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THESIS SUMMARY

My thesis investigated whether performance on complex scene and object 
perceptual and memory tasks would be influenced by possession of different variants of 

the APOE gene. A particular focus was on the effect of the APOE-e4 allele on scene 

processing. APOE-e4 is known to increase risk for Alzheimer’s disease (AD) in later life 
and is associated with structural and functional changes in the medial temporal lobe 
(MTL) and posteromedial cortex, regions known to be affected early in AD. Previous 
studies have shown sensitivity to spatial processing in AD, including difficulties in 
differentiating scene, but not object, stimuli (Lee et al., 2006), impairments remembering 
scenes over a delay (Bird et al., 2010), and deficits in navigation around spatial 
environments (Pengas et al., 2010). These findings suggest that difficulties with complex 
spatial processing may be a hallmark of AD, and that investigation of scene processing 
in individuals at greater risk of developing AD later in life may be of interest in 
understanding the genesis of these later life cognitive impairments. 

In Chapter 1, I provide an overview of relevant literature on the APOE gene and 
its relationship to AD, and discuss experiments which have demonstrated brain and 

behaviour differences between APOE-e4 carriers and non-carriers. I interpret these 
findings in the context of recent models of memory which focus on representational 
networks, and where distinctions between scene and object processing are a key feature 
(Bussey & Saksida, 2007; Graham, Barense, & Lee, 2010; Murray, Wise, & Graham, 2017). 
The subsequent chapters describe experiments which aimed to extend the research 
described in Chapter 1 by investigating scene perception and memory in carriers of 
different APOE alleles in early- and mid-adulthood. In Chapter 2, I describe findings 
from applying a novel conjunctive learning task, in which participants were required to 
discriminate between objects and scenes. In Chapter 3, I report results from applying a 
new visual paired-comparison task in the same group of participants. Chapter 4 extends 
the approach outlined in Chapter 3, using the visual paired-comparison task in middle-
aged participants, again focusing on the comparison of performance in groups with 
different APOE genotypes. Finally, in Chapter 5, I assess how performance in the tasks 
used in Chapters 2-4 are related to the volumes of brain regions (in the MTL and 
extrastriate cortex). As these have been strongly linked to object and scene perception 
and memory, I was interested in whether volume would be associated with performance 
on my new tasks. The final chapter summarises the experimental findings from Chapters 
2-5 and explains how these build upon our current body of knowledge about how the 
APOE gene affects cognition in both early- and mid-adulthood.
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CHAPTER 1 – GENERAL INTRODUCTION

1.1 Alzheimer’s disease and the amyloid-cascade hypothesis 

Alzheimer’s disease (AD) is a chronic neurodegenerative disease, and is the most 

common cause of dementia (defined as the progressive loss of cognitive ability) world-

wide (Alzheimer’s Disease International, 2015). The most recognisable symptom is 

usually the gradual onset of memory impairment, including forgetting recent events or 

conversations, misplacing items, and having trouble remembering names of people and 

places (NHS England, 2018). There are, however, multiple variants that can begin with 

other symptoms, such as visuospatial disruption (posterior cortical atrophy), attention 

and executive function impairment (familial AD), or language impairment (logopenic 

AD), depending on the extent of damage in different brain regions and networks 

(Lehmann et al., 2013). As AD progresses, patients show greater disruption in cognition, 

including disorientation, disordered speech and language impairments, personality 

changes, and mood swings (NHS England, 2018). There are an estimated 50 million 

people world-wide affected by AD and other dementias, and that number is expected to 

triple by 2050 (Alzheimer’s Disease International, 2015). Concerns about the social and 

economic impact of the disease have brought AD to the forefront of health research 

policy, with recent efforts to prevent and/or cure the disease becoming globalised (e.g. 

World Dementia Council, 2017).  

AD is characterised by the presence of two main pathological markers in the 

brain (Selkoe, 1991): ‘plaques’ (a large sticky build-up of the amyloid-beta (Aß) protein) 

and ‘tangles’ (excessive levels of tau protein resulting in the formation of neurofibrillary 

tangles). Extensive plaque deposition leads to vascular damage and neuronal cell loss 

(Hardy & Higgins, 1992). In turn, this results in the specific cognitive impairments noted 

above, with the striking impairment in memory seen in many individuals with the 

disease, making it distinguishable from other types of dementia (Karantzoulis & Galvin, 

2011). Alois Alzheimer, the Bavarian psychiatrist who first defined the syndrome, 
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reported the symptoms of his patient, referred to as August D, as being “progressive 

memory impairment; disordered cognitive function; altered behaviour including 

paranoia, delusions, and loss of social appropriateness; and a progressive decline in 

language function” (Selkoe, 2001). Although Alzheimer originally coined AD to refer to 

‘pre-senile’ dementia—as August D was much younger than would be expected for 

senile dementia—we now know that he was observing familial (or early-onset) AD 

(Müller, Winter, & Graeber, 2013), which is very similar to sporadic (or late-onset) AD 

but occurs in individuals under the age of 65. 

In the UK, when individuals initially start becoming worried about potential 

cognitive change, but where this is not yet sufficient for a clinical diagnosis of a major 

cognitive disorder, such as AD, patients are often diagnosed with mild cognitive 

disorder. This is also known as mild neurocognitive disorder (American Psychiatric 

Association, 2013) or, more commonly, as mild cognitive impairment (MCI). Patients 

with MCI are characterized by “[an] impairment of memory, learning difficulties, and 

reduced ability to concentrate on a task for more than brief periods” (World Health 

Organization, 2016). In cases where an MCI patient has a cognitive deficit where the 

dominant problem is memory (amnesic-MCI, or aMCI), it is often considered to be the 

prodrome to AD (Petersen & Morris, 2005; Sachs-Ericsson & Blazer, 2015). Research over 

the last two decades or so has focused on this early prodromal state, in particular 

identification of those individuals at greatest risk of converting (declining cognitively) 

to more obviously fit the pattern typically associated with AD. Conversion rates from 

MCI to dementia (broadly defined, including AD) greatly vary from around 20% to over 

60% depending on the sample investigated and the length of time following diagnosis 

(Ganguli, Dodge, Shen, & DeKosky, 2004; Morris et al., 2001; Wolf et al., 1998; Sun, van 

de Giessen, Lelieveldt, & Staring, 2017). Greater conversion is seen in samples where 

individuals sought treatment compared to those sampling from the general population 

(Crocco & Loewenstein, 2005;  Sachs-Ericsson & Blazer, 2015). A 2008 meta-analysis of 

fifteen studies estimated that the conversion rate specifically from MCI to AD was 31.4% 

(Mitchell & Shiri-Feshki, 2008).  
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Arguably the most dominant model of AD pathogenesis has been the amyloid 

cascade hypothesis (Hardy & Higgins, 1992; Selkoe, 1991; Selkoe & Hardy, 2016). The 

theory posits that AD pathology begins with inadequate processing of the Aß42 protein, 

which eventually results in cognitive decline and dementia. More specifically, it is 

argued that increased brain activity in specific brain regions triggers amyloid precursor 

protein (APP) to cleave into Aß peptides, which then oligomerize to form soluble Aß, 

thought to be the most toxic Aß species (McLean et al., 1999). These soluble Aß oligomers 

form fibrils, which are the main component of the Aß plaques. Cellular responses to this 

then accelerate the formation of neurofibrillary tangles and subsequent tau 

accumulation, which disrupts neuronal functioning and eventually leads to cell death 

(see Figure 1.1). Selkoe and Hardy (2016) argue that this neurodegeneration may begin 

between 20-30 years prior to clinical diagnosis. Others posit that the accumulation of 

Aß42 is a life-long process in some cases, such as in individuals with a genetic 

predisposition to AD (Jagust & Mormino, 2011). These individuals may have genes that 

either increase the relative production of Aß42 (e.g. presenilin-1 (PSEN1) or 2 (PSEN2) 

genes), or genes that are inefficient at clearing Aß (such as APOE-e4), resulting in the 

gradual relative rising of Aß42. 

Support for the amyloid cascade hypothesis has increased with the accrual of 

many clinical and preclinical studies, as well as large-scale genome-wide association 

studies (GWAS) studies (for review, see Selkoe & Hardy, 2016). A more extensive 

summary of work on the relationship between genes and AD is covered later (in section 

1.3), but the identification of a number of risk genes for AD that are implicated in the 

accumulation or clearance of Aß (see Figure 1.1), suggests a dominant role of Aß

accumulation in the pathogenesis of AD. This is further supported by the prevalence of 

mutations in genes that encode proteins directly involved in the production and 

cleavage of APP into Aß peptides, such as APP or PSEN1/2, in individuals with 

autosomal dominant AD (Ricciarelli & Fedele, 2017). The argument is also augmented 

by the increased proportion of individuals with Down syndrome—which is attributed 



Chapter 1 – General introduction 

4 

to the triplication and overexpression of the APP gene (Glenner & Wong, 1984; D. 

Hartley et al., 2015)—developing AD in early life (Ricciarelli & Fedele, 2017).  

This model is not without contention, however, with some arguing that its 

hierarchical structure is often not supported by the data (e.g. Herrup, 2015). A number 

of studies fail to find any association between AD-related cognitive impairment and Aß

accumulation (Aizenstein et al., 2008; Delaère et al., 1990; Dickson et al., 1992; Fagan et 

Figure 1.1 - The sequence of major pathogenic events 
leading to AD proposed by the amyloid cascade hypothesis 
(Selkoe & Hardy, 2016).
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al., 2009; Katzman et al., 1988; Klunk et al., 2009; Villemagne et al., 2011). For example, 

Aizenstein et al. (2008) used positive emission tomography (PET) imaging to measure 

the extent of Aß deposition in elderly healthy individuals and separated them into 

dichotomous groups (amyloid-positive vs amyloid-negative). They found no significant 

decreases in cognitive performance in the amyloid-positive (compared to the amyloid-

negative) group, and even found increased performance on a delayed recall test in the 

amyloid-positive group. Villemagne et al. (2011) also used positive emission 

tomography (PET) imaging to measure Aß deposition in 239 individuals and compared 

this with performance on a battery of cognitive tests. They found only a weak 

relationship between Aß burden and cognitive decline, however they did find the Aß 

was predictive of future cognitive decline, suggesting that the downstream effects of Aß

accumulation may have a more direct effect on AD-related impairment. 

There is also criticism regarding the over reliance on transgenic mouse models 

in support of Aß-centric pathological hypotheses (Ricciarelli & Fedele, 2017). Even 

though sporadic AD makes up over 95% of AD cases, transgenic mouse models often 

use mutations found in familial AD, which may have distinctive disease progression and 

cognitive symptoms (Farrer et al., 1990). Mice also appear to respond differently to gene-

expression, for example, APP and APP/PEN1 mice both overexpress APP (compared to 

humans), fail to present the tangles and neuronal death that occurs in AD patients, and 

exhibit reversible cognitive damage, none of which translate across to AD patients 

(Ricciarelli & Fedele, 2017).  

Another focus of contention is the lack of efficacy in anti-Aß vaccines, with trials 

of both active (Farlow et al., 2015; Holmes et al., 2008; Pasquier et al., 2016) and passive 

(Salloway et al., 2014; Schwarz et al., 2017) immunisations to date reporting no reliable 

differences in cognitive evaluations. An example of this can be seen in the 

EXPEDITION3 study (Honig et al., 2016; Schwarz et al., 2017), which used an antibody 

directed against Aß peptides. Despite some improvements to cognition and a reduction 

in atrophy in the right hippocampus (HC), phase III trials revealed only small differences 
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in cognition between treatment and placebo groups, using the ADAS-Cog, and so the 

trial was deemed to be unsuccessful. Although this is seen as evidence against the 

amyloid cascade hypothesis, it is possible that the lack of effects in anti-Aß vaccine trials 

is due to the overreliance on a single, and relatively outdated, cognitive measure. A later 

study (Wessels, Matthews, Dowsett, Andersen, & Siemers, 2017) reassessed the data 

using a combined score from both ADAS-Cog and the Alzheimer’s Disease Cooperative 

Study - instrumental Activities of Daily Living (ADCS-iADL) (Galasko et al., 1997), and 

found a greater effect of the treatment, increasing over time. This demonstrates that even 

a small adjustment to the validating measure can have a profound effect on the 

interpretation of the result. Further, if the impact of Aß starts much earlier than we 

previously thought, decades in advance of the onset of overt cognitive decline, it is 

possible that anti-Aß vaccinations may be being given too late in the disease to result in 

major positive cognitive changes. 

Overcoming the limitations of clinical cognitive tests (such as the ADAS-Cog) 

becomes increasingly important as the target shifts further away from clinical diagnosis 

and into much earlier stages of disease pathology. Early and accurate identification of 

those with a high likelihood of developing AD could provide a number of benefits: 

Firstly, it would allow the individual to plan ahead and receive practical advice and 

information while they still have the capacity to make decisions. Secondly, determining 

and implementing treatments earlier in the lifespan is likely to have more beneficial 

effects in terms of delaying or preventing neurodegeneration. Thirdly, it enables 

researchers to progress understanding of how the disease develops. Finding reliable 

methods of predicting AD earlier on in the lifespan prior to the onset of any cognitive 

decline (e.g. pre the prodromal phase of AD) could have considerable benefits for 

patients and society (Alzheimer’s Disease International, 2018; Heerema, 2018).  
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1.2 Impairment of spatial memory in Alzheimer’s disease 

Arguably one of the biggest problems with clinical tests for AD is an overreliance 

on the assumption that the primary failure in AD is related to memory failure. Although 

AD is typically associated with impairments in declarative memory (NHS England, 

2018), there are a number of studies that report deficits in AD patients that are specific 

to spatial memory and learning (Bird et al., 2010; Cherrier, Mendez, & Perryman, 2001; 

deIpolyi, Rankin, Mucke, Miller, & Gorno-Tempini, 2007; Kalová, Vlcek, Jarolímová, & 

Bures, 2005; Moodley et al., 2015; Morganti, Stefanini, & Riva, 2013; Pengas et al., 2010). 

Perhaps one of the most popular tests of spatial memory is the Morris water-maze 

(Morris, 1984). This task typically requires rodents to navigate around a pool of murky 

water to find a non-visible platform. Sensory cues are usually placed around the pool, 

providing allocentric reference points with which the rodent can calculate its position 

relative to the target. Studies in rats have found this task to be preferentially demanding 

on the HC (for review, see D’Hooge & De Deyn, 2001), which is a brain region that is 

recruited during tasks involving spatial perception and memory (Bussey & Saksida, 

2007; Graham et al., 2010; Murray et al., 2017) and is thought to be affected early in AD 

(Dubois et al., 2016; Visser, Verhey, Hofman, Scheltens, & Jolles, 2002). 

Virtual reality equivalents of the Morris water-maze have been used in human 

studies, and have also shown preferential recruitment of the HC (Astur, Taylor, 

Mamelak, Philpott, & Sutherland, 2002; Cornwell, Johnson, Holroyd, Carver, & Grillon, 

2008; Goodrich-Hunsaker, Livingstone, Skelton, & Hopkins, 2010). Laczó et al. (2010) 

developed a real-world equivalent of the Morris water-maze using a ‘Blue Velvet 

Arena’—a circular tent equipped with cameras, an LED-projected target, and 

navigational markers on the edges that can be turned on/off when needed. They used 

this in patients with AD, amnesic-MCI (aMCI), non-amnesic MCI (naMCI), individuals 

with subjective memory complaints, and healthy controls. They also manipulated which 

strategies the participant could use to locate the target, by offering either egocentric cues, 

by indicating either the start-position (from which the target had been previously 
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learned), or allocentric cues, by showing the navigational markers on the edges. They 

found that AD patients were significantly impaired on both conditions, compared to all 

other groups, and aMCI patients were impaired compared to all but the AD patients. 

These results suggest that AD patients may be particularly impaired at spatial 

navigation. 

Bird et al. (2010) investigated the extent to which spatial/topographical memory 

was impaired in AD and aMCI patients, compared to fronto-temporal lobe dementia 

(FTLD) patients and healthy controls, using a four-mountains task. In this task, 

participants were presented with a target mountainous scene and four options to choose 

from, one of which was the same scene but from a different viewpoint. In the non-spatial 

condition, the scenes could be discriminated by looking at a single feature, such as the 

sky colour or the type of fauna, whereas the topographical condition required 

participants to mentally rotate the image or consider the spatial boundaries between the 

different parts of the image. As expected, both AD and aMCI patients were impaired on 

both conditions, compared to FTLD and controls. In addition, AD patients were 

disproportionately worse on the spatial condition, suggesting that AD is particularly 

damaging to spatial compared to non-spatial memory. 

There have been a number of other tasks that also demonstrate that AD might be 

more specifically associated with spatial dysfunction, as well as spatial memory, 

particularly in comparison to other forms of dementia, such as semantic dementia. 

Pengas et al. (2010) used a series of tests, including the four-mountains task, a virtual 

route-learning task, a head-orientation test, and a series of non-spatial standard memory 

tests, with the aim of identifying which tasks might be most beneficial in accurately 

identifying AD from both healthy controls and from other dementia types. Of the tasks 

they used, they found the most clinically-relevant task was the virtual route-learning 

task, in which participants had to navigate around a virtual town along a specific pre-

learnt route. The authors found that AD patients were sufficiently poorer than both 
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controls and semantic dementia patients, such that the test provided the most 

ecologically valid method of assessment.  

1.3 Genetic risk of Alzheimer’s disease 

Observing and exploring factors that are causally involved in the genesis of AD, 

and precede cognitive decline and subsequent clinical diagnosis of AD, is challenging, 

as we have few reliable methods for identifying individuals that are likely to develop 

AD. As a result, researchers are increasingly looking at genetic variants implicated in the 

disease, using these as a proxy for increased risk of poorer later life cognitive health, 

including AD. One method that has been applied is the study of individuals with a 

history of familial AD, where we can be very confident that a large number of 

individuals in a family will go on to develop early-onset AD. In such families, rare 

mutations in dominant genes such as PSEN1, PSEN2 and APP (Bettens, Sleegers, & Van 

Broeckhoven, 2010; Scheuner et al., 1996) appear to increase the concentration of 

aβ42(43), a longer variant of extracellular aβ, which forms insoluble aggregates much 

faster and which are more toxic than the more common aβ40 (Bu, 2009; Scheuner et al., 

1996). Individuals carrying one of these genes are almost certain to develop early-onset 

AD if they live into mid-adulthood, making them an important group of people for 

researchers interested in the trajectory of cognitive decline to work with. There are, 

however, only around 500 families worldwide that are known to carry one of these 

genes, which limits large-scale study (Miller, 2012). As noted above, however, familial 

AD may have different biological causes to those seen in sporadic AD, which impacts 

on generalisation of findings to the general population.  
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 The development of revolutionizing technologies, such as genome-wide 

association studies (GWAS) that allow researchers to evaluate millions of single-

nucleotide polymorphisms (SNPs) in thousands of individuals, have enabled the 

identification of over 20 genes (see Figure 1.2) that appear to increase risk for AD to 

varying degrees (Escott-Price et al., 2014; Hollingworth et al., 2011; Lambert et al., 2013; 

for reviews see Giri, Zhang, & Lü, 2016; Karch & Goate, 2015). As already discussed, the 

majority of genes that have been linked to AD affect Aß production and clearance, either 

directly (e.g. PSEN1/2 or APP) or indirectly through processes that facilitate production 

and clearance, such as endocytosis (e.g. BIN1 or PICALM) or cholesterol metabolism (e.g. 

APOE or CLU) (Karch & Goate, 2015).  

