% minor allele frequency thresholds for all mutations affecting protein-792 

coding regions). VCF files of the 245 patients annotated with AVADA, HGMD, ClinVar, or 793 

tmVar 2.0 were processed as described above to arrive at a list of rare candidate causative 794 

variants per patient. A candidate causative variant was counted as “annotated” by a database if 795 

the identical variant (chromosome, position, reference and alternative allele) occurred in the 796 

database. 797 

  798 
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Supplemental Figures 799 

Supplemental Figure 1 800 

 801 

 802 

Supplemental Figure 1. Extracted variants in tmVar intersected with all disease-causing 803 

variants in HGMD and ClinVar. tmVar extracts 19,424 variants in HGMD (subset to disease-804 

causing variants), as compared to 85,888 variants for AVADA and 13,664 variants in ClinVar 805 

(subset to pathogenic and likely pathogenic variants), as compared to 24,475 for AVADA. 806 