In sporadic AD, the gene which has the strongest influence on later life cognitive 

health is APOE, which codes for a lipoprotein responsible for metabolising lipids (Bu, 

2009). The APOE gene is located on chromosome 19 and has three main polymorphic 

Figure 1.1 – Graphical display of the risk genes associated with AD (as of 2015). The y-axis is ordered by the level 
of risk for development of AD, with the highest risk genes having certainty of disease progression within an 
average lifespan. The x-axis is ordered by the frequency of which the gene is found in the general population. The 
genes associated with a high risk of AD tend to be rare. APOE-e4 stands out as being relatively common and also 
having a medium level of AD, which is unusual in genetics. Homozygous carriers of the APOE-e4 allele has a 
significantly greater risk than heterozygous carriers. Figure is from Karch and Goate (2015).
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alleles—e2, e3 and e4—which code respectively the isoforms APOE-e2, APOE-e3 and 

APOE-e4 (Schächter et al., 1994), each being structurally unique. In 1993, Strittmatter and 

colleagues (1993) found that the APOE-e4 allele greatly increased the likelihood of 

sporadic AD. An APOE-e4 allele is present in around 25% of the general population, 

whereas it is found in approximately 40% of patients with AD (Bu, 2009). The most 

common allele is APOE-e3 (77%) and the least common is APOE-e2 (8%), with the latter 

believed to offer protective properties against AD (Suri, Heise, Trachtenberg, & Mackay, 

2013; Talbot et al., 1994). APOE-e4 heterozygotes carry a lifetime risk of 23% and 30% for 

men and women, respectively, and this increases to 50% and 60% in e4 homozygotes 

(Genin et al., 2011). This intermediate risk of heterozygous e4 carriers compared to 

homozygous e4 carriers suggests that APOE is a moderately penetrant gene with semi-

dominant inheritance (Genin et al., 2011).  

APOE regulates lipid homeostasis in the body by transporting and clearing 

lipoproteins, fat-soluble vitamins, and cholesterol to the vascular system (Mahley & Rall 

Jr, 2000). This includes delivering cholesterols that are essential for brain health and 

repair, such as neuronal growth and synaptic plasticity (Liu, Kanekiyo, Xu, & Bu, 2013; 

O’Donoghue, Murphy, Zamboni, Nobre, & Mackay, 2018). It is suggested that the APOE-

e3 allele is the most efficient at this process (Liu et al., 2013), as, although the APOE-e2 

allele appears to offer some protection from AD, it seems this is not associated with Aß 

deposition, with both the APOE-e2 and APOE-e4 alleles being associated with increased 

Aß in old age (Berlau, Corrada, Head, & Kawas, 2009; although see Nagy et al., 1995). 

APOE-e2 also increases the risk of Type III hyperlipoproteinemia—a genetic disorder 

that can lead to premature atherosclerosis (Mahley, Huang, & Rall, 1999)—which may 

explain why, from an evolutionary perspective, the allele is still relatively rare.  

It is believed that APOE-e4 is associated with deficiencies in Aß clearance, not 

production (Liu et al., 2013). This is in part due to studies using transgenic mice, which 

have found that whilst different APOE isoforms synthesise (produce) similar levels of 
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Aß, they vary in the levels of soluble Aß they have (APOE-e4 > APOE-e3 > APOE-e2) 

prior to the onset of Aß deposition (Castellano et al., 2011). This suggests there is an 

inefficiency of APOE-e4 to clear away cholesterols and explains why it is also associated 

with increased risk for other cholesterol-related conditions, such as coronary heart 

disease (Stengård et al., 1995).  

1.3.1 Impact of APOE-ee4 on brain volume, functional networks, and cognition 

Magnetic resonance imaging (MRI) studies using APOE-e4 carriers often report 

inconsistent results. They typically focus on regions within the medial temporal lobe 

(MTL), such as the hippocampus (HC), entorhinal cortex and parahippocampal cortex 

(PHC); these are all known to be important for episodic memory, and may underlie the 

altered cognitive performance seen in early AD. Many structural MRI studies report that 

APOE-e4 carriers have a reduction in MTL volume (Biffi et al., 2010; Burggren et al., 2008; 

Hua et al., 2008; Knickmeyer et al., 2014; Lemaître et al., 2005; Plassman et al., 1997; Shaw 

et al., 2007). For example, Biffi et al (2010) found significant reductions in grey-matter 

volume in MTL regions, including the HC, entorhinal cortex, and PHC, in elderly APOE-

e4 carriers compared to non-carriers, regardless of whether the APOE-e4 carriers had an 

AD or MCI diagnosis. Given the association between APOE and AD pathology, this may 

seem unsurprising, but this link between APOE-e4 and reduced MTL volume appears 

to extend much earlier in the lifespan than the pattern reported in elderly individuals. 

Reduced volume linked to the presence of an APOE-e4 allele has also been reported in 

healthy adults (Burggren et al., 2008), adolescents (Shaw et al., 2007), and children (Shaw 

et al., 2007). Further, Knickmeyer et al. (2014) genotyped and scanned the brains of 272 

new-born babies, and found significant reductions in grey-matter volume in MTL 

regions, including the HC and parahippocampal cortex (PHC), in APOE-e4 carriers 

compared to non-carriers. In addition to these reported grey-matter reductions, age-

related reductions in white-matter integrity have also been reported in APOE-e4 carriers, 
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compared to non-carriers, on structures including the cingulum, corona radiata, corpus 

callosum, external capsule, internal capsule, and superior longitudinal fasciculus (Heise, 

Filippini, Ebmeier, & Mackay, 2011). Together, these studies seem to provide strong 

evidence for an effect of APOE-e4 on grey- and white-matter structure throughout the 

lifespan. 

These findings are not unanimous, however, and a number of experiments have 

failed to find any structural differences linked to APOE-e4 carriers in both young and 

elderly adults (e.g. Filippini et al., 2011; Hostage, Choudhury, Doraiswamy, Petrella, & 

Initiative for the Alzheimer’s Disease Neuroimaging, 2013; Westlye, Lundervold, 

Rootwelt, Lundervold, & Westlye, 2011). For example, Hostage et al. (2013) studied a 

large cohort of 662 elderly individuals, including AD and MCI patient groups and 

healthy controls, to look at the relationship between disease, APOE-type, and HC 

volume. Although they found a significant reduction in HC volume associated with the 

presence of an APOE-e4 allele in MCI and AD groups, there was no significant difference 

in volume as a result of possessing an APOE-e4 allele in healthy individuals. It is 

possible, however, that the lack of an effect in the healthy controls reflects other 

protective factors that might mitigate the effect of APOE, such as healthy diet and 

exercise.

Moreover, some studies have even found increased grey-matter in cognitively 

healthy elderly APOE-e4 carriers compared to non-carriers (Honea, Vidoni, Harsha, & 

Burns, 2009; Striepens et al., 2011). In-line with the findings of Hostage et al. (2013), 

Striepens et al. (2011) found that APOE-e4 carriers with a subjective memory impairment 

(not sufficient for clinical diagnosis of MCI/AD) had a significantly smaller left HC 

compared to non-carriers, whereas APOE-e4 carriers without a subjective memory 

impairment had a significantly larger right HC compared to non-carriers. This also 

suggests that the relationship between APOE-e4 and volume might be one that is 

confounded by other genetic and lifestyle factors. 
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Longitudinal studies looking at the effect of APOE-e4 over time offer greater 

control over the separate effects of other genetic and lifestyle factors, as these remain 

relatively consistent over time within an individual. Lu et al. (2011), for example, found 

that young elderly APOE-e4 heterozygotes (aged 55-75 years) showed a greater 

reduction in HC volume over approximately five years, compared to a matched control 

group of APOE-e2 heterozygotes. Other similar longitudinal studies in elderly cohorts 

have found the same results when comparing between APOE-e4 and APOE-e3 (Cohen, 

Small, Lalonde, Friz, & Sunderland, 2001) and also looking at other brain structural 

measures, such as ventricular expansion between APOE-e4 carriers and non-carriers 

(Roussotte et al., 2014). 

There have also been reported differences in white-matter structural integrity 

that seems to be related to APOE. Heise et al. (2011) used diffusion tensor imaging (DTI) 

in a sample of cognitively healthy individuals (25-78 years). Irrespective of age, APOE-

e4 carriers had significantly reduced white-matter integrity (as measured by reduced 

fractional anisotropy (FA) and increased mean diffusivity (MD)) across the brain, 

compared to non-carriers. A later study by Hodgetts et al. (2018) looked more 

specifically at the posterior default mode network—in particular, the parahippocampal 

cingulum bundle which has high levels of connectivity with the HC and PHC 

(Heilbronner & Haber, 2014)—and found that young adult APOE-e4 carriers (mean age 

of 20 years) had increased white-matter integrity selectively in this region, compared to 

non-carriers. As neuronal activity is known to increase vulnerability to Aß deposition, 

Hodgetts et al. argue that their findings might be indicative of an increased dependence 

for APOE-e4 carriers on this tract over the lifespan, which eventually leads to an increase 

in Aß accumulation and subsequent atrophy and cognitive decline. This is also 

supported by evidence that functional connectivity and white-matter integrity in this 

tract decreases with age in APOE-e4 carriers (Heise et al., 2014), as well as a significant 
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reduction in the white-matter integrity of this tract in patients with MCI, compared to 

healthy controls (Metzler-Baddeley et al., 2012). 

In further support of this hypothesis, the posterior default mode network has 

also been associated with increased functional activity in APOE-e4 carriers, even in 

young adulthood. Shine et al. (2015), used an odd-one-out task involving objects and 

scenes with young adult APOE-e4 carriers and non-carriers (mean age = 20yrs) whilst 

looking at brain activity using a functional-MRI (fMRI) task involving perceptual 

discrimination. In their task, three pictures were presented on screen, either three scenes, 

three faces, or three objects. In each trial two viewpoints of the same exemplar were 

shown alongside a third item which was a different scene, object or face. The participant 

was required to identify which exemplar was the different object, face, or scene. A 

similar task has previously found that AD patients were impaired on perceptual 

discrimination for scene, but not face, stimuli ( Lee et al., 2006). Shine et al. wished to test 

whether the same task and conditions would elicit altered brain activity—increased 

levels of blood-oxygen-level dependent (BOLD)—in APOE-e4 carriers. Whilst Shine et 

al. found no difference in performance on the task between APOE-e4 carriers and non-

carriers, they found that carriers failed to deactivate the posterior cingulate cortex (PCC) 

(compared to non-carriers) in the scene but not object or face conditions, leading to 

increased activation in this network over time (see Figure 1.3). This increased activation 

in the PCC has also been reported in other studies involving young adults (e.g. Dennis 

et al., 2010; Filippini et al., 2011, 2009; Mondadori, de Quervain, et al., 2007), further 

suggesting that APOE-e4 carriers have altered patterns of activity in this region, 

especially related to scene processing and episodic memory.  
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The argument that increased activity potentiates the secretion of Aß and 

increases the amount of amyloid plaques is underpinned by animal research (e.g. Bero 

et al., 2011; Nitsch, Farber, Growdon, & Wurtman, 1993; Ovsepian & O’Leary, 2016; 

Yamamoto et al., 2015). For example, Bero et al. (2011) stimulated the neurons of mice 

whilst monitoring Aß deposition. They found that increasing neuronal activation also 

increased the secretion of Aß in that region, as well as the formation of the plaques that 

are one of the hallmarks of AD. It is difficult to extend the findings of such studies 

directly to humans, however, it is worth noting that there is a strong association between 

‘hubs’ that are highly connected to multiple brain regions, such as the PCC, and where 

there may be high levels of activity, and associations with the level of Aß secretion in 

and around these regions (Buckner et al., 2009; Haan, Mott, Straaten, Scheltens, & Stam, 

2012; Jagust & Mormino, 2011). This suggests that the findings in animal work may 

translate to humans. 

It is less clear how these alterations in the brain, linked to the presence of different 

APOE alleles, may affect cognition over the lifetime. A 2018 critical review of literature 

by O’Donoghue et al. (2018), covering the last 20 years of studies into APOE genotypes 

Figure 1.3 – This figure is adapted from Shine et al (2015). It 
shows the percentage signal change in the posteromedial 
cortex during an odd-one-out task involving scenes, faces 
and objects. The graph shows how APOE-e4 carriers fail to 
deactivate this region during scene-specific stimuli, leading to 
higher levels of activity in this network over time.
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and cognition in healthy individuals, noted the lack of a consistent pattern of effects 

across studies. Unsurprisingly, given the strength of the relationship between APOE and 

AD, the strongest trends appeared in studies looking at elderly APOE-e4 carriers 

compared to non-carriers (Bondi et al., 1995; Caselli et al., 2009; Rawle et al., 2018; 

Staehelin, Perrig-Chiello, Mitrache, Miserez, & Perrig, 1999; Wetter et al., 2005; Wisdom, 

Callahan, & Hawkins, 2011), and particularly when episodic memory tests were applied 

(Caselli et al., 2009; Rawle et al., 2018). For example, Rawle et al. (2018) conducted a 

longitudinal study of 815 cognitively healthy individuals aged between 21 and 97 years, 

measuring their memory using an auditory-verbal learning test every two years. They 

found that APOE-e4 affected age-related memory, with carriers showing an accelerated 

decline, compared to non-carriers, from the age of 50 and increasing over subsequent 

years. The authors do highlight that the majority of their sample was over 50 years, and 

that it is possible that this effect might extend to younger adults. Indeed, Nao et al. (2017) 

did find that young adult APOE-e4 carriers (mean age of 28 years) are impaired 

compared to non-carriers on the same auditory-verbal learning test, suggesting that the 

effects of APOE-e4 on cognition might exist long before the occurrence of AD. 

There are, however, a number of studies that fail to find any APOE-related 

differences in cognition (e.g. Bunce, Anstey, Burns, Christensen, & Easteal, 2011; Caselli 

et al., 2009; Jorm et al., 2007; Luciano et al., 2009; Richter-Schmidinger et al., 2011; Zhang 

et al., 2015). O’Donoghue et al. (2018) argue that making cross-study comparisons in this 

area is challenging, as results are likely to be heavily dependent on methodological 

factors—such as sample age, sample size, and the cognitive tests that are used—which 

vary greatly between studies. For example, Bunce et al. (2011) conducted a high powered 

study including over 6500 individuals, looking for differences between APOE-e4 carriers 

and non-carriers, from ages 20 to 64 years, on a number of different cognitive measures. 

Unlike Rawle et al. (2018) and other similarly large sample studies (e.g. Jorm et al., 2007; 

Luciano et al., 2009), Bunce et al. found no difference in any of their cognitive measures 

in either young, middle, or older adult age groups. O’Donoghue et al. (2018) argue that 
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this is potentially due to a lack of sensitivity to APOE-related brain changes in the 

cognitive tasks used, particularly in the younger age-groups. They also argue that it is 

currently difficult to disentangle whether any observed differences in cognition result 

from an indirect association with APOE, via the increased presence of AD-related 

pathology in APOE-e4 carriers, or a direct effect of APOE on cognition that is 

independent of future AD diagnosis.  

Some studies have taken a more focussed approach in measuring the relationship 

between APOE and cognition, particularly in younger individuals. Acevedo et al. (2010) 

studied children (aged 7-10 years) who were APOE-e4 carriers and non-carriers on a 

virtual reality spatial memory task, a human equivalent of the Morris water-maze task 

used in rodents (Morris, 1984). The task requires participants to navigate around a 

virtual environment to locate a hidden target, the location of which had previously been 

learnt. Performance on this task has previously shown to be effected by hippocampal 

damage in humans (Astur et al., 2002). Acevedo et al. found that APOE-e4 non-carriers 

spent more time in the quadrant of the environment containing the hidden target 

compared to the other quadrants, whereas APOE-e4 carriers spent a similar amount of 

time in each quadrant. This suggests that young APOE-e4 carriers are impaired during 

spatial learning compared to same age non-carriers.  

Zhang et al. (2015) looked at the effect of APOE-e4 on the inhibition of cognitive 

interference using a Stroop colour-reading task in young adults (16-39 years). This task 

involves showing participants colours written out as words, but in different coloured 

ink (e.g. the word BLUE written in red ink). Participants are asked to read aloud the 

colour of the ink, not the colour spelt out by the word. The authors found that APOE-e4 

carriers were slower at reading out the colours compared to non-carriers. This task has 

been shown to recruit the fronto-parietal attentional network, which includes the 

anterior cingulate cortex, dorsolateral prefrontal cortex, inferior frontal gyrus, inferior 

and superior parietal cortex, and insula (Grandjean et al., 2012). Interestingly, this 
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network also projects to the PCC (Leech & Sharp, 2014), which, as discussed earlier, has 

been shown to have altered function in APOE-e4 carriers (Dennis et al., 2010; Filippini et 

al., 2011, 2009; Mondadori, de Quervain, et al., 2007; Shine et al., 2015; Trachtenberg, 

Filippini, Cheeseman, et al., 2012). Leech and Sharp (2014) argue that the PCC plays a 

key role in the breadth and focal-direction of attention, between either an external source 

(such as when viewing a stimulus) or an internal representation (such as an 

autobiographical memory). 

This finding may explain why some researchers have found APOE-related 

differences in performance on tasks involving attention. For example, Rusted et al. (2013) 

tested young adult APOE-e4 carriers (mean age of 20 years) on two attention tasks: a 

rapid visual information processing (RVIP) task, which required participants to identify 

when three consecutive odd or even digits appeared during a rapid presentation of 

numbers; and a covert attention task, where participants were presented with a left or 

right cue, followed by the presentation of a stimulus on either the left or right of the 

screen, as indicated by the cue in 70% of trials. They found that APOE-e4 carriers 

detected more correct targets in the RVIP task and had greater detection of incongruent 

trials on the covert attention task, suggesting that there may be an early-life advantage 

in attentional tasks involving inhibition of incongruent information. This is inconsistent 

with the findings of Zhang et al. (2015), who found that APOE-e4 carriers (aged between 

16 and 39 years) were disadvantaged in the inhibition of cognitive interference, which 

suggests that differences between APOE-e4 carriers and non-carriers might be sensitive 

to small changes in tasks that seemly recruit the same cognitive domains. 

1.3.2  APOE-ee2: The protective gene? 

 The majority of studies looking at the effects of APOE on cognition have focused 

on the APOE-e4 allele (O’Donoghue et al., 2018). This is likely due to the increased 

prevalence of the allele compared to APOE-e2. Of the studies that have looked at APOE-
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e2, however, many suggest that there are neuroprotective effects of the allele (for review, 

see Suri et al., 2013). That said, ex vivo neuropathological examination studies report 

inconsistent findings. For example, Berlau et al. (2009) found that, following an ex vivo

neuropathological examination, very elderly (90+ years) APOE-e2 carriers were more 

likely to meet the pathological criteria of AD (the presence of both excessive Aß plaques 

and neurofibrillary tangles) than APOE-e3 carriers, despite having less risk of diagnosis 

of dementia during their life. This suggests that some other mechanism may be 

contributing to their maintenance of cognition. Morris et al. (1995), however, found that 

elderly APOE-e2 carriers (age range from 53-93 years with a mean age of 79 years) had 

fewer neurofibrillary tangles than non-carriers, but no significant difference in Aß

plaques. A further study (Nagy et al., 1995), looking at a mostly elderly population 

(mean age of 79 years), reported a reduction in both Aß plaques and neurofibrillary 

tangles in APOE-e2 carriers. These discrepancies could be, in part, due to differences in 

the ages of the cohort, which might suggest that APOE-e2 carriers are protected from 

both Aß plaques and neurofibrillary tangles unless they are very old (90+ years), at 

which point there may be rapid decline associated with pathological hallmarks of AD. 

 Similar to studies looking at APOE-e4, exactly what effect APOE-e2 has on 

cognition earlier in life is unclear. Complementing the findings of Zhang et al. (2015), 

where APOE-e4 carriers were impaired compared to non-carriers a Stroop task, 

Trachtenberg et al. (2012a) found that middle-age APOE-e2 and APOE-e4 carriers 

showed similar levels of BOLD during a Stroop task, including increased activation of 

MTL regions (e.g. the HC, amygdala, and PHC) in both groups (compared to APOE-e3 

carriers). In a different study, Trachtenberg et al. (2012b) looked at brain activation at 

rest and also found increases in BOLD response in middle-aged APOE-e2 and APOE-e4 

carriers compared to APOE-e3 carriers. This begs the question of how and why there are 

such similar effects of APOE-e2 and APOE-e4 alleles on brain activation, in the context 



Chapter 1 – General introduction 

21 

of different patterns of risk of poorer later life cognitive health. This question is, as yet, 

unanswered. 

Not all fMRI studies, however, have found similar patterns of cognitive 

performance or levels of brain activity between APOE-e2 and APOE-e4 individuals. 

Mondadori et al. (2007) found that young adult APOE-e4 carriers remembered more 

items than APOE-e2 and APOE-e3 carriers during a delayed word recall task. They also 

reported that APOE-e4 carriers had smaller learning- and retrieval-related brain activity 

increases than APOE-e3 carriers in a number of MTL and frontal regions, including the 

HC, during a face encoding task (where participants had to remember the association 

between a face and an occupation). Conversely, APOE-e2 carriers increased their 

learning-related activity in these regions. The authors argue that the APOE-e4 allele is 

associated with more economic use of learning-related neural resources, and that the 

opposite effect is present in carriers of the APOE-e2 allele. 

One possible explanation for some of the inconsistencies in reported APOE-e2 

research is that carriers of APOE-e2, -e3, and -e4 alleles all utilise different strategies to 

some tasks. Konishi et al. (2016) provided some evidence for this when testing young 

adults on a virtual reality spatial navigation task. Participants had to find items using 

pathways that were surrounded by distinct landmarks, and then remember the route 

they took. There were two possible methods of identifying the items and recalling the 

previous paths: a spatial strategy that involved using information about the locations 

relative the distinct landmarks, or a response strategy that involved using a pattern or 

numbering system (such as “going clockwise, take the first left after leaving the start 

position, then skip one pathway and take the next two pathways”). Based on a verbal 

report of how they completed the task, experimenters categorised the participants into 

either spatial or response learners and tested this against a subsequent probe trial in 

which the landmarks were removed (which would impair the spatial- but not the 

response-driven learners). The authors found that APOE-e2 carriers were more likely to 
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use a spatial than a response strategy, whereas APOE-e3 and -e4 carriers were more 

likely to use a response strategy (see Figure 1.4). They also found that the APOE-e2 

carriers also had significantly greater HC volume compared to APOE-e3 and -e4 carriers, 

suggesting that this group may be more likely to use hippocampus-dependent spatial 

strategies during a navigation/search task.  

Very few DTI studies have examined the relationship between APOE-e2 and 

brain white-matter integrity. Westlye et al. (2012) studied the microstructural properties 

of white-matter in the brains of 203 individuals ranging from 21 to 70 years (mean = 48 

years), and found that APOE-e2 carriers had decreased FA, increased MD and increased 

radial diffusivity (RD), similar to that of APOE-e4 carriers (and different to APOE-e3 

carriers). This finding suggests that both APOE-e2 and APOE-e4 alleles are associated 

with poorer myelin integrity in the brain, and builds upon the findings of Trachtenberg 

et al. (2012a; 2012b) that there are comparative functional patterns between APOE-e2 and 

APOE-e4 groups. Conversely, Chiang et al. (2012) found increased integrity (greater FA) 

Figure 1.4 – Figure adapted from Konishi et al. (2016), who investigated 
strategies used during a virtual maze task. Participants who used a spatial 
strategy utilised landmarks to calculate their position relative to the target. 
Participants using a response strategy used a pattern system (such as 
“going clockwise, take the first left after leaving the start position, then skip 
one pathway and take the next two pathways”) to complete the task. They 
found a significant difference in strategies used in the APOE-e2 group 
compared with APOE-e3 and -e4.
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in the PCC of middle- and old-aged (49-90 years) APOE-e2 carriers, compared to non-

carriers. This suggests that the protective effect of APOE-e2 may be specific to certain 

regions or white-matter tracts, and also that it becomes more pronounced later in life. It 

also builds on the work discussed in the previous section (e.g. Hodgetts et al., 2018; Shine 

et al., 2015; Zhang et al., 2015) that suggests that the PCC and associated regions may be 

critically affected in individuals with both low- and high- risk APOE alleles. 

In summary, the reported findings from APOE-e2 studies are both limited and 

inconsistent. This may be largely due to the low prevalence of the allele, leading to 

sample sizes which are too small to detect subtle differences. Those studies that have 

found similarities between APOE-e2 and APOE-e4 though are surprising, given that 

these alleles are thought to have protective and detrimental effects on AD prognosis, 

respectively. In a comprehensive review of the impact of APOE-e2, Suri et al. (2013) 

highlight APOE-e2’s underrepresentation in the literature, as well as the need for a 

greater understanding of the mechanisms via which both APOE-e2 and APOE-e4 

influence AD pathology and cognition, and how these are affected by age. 

1.4 The role of the medial temporal lobe in the perception of objects and scenes 

Understanding the role of the MTL in cognition is integral to understanding the 

relationship between AD-related pathology in these areas and subsequent cognitive 

decline; specifically because, as noted above, the MTL, and its connections with PCC, are 

some of the first regions thought to be affected by AD. For many decades, the function 

of MTL structures (such as the HC, perirhinal cortex (PRC), entorthinal cortex and 

related subregions) were considered to be specific to episodic memory (e.g. Squire, 1992; 

Squire, Stark, & Clark, 2004), as evidenced by the striking loss of event memory seen 

after damage to these structures. A series of experiments—in rodents, non-human 

primates and humans—have challenged this account, and it is becoming increasingly 

accepted that the MTL forms part of a visual perception network that supports memory 
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for different forms of information, rather than being a set of structures specifically 

dedicated to memory (for reviews, see Graham et al., 2010; Lee, Yeung, & Barense, 2012; 

Murray, Wise, & Graham, 2016; Saksida & Bussey, 2010).  

Bussey and Saksida (2007) presented their views on this by proposing a 

representational-hierarchical model, arguing that the MTL forms part of a “perceptual 

representational system” within a wider visual ventral stream. They argue that as 

information is received in the visual cortex, retinotopic detail is bound into simple 

features (such as edges, orientations, and colours), which are then further bound 

together to form increasingly higher-order gestalt representations of objects (see Figure 

1.5). As the world around us is made up of multiple objects, the spatial properties of the 

object-representations can then be bound to form high-order scene-representations. The 

authors argue that this system seeks to resolve feature ambiguity between objects and 

environments in order to allow us to rapidly recognise unique items and layouts in the 

world and distinguish similar ones from each other. They propose that simple 

representations can be formed in more caudal regions of the visual ventral stream (such 

as parts of the extrastriate cortex, including lateral occipital complex (Grill-Spector, 

Kourtzi, & Kanwisher, 2001) or the fusiform face area (Gauthier et al., 2000), for objects 

and faces, respectively). MTL regions, however, are involved in discrimination of highly 

complex overlapping representations, with the PRC essential for forming more complex 

conjunctive representations of objects, for example. Although Bussey and Saksida (2007) 

do not extensively postulate on the role of the hippocampus, they do suggest it might sit 

at the top of this hierarchy, with the ability to form representations at a higher level by 

binding together spatial information to form complex “scene” representations. The work 

described earlier—which focused on AD, but in particular the possibility that scene 

processing might be vulnerable in this disorder—is consistent with this hypothesis. 

There is clear evidence that the HC may be particularly important for scene processing, 

potentially explained by its early role in generation of a cognitive map in our early 

animal ancestors (Murray et al., 2017). 
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Bussey and Saksida’s representational-hierarchical model is based on extensive 

research conducted in both animals (Bartko, Cowell, Winters, Bussey, & Saksida, 2010; 

Buckley & Gaffan, 1997) and humans (Barense et al., 2005; Barense, Gaffan, & Graham, 

2007; Barense et al., 2012; Barense, Henson, Lee, & Graham, 2010; Brunec et al., 2017; 

Erez, Cusack, Kendall, & Barense, 2016; Graham et al., 2006; Lee, Buckley, et al., 2005; 

Lee, Bussey, et al., 2005; Lee & Rudebeck, 2010; Martin, Douglas, Newsome, Man, & 

Barense, 2018), as well as computer-simulated models (Cowell, Bussey, & Saksida, 2006). 

For example, Bartko et al. (2010) tested rats with PRC legions on a series of recognition 

memory tasks where the rat was rewarded for approaching a specific object whilst in the 

presence of either a similar or dissimilar distractor, based on the number of features that 

they shared (out of a total of four features). They found that the rats with PRC legions 

were impaired when the task required them to distinguish between two similar objects, 

but not when there were dissimilar objects, compared to control rats without a PRC 

lesion. The findings suggest PRC is essential for distinguishing multiple objects when 

the number of overlapping features is high, but not low.  

Figure 1.5 - A simplified visualisation of the visual ventral 
stream according to the representational-hierarchical model. 
Simple features are processed in the caudal regions of the 
stream. The more rostral regions are capable of reducing 
ambiguity by forming more complex gestalt feature 
conjunctions. (Kent, Hvoslef-Eide, Saksida, & Bussey, 2016)
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Saksida et al. (2007) also tested rhesus monkeys with HC and PRC legions on an 

object recognition task. In this study, the monkeys were presented with a pair of images, 

one correct and one incorrect, and were rewarded when they touched the correct object. 

In a concurrent discrimination condition, the correct object in the pair remained consistent 

throughout, meaning the monkey only had to remember which object was correct. In a 

separate transverse patterning condition, each image was only correct when it was paired 

with another specific image (for example, when A and B are presented, A is correct; 

when B and C are presented, B is correct; and when A and C are presented, C is correct). 

This latter condition required the monkey to learn the conjunction of stimuli, which the 

authors argued would be PRC dependent. Indeed, they found that PRC-lesioned 

animals were impaired, compared to control animals without a lesion, on the transverse 

patterning condition, but not the concurrent discrimination condition, suggesting that 

the PRC is essential for discriminating between conjunctions of multiple objects, but not 

single-object recognition. Interestingly, the authors found that animals with HC lesions 

were facilitated on the transverse patterning condition (compared to controls), which the 

authors argue might be due to HC intact animals seeking a spatial solution to the task 

that is unavailable to subjects with HC lesions. 

These findings in animal-lesion studies also translate across to research looking 

humans with damage to the MTL. Barense et al. (2007) studied human patients with 

selective damage to the HC, as well as patients with broader MTL damage including the 

PRC, using an odd-one-out task with various object stimuli with differing levels of 

feature overlap (minimum, intermediate, and maximum). Participants had to select the 

object, from an array of seven, which did not have an identical pair. In the minimum 

overlap condition, none of the distractor pairs had any features that were the same as 

another pair or the target. In the intermediate and maximum conditions, the pairs/target 

all had two or four features that overlapped, respectively. The authors found that 

participants with broader MTL lesions, involving the HC and PRC, were significantly 

impaired at detecting the target on the intermediate and maximum conditions, 

compared to patients with HC lesions only and matched healthy control participants. 
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All groups performed well on the minimum overlap condition. In line with the 

representational-hierarchical model, this finding suggests that individuals with damage 

to the MTL are impaired at distinguishing objects that have ambiguous features, but not 

those where the featural ambiguity is low. Further, performance on this type of object 

discrimination task is not related to HC damage. 

There is an increasing collection of evidence to suggest that the HC is a critical 

region in forming more complex spatial representations, such as scenes (e.g. Aly, 

Ranganath, & Yonelinas, 2013; Barense, Henson, et al., 2010; Douglas et al., 2017; Kolarik 

et al., 2016; Lee, Buckley, et al., 2005; Lee, Scahill, & Graham, 2008). Early work with 

rodents led to the discovery of place-cells—specific neurons that trigger when the 

individual is in a particular place in their environment (Morris, Garrud, Rawlins, & 

O’Keefe, 1982; O’Keefe & Dostrovsky, 1971; O’Keefe & Nadel, 1979)—suggesting a role 

for the HC in representing space. Hampton et al. (2004) reported findings from rhesus 

monkeys with HC lesions which are consistent with this hypothesis. Within sight of the 

monkeys, they hid food under a plant-pot in a room with multiple distractor plant-pots 

and observed their success at finding the food over different time periods and from 

different locations. They found that monkeys with HC lesions were successful at finding 

the food from the location in which they saw the food being placed, but only for a short 

period of time, after which they were unsuccessful (compared to controls). They also 

found that the HC lesion monkeys were impaired at finding the food when they were 

immediately moved to a new location relative to where they had seen the food being 

hidden. This suggests that the HC is important for forming allocentric (or viewpoint 

invariant) spatial maps, but also that other brain regions are capable of resolving simple 

immediate egocentric spatial navigation. 

Later studies in humans with HC damage also found evidence of impaired 

spatial navigation and scene perception (for reviews, see Graham et al., 2010; Murray et 

al., 2017). Astur et al. (2002) observed performance on a Morris water-maze in patients 

with HC lesions following epilepsy treatment. Participants had to escape a pool within 
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a virtual environment by finding a hidden platform. Individuals with HC lesions were 

impaired at finding the platform, spending a similar amount of time in each quadrant of 

the pool, compared to controls who were able to rapidly learn the location of the 

platform relative to the environmental features. Interestingly, these findings are similar 

to the previously discussed study by Acevedo et al. (2010), who found that young adult 

APOE-e4 carriers did not spend as much time in the quadrant with the hidden platform 

(as APOE-e4 non-carriers) on a similar task.  

Maguire, Nannery and Spiers (2006) also found that HC legions impair 

navigation around real-world environments, using a virtual taxi-driver task around the 

city of London. They argued that the HC is essential for forming new spatial 

representations as well as for navigating environments based on fine-grain spatial detail, 

whereas it is not required for navigating around well-known and regularly used simple 

spatial representations. A number of further studies by this group of researchers 

working with London taxi drivers has shown the HC to be both essential for complex 

spatial navigation and also adaptive to increased demand on spatial representations of 

real-world environments (e.g. Hartley, Maguire, Spiers, & Burgess, 2003; Maguire et al., 

2000, 2003). 

Lee et al. (2006) investigated the role of the hippocampus in scene perception. 

They used an odd-one-out task in patients with AD and semantic dementia (SD), 

including both faces and virtual scenes. SD is a form of dementia in which patients show 

a progressive decline in their knowledge of the world, in the context of (initially) quite 

good memory for previous events (Hodges, Patterson, Oxbury, & Funnell, 1992). It is 

often used as a contrast to AD, where we see early loss of episodic memory in the context 

of better semantic memory. In Lee et al.’s task, patients were presented with 3 identical 

faces/scenes, from either the same or different viewpoints, and a different ‘target’ 

face/scene, and they were asked to select the target. They found that SD patients were 

impaired on the face (different viewpoint) condition, but not the scene condition or face 

(same viewpoint) condition, compared to AD patients and the control groups. 
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Conversely, the AD patients were impaired on the both of the scene conditions, but 

neither of the face conditions, compared to SD patients and controls. Critically, MRI 

scans showed that the AD patients had no evident damage to the PRC but extensive 

damage to the HC, whereas the SD patients had extensive PRC atrophy but only limited 

damage to the anterior HC. This double dissociation in cognitive performance suggests 

that the HC and PRC might play critical roles in disambiguating between scenes and 

faces, respectively, with PRC being particularly important when discrimination between 

object viewpoints is required. 

HC lesions have also been shown to selectively impair memory for scenes but 

not faces. Bird et al. (2008) studied patient ‘Jon’ who suffered from apnoeic attacks as a 

baby, resulting in a 50% reduction bilaterally in the HC, but not extrahippocampal 

regions. Using a recognition memory task, whereby ‘Jon’ and matched controls viewed 

either novel or familiar images of scenes and faces and rated how on a confidence scale 

how likely it was that the item was familiar or novel, the authors found that ‘Jon’ 

performed comparatively for the face condition, but significantly worse on the scene 

condition. They proposed that the HC cannot be involved in declarative memory per-se 

given these findings, but preferentially recruited when processing topographical 

features, such as complex scenes and spatial layouts, rather than faces. 

The work from animal and patient studies also converges with research using 

fMRI. For example, Barense et al. (2010) tested healthy young adult participants on an 

odd-one-out task whilst measuring BOLD activity. In this task, participants had to select 

the unique face, scene, object, or shape from a three-choice selection. In some conditions 

the same viewpoint of an object, face or scene was presented alongside a foil (a 

completely different face, object or scene), while in others a different viewpoint of an 

object, face or scene was presented (again alongside a completely different face, object 

or scene). When different viewpoint conditions were contrasted with same viewpoint 

conditions, the authors found a significant increase in BOLD activity in PRC during the 

object and face conditions, but not scene condition. By contrast, a significant increase in 
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HC activity for different view scenes compared to same view scenes was evident (with 

no effect in the face and object conditions). The authors argue that this task does not 

place any significant demand on memory due to the use of trial unique stimuli and a 

focus on perceptual discrimination where all items are present on the screen during the 

decision. The finding suggests that, in line with previous results, the PRC and HC are 

important for distinguishing between object/face and scene specific stimuli, 

respectively, regardless of memory demand. More specifically, Barense et al.’s findings 

suggest that these higher-order regions are critical in forming viewpoint-invariant 

representations, as opposed to representations from a single viewpoint. 

More recently, there have been studies to identify how scene activations 

associated with the HC may differ from those in scene-sensitive regions within the wider 

visual ventral stream. Hodgetts et al. (2016) used a one-back task—whereby participants 

are presented with a series of images and instructed to identify when two identical 

images are repeated in succession—to identify regions that were activated for scene 

stimuli, but not object stimuli. They identified that the HC is part of a core scene 

processing network, which also includes the posterior PHC, retrosplenial cortex, and the 

transverse occipital sulcus. Similar to Bussey and Saksida’s (2007) representational-

hierarchical model, they argue that each region supports different aspects of scene 

processing with activation modulated by changes in low-level spatial features, 

viewpoint changes, and spatial layout. Similarly, Mundy et al (2012) hypothesised that 

the visual ventral stream includes a wider scene- and object-processing network, in 

which specific extrastriate regions are capable of resolving low level ambiguity while 

MTL regions are critical for higher levels of visual featural ambiguity. They also used a 

one-back task with scenes, objects and faces, and found that there are distinct extrastriate 

and MTL regions that are preferentially activated for each type of stimuli. In particular, 

object processing triggered activity in the lateral occipital cortex (LOC) and the PRC; face 

processing triggered activity in the fusiform face area (FFA) and the PRC; and scenes 

triggered activation in the PHC and HC. When testing the impact of manipulating the 

level of ambiguity between the stimuli, Mundy et al. found that LOC, FFA, and PHC 
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were preferentially activated when the level of feature overlap was low for their 

respective stimulus categories, whereas PRC and HC had preferential activation for the 

high feature overlap conditions, again aligned to their seeming preference for object and 

scene stimuli, respectively (see Figure 1.6). These findings suggest that caudal regions of 

the visual ventral stream are capable of low-level disambiguation of similar stimuli, 

whereas disambiguating stimuli with increased similarity and visual complexity recruits 

the more rostral brain regions in the MTL.  

 As discussed earlier in this chapter, the HC and core regions connected to it (e.g., 

posteromedial cortex) demonstrate structural and functional changes associated with 

clinical diagnosis of AD (or suspected AD), as well as in those individuals with an 

Figure 1.6 – Figure from Mundy et al., (2012). Using a one-back task involving 
scenes, animate objects, inanimate objects, and faces, the authors plot BOLD 
activity in (A) the fusiform face area, (B) the lateral occipital complex, (C) the 
parahippocampal place area, (D) the posterior hippocampus, and (E) the 
perirhinal cortex.
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increased genetic risk for AD (Biffi et al., 2010; Burggren et al., 2008; Dennis et al., 2010; 

Filippini et al., 2011; Heise et al., 2011, 2014; Hua et al., 2008; Knickmeyer et al., 2014; 

Lemaître et al., 2005; Mondadori, Quervain, et al., 2007; Plassman et al., 1997; Shaw et 

al., 2007; Shine et al., 2015). This had led to significant efforts to investigate how risk 

genes for AD, such as APOE-e4, might impact on the functioning of MTL regions, and 

whether cognitive functioning is particularly vulnerable when tasks involve 

discrimination of, and memory for, scenes and spatial layouts. Shine et al.’s (2015) study 

(discussed earlier in this Chapter), found APOE-e4 related functional differences in the 

PCC specific to scene stimuli, but not to objects or faces. Specifically, this task required 

participants to discriminate between stimuli from multiple viewpoints, which, as 

discussed, has been demonstrated—via a series of lesion and neuroimaging studies in 

rodents, non-human primates and humans—to most likely depend upon high-order, 

viewpoint invariant scene representations stored within the HC.  

1.5 Thesis aims 

As highlighted in this chapter, there is extensive evidence to suggest that AD 

pathology begins many years earlier than overt clinical diagnosis, with some researchers 

even arguing that the process involves changes across the lifespan, particularly in those 

with a genetic predisposition for the disease, and other factors which might interact with 

that risk, such as lifestyle and health (Selkoe & Hardy, 2016). Unfortunately, research 

into the trajectory of brain and cognitive change across the lifespan has been somewhat 

hampered by the time and costs involved in identifying individuals at risk. Many of the 

tests that are used in both clinical diagnosis and research (such as the ADAS-Cog) are 

arguably outdated, as they assume that function of the regions primarily affected by AD 

(such as the HC) can best be recruited using memory demanding tasks. The research 

outlined in the previous section suggests that this may not be the case. For example, 

Cano et al. (2010) found a substantial ceiling effect in the ADAS-Cog in patients with 

mild-to-moderate AD, suggesting that the tasks have limited diagnosis effectiveness 
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even in a patient population. This provides an obvious barrier to improving our 

understanding of the disease and identifying future risk in younger individuals at risk. 

Based on recent work looking at the role of spatial and featural disambiguation in 

selective MTL regions, as discussed in the latter parts of this Chapter, it seems sensible 

to review the way in which we seek to measure AD-related cognitive impairment, 

including assessment of that in healthy individuals at genetic risk. In doing so, it might 

be possible to shift forward diagnosis much earlier in the pathogenesis of AD, and in 

turn move towards preventative interventions prior to significant cognitive decline. 

In this chapter, I discussed how different APOE alleles are associated with 

differential profiles of risk of developing AD later in life. Further there is evidence that 

this distinct APOE alleles may differentially alter brain structure and function, in core 

networks linked to the onset of AD pathology, potentially decades prior to AD clinical 

diagnosis. The study of cognition in healthy young individuals with different APOE 

alleles, and distinct risk profiles for AD, provides, therefore, an opportunity to enhance 

understanding of the APOE-related cognitive impacts, and the development of new 

paradigms which might address the issue of the insensitivity of current tasks used in 

clinical trials.  

The aim of this thesis, therefore, was to investigate whether different alleles of 

the APOE gene selectively impact on perception and memory for scenes (with objects as 

a control condition). New experimental tasks were developed and applied in young 

healthy adults to ask whether: (a) there would be a APOE dose-linked pattern of 

performance on tasks in which scenes with a high degree of featural overlap needed to 

be discriminated (e.g., APOE-e2 < -e3 < e4); (b) how any APOE-related changes in scene 

and object perception and memory might differ between young and middle-aged 

participants; and (c) whether individual performance on new tasks developed in this 

thesis would be associated with inter-individual variation in the volume of extrastriate 

and MTL brain regions known to be involved in scene and object processing. 
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In Chapter 2, I will report work from a conjunctive learning task using both 

scenes and objects in a population of young adults. This task was designed to require 

participants to learn which stimulus is rewarded by identifying it based on, for objects, 

conjunctions of appendages of novel fribbles, or, for scenes, conjunctions of spatial 

properties of virtual reality rooms. It was predicted that individuals at increased risk of 

developing AD later in life, via the presence of an APOE-e4 allele, would show poorer 

performance on the scene, but not object, condition of this task (as measured by both the 

number of trials to criterion and response times). Individuals with an APOE-e2 allele 

were expected to show the best performance, in comparison to APOE-e3 and APOE-e4 

groups. 

In Chapter 3, I developed a visual paired-comparison (VPC) task using eye-

tracking to measure free-viewing of two side-by-side stimuli, one familiar and one novel, 

with both scene and object conditions. It has been previously shown that individuals 

will preferentially view the novel object in a way which is correlated with their 

recognition memory for the familiar stimulus. In other words, the more they remember 

the familiar stimuli, the longer they will spend viewing the novel stimulus. In this study, 

I manipulated visual similarity, and predicted that individuals at high risk of developing 

AD, via the presence of an APOE-e4 allele, would show a lower novelty preference for 

scenes, compared to objects, particularly when the familiar and novel scene pair were 

visually similar (compared to dissimilar). Individuals at a lower level of risk for AD, 

such as those with an APOE-e2 allele, would show the highest performance on the scene 

task, as measured by a longer novelty preference. I predicted no influence of APOE 

genotype on novelty preferences elicited in the object condition, but did hypothesise that 

similarity would result in smaller novelty preferences due to reduced memory for the 

previously presented item. 

In Chapter 4, I report findings from application of the same VPC task as used in 

Chapter 3, but in a cohort of middle-aged adults where genotyping information was 

available to look at APOE risk. Similar to the previous chapter, I predicted that higher 
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risk of AD, as indicated by the presence of an APOE-e4 allele, would be associated with 

lower novelty preference for similar scenes (compared to dissimilar), but with no 

evidence of an influence of APOE in the object condition.  

In Chapter 5, I used MRI scans available from some of the participants reported 

in Chapters 2, 3 and 4 to ask whether individual differences in performance on the 

conjunction learning and visual paired-comparison task would be associated with inter-

individual variation in the volume of extrastriate and MTL regions. Specifically, with 

regard to extrastriate cortex, I looked at lateral occipital cortex (LOC), which is known 

to be preferentially responsive to objects, and parahippocampal cortex (PHC), which is 

known to be responsive to scenes. For the MTL, I studied perirhinal cortex (PRC) and 

the hippocampus (HC), which are thought to be differentially involved in object and 

scene perception/memory, respectively. In the conjunction learning task, I predicted 

that response times for objects would be related to the volume of object-sensitive regions 

(e.g., LOC and PRC), but not scene-sensitive regions (e.g., PHC and HC). With regard to 

response times for scenes, I predicted that this would relate to the volume of scene-

sensitive (PHC and HC), but not object-sensitive (LOC and PRC) regions. Similarly, for 

the VPC task, in both young and middle-aged cohorts, it is expected that individual 

differences in novelty preference for dissimilar and similar scenes would be positively 

related to variation in volume of PHC and HC, respectively. For dissimilar and similar 

objects, I hypothesised variation in novelty preference would correlate with increased 

volume in the LOC and PRC, respectively. 
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CHAPTER 2: 
THE INFLUENCE OF DIFFERENT APOE GENOTYPES ON PERCEPTUAL 

DISCRIMINATION OF COMPLEX SCENES AND OBJECTS

2.1 Introduction 

In Chapter One, I outlined increasing consensus among many neuroscientists 

(e.g. Bussey & Saksida, 2002, 2007; Bussey, Saksida, & Murray, 2002; Connor & Knierim, 

2017; Cowell, Bussey, & Saksida, 2010; Graham et al., 2010; Murray et al., 2017) that the 

MTL is the apex of a wider visual ventral processing stream that hierarchically organises 

simple retinotopic visual detail into more complex representations of the objects and 

their relationship with the environment around us. It has been proposed that these 

representations are formed by binding together simple features into complex 

conjunctions (see Figure 2.1), which in turn can be bound to form whole representations 

of real-world objects and spatial layouts. The most complex representations include 

conjunctions of the spatial and/or temporal properties of multiple item representations, 

which allows us to understand and navigate the world around us (Connor & Knierim, 

2017; Hsieh, Gruber, Jenkins, & Ranganath, 2014; Murray et al., 2017; Staresina, Duncan, 

& Davachi, 2011). Proponents of this model argue that this stream starts posteriorly in 

the visual cortex and extends anteriorly into the PRC and HC as the complexity of the 

featural and spatial conjunctions increase. 

As these representations become more complex, it is argued that they serve to 

resolve ambiguity between representations (Blumenthal, Stojanoski, Martin, Cusack, & 

Kohler, 2018; Bussey & Saksida, 2007; Lee, Bussey, et al., 2005). Animal studies, using 

tasks that require discriminating between stimuli with varying levels of feature 

ambiguity, found that animals with lesions to the PRC, were unable to correctly 

distinguish between different objects when the level of feature ambiguity was high, but 

not when feature ambiguity was low (Buckley & Gaffan, 1997; Bussey et al., 2002; 

Norman & Eacott, 2004). Saksida et al. (2007) also found that non-human primates with 
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legions to the PRC were impaired compared to controls at discriminating pairs of images 

in which all features overlapped, but only the configuration of the images changed. 

Surprisingly, in this study, animals with HC lesions showed improved performance 

compared to controls, not evidencing any difficulties with this complex perceptual 

discrimination task. This finding suggests not only that the HC is not required to make 

configural discriminations of features, but also that it may actually impair facilitation of 

this process.  

These results also translate across to human studies. For example, Barense et al. 

(2005) found that amnesic patients with MTL damage that included injury to the PRC 

were impaired at discriminating objects when the level of feature ambiguity between 

exemplars was increased, whereas patients with damage limited to the HC (and not 

obviously affecting the PRC) performed as well as healthy controls (see Figure 2.2). In 

this task, selecting the rewarded image was possible by identifying a single feature in 

the minimum and intermediate ambiguity conditions, but in the maximum condition 

the participant had to rely on knowing the unique conjunction of two features present 

in the object. These distinct patterns of impairment after different forms of lesion to the 

Figure 2.1 – Proposed hierarchical organisation of the visual ventral stream (Cowell et 
al., 2010). In the anterior regions, such as the PRC, complex object representations 
are formed from a number of different features that have been combined 
conjunctively. Figure taken from Cowell et al. (2010).
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MTL suggest that distinguishing between object-level representations is dependent on 

the PRC, particularly when there is a high level of feature ambiguity.  

Complementary to this, Aly et al. (2013), found that patients with bilateral 

hippocampal damage were impaired in a task whereby the participants had to decide 

whether two consecutively presented scenes were the same or different. These scenes 

Figure 2.2- Barense et al.’s (2005) study altered feature-ambiguity on a discrimination learning 
task. Performance of amnesic humans with either restricted hippocampal damage or larger MTL 
lesions including perirhinal cortex is shown in comparison with age-matched, neurologically 
intact control participants. Humans with hippocampal lesions learn all the discrimination 
problems normally, regardless of level of feature ambiguity, but humans with MTL lesions are 
impaired when there is intermediate or high feature ambiguity. Error bars indicate ± SE. Figure 
taken from Baxter (2009) based on Figures 2 and 3 of Barense et al. (2005).
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retained the same features and size across two ‘different’ scenes, but the spatial 

boundaries between features was altered by pinching or spherizing the images. When 

reviewing these results alongside those discussed earlier, it appears as though the HC is 

critical in differentiating between different configurations of spatial properties 

(particularly when these are ambiguous), but not non-spatial configurations of featural 

properties.  

Although there is much evidence suggesting a key role of the HC in tasks that 

involve distinguishing between ambiguous spatial stimuli, such as scenes (e.g. Bonnici 

et al., 2012; Lee, Buckley, et al., 2005; Postans et al., 2014), there are few studies that have 

looked directly at the role of the hippocampus in processing conjunctions of spatial 

features within scenes. Buckley, Charles, Browning, & Gaffan (2004) used a conjunctive 

learning task in non-human primates, where correct responses could only be achieved 

by learning a combination of spatial features, rather than any single feature of the item 

(a simple tadpole with a head and tail, which could point in different orientations). They 

found that learning these configurations of spatial features was impaired after 

transection of the fornix, the main input-output pathway to the hippocampus, 

suggesting that this white-matter tract is critical for processing conjunctions of spatial 

features within an object.  

To date, no study has used a similar type of task to that of Buckley and 

colleagues—focusing on discrimination between highly spatially similar scenes—in 

humans. Based on the theories discussed in Chapter One and briefly touched upon 

further in this chapter, hippocampal damage should influence performance in learning 

to discriminate between such stimuli (an extension to work showing that hippocampal 

lesions affects odd-one-out performance for scenes (Lee, Buckley, et al., 2005) and 

categorisation of scenes (Graham et al., 2006)). Such a task should also be sensitive to 

APOE-e4 if, as noted in Chapter 1.3.1, this semi-dominant allele influences the 

functioning of the posteromedial/hippocampal brain network involved in spatial 

processing, and in turn episodic memory. For example, as discussed in Chapter One, 
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Shine et al. (2015) found an altered pattern of BOLD activity in the PCC—a region 

affected in the early stages of AD (Zhou et al., 2008)—in APOE-e4 carriers (compared to 

non-carriers) on a scene condition in an odd-one-out task. One explanation for this 

pattern was that it reflects altered or compensatory strategies employed by APOE-e4 

carriers due to inefficient hippocampal function. If this is the case, it is likely that these 

inefficiencies may be elicited by difficult behavioural tasks when participants have to 

distinguish between scene-type stimuli with high levels of feature ambiguity. Note, in 

Shine et al. (2015), there was no evidence of behavioural differences across APOE-e4 

carriers and non-carriers, although behavioural differences between young APOE-e4 

carriers and non-carriers have been noted in other studies, typically those involving 

attention (e.g. Rusted et al., 2013). 

Mason et al. (2017) also used an odd-one-out task involving real-world objects, 

faces, scenes and greebles (novel computer-generated objects). The authors found that 

healthy middle-aged APOE-e4 carriers were significantly impaired for the greeble 

condition only, which the authors proposed could be due to a greater level of feature 

ambiguity in the greeble condition compared to the other conditions, although feature 

ambiguity was not controlled for systematically in this study, so this hypothesis could 

not be directly tested. These findings are different to the results that might be predicted 

based on the literature highlighted in this chapter, where it might be expected that 

APOE-e4 carriers would show impairments on the scene condition only. One potential 

explanation, however, is that the greeble stimuli were the only stimulus-type that 

required processing of specific conjunction of features. If the other stimuli-types could 

be discriminated using a single-feature comparison, this might engage more caudal 

regions of the ventral stream located in the extrastriate visual area, such as the LOC 

(Malach et al., 1995), FFA (Kanwisher, McDermott, & Chun, 1997) and PHC (Epstein & 

Kanwisher, 1998), that are capable of discriminating between lower-level 

representations, rather than the hippocampus (Mundy et al., 2012).  
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Despite the numerous structural and functional changes that have been in 

reported to occur in the hippocampus of young APOE-e4 carriers (as discussed in 

Chapter One) (e.g. Alexopoulos et al., 2011; Dennis et al., 2010; Dowell et al., 2013; 

Filippini et al., 2009; Heise et al., 2011; O’Dwyer, Lamberton, Matura, Tanner, et al., 

2012), to date, behavioural impairments have rarely been reported (although see Nao et 

al., 2017; for review see O’Donoghue et al., 2018). Here, in this Chapter, I was interested 

in whether different APOE genotypes would influence behavioural performance in 

healthy young participants, tested by using a novel conjunction learning task, similar to 

that reported by Barense et al. (2005), but where highly ambiguous scene-type stimuli 

were presented (as well as objects as a control condition).  

Based on the literature discussed in Chapter One and earlier in this chapter, it 

was expected that the new task would preferentially recruit regions involved in forming 

and reconstructing high-level object and scene representations, namely the PRC and HC, 

respectively. As discussed in Chapter One, the different APOE alleles have a linear effect 

on risk for AD in later life, with APOE-e2 being considered relatively protective, APOE-

e3 having a normal level of risk, and the APOE-e4 allele increasing risk beyond the 

normal risk of APOE-e3 (Meyer et al., 1998). Therefore, in this study, it was predicted 

that individuals at a greater APOE-related risk of developing AD later on in life would 

perform worse on the scene, but not object, conjunction learning task, as measured by 

the number of trials taken to achieve criterion and the average response time (increasing 

errors and RTs from low-risk < normal-risk < high-risk). Similarly, in a matched sample 

of APOE-e4 carriers and non-carriers, it is expected that APOE-e4 carriers would perform 

worse than APOE-e4 non-carriers in the scene condition, but not the object condition.  
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2.2 Methods 

2.2.1 Participants 

A total of 138 female participants were recruited from a larger cohort of 

individuals, in whom APOE genotype information was available, via Cardiff 

University’s experiment-management website. Participants took part in the current 

study in exchange for course credits or cash payment. The cohort was restricted to 

female participants based on studies that have shown increased effects of the APOE-e4 

allele in females, compared to males, in terms of their future risk of developing AD (for 

review see Ungar, Altmann, & Greicius, 2014). All participants had no self-reported 

history of depression or psychiatric illness, were not taking any psychoactive 

medication, were right-handed, had normal or corrected-to-normal vision, and were in 

their first or second year of their course (to allow for longevity of the cohort for 

experimental studies).  

2.2.1.1 DNA extraction and genotyping of the cohort 

The original cohort which had been genotyped for APOE-e4 comprised 229 

female Psychology undergraduate students from Cardiff University, ranging in age 

from 18 to 28 years (mean age (SD) = 20.0 (2.6) years). All participants attended an initial 

session where they were measured for height, weight, and blood pressure. They also 

filled out MRI screening forms and provided information about health via a medical 

history questionnaire. Saliva was provided using the Oragene self-collection 

methodology (DNA Genotek, Inc., Ontario, Canada); this involves the participant 

spitting into a tube. 

DNA extraction and APOE-genotyping were performed in the MRC Centre for 

Neuropsychiatric Genetics and Genomics at Cardiff University. APOE isoforms differ 

due to a single nucleotide polymorphism (SNP) at two sites in the gene, therefore a single 

SNP genotyping assay was performed at each site in order to determine APOE genotype. 
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APOE genotypes were determined by KASP genotyping of SNP rs429358 and TaqMan 

genotyping of SNP rs7412. These were detected on Tecan infinite F200 pro and 

StepOnePlusTM Real-Time PCR System platforms, respectively. Haplotypes 

corresponding to APOE-e2, -e3 and -e4 were then deduced. 

Genotyping was successful in 224 of 229 of the original participants. The 

distribution of genotypes in those successfully genotyped was e2/e2 (0/224, 0%), e2/e3 

(38/224, 17%), e2/e4 (7/224, 3%), e3/e3 (125/224, 56%), e3/e4 (52/224, 23%), and e4/e4 

(2/224, 1%). Recruitment for the current study was undertaken from this original sample 

via highlighting the study on the experimental management system and restricting 

participants to those who had been previously genotyped. This approach successfully 

recruited 138 participants. 

2.2.1.2 Sub-samples and APOE genotypes 

2.2.1.2.1 Comparison by APOE risk 

The 138 participants recruited for the study reported in this Chapter had an 

APOE genotype breakdown of: e2/e3 = 21, e2/e4 = 5, e3/e3 = 76, e3/e4 = 35, e4/e4 = 1. 

Participants were grouped based on their level of APOE-related risk as followed: the 

low-risk group included individuals with the e2/e3 combination (n = 21, mean age (SD) 

= 19.9 (0.9) years), the normal-risk group included individuals carrying the e3/e3 

combination (n = 76, mean age (SD) = 19.8 (1.5) years), and the high-risk group included 

individuals with either the e2/e4, e3/e4, or e4/e4 combinations (n = 41, mean age (SD) 

= 19.6 (1.37) years). As discussed in Chapter One, individuals with an e2/e4 combination 

are at greater risk of developing AD ( Farrer et al., 1997) than those with e3/e3, therefore 

individuals with this combination were included in the high-risk group despite their e2 

allele. 
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2.2.1.2.2 Matched comparison of APOE-e4 carriers vs non-carriers 

To look more directly at the extent to which the APOE-e4 gene affects 

performance on the conjunction learning task, a subset of APOE-e4 carriers (e3/e4 

heterozygotes) (n = 27, mean age (SD) = 20.6 (0.6) years) and APOE-e4 non-carriers 

(e3/e3 homozygotes) (n = 25, mean age (SD) = 20.3 (0.8) years) were selected. These were 

matched based on age, education, and family history of dementia and provided a more 

stringent comparison group. 

2.2.2 Design and materials 

The conjunction learning task included two different conditions: a scene 

condition using four computer-generated rooms, and a ‘fribble’ version using four 

computer-generated animal-like objects comprising of a main body and four 

appendages (see Barry, Griffith, De Rossi, & Hermans, 2014 for a detailed description). 

These stimuli had the benefit of being similar to real-world stimuli, but novel to the 

participants, and enabling controlled manipulations of features within the images to 

manipulate feature ambiguity.  

Figure 2.3 - Stimuli used for the Conjunction Learning Task. Set A is the fribble condition and set B is the scene 
condition.
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The four rooms were identical except for manipulations to the width of the room 

(wide vs narrow) and roof-type (sloped vs flat). The four fribbles were identical except 

for modifications to the ‘base’ (hexagonal vs triangular) and ‘tail’ (squared vs curved) 

appendages (see Figure 2.3). As there were only two features that could change between 

stimuli, there was a high-level of feature overlap between the different stimuli. 

For each participant, a particular combination of two features of the virtual 

reality room were allocated as ‘correct’ (e.g. correct rooms were the one that was narrow 

with a sloped roof, and the one that was wide with a flat roof). The other two 

combinations of features (e.g., the room that was narrow with a flat roof, and wide with 

a sloped roof) were incorrect responses. Likewise, for the fribble stimuli, a set of 

combinations were also allocated as the ‘correct’ response (e.g. a fribble with a hexagonal 

base and curved tail, and one with the triangle base and squared tail). Fribbles with a 

hexagonal base and squared tail, and triangle base and curved tail were incorrect. The 

participant was required to learn which images were correct by trial and error. This 

meant that the only way a participant could accurately identify the ‘correct’ images was 

to observe and learn the right combination of feature-conjunctions. Simply learning a 

single feature of a correct image (e.g. a sloped roof) would not allow a correct response 

when both images contained that feature. 

The entire study was set-up in E-Prime 2.0 software (Psychology Software Tools, 

Inc, 2016) and presented to participant’s view a touch-screen monitor located in a small 

experimental laboratory. 

The study adhered to the British Psychological Society’s Code of Ethics and 

Conduct (The British Psychological Society, 2018) and was approved by Cardiff 

University School of Psychology’s ethics committee.  
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2.2.3 Procedure 

At the start of the study, participants were provided with the following verbal 

instructions:  

“During the study, pairs of images will appear on the screen, one of which is always 

‘correct’ and one is always ‘incorrect’. Your task is to tap (using the touch screen) the ‘correct’ 

image. If you click on a ‘correct’ image, you will hear a chime sound and a green box will appear 

around your choice. If you click on an ‘incorrect’ image, you will hear a dong sound and a grey 

box will appear around your choice. You will only learn the ‘correct and ‘incorrect’ images by 

trial and error. Once you get enough correct in a row the task will end.” 

During the task, a ‘correct’ and an ‘incorrect’ image appeared side-by-side and 

the participant was required to touch the image they believed was correct, which was 

immediately followed by audible and visual feedback. As the task progressed, they had 

to learn which two images were the correct ones and, once the participant correctly 

identified eight successive trials without an error, the task was completed and the total 

number of trials to criterion was recorded. For each trial, the response time was also 

recorded. In the event that the participant failed to meet the criterion of eight successive 

trials, the task would terminate after a total of 160 trials. 

Each participant started with a practice task using the letters ‘A’ and ‘B’, sloping 

either left or right. If the A sloped left then it was ‘correct’ and if the B sloped right then 

it was ‘correct’. Each participant then completed the two experimental tasks with the 

room and fribble stimulus sets. The order of the two conditions was counterbalanced 

across participants and the location of the ‘correct’ stimulus was also counterbalanced 

across trials in each task, to avoid using the information about where the item was 

presented as a clue to the correct decision.  

There are two main outputs on the conjunction learning task, the number of trials 

until the participant met the criterion (of eight successive correct responses) and the 

average response time across all trials.  
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2.3 Results 

2.3.1 Comparison by APOE risk 

2.3.1.1 Number of trials to criterion 

To meet the criterion, participants were required to make eight successive correct 

responses and the total number of trials presented until this criterion was reached was 

recorded for each participant, for both conditions (see Table 2.1). Three participants (two 

from the high-risk group and one from the normal-risk group) were removed from the 

analyses, as they failed to meet the criterion within the 160-trial limit in the fribble 

condition. None of the participants failed to meet the criterion on the scene condition. 

Shapiro-Wilk tests confirmed that the data was not normally distributed for all 

groups and conditions. As the size of the APOE-risk groups were also unbalanced, 

outliers were present, and the data lacked homoscedasticity, a standard repeated-

measures ANOVA model was not appropriate. Instead, a linear mixed-effects (LME) 

model comparison was constructed, using the lme4 package (Bates, Mächler, Bolker, & 

Walker, 2015) in R (R Core Team, 2015). This involved building an ‘interaction model’ 

which included an interaction of condition (scene vs fribble) and group (low-risk vs 

normal-risk vs high risk), and a ‘null model’ which did not include this interaction (see 

Box 2.1). 
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The interaction model was then compared to the null model using a likelihood 

ratio test. This found that the interaction model did not account for any more variance 

in performance (as measured by the number of trials to criterion) than the null model 

(χ2(2) = 3.81, p = .148).  

TOTAL TRIALS TO CRITERION - APOE RISK GROUPS 

Mean Standard 
Deviation 

Median Inter-Quartile 
Range 

LOW RISK Scene 19.76 9.74 16.00 15.00 

Fribble 26.95 31.40 15.00 13.00 

NORMAL RISK Scene 18.45 13.13 15.00 8.00 

Fribble 20.49 18.07 14.00 10.00 

HIGH RISK Scene 22.21 21.78 13.00 12.00 

Fribble 17.46 8.84 15.00 9.00 

Table 2.1 - Summary of results for each group and condition, for the total number of trials to criterion 

Figure 2.4 – Boxplots showing the number of trials to criterion for each condition across 
all APOE-risk groups.
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2.3.1.2 Mean response rate 

The mean response time to trials was calculated by taking the mean of the time 

taken in milliseconds (ms) to make a response across all trials in each task (see Table 2.2). 

Shapiro-Wilk tests confirmed that the data was not normally distributed in all conditions 

and groups except for the response times for the fribble condition in the low-risk group.  

Similar to the previous analysis, the size of the APOE-risk groups was 

unbalanced, outliers were present, and the data lacked homoscedasticity. Therefore, a 

standard repeated-measures ANOVA model was not appropriate. Instead, an LME 

model comparison was constructed, using an ‘interaction model’ which included an 

interaction of condition (scene vs fribble) and group (low-risk vs normal-risk vs high 

risk), and a ‘null model’ which did not include this interaction (see Box 2.1). 

The interaction model was compared to the null model using a likelihood ratio 

test; this analysis found that the interaction model did not account for any more variance 

in performance (as measured by response time) than the null model (χ2(2) = 1.72, p = 

.423).  

Interaction model

This model included fixed effects of APOE-type and condition as an interaction, and subject as a random 
effect. 

MEASURED OUTPUT ~ CONDITION * APOEGROUP + (1|SUBJECT)

Null model 

This model included fixed effects of APOE-type and condition as separate fixed effects, along with subject 
as a random effect. 

MEASURED OUTPUT ~ CONDITION + APOEGROUP + (1|SUBJECT)

Box 2.1 - Structure of models used in the linear mixed-effects model comparison for the different APOE risk 
groups (low, normal and high).
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Table 2.2 – Summary of results for each group and condition, for the mean response times. 

MEAN RESPONSE TIMES (MS) – APOE RISK GROUPS 

Mean Standard 
Deviation 

Median Inter-Quartile 
Range 

LOW RISK Scene 2130.81 1025.77 2010.55 773.70 

Fribble 2351.79 730.23 2325.64 987.91 

NORMAL RISK Scene 2046.13 706.71 1857.69 592.64 

Fribble 2481.06 616.18 2347.93 810.15 

HIGH RISK Scene 2006.59 561.10 2035.38 634.87 

Fribble 2420.25 597.76 2346.11 571.62 

Figure 2.5 – Boxplots showing the mean response times (ms) for each condition across all 
APOE-risk groups.
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2.3.2 Comparison of APOE-ee4 carriers vs non-carriers 

2.3.2.1 Number of trials to criterion 

The total number of trials presented until criterion (eight successive correct 

responses) was recorded for each participant, for both conditions (see Table 2.3). One 

participant (APOE-e4 carrier) was removed from the analyses, as they failed to meet the 

criterion within the 160-trial limit in the fribble condition. None of the participants failed 

to meet the criterion on the scene condition. Similar to the earlier analyses, Shapiro-Wilk 

tests confirmed that the data was not normally distributed in all conditions and groups. 

Table 2.3 - Summary of results for carriers and non-carriers in both scene and fribble conditions, for the 
total number of trials to criterion. 

TOTAL TRIALS TO CRITERION - CARRIER VS NON-CARRIER 

Mean Standard 
Deviation 

Median Inter-Quartile 
Range 

CARRIER Scene 23.81 24.08 12.50 15.00 

Fribble 17.00 9.56 14.00 9.00 

NON-CARRIER Scene 21.32 17.40 16.00 13.00 

Fribble 18.96 21.04 14.00 9.00 
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The LME models were constructed in the same way as they were constructed for 

the APOE risk group analysis. An interaction model consisted of an interaction of the 

fixed effects of carrier-status and condition, with subject as a random effect. The null 

model included carrier-status and condition as separate fixed effects with no interaction, 

as well as subject as a random effect (see Box 2.2). These models were compared using a 

likelihood ratio test, which found no significant difference between the two models (χ2(1) 

= 0.02, p = .902). 

Figure 2.6 – Boxplots showing the number of trials to criterion for each condition between 
APOE-e4 carriers and non-carriers.
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2.3.2.2 Mean response rate 

The final analysis looked at the mean response rate (ms) to all trials, for carriers 

and non-carriers (see Table 2.4). Data were not normally distributed in all conditions and 

groups, except for the fribble condition in non-carriers, following Shapiro-Wilks tests of 

normality. 

LME models were constructed as it was in earlier analyses, to measure the 

amount of variability in response times that can be explained by an interaction model 

against a null model (see Box 3.2). A likelihood ratio test found that these models were 

not significantly different (χ2(1) = 0.85, p = .356). 

Table 2.4 - Summary of results for carriers and non-carriers in both scene and fribble conditions, for the 
mean response times (ms). 

MEAN RESPONSE TIMES (MS) - CARRIER VS NON-CARRIER 

Mean Standard 
Deviation 

Median Inter-Quartile 
Range 

CARRIER Scene 2017.05 638.44 1932.40 667.00 

Fribble 2476.96 649.30 2333.22 566.00 

NON-CARRIER Scene 1960.50 587.15 1860.19 438.00 

Fribble 2308.20 511.44 2230.20 520.00 

Interaction model

This model included fixed effects of carrier status and condition as an interaction, and subject as a 
random effect. 

MEASURED OUTPUT ~ CONDITION * CARRIER-STATUS + (1|SUBJECT)

Null model 

This model included fixed effects of carrier status and condition as separate fixed effects, along with 
subject as a random effect. 

MEASURED OUTPUT ~ CONDITION + CARRIER-STATUS + (1|SUBJECT)

Box 2.2 - Structure of models used in the linear mixed-effects model comparison for carrier vs non-carriers.
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2.4 Discussion 

The aim of this chapter was to investigate whether the presence of different 

APOE genotypes, linked to differing risk profiles for AD in later life, would influence 

the ability of young adult participants to learn to differentiate between feature-

ambiguous scenes and objects based on their unique conjunction of multiple features. 

To do this, two separate groups were studied. In the first analysis, a large sample of 

participants were split into low-, normal- and high-risk groups, depending upon their 

APOE genotype. The second analysis focused on a smaller, but matched, subset of 

APOE-e4 carriers and non-carriers, allowing me to look more specifically at the effect of 

the APOE-e4 allele on conjunction learning performance. 

Carriers of the APOE-e4 gene (the strongest semi-dominant risk gene related to 

late-onset AD) have been shown to have altered brain activity, compared to APOE-e4 

non-carriers, during tasks involving the discrimination of multiple scene but not object 

stimuli (Shine et al., 2015). Young APOE-e4 carriers have also been shown to have 

Figure 2.7 – Boxplots showing the mean response times (ms) for each condition between 
APOE-e4 carriers and non-carriers.
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reduced hippocampal volume compared to APOE-e4 non-carriers (Alexopoulos et al., 

2011; O’Dwyer, Lamberton, Matura, Tanner, et al., 2012), a region that has been shown 

to be required when tasks require processing of high-level spatial conjunctions (Buckley 

et al., 2004; Lee et al., 2008). As the scene condition used in the conjunction learning task 

requires processing of spatial (rather than featural) conjunctions, it was predicted that 

individuals with a high APOE-related risk level would perform worse than low and 

normal risk groups (as measured by both the number of trials to criterion and the 

average response times) on the scene condition, compared to the object (fribble) 

condition. Similarly, it was predicted that APOE-e4 carriers would perform worse than 

their matched APOE-e4 non-carriers in their performance in the scene, but not the 

fribble, condition, again both in terms of the number of trials taken to meet criterion and 

the average time to make a response. In the current study, however, APOE-e4 carriers 

and non-carriers were found to perform at a similar level, with no significant difference 

in number of trials to criterion and RT. Similarly, APOE-risk level—low, normal and 

high—did not differentially influence performance on the tasks, in terms of learning to 

identify the correct item over trials as well as the time taken to make those decisions.  

Prior to running this study, I predicted that those participants at increased risk 

of developing AD in later life, as measured by the presence of an APOE-e4 allele 

(compared to those individuals with low, APOE-e2, or normal level, APOE-e3 risk) 

would show slower learning of complex scenes (but not objects). This hypothesis was 

not proven. This is similar to the results from Mason et al. (2017), who found no 

difference in the ability of APOE-e4 carriers (compared to non-carriers) to discriminate 

between scenes and objects, even at mid-age. They proposed that this might be due to 

the stimuli being familiar to the participant, as they did find a difference in APOE-e4 

carriers’ ability (compared to non-carriers) to discriminate greebles (novel objects). In 

my study, all the stimuli were novel, and yet performance was similar across all APOE
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genotypes. This suggests that simply using novel stimuli does not invoke differences 

across at-risk APOE groups, at least in young adults. 

One possible explanation for this finding is that the conjunction learning task 

was not sufficiently demanding enough to stress the conjunctive scene processing 

dependent upon the hippocampus. In terms of performance, as measured by the number 

of trials to criteria, scores were mostly clustered around a high-performance level (e.g., 

most participants completed the task in fewer than 20 trials), suggesting that participants 

may indeed have found the task too easy. The difficulty of the task could be increased 

in a future study by using a probabilistic learning paradigm (e.g. Schutte, Slagter, 

Collins, Frank, & Kenemans, 2017). This method makes the task more difficult by 

altering the accuracy of the feedback on correct decisions, meaning the participant has 

to work harder and for longer in order to learn which image is correct.  

It is also possible that participants were able to identify the correct scene stimuli 

by just looking at the shape of the back wall, which is unique depending on the 

configuration of the roof and room width properties (see Figure 2.3). In other words, it 

is possible that individuals completed the scene task without processing the 

conjunctions of spatial properties, as was the focal aim of the task design. Future studies 

should correct for this possible confound by using stimuli whereby altering the spatial 

properties of the image does not lead to a unique single feature, such as the back wall. 

As touched upon in Chapter One, another possible explanation for the similar 

levels of performance in this task across different participants, with different APOE

alleles, is that vulnerability in the networks projecting to and from the HC, might be 

mitigated by ‘brain reserve capacity’—the ability of a brain region to continue to function 

despite a certain amount of impairment (Stern, 2003)—or ‘cognitive reserve’—the more 

efficient utilization of brain networks or enhanced ability to recruit alternate brain 

networks in situations where the usual region or network is impaired (Stern, 2002; 

Vemuri et al., 2011). Studies that have seen altered patterns of activity in networks and 

regions connected to the HC in young APOE-e4 carriers, compared to non-carriers, 
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without any changes in cognitive function or performance (e.g. Filippini et al., 2009; 

Shine et al., 2015), support this theory. For example, Shine et al (2015), found that APOE-

e4 carriers had increased activity in the PCC, compared to non-carriers, during a scene-

specific oddity detection task. One explanation for this is that APOE-e4 carriers are 

relying more heavily on attentional networks, which are argued to be regulated by the 

PCC (Leech & Sharp, 2014), as a result of APOE-related inefficiencies in the networks 

projecting to and from the hippocampus.  

If APOE-e4 carriers are recruiting other networks, such as attentional networks, 

in order to perform comparatively to non-carriers on the conjunction learning task, it 

stands to reason that APOE-e4 carriers may show better attentional performance. Rusted 

et al (2013) found that young APOE-e4 carriers do appear to be advantaged during tests 

of sustained and covert visual attention, compared to APOE-e4 non-carriers (as 

discussed in Chapter 1.3.1). It is feasible that such an attentional advantage might 

mitigate any inefficiencies in the ability to form, store, and recall conjunctions of spatial 

features during the conjunction learning task reported in this chapter. 

If APOE-e4 is leading to altered brain function in young adults, as evidenced by 

some neuroimaging studies (Filippini et al., 2009; Shine et al., 2015), it is likely that, at 

most, this is having a minimal impact on cognitive performance as measured by 

standard responses such as accuracy or response time. Although the current task 

focussed on manipulating spatial feature conjunctions in order to increase demand on 

the hippocampal complex, it is possible that this alone is not enough to elicit measurable 

differences in performance in this young and well-educated cohort. There is evidence 

that factors associated with increased cognitive reserve—such as education, diet, and 

physical exercise—are also factors that delay the onset of the cognitive symptoms of 

Alzheimer’s disease (Norton, Matthews, Barnes, Yaffe, & Brayne, 2014; Querbes et al., 

2009; Scarmeas & Stern, 2003). This suggests that cognitive or brain reserve may offer 

some cognitive protection against neurodegeneration in regions associated with 
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Alzheimer’s pathology. In this respect, my sample may suffer from a selection-bias, as 

all participants were engaged in university-level education at a competitive Russell 

Group university, which is known for its high criteria for acceptance. My participants 

are therefore all likely to be well educated and may have higher levels of cognitive 

reserve than the general population. 

The aim of this chapter was to identify differences in performance across 

different alleles of the APOE gene when learning conjunctions of spatial properties 

across ambiguous stimuli. The lack of any difference suggests that the task is not 

sensitive enough to identify any altered cognitive performance that may exist in young 

adults with a high risk of developing AD in later life. O’Donoghue et al. (2018) argue 

that any differences in cognitive performance due to APOE is likely to be minimal and 

difficult to measure using typical measures such as response times or task performance, 

largely due to any small effect being masked by the many extraneous factors (such as 

lifestyle differences) that have a much larger effect on cognition. 

In the following chapter I will use a different approach to measuring differences 

in distinguishing between ambiguous scenes and objects. Using a visual paired-

comparison (VPC) task, I will use eye-tracking to measure visual recognition memory. 

Individuals usually show a strong preference to view novel stimuli (Pascalis & de Haan, 

2014), and therefore it is possible to measure a person’s recognition memory for a 

familiar stimulus by measuring their novelty preference for an alternative stimulus. 

Using a modified VPC task, I will measure novelty preference across ambiguous and 

non-ambiguous scenes and objects in the same groups used in this chapter. As the task 

measures object/scene recognition implicitly, via a novelty preference, individuals 

should be less likely to recruit alternative strategies, as the task aim is unknown to them, 

and therefore it is predicted that this task will be more sensitive to alterations in spatial 

cognition related to the presence of an APOE-e4 allele.
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CHAPTER 3:
PERFORMANCE ON A VISUAL PAIRED-COMPARISON TASK IN YOUNG ADULTS WITH 

DIFFERENT APOE GENOTYPES

3.1 Introduction 

Chapter 2 investigated whether young adults at increased genetic risk of late-

onset Alzheimer’s disease (AD) (via the presence of an APOE-e4 allele) would show a 

different profile of performance to individuals with a lower genetic risk (such as via the 

presence of an APOE-e2 allele) in a conjunction-learning task. Specifically, the 

experiment tested the hypothesis that individuals with greater genetic risk would show 

altered learning of scenes, but not objects, that overlapped in their visual features. This 

prediction was not confirmed, with no evidence of a statistical difference in performance 

between the two groups in either of the conjunction learning conditions. One possible 

explanation for this finding was that the conjunction learning task was not sufficiently 

sensitive or demanding to elicit APOE-e4 drive behavioural differences, which are likely 

to be subtle given the age of the participants. In this chapter, therefore, I outline work 

carried out using another paradigm, the visual paired-comparison task (VPC).  

Typically, in a VPC task, participants view an image (or occasionally multiple 

images) in an initial familiarisation phase. Following a period of time, the participants 

are then presented with the original image/s alongside a novel image. A key finding 

from the task is that cognitively healthy individuals tend to disproportionately focus 

more on the image, or areas of the image, that are most novel, as opposed to those which 

they saw in the familiarisation stage. This so-called novelty preference can be calculated 

by comparing time spent viewing the familiar versus novel stimulus/stimuli (as 

measured using eye-tracking). The paradigm is commonly used as a measure of 

recognition memory (Manns, Stark, & Squire, 2000), and has been shown to be sensitive 

to damage of the hippocampus in rats (Clark, Zola, & Squire, 2000), monkeys (Nemanic, 
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Alvarado, & Bachevalier, 2004; Zeamer, Meunier, & Bachevalier, 2011; Zola et al., 2000), 

and humans (Pascalis, Hunkin, Bachevalier, & Mayes, 2009; Pascalis, Hunkin, 

Holdstock, Isaac, & Mayes, 2004).  

For example, Pascalis et al. (2004) used a VPC task, along with a delayed 

matching to sample (DMS) paradigm, on a patient (YR) with hippocampal damage 

following a possible ischaemic infarct. The damage was thought to be specific to the 

hippocampus and there was no damage to the parahippocampal gyrus (including other 

medial temporal regions such as the perirhinal, entorhinal and parahippocampal 

cortices). The VPC format involved an object or face stimulus appearing on screen for 

five seconds, and after a short interval (0s, 5s, or 10s) the same stimulus appeared again 

alongside a novel object/face. The proportion of time spent looking at the novel 

stimulus, compared to the familiar one, was recorded. Similarly, the DMS task involved 

a face or object being shown, but this time YR was asked to indicate which was the 

previously seen stimulus when presented alongside a novel distractor. YR performed 

similarly to matched controls on the DMS task and on the 0 second interval of the VPC 

but, unlike the controls, showed no novelty preference on the 5 and 10 intervals on the 

VPC. Critically, the major difference between the two tasks was that, during the DMS 

task, YR was aware that she was being tested on memory, whereas the VPC task 

measures recognition memory incidentally. These results are similar to findings in 

studies combining VPC and DMS tasks in non-human primates (Nemanic et al., 2004). 

Pascalis et al. (2004) argue that the difference in performance between tasks involving 

implicit and explicit goals might indicate that, when individuals are aware that they are 

being tested on memory, they might be capable of compensating for their hippocampal 

damage using alternative strategies for remembering the items. If this is the case, it could 

make the VPC a more sensitive measure of hippocampal damage, as it is less likely to 

trigger task-related compensatory strategies. 

These findings provide a potential explanation for why the VPC task has been 

shown to be a sensitive marker of cognition decline in individuals in the early stages of 
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dementia. For example, Crutcher and colleagues (2009) administered the VPC task to 

patients diagnosed with MCI and Parkinson’s disease—a neurodegenerative disease 

that is characterised by progressive motor abnormalities (American Psychiatric 

Association, 2013)—as well as healthy controls. The study aimed to determine whether 

the VPC task provided a sensitive approach to differentiating between these two 

different types of neurodegenerative disorders. During a familiarisation phase, two 

identical images of clip-art objects were displayed side-by-side for 5 seconds followed 

by a break of two minutes. During the test phase, the original image and a dissimilar 

novel clip-art object appeared side-by-side for 5 seconds. By measuring eye-movements 

to the different stimuli during the test phase, the authors found that both healthy 

controls and patients with Parkinson’s disease spent longer looking at the novel images 

(73% and 71% of total time, respectively) compared to the MCI group (53%).  

In another study, Zola and colleagues (2013) recruited MCI patients and elderly 

controls and used the same VPC procedure as Crutcher and colleagues (2009) to test if 

the task could be predictive of future cognitive decline (see Figure 3.1). At the point of 

running the VPC task, 32 participants were diagnosed with amnesic MCI and there were 

60 healthy controls. Over the following 3 years, the diagnosis of 13 MCI patients had 

progressed to AD, and 4 controls originally considered healthy now had a diagnosis of 

MCI. These 17 participants were categorised as converted and the remaining participants 

categorised as non-converted. They found that all but one of the participants with a 

novelty preference less than 50% were categorised as converted. In those with a novelty 

preference greater than 50% but less than 67% there was less risk of ‘conversion’. 

Importantly, all individuals with a score above 67% were categorised as non-converted. 

These results (see Figure 3.1) suggest that the VPC task may be predictive of future 

cognitive decline (as measured over the following three years from when the task was 

originally given to participants), albeit not differentially predictive across diagnostic 

groups (e.g. healthy vs MCI vs AD).  



Chapter 3 – Performance on a visual paired-comparison task in young adults with different APOE genotypes 

64 

What is not clear from this study is the extent to which the VPC task is relying 

upon hippocampal function—particularly within the context of the hierarchical-

representation model discussed in Chapter 1—and how far in advance of a clinical 

diagnosis for AD this task could be predictive of risk of developing dementia later in 

life. In a VPC task using simple object stimuli, there is evidence to suggest that 

dependency on the hippocampus increases with age, with non-human primates with 

neonatal hippocampal lesions performing normally aged 1.5 months and 6 months, but 

then subsequently showing delay-dependant impairment at 18 months (Zeamer, Heuer, 

& Bachevalier, 2010). This intriguing finding suggests that brain structures other than 

the hippocampus may be capable of supporting incidental recognition memory in early 

life (as measured by the VPC task), but less so as young non-human primates get older. 

Interestingly, Pascalis et al. (2004) (discussed earlier in this chapter) report that patient 

YR showed decreasing ability on the DMS task (in which she previously performed 

similarly to controls) over time, which, together with the findings from Zeamer et al. 

Figure 3.1- Zola et al. (2013) found that the VPC task was predictive of cognitive decline three years after running 
the VPC task. All but one of the participants scoring at or below chance level (50%) went on to have a change in 
clinical diagnosis (moving to either MCI or AD) in the subsequent three years. In contrast, no participants with a 
high novelty preference (>67%) had a diagnosis change in the same period.
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(2010), suggests that cognitive impairment immediately following hippocampal damage 

could initially be limited, but then increase over time. 

Zeamer and colleagues (2013; 2011) found that performance on a VPC task in 

non-human primates with hippocampal lesions was comparable to that of healthy 

control animals when the familiar and novel stimuli were dissimilar, but that the 

lesioned animals showed an impairment when the stimuli were similar both 

semantically and visually (e.g. two chairs or two aeroplanes). This was further 

supported in a later study, in which non-human primates encoding for dissimilar object 

stimuli preferentially relied on recruitment of the perirhinal cortex during a VPC task 

(Zeamer, Richardson, Weiss, & Bachevalier, 2015), suggesting that, for object-type 

stimuli that is dissimilar, non-hippocampal structures may be capable of supporting 

incidental item recognition. Weiss et al. (2017) also found that non-human primates with 

perirhinal cortex lesions performed worse than controls during a VPC task involving 

object-type stimuli, but did not find a significant relationship between the extent of the 

lesions and novelty preference. It seems likely, however, that this was due to a small 

sample size and a lack of within-group variability rather than the lack of a true effect. In 

summary, these non-human primate studies support previous evidence (as discussed in 

Chapter 1.4) suggesting that medial-temporal cortical areas other than the hippocampus, 

such as the perirhinal and parahippocampal cortices, are capable of incidentally 

recognising familiar object-type stimuli, particularly when the target and distractor are 

visually and semantically dissimilar. 

Although the VPC task appears, at least to some extent, to recruit the 

hippocampus (Nemanic et al., 2004; Zeamer et al., 2010), the use of dissimilar object 

pairings used in the Zola et al. (2013) study may actually be targeting dysfunction in the 

perirhinal cortex, rather than the hippocampus, as the authors suggest. Considering the 

models introduced in Chapter 1, it is possible that some of this discrepancy in the 

literature may arise from use of different forms of stimuli with differential demand on 

distinct components of the medial temporal lobe. By modifying the design of the VPC 
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task to incorporate stimuli that have been shown to be preferentially more demanding 

on the hippocampus, it might be possible to increase the sensitivity of the VPC task to 

detect differences in recognition memory (as measured by novelty preference) in 

younger individuals at increased risk of dementia, via the presence of risk genes linked 

to AD. Use of similar (more ambiguous) stimulus pairs, along with scene-type stimuli 

(to be compared with the more commonly used object items), could increase dependency 

on the hippocampus during a VPC task.  

In the current Chapter, I develop and test a new version of a VPC task 

incorporating both scene and object stimuli, as well as a novel manipulation of stimulus 

similarity (visually similar and dissimilar). Consistent with the approach taken in 

Chapter 2, I describe the outcomes from testing in two cohorts. First, a large young adult 

cohort where it was possible to compare individuals with different forms of APOE alleles 

(e2, e3 and e4), and second a subset of that group where it was possible to undertake 

direct matching across participants to create a group of APOE-e4 carriers versus a group 

of APOE-e4 non-carriers. In the first analysis, I predict that the APOE gene will impact 

linearly on recognition memory (as measured by decreasing novelty preference for 

scenes, but not objects) according to the genetic risk-level for AD associated with these 

alleles (e.g., low-risk > normal-risk > high-risk). In the second analysis, I predict that 

APOE-e4 carriers will show a smaller novelty preference for scenes (but not objects) than 

the matched group of APOE-e4 non-carriers. Specifically, APOE-e4 carriers will need to 

look at the familiar stimuli for longer than APOE-e4 non-carriers, thereby reducing the 

strength of the novelty preference. Furthermore, I predict that this effect, of a reduced 

novelty preference for high-risk vs low-risk individuals, will be greater for similar 

scenes, compared to dissimilar.  
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3.2 Method 

3.2.1 Participants 

3.2.1.1 Initial recruitment, DNA extraction and genotyping 

The participants for this study were recruited from the same large cohort of 

females described in Chapter 2. See Chapter 2.2.1.1 for a detailed explanation of DNA 

extraction, genotyping and the characteristics of the cohort. 

Double-blind procedures were followed in that both the experimenter and 

participants remained blind to genotype. 

3.2.1.2 Sub-samples and APOE genotypes 

3.2.1.2.1 Comparison by APOE risk 

To investigate predicted differences between different alleles of the APOE gene 

(which have different levels of risk associated with onset of AD in later life), I recruited 

across all participants in whom I had collected saliva samples in exchange for either 

course credits or a cash payment. A total of 148 participants agreed to take part with an 

APOE genotype breakdown of: e2/e3 = 23, e2/e4 = 5, e3/e3 = 81, e3/e4 = 36, e4/e4 = 1, 

failed genotyping = 2. Participants with failed genotyping were removed, leaving a total 

of 146 participants for analysis. Participants were then grouped based on their level of 

APOE-related risk. The low-risk group included individuals with the e2/e3 combination 

(n=23, mean age (SD) = 21.3 (0.8) years), the normal-risk group included individuals 

carrying the e3/e3 combination (n=81, mean age (SD) = 21.3 (1.3) years), and the high-

risk group included individuals with either the e2/e4, e3/e4, or e4/e4 combinations 

(n=42, mean age (SD) = 20.8 (0.8) years). Compensation for time given to undertake the 

VPC task was given in the form of either course credits or a cash payment. 
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3.2.1.2.2 Matched comparison of APOE-e4 carriers vs non-carriers 

To look more directly at the extent to which the APOE-e4 gene affects 

performance on the VPC task, a subset of 27 e3/e4 heterozygotes (carriers - mean age 

(SD) = 20.6 (0.6) years) and 27 e3/e3 homozygotes (non-carriers - mean age (SD) = 20.6 

(0.6) years) were matched based on age, education, and family history of dementia.  

3.2.2 Design and stimuli 

Two main variables were manipulated in this newly designed VPC task: 

Stimulus-Type (Scenes vs Objects) and Stimulus Similarity (Similar vs Dissimilar). For the 

scene stimuli, 36 pairs of natural scenes were used (acquired from Google Images, 

derived using category terms (e.g. meadow) and the image similarity function), 

including 18 pairs of similar scenes (e.g. two different snowy mountains) and 18 pairs of 

dissimilar scenes (e.g. a beach and a rainforest). Similarly, the object stimuli consisted of 

36 pairs of real-life objects (acquired from Hemera object database, Vol. 1–3), including 

18 pairs of similar objects (e.g. two different kettles) and 18 pairs of dissimilar objects 

(e.g. a kettle and a laptop computer) (for examples of stimuli pairs, see Figure 3.2).  
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Each stimulus-pair was randomly allocated to one of three blocks. Each block 

comprised two main phases: The familiarisation phase, whereby a series of 24 pairs of 

identical stimuli were presented on-screen for five seconds per pair. Following this was 

a break of two minutes (similar to Crutcher et al., 2009; Zola et al., 2013), although the 

actual break between familiarisation and test of a particular stimulus-pair was ~252 

seconds after factoring in the time spent presenting other stimuli (24 x 5s trials + 24 x 

0.5s inter-stimulus interval + 120s break). This break length is short enough to exhibit a 

strong novelty preference (Richmond, Sowerby, Colombo, & Hayne, 2004), but also long 

enough to observe an effect of cognitive impairment (Crutcher et al., 2009). Following 

the break, the test phase involved 24 pairs of stimuli. One stimulus from the presentation 

phase (familiar) was paired with one novel stimulus and appeared on screen for five 

seconds per trial (see Figure 3.3). The Stimulus-Type, Similarity, and left-right 

positioning was pseudo-randomised across each block of 24 trials. This process was 

Figure 3.2 - Example of stimulus-pairs used in the current task. This includes Similar Scenes (A), Similar Objects 
(B), Dissimilar Scenes (C), and Dissimilar Objects (D).
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repeated a further two times, with a total number of 72 trial-unique trials presented 

across all three blocks. The entire VPC task lasted around 25 minutes per participant. 

The study adhered to the British Psychological Society’s Code of Ethics and 

Conduct (The British Psychological Society, 2018) and was approved by Cardiff 

University School of Psychology’s ethics committee.  

3.2.3 Apparatus 

The task was developed using Matlab, PsychToolbox-3 and the Tobii SDK 3.0. 

Eye-movements were recorded using a 300hz static Tobii Pro TX300 eye-tracker attached 

to a 23” monitor, based in a light and temperature-controlled room. Five-point 

calibration was carried out prior to each phase. Recorded eye-movements were 

binocular, and the participant could move their head freely without a chin-rest.  

3.2.4 Procedure 

On arrival for the study, participants were provided with an information sheet 

and consent form, in line with the agreed ethics. They were seated at a desk next to the 

experimenter, but with a divider to prevent any distraction. At the start of each block, 

participants completed the calibration-process and were then verbally and visually 

instructed to “relax and just look at the screen as though watching television” during 

both stages. They were also instructed to stay as still as possible during the process to 

ensure maximum accuracy from the eye-tracker. When they were ready, they began the 

familiarisation phase, followed by the two-minute break, followed by the test phase. 

During the entirety of each block, all eye-movements were recorded. Following each 

block, participants could take a short break and/or change position before recalibrating 

the eye-tracker and starting the second and third blocks. At the end of the task, 

participants were debriefed on the task. 
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3.2.5 Fixation analysis and eye-tracking measures 

The Tobii Pro TX300 eye-tracker outputs a row of gaze-data 300 times per second, 

each of which include two-dimensional coordinates for where the individual was 

looking at that time-point. Each data-point was first allocated to a trial based on its 

timestamp and the data was then separated into individual trials. A velocity-threshold 

fixation identification method was then used to separate data into saccades and 

fixations. This method calculated the point-to-point velocity for each data-point in the 

output. Data-points with a velocity above a threshold of 20 degrees/second were 

classified as saccades and the data-points in-between saccades were classified as 

fixations. Consecutive fixation points were then collapsed into fixation groups and the 

centroid of the group’s coordinates were used as the location of the fixation. Any 

fixations less than 100ms were removed (see Salvucci & Goldberg, 2000 for detailed 

review of fixation detection methods). 

Figure 3.3 - Visualisation of each block structure in the current VPC task.
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For each trial in the test phase, fixations were allocated to either the novel or the 

familiar image, depending on the coordinates of the fixation. The time spent fixated on 

the novel stimulus was divided by the total time spent fixating on both stimuli, resulting 

in the proportion of time spent fixating on the novel stimulus for each trial. All fixation 

and data analyses were completed using MATLAB and R.  

3.3 Results 

3.3.1 Comparison by APOE risk 

One-sample t-tests confirmed that all groups (low-, normal-, and high-risk), in 

all conditions (stimulus-type: scenes and objects; similarity: similar and dissimilar), 

showed a viewing preference to the novel stimulus compared to a chance value of 0.5 

(all p’s < .001 – see Table 3.1 for descriptive statistics). Shapiro-Wilk tests indicated that, 

in the e2/e3 group, the data was not normally distributed in the Dissimilar Scenes (W = 

.881, p = .011), Dissimilar Objects (W = .903, p = .029), and Similar Objects (W = .878, p = 

.009) conditions.  

MEAN NOVELTY PREFERENCE (SD) 

Dissimilar 
Scenes 

Dissimilar 
Objects 

Similar Scenes Similar Objects 

LOW-RISK .616 (.104) .634 (.129) .598 (.107) .627 (.092) 

NORMAL-RISK .614 (.074) .601 (.104) .586 (.070) .595 (.078) 

HIGH RISK .604 (.066) .599 (.071) .582 (.059) .602 (.062) 

Table 3.1 – Mean proportion of time (per trial) spent looking at the novel image (calculated as ‘time viewing 
novel image’ / ‘total viewing time’), separated for each APOE-type and for each condition. 

As the size of the APOE-risk groups were unbalanced, outliers were present, and 

the data lacked homoscedasticity, a standard repeated-measures ANOVA model was 

not appropriate (see Figure 3.4). Instead, a linear mixed-effects model comparison was 
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constructed, using the lme4 package (Bates et al., 2015) in R (R Core Team, 2015). This 

process involved building four models: a ‘full model’, including an interaction of APOE-

group, stimulus-type and similarity; a ‘stimulus-type model’, including an interaction 

between stimulus-type and APOE-group; a ‘similarity model’, including an interaction 

between similarity and APOE-group; and a ‘null model’, with no interaction terms 

included (see Box 3.1). As well as allowing for unbalanced groups, this approach greatly 

increases the degrees of freedom by including data for every trial, rather than averaging 

across conditions. Each model therefore factored in subject and stimulus-pairs as 

random-effects. 

The three interaction models were then compared to the null model using a 

likelihood ratio test. This found that the full model accounted for the largest amount of 

variance in novelty preference when compared to the null model (χ2(5) = 15.66, p = .008). 

The stimulus-type model predicted marginally more variance than the null model (χ2(2) 

Figure 3.4 – Distribution of data for each group. Each coloured dot represents the mean novelty preference for 
a single subject. The black dots represent the mean for that group/condition with the bars representing one 
standard error.
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= 5.53, p = .063), whereas there was no difference between the similarity (χ2(0) = 0.00, p > 

.999) and null models. 

Post-hoc analyses of the full model were conducted using the emmeans package 

(Lenth, 2018) in R. This uses estimated marginal means with a Kenward-Roger degrees 

of freedom method along with a Tukey method of comparison. The analysis indicated 

that the normal- (t(1280.30) = 4.10, Ptukey < .001) and high- (t(2922.98) = 3.04, Ptukey = .029) risk 

groups had a significantly lower novelty preference for similar scenes compared to 

dissimilar scenes, with novelty preference decreasing by an estimated 3.3% (± 0.73 SE) 

and 2.8% (± 0.94 SE) of total viewing time for normal- and high-risk groups, respectively 

(see Figure 3.5). The low-risk group, however, showed no significant difference in 

performance on the similar and dissimilar scenes (t(5956.61) = 1.47, Ptukey = .685). 

Full model

This model included fixed effects of APOE-type, stimulus-type, and similarity as an interaction, and subject 
and stimulus-family as random effects. 

VIEWINGTONOVEL ~ STIMULUSTYPE * SIMILARITY * APOEGROUP + (1|SUBJECT) + (1|FAMILYNO)

Stimulus-type model

This model included an interaction of APOE-type and stimulus-type, had similarity as a separate fixed 
effect, and subject and stimulus-family as random effects.

VIEWINGTONOVEL ~ STIMULUSTYPE * APOEGROUP + SIMILARITY + (1|SUBJECT) + (1|FAMILYNO)

Similarity model

This model included an interaction of APOE-type and similarity, had stimulus-type as a separate fixed 
effect, and subject and stimulus-family as random effects.

VIEWINGTONOVEL ~ SIMILARITY * APOEGROUP + STIMULUSTYPE + (1|SUBJECT) + (1|FAMILYNO)

Null model 

APOE-Type, stimulus-type, and similarity as separate fixed effects, along with subject and stimulus-family 
as random effects. 

VIEWINGTONOVEL ~ STIMULUSTYPE + SIMILARITY + APOEGROUP + (1|SUBJECT) + (1|FAMILYNO)

Box 3.1 – Structure of models used in the linear mixed-effects model comparison.
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Post-hoc analyses of the stimulus-type model were also conducted using the 

emmeans package (Lenth, 2018) in R, using estimated marginal means with a Kenward-

Roger degrees of freedom method along with a Tukey method of comparison. The 

analysis indicated a marginal difference in novelty preference between scene and object 

stimuli (t(10402.45) = 2.75, Ptukey = .071) for the low-risk group, with novelty preference 

decreasing by an estimated 2.3% (± 0.85 SE) of total viewing time for the scene (compared 

to object) stimuli (see Figure 3.6). 

Figure 3.5– This output from the emmeans package shows the estimated marginal means (of viewing 
proportion to the novel stimulus) for each APOE-risk group (low, normal, high) and level of similarity (similar, 
dissimilar), separated by stimulus-type (object, scene)
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3.3.2 Comparison of APOE-ee4 carriers vs non-carriers 

One-sample t-tests confirmed that both groups (carriers and non-carriers), in all 

conditions (stimulus-type: scenes and objects; similarity: similar and dissimilar), showed 

a viewing preference to the novel stimulus (all p’s < .001 – see Table 3.2 for descriptive 

statistics). Shapiro-Wilk tests indicated that both groups and conditions were normally 

distributed (all p’s > .05). 

MEAN NOVELTY PREFERENCE (SD) 

Dissimilar 
Scenes 

Dissimilar 
Objects 

Similar Scenes Similar Objects 

CARRIERS .606 (.067) .600 (.077) .591 (.063) .610 (.062) 

NON-CARRIERS .615 (.075) .611 (.095) .580 (.064) .596 (.062) 

Table 3.2 – Mean proportion of time (per trial) spent looking at the novel image (calculated as ‘time viewing 
novel image’ / ‘total viewing time’), separated by carriers and non-carriers for each condition. 

Figure 3.6 – This output from the emmeans package shows the estimated marginal means (of 
viewing proportion to the novel stimulus) for each APOE-risk group (low, normal, high) and 
stimulus-type (object, scene). The black dots represent the estimated marginal mean and blue bars 
represent the 95% confidence intervals.
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Similar to the previous analysis, an LME model was used to increase the degrees 

of freedom by factoring in within-subject and stimulus-pair error variance. The same 

model structure used earlier were constructed but using carrier status as the APOE-

group instead (see Box 3.1). This resulted in four models: a ‘full model’, including an 

interaction of group, stimulus-type and similarity; a ‘stimulus-type model’, including an 

interaction between stimulus-type and group; a ‘similarity model’, including an 

interaction between similarity and group; and a ‘null model’, with no interaction terms 

included. Each model factored in subject and stimulus-pairs as random-effects.  

P-values were then obtained using likelihood ratio tests of all three models 

against the null model. This approach found that the similarity model explained 

Figure 3.7 – Distribution of data for each group. Each coloured dot represents the mean novelty preference 
for a single subject. The black dots represent the mean for that group/condition with the bars representing 
one standard error.



Chapter 3 – Performance on a visual paired-comparison task in young adults with different APOE genotypes 

78 

significantly more of the variance in novelty preference then the null model (χ2(0) = 3.65, 

p < .001). The full (χ2(3) = 4.71, p = .195) and stimulus-type (χ2(1) = <.001, p = .946) models 

were not significantly different from the null model. 

Post-hoc analyses on the similarity model were conducted using a Kenward-

Roger degrees of freedom method along with a Tukey method of comparison on the 

estimated marginal means from the similarity model (see Figure 3.8). The analysis 

indicated that the interaction effect was driven by a significant difference between 

similar and dissimilar stimuli in the APOE-e4 non-carriers (t(845.22) = 2.90, Ptukey = .020), 

with novelty preference increasing for dissimilar stimuli by an estimated 2.59% (± 0.90 

SE) of total viewing time, compared to similar stimuli. 

Figure 3.8 – This output from the emmeans package shows the estimated marginal means (of viewing 
proportion to the novel stimulus) for each group (carriers and non-carriers) and level of similarity (similar, 
dissimilar), collapsed across stimulus-type. The black dots represent the estimated marginal mean and 
blue bars represent the 95% confidence intervals.
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The difference between the mean similar and dissimilar novelty preference was 

then calculated for each participant. An independent-samples t-test found that the 

increase in novelty preference for dissimilar compared to similar stimuli was 

significantly greater for APOE-e4 non-carriers (M = .023, SD = .051) compared to APOE-

e4 carriers (M = .002, SD = .040), t(52) = 1.80, p = .039.  

3.4 Discussion 

The aim of this chapter was to investigate whether performance on a VPC task 

using ambiguous scenes and objects would be affected by APOE gene status, in a profile 

aligned to the documented influence of APOE alleles on later life risk of developing AD. 

First, it was predicted that there would be a linear relationship between APOE-risk (low-

risk > normal-risk > high-risk) and performance for scene-type, but not object-type, 

stimuli and that this would be particularly evidence for similar (ambiguous) compared 

to dissimilar, stimulus-pairs. Second, it was predicted that carriers of the APOE-e4 gene 

would perform worse (less evidence of a novelty preference) than APOE-e4 non-carriers 

for scene-type stimuli, but not object-type stimuli, and that this difference would 

increase when the stimulus-pairs were similar compared to dissimilar.  

In the analysis by risk-type (low, normal, high), the full model including an 

interaction of APOE, stimulus-type and similarity was found to be significantly more 

predictive of the variance in novelty preference than a null model without that 

interaction. Post-hoc tests using estimated marginal means based on the full model did 

not find support for the hypothesis that there would be a linear relationship between 

APOE-risk groups and novelty preference for similar or dissimilar scenes or objects, 

although there was a non-significant trend in this direction for the scenes. Instead, the 

interaction was driven by a significant reduction in novelty preference for similar scenes, 

compared to dissimilar scenes, in the normal- and high-risk groups, but not the low-risk 

group. This provides some evidence that young adults with a normal- or high-risk of 
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developing AD in later life show a lower level of novelty preference for scene stimuli, 

when the familiar and novel scenes are visually similar. The lack of a significant 

difference in the low-risk group does not, however, indicate that they are not affected by 

similarity. Although the estimated marginal means in this group for similar and 

dissimilar scenes were much closer, the confidence intervals were also larger, which is 

likely due to the lower size and increased variability in novelty preference in this group. 

In addition to the full model, the stimulus-type model also showed a trend for 

the analysis by risk-type. The post-hoc analyses on this model found this to be driven by 

a marginal increase in novelty preference for objects, compared to scenes, for the low-

risk group. This provides tentative evidence that young adult individuals at a low risk 

of developing AD in later life, based on the presence of APOE-e2/e3 alleles demonstrate 

a stronger novelty preference (linked to better recognition memory) for objects 

compared to scenes.  

These findings provide some evidence, albeit limited, towards a potential 

cognitive resilience or benefit in APOE-e2/e3 carriers in the recognition of similar scene-

type stimuli compared to dissimilar, and also for objects more generally compared to 

scenes. Unfortunately, the statistical comparisons between unbalanced groups severely 

reduces the degrees of freedom, making them underpowered in this sample. This could 

be improved by sampling matched groups and a-priori analyses in a future study. 

Looking at broader genetic risk for AD using a polygenic risk score could also increase 

power, which would allow for more powerful predictive models to include a scaled 

measure of risk, but also perhaps provide greater specificity for overall genetic risk.  

The second analysis carried out in this chapter looked specifically at the high-

risk APOE-e4 allele, by comparing a group of APOE-e4 carriers with a specifically 

matched group of APOE-e4 non-carriers. The results hinted at a potential interactive 

relationship between APOE-e4 and similarity. As predicted, APOE-e4 non-carriers 

showed a reduction in novelty preference when the stimulus pairs were similar, 
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compared to when they were dissimilar. Unexpectedly, however, the APOE-e4 carriers 

performed comparatively for both similar and dissimilar stimuli, the opposite to the 

hypothesised results. Although the current study provides no evidence for the 

mechanisms underpinning these differences, theoretically speaking it is possible that 

inefficiencies in the hippocampus, or projections to/from the hippocampus, may result 

in a compensatory overdependence on other MTL regions that are more feature-

focussed and less sensitive to gestalt ambiguity between two stimuli. 

The lack of power for group-wise comparisons is frustrating as it is difficult to 

make any confident assumptions about the effects of APOE using the current findings. 

The trends in the data, however, suggest that the current version of the VPC task may 

be sensitive to very early changes in the brain linked to the APOE gene, and this may be 

useful in improving assessment and diagnostic tools that use a VPC to identify potential 

future risk of AD (e.g. Neurotrack Technologies, Inc., 2017; Whitehead et al., 2018). It is 

likely that any cortical changes due to APOE will have a minimal effect on cognition in 

a young adult population, and these changes will be further minimised in individuals 

scoring both high on intelligence and with a high level of education, which is associated 

with increased cognitive function (Lee, 2003). There is a large gap between the current 

cohort and the normal age of clinical diagnosis for late-onset AD, so the current task may 

be more sensitive APOE-related vulnerabilities in a slightly older population in whom 

there may be a greater impact from APOE-related pathology. In Chapter 4, I investigate 

this using a cohort of mid-age adults using the same VPC task as reported in the current 

chapter. 

It may be possible to increase power in a similar sample to the current study by 

changing the stimuli that were used here. This could involve developing ‘virtual’ 

stimuli-sets that are systematically designed to emphasise novelty and/or ambiguity 

based on spatial components of a scene. Unfortunately, the extensive piloting I carried 

out for the current task using varying stimulus-sets revealed low levels of interest from 

participants in virtual stimuli, which resulted in a low level of overall novelty preference 
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in the task. An alternative would be to linearize the level of similarity in the current 

stimuli, which would reduce and control the within-category, between-trial, noise. This 

could be done using either subjective measures of similarity (e.g. “How similar are the 

following two images?”), or more complex but objective measures, such as image 

analysis tools (e.g. the Structural Similarity Index (SSIM) toolbox in MATLAB).  

Another way to increase power in young adults would be to use a much larger 

cohort. With only 14% of the population carrying an APOE-e4 allele (Corbo & Scacchi, 

1999), and even fewer (9%) carrying an APOE-e2 allele, the practicalities and cost of 

genotyping large enough samples to have enough power to detect such small differences 

is prohibitive. As already mentioned, a better solution (than looking solely at APOE

alleles) would be to apply polygenic risk approaches, which would factor in other genes 

that are known to increase risk of developing AD in later life and allow use of the whole 

cohort in correlational analyses rather than separating participants into different risk 

groups. Alternatively generating larger sample sizes without the large costs could be 

done by using existing cohorts in which genetic data is available; however, collecting 

new data in these cohorts may both expensive and time-consuming, and this is 

particularly the case with a VPC task that that requires both an expensive eye-tracker 

and one-on-one interaction with the experimenter.  

This approach, however, may change in the future. Eye-tracking technology is 

rapidly reducing in cost, with basic eye-trackers now available for under £100. 

Furthermore, application and web developers are now improving the accuracy of 

tracking eye-movements using a standard webcam (Bott et al., 2017). Others are 

developing innovative ways of running a VPC task without tracking eye-movements, 

using a mouse or touch-screen to ‘reveal’ small parts of the screen and then monitoring 

how much time individuals spend on the novel-revealed stimuli, rather than the familiar 

(U.S. Patent No. 9,629,543 B2, 2017). 

It is also now possible to investigate some of the mechanisms underpinning 

potential differences in neuro-cognition during the VPC task using a combination of eye-
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tracking and fMRI. Shine et al. (2015) found that young APOE-e4 carriers have differing 

patterns of activity in the posteromedial cortex during a scene-perception task. This 

region is functionally connected to networks involving visuo-spatial movement, 

attentional control, eye-movements and higher-order visuo-spatial perception (Cauda et 

al., 2010). Perhaps using the current VPC task in fMRI might uncover differences in 

functional connectivity, and/or the patterns of activation in relevant networks, in 

individuals possessing different alleles of the APOE gene. 

If we can further develop our understanding of how the VPC task demands 

different brain regions and networks related to both scene and object processing, its 

wider use as a diagnostic tool has some clear benefits. The task requires no motor skills, 

demands no language comprehension, and has little or no instruction to participants; 

meaning it is good for assessing populations across the world where there would 

normally be a language barrier, or where there are varying educational and intellectual 

abilities. It can also be run with minimal equipment, and when it becomes possible to 

run the task using just a standard webcam and/or mouse it might be developed—after 

suitable experimental studies following-on from the intriguing results reported here—

into a potential diagnostic tool for use at home, in remote regions, or in countries where 

expensive equipment is not readily available. 
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CHAPTER 4: 
APOE-RELATED DIFFERENCES IN PERFORMANCE ON A VISUAL PAIRED-

COMPARISON TASK IN MIDDLE-AGE ADULTS

4.1 Introduction 

In Chapter 3, I used a modified VPC task to investigate recognition memory for 

similar (vs dissimilar) scenes and objects in young adults with different APOE

genotypes. I found that individuals with an AD risk that is higher than the population 

(as evidenced by the presence of an APOE-e4 allele), and in those in whom there is a 

normal-level degree of risk (as measured by the presence of an APOE-e3 allele), had a 

lower level of recognition memory (as measured by a novelty preference score) for 

similar scenes compared to dissimilar scenes. By contrast, individuals in a low-risk AD 

group (who have an APOE-e2 allele) showed no difference in their novelty preference 

for similar and dissimilar scenes. Furthermore, there was a trend suggesting that 

individuals with an APOE-e2 allele have better recognition memory (a greater novelty 

preference) for objects (whether similar or dissimilar), compared to participants with an 

APOE-e3 and an APOE-e4 allele. In addition to this, a separate matched APOE-e4 carrier 

vs non-carrier analysis found that increasing the similarity between stimuli, whether 

scenes or objects, resulted in a significant reduction in novelty preference in non-carriers, 

but not carriers. These results suggest that the VPC task may be sensitive to cognitive 

differences between APOE-e4 carriers and non-carriers, and especially when the target 

and distractor are visually ambiguous.  

The VPC task was chosen as it has previously been shown to be sensitive to early 

cognitive changes related to AD (Zola et al., 2013). The version of the task used in 

Chapter 3 involved manipulation of the similarity in objects and scenes, with the aim of 

increasing the need to resolve featural and spatial ambiguity, which previous lesion 

studies have shown to be dependent upon MTL structures, such as the PRC and HC (Aly 
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et al., 2013; Lee et al., 2006; Lee, Buckley, et al., 2005). The level of APOE-related risk for 

sporadic AD increases with age (Jarvik et al., 1995). In this chapter, therefore, I used the 

same VPC task in middle-age adults (aged 45 to 57 years old) in order to determine 

whether the effects seen in Chapter 3, in younger individuals, might be more prominent 

in middle-aged adults. I predicted that individuals carrying APOE alleles associated 

with a greater risk for sporadic AD (e.g. APOE-e4) will have a greater reduction in 

novelty preference on a VPC task involving similar scenes, compared to dissimilar, than 

carriers of low-risk alleles (e.g. APOE-e2). I also predict that there will be no difference 

between different APOE groups in the object condition. 

As background, as individuals get older, it is thought those with an increased 

APOE-related risk of AD (via the presence of an APOE-e4 allele) will have greater 

deposits of Aβ, resulting in an increased burden on the function of susceptible regions, 

such as the HC (Castellano et al., 2011). A number of studies have found that cerebral 

Aβ deposition and tau levels increase with age in individuals with high-risk APOE

genotypes, but that this pattern is not in low-risk genotypes (e.g. Kester et al., 2009; J. C. 

Morris et al., 2010; Small et al., 2009). These APOE-age-related biological changes appear 

to result in a reduction in cognitive function (Yu et al., 2013). For example, Dubé et al. 

(2013) found that older APOE-e4 carriers are much more likely than non-carriers to have 

what they describes as “subtle deficiencies in memory or executive functioning that do 

not fit the definition of dementia but are also abnormal”. Remarkably, Deary et al. (2002) 

conducted a study spanning differences over seven decades. They tested 500 individuals 

at age 80 using the Mini-Mental State Examination (MMSE) scores and compared results 

against MMSE scores collected in 1932 at age 11. They found that APOE-e4 had a 

significant effect at age 80, compared with no effect at age 11, albeit using an 

unsophisticated measure of cognition.  

Lim et al. (2012) also found that the APOE-e4 allele is more specifically associated 

with a rapid decline in visuospatial learning in older adults. They used a paired 

associate-learning (PAL) task, which requires participants to learn increasing sets of 
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pattern-location associations, with each level of difficulty placing greater load on 

visuospatial memory. They found that individuals with a high level of cerebral Aβ

performed significantly worse (than individuals with low levels of cerebral Aβ) on the 

task. The PAL task has been repeatedly shown to preferentially recruit brain regions 

associated with complex spatial perception, such as the hippocampal formation (for 

review see Barnett, Blackwell, Sahakian, & Robbins, 2015), which suggests that Lim and 

colleagues’ findings might be indicative of an increased AD-related pathology on or 

around HC-connected networks in older healthy APOE-e4 carriers.  

It is not just elderly adult APOE-e4 carriers that show impaired cognitive 

function. In one longitudinal study, Blair et al. (2005) found that middle-age APOE-e4 

carriers were also impaired, compared to non-carriers, on tasks involving verbal 

learning and memory, attention, and psychomotor skills. Although this appears to 

partly contrast with Lim and colleagues’ (2012) suggestion that APOE-related 

impairment might be particularly focussed on visual spatial learning, Blair et al. used a 

longitudinal design which may be more sensitive than a group-wise comparison. That 

said, they also did not directly test spatial perception/memory which limits direct 

comparison with Lim et al. (2012). Blair et al. also note that the changes over time were 

noteworthy but small. Other studies have also noticed APOE-related impairments in 

visuospatial attention (e.g. Greenwood, Lambert, Sunderland, & Parasuraman, 2005; 

Greenwood, Sunderland, Putnam, Levy, & Parasuraman, 2005), which might suggest 

that APOE-e4-related pathology at middle-age impairs the visual attention networks 

that were previously facilitated, compared to non-carriers, in younger adulthood 

(Rusted et al., 2013). 

These alterations in cognition reflect reported APOE-related cortical and 

functional differences in mid-life. Middle-aged APOE-e4 carriers have been shown to 

have a reduction in HC volume (Cohen et al., 2001), which may relate to reported 

impairment in spatial working memory (Greenwood, Lambert, et al., 2005). 

Trachtenberg et al. (2012) also found increased activation in APOE-e4 carriers of MTL 
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and frontal lobe regions during memory encoding of scenes. These include increased 

activation in the PCC, a region found to already to have increased activation for scene-

specific discrimination in young adult APOE-e4 carriers (Shine et al., 2015). This suggests 

that the earlier life functional differences seen in young APOE-e4 carriers extends into 

mid-life in tasks involving perception and memory for spatially complex stimuli (such 

as scenes), although it should be noted that increased activation has also been found in 

APOE-e4 carriers during a recognition memory task for faces (Xu et al., 2009), which may 

be indicative of APOE-related pathology becoming more widespread in middle-age. 

Overall these reported changes in structure, function, and cognition in middle-

age cohorts seem consistent with both the subtler cognitive alterations seen in earlier life 

and the likely expected risk for onset of dementia according to the presence or absence 

of particular APOE alleles. A recent meta-analysis, however, sheds some doubt on the 

potential consistency of the impact of APOE on cognition at this age. Lancaster et al. 

(2017) combined data from 23 studies conducted since 1993 and found no overall effect 

of APOE on any of the measured cognitive domains in middle-age. They do note, 

however, that many of the studies that have been completed to date use neurocognitive 

tests that are designed to detect clinically relevant cognitive differences, rather than 

more subtle and specific changes that might be expected in healthy middle-age APOE-

e4 carriers. As discussed in Chapter 1, one way of increasing sensitivity to such small 

changes could involve taking a more refined approach to understanding how memory 

might break down in dementia aligned to different systems supporting different forms 

of memory (e.g. Bussey & Saksida, 2007; Graham et al., 2010; Murray et al., 2017). 

As has been discussed in previous chapters, one explanation for the 

inconsistency between results across studies, particularly when considering functional 

differences in brain networks between APOE-e4 carriers and non-carriers, could be 

variation in healthy individuals cognitive reserve or ability to bring to bear 

compensatory mechanisms to support successful completion of tasks. One advantage of 

the VPC task is that it measures implicit recognition memory (via a novelty preference 
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measure), and individuals are not purposefully focussed on remembering the stimuli. It 

could be argued that this might reduce the likelihood of participants recruiting 

compensatory strategies, as they might do in a more explicit goal-orientated task, 

making it more sensitive to any subtle differences there may be in spatial memory. 

Using the same VPC paradigm as outlined in Chapter 3, the current chapter 

focuses whether it is possible to demonstrate behavioural differences in novelty 

preference for scenes between APOE-e4 carriers and non-carriers, enhancing the reports 

of scene differences related to APOE-e4 reported in previous studies (e.g. Shine et al., 

2015). In this study, as with Chapter 3, I manipulated visual similarity, and predicted 

that individuals at high risk of developing AD, via the presence of an APOE-e4 allele,

would show a lower novelty preference for scenes, compared to objects, particularly 

when the familiar and novel scene pair were visually similar (compared to dissimilar). 

Individuals at a lower level of risk for AD, such as those with an APOE-e2 allele, would 

show the highest performance on the scene task, as measured by a longer novelty 

preference. I predicted no influence of APOE genotype on novelty preferences elicited 

in the object condition, but did hypothesise that similarity would result in smaller 

novelty preferences due to reduced memory for the previously presented item. 

4.2 Method 

4.2.1 Participant recruitment, DNA extraction and genotyping 

Forty-seven adults aged between 45 and 57 (mean age = 52.5) were recruited 

from a cohort of approximately 165 healthy volunteers at the University of Sussex in 

Brighton, in which genotype data was available. All volunteers in the cohort were non-

smoking and spoke English as their daily language. Individuals with a history of 

vascular health problems, untreated high blood pressure, psychoactive medication use, 

neurological trauma, or any psychiatric condition within the previous five years were 

excluded from the cohort. Double-blind procedures were followed during recruitment 
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so that the experimenter and participants remained blind to genotype; the downside of 

this for the experiment was that the distribution of individuals across genotypes could 

not be controlled and would not been known until the data analysis. Participants were 

given £10 Amazon vouchers for taking part in the experiment. 

DNA extraction and genotyping had previously been conducted by researchers 

at the School of Psychology and Life Sciences at the University of Sussex, in line with 

Human Tissue Authority and the school Research Ethics Committee’s guidelines and 

approval. DNA was collected by buccal swab, using an Isohelix SK1 kit. Samples were 

analysed by LGC Genomics (Hertfordshire, www.lgcgroup.com/genomics) to 

determine the presence of 3 major APOE alleles (e2, e3 and e4) on 2 APOE SNPs 

(rs429358, rd7412) using a fluorescent-based competitive allele-specific polymerase 

chain reaction. 

Although 47 participants were recruited for this study, in 6 of these participants 

there was a system error on the eye-tracker occurring part-way through the task. These 

individuals were therefore excluded from the final analysis. The APOE genotype of the 

remaining 41 participants consisted of: 1 x e2/e2, 4 x e2/e3, 28 x e3/e3, 7 x e3/e4, and 1 

e4/e4. As outlined in previous chapters, individuals with an e2/e2 or e2/e3 combination 

were classified as low-risk (n = 5, mean age = 53.8 years, females = 5), those with e3/e3 

were classified as normal-risk (n = 28, mean age = 52.3 years, females = 18), and those 

with e3/e4 or e4/e4 were classified as high-risk (n = 8, mean age = 52.6 years, females = 

7). 

The study adhered to the British Psychological Society’s Code of Ethics and 

Conduct (The British Psychological Society, 2018) and was approved by the University 

of Brighton’s School of Psychology and Life Sciences ethics committee. 
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4.2.2 Design and stimuli 

The design of, and stimuli used in, the task was identical to that described in 

Chapter 3 (see Chapter 3.2.2 for further details).  

4.2.3 Apparatus 

As reported in Chapter 3, the task was developed and run in MATLAB using the 

PsychToolbox-3 package and Tobii SDK 3.0. For this study, however, I used a 60hz 

portable Tobii Pro X2-60 eye-tracker attached to a laptop that was connected to a 23” 

monitor. The study was conducted in a light and temperature-controlled room. Five-

point calibration was carried out prior to each data collection phase. Eye-movement 

recordings were binocular, and the participants could move their head freely without a 

chin-rest (although they were asked to minimise any head/body movement to maximise 

the sensitivity of the measures obtained). 

4.2.4 Procedure 

On arrival, participants were seated beside the experimenter and provided with 

an information sheet and consent form, in line with the agreed ethics. At the start of each 

block, participants completed the calibration-process and were then instructed to “relax 

and just look at the screen as though watching television” during both familiarisation 

(the initial presentation of the images) and test (the presentation of the previous images 

alongside a novel image) phases. They were also instructed to stay as still as possible 

during the process to ensure maximum accuracy from the eye-tracker. When they were 

ready, they began the familiarisation phase, followed by the two-minute break, followed 

by the test phase (see Figure 3.3). During the entirety of each block, all eye-movements 

were recorded. Following each block, participants could take a short break and/or 
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change position before recalibrating the eye-tracker and starting the second and third 

blocks. At the end of the task, participants were debriefed on the task. 

4.2.5 Fixation analysis and eye-tracking measures 

The Tobii X2-60 eye-tracker outputs a row of gaze-data 60 times per second, each 

of which include two-dimensional coordinates for where the individual was looking at 

that time-point. As in Chapter 3, each data-point was allocated to a trial based on its 

timestamp and the data was then separated into individual trials. A velocity-threshold 

fixation identification method was then used to separate data into saccades and 

fixations, with any fixations less than 100ms were removed (for more detail see Chapter 

3.2.5). 

For each trial in the test phase, fixations were allocated to either the novel or the 

familiar image, depending on the coordinates of the fixation. The time spent fixated on 

the novel stimulus was divided by the total time spent fixating on both stimuli, resulting 

in the proportion of time spent fixating on the novel stimulus for each trial (a novelty 

preference score). All fixation and data analyses were completed using MATLAB and R.  

4.3 Results 

One sample t-tests confirmed that in all four conditions (scenes, similar and 

dissimilar, and objects, similar and dissimilar) for each group (low, normal and high 

risk) there was a significant novelty preference (all p’s < .05) compared to a baseline of 

0.5 (equal viewing of both stimuli). The only exception to this was in the low-risk group, 

where there was no significant novelty difference on the similar scenes condition (t(4) = 

1.95, p = .062) (see Table 4.1 for descriptive statistics). 
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MEAN NOVELTY PREFERENCE (SD) 

Dissimilar 
Scenes 

Dissimilar 
Objects 

Similar Scenes Similar Objects 

LOW-RISK .658 (.096) .649 (.151) .621 (.139) .659 (.107) 

NORMAL-RISK .606 (.081) .604 (.111) .566 (.077) .586 (.089) 

HIGH RISK .584 (.093) .614 (.056) .574 (.077) .570 (.057) 

Table 4.1 - Mean proportion of time (per trial) spent looking at the novel image (calculated as ‘time viewing 
novel image’ / ‘total viewing time’), separated for each APOE-type and for each condition. 

As in Chapter 3, a linear mixed-effects model comparison from the lme4 package 

(Bates et al., 2015) in R (R Core Team, 2015) was used. Four regression models were 

considered: a ‘full model’, including an interaction of APOE-group, stimulus-type and 

similarity; a ‘stimulus-type model’, including an interaction between stimulus-type and 

APOE-group; a ‘similarity model’, including an interaction between similarity and 

APOE-group; and a ‘null model’, with no interaction terms included (see Box 3.1).  

Figure 4.1 – Distribution of data for each group. Each coloured dot represents the mean novelty preference 
for a single subject. The black dots represent the mean for that group/condition with the bars representing 
one standard error.
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The three interaction models were compared to the null model using a likelihood 

ratio test, which found that the similarity model predicted significantly more variance 

in novelty preference than the null model (χ2(0) = 0.54, p < .001). Post-hoc analyses of the 

similarity model were conducted using the emmeans package (Lenth, 2018) in R, using 

estimated marginal means with a Kenward-Roger degrees of freedom method along 

with a Tukey method of comparison. This found that the interaction is driven by a 

difference between the similar and dissimilar stimuli in the normal-risk group (t(365.86) 

= 3.59, Ptukey = .005), with dissimilar stimuli being viewed for approximately 2.8% (± 0.77 

SE) of total viewing time compared to similar stimuli (see Figure 4.2). No other 

comparison was found to be significant.  

Figure 4.2 - This output from the emmeans package shows the estimated marginal 
means (of viewing proportion to the novel stimulus) for each APOE-risk group (low, 
normal, high) for similar and dissimilar stimuli. The black dots represent the 
estimated marginal mean and blue bars represent the 95% confidence intervals.
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4.4 Discussion 

The aim of this chapter was to investigate how novelty preference for scenes (as 

compared to objects), measured using a VPC task, would be influenced by different 

APOE genotypes. It was predicted that there would be a linear relationship between 

APOE-related risk for AD and novelty preference (low-risk > normal-risk > high-risk) 

for scenes-type (but not object-type) stimuli, and that differences between the groups 

would be more evident when similar (ambiguous) stimulus-pairs were presented 

compared to dissimilar stimulus-pairs. 

The most predictive model from the LME model-comparison was one that 

included an interaction of APOE-risk and similarity, but not stimulus-type. This result 

suggests that, in this group of participants, using scene or object stimuli does not 

preferentially affect recognition memory (novelty preference) in one group of APOE 

genotype participants compared to another. Post-hoc analyses of the interaction between 

APOE-risk and similarity, using estimated marginal means, found that my identified 

effect was being driven by a difference between similar and dissimilar stimulus-pairs in 

the normal-risk group. There was no difference between novelty preference for similar 

and dissimilar stimuli in the low- or high-risk groups, though this finding may be due 

to very small sample sizes in these groups compared to the group. 

The main weakness of this study was poor recruitment. The availability of 

participants to complete this task was limited, as it was completed over the summer 

when many individuals were on holiday. Using a double-blind design also meant that I 

could not check the distribution of APOE genotypes until data collection was finished, 

leading to a skewed group distribution towards the more common APOE genotype 

(APOE-e3/e3). It is therefore difficult to come to robust conclusions about the effect of 

APOE on the VPC task, as the size of the low- and high-risk groups were likely to be too 

small to detect differences at an alpha of 0.05. The impact of this problem was partly 

negated by using estimated marginal means which increases power by comparing all 

stimulus pairs in the model separately rather than averaging across them. The results of 
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this show a trend, in which the low-risk group (with an APOE-e2 allele) seem to show a 

higher novelty preference, and consequently greater recognition memory, compared to 

the other groups. This finding was not statistically significant, however, and future 

studies should increase the number of APOE-e2 participants in order to identify whether 

this is a robust difference in performance in individuals with a different APOE genotype.  

Many studies conducted to date have focused on comparisons of APOE-e4 

carriers and APOE-e4 non-carriers, tending to exclude carriers of an APOE-e2 allele (e.g. 

Evans et al., 2014) or alternatively including them in the APOE-e4 non-carrier control 

group (e.g. Chen et al., 2013). Given the numerical difference between APOE-e2 

participants seen here, while noting that it was not statistically significant, it seems 

important moving forward to study APOE-e2 individuals, or at very least to remove 

them from the control group in order not to inflate any negative impact of APOE-e4. It 

is worth noting that some studies which have included APOE-e2 in analyses have found 

a greater beneficial effect of this allele on memory than the corresponding detrimental 

effect of APOE-e4. For example, Sinclair et al. (2017) found that APOE-e2 carriers showed 

better performance on verbal learning and episodic memory tasks compared to APOE-

e3 and APOE-e4 carriers; with the latter performing similarly. It is impossible to make 

any assumptions from the current data, but the trend identified in the VPC task would 

support a suggestion from the literature there that APOE-e2 carriers may show 

better/enhanced cognitive performance (Suri et al., 2013). Future studies would should 

focus on a detailed assessment of cognition, including comparison of performance on 

tasks tapping different representational networks, as well as increasing the size of the 

cohort to ensure generalisability of finding. It would be very interesting to include a VPC 

task like that reported here, where it may be possible to study novelty preference to 

different stimulus-types and levels of ambiguity between stimuli. Such a sample would 

allow for comparison of difference-scores across groups, which was not possible in this 

study due to the small group sizes. 
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Another possible way to investigate potential differences between APOE

genotypes as individuals’ age would be to use a longitudinal design. By repeating the 

VPC task in the future, it would be possible to look at individual change over time which 

may be more sensitive to APOE age effects. As discussed earlier in this chapter, Deary 

et al. (2002) measured change in cognition over a 70 year gap and found significant 

effects over time that were not present by simply comparing group data at one time-

point. Zola et al. (2013) also used a VPC task in a longitudinal design and found that 

poor task performance was predictive of future cognitive decline, either from healthy 

cognition to MCI or from MCI to AD. 

Collecting data longitudinally has a number of obstacles. It can be difficult to 

retain the engagement of participants as time passes, leading to a reduction in cohort 

numbers, which needs to be accounted for in the initial scale of the recruitment. 

Furthermore, the current task takes around thirty minutes and must be carried out on a 

one-to-one basis with the participant, making it relatively time-intensive to collect data 

on a scale needed to have an even distribution of groups large enough to detect 

differences. For example, to have a low-risk group containing a modest amount of 

twenty individuals would have required testing approximately 200 people in total (if 

individuals are not pre-selected by APOE genotype for the study, which in itself can 

have ethical implications). The cost implication is also an issue, as genetic testing is 

expensive, time consuming, and requires specialist facilities to carry this out. An obvious 

workaround to these issues is to use an existing cohort of individuals in whom genetic 

data is already available. 

As mentioned at the end of Chapter 3, new technology is making remote eye-

tracking on smartphones or via web camera possible (U.S. Patent No. 9,629,543 B2, 2017; 

Bott et al., 2017). Early research suggests that the VPC task is particularly ideal for remote 

data collection as there is no need for the type of precision supported by a more 

expensive eye-tracker, as the only necessary gaze information required is which half of 

the screen is being viewed (Bott et al., 2017). Neurotrack Technologies (2017) have 
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developed a version of the VPC based on the work of Zola et al. (2013), that is capable of 

measuring eye-movements using a laptop and webcam. They claim that the system is 

capable of detecting early changes and abnormalities in the brain that might lead to 

impaired memory function. Although the system is new and there are yet to be any peer-

reviewed results from such an approach, this tool may provide a suitable platform to 

test data remotely in a large cohort, depending upon the sensitivity of the task to decline 

in the neural circuitry thought to be involved in AD. 

Aside from the use of different scene and object stimuli, and the manipulation of 

similarity, the current study also differs from the VPC used by Zola et al. (2013) in that 

they did not use a block design with multiple stimulus pairs between familiarisation and 

test phases. The current study used a block design to increase the number of trials and 

increase cognitive load, whilst also replicating other studies using a similar design (e.g. 

Manns et al., 2000). It is feasible however, that this change has implications on 

performance that may partly explain the lack of difference between groups in this study. 

Zola et al. found that non-converting (to MCI or dementia) participants typically had a 

novelty preference greater than 67%, which is higher than the mean of any group or 

condition in my study. This is unsurprising, given the increased number of trials in each 

block of my study, but it may mean that the task is too challenging to generate sufficient 

variation to elicit differences between groups. Future studies could test this by varying 

the number of trials in each block to study the impact this has on performance. 

The purpose of modifying the VPC task in my PhD work was to use tasks which 

had previously been shown to be sensitive to AD, but to additionally include stimuli 

which other studies have shown to be preferentially dependent upon the MTL regions 

(e.g. PRC/HC) and their interconnected brain regions (e.g., posteromedial cortex), 

which we know are some of the earliest regions to be affected by AD pathology (Braak 

& Braak, 1998; Minoshima et al., 1997; Protas et al., 2013) and where altered function and 

structure is seen in APOE-e4 carriers (Filippini et al., 2011, 2009; Jack et al., 2008; Shine 

et al., 2015; van de Pol et al., 2007). Neither the current task, nor the tasks completed in 
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previous chapters, however, have been shown to be directly dependent upon these brain 

regions. Chapter 5, therefore, aimed to address this gap by asking whether the LOC and 

PHC volume in the extrastriate cortex, or PRC and hippocampal sub-field volume in the 

MTL, would be associated with performance on the tasks I developed and reported in 

Chapters 2-4. This approach allows me to investigate the neuroanatomical contributions 

of key brain regions to performance on these cognitive tasks, and whether inter-

individual variation in volume would be associated with performance.  
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CHAPTER 5: 
INVESTIGATING THE RELATIONSHIP BETWEEN EXTRASTRIATE AND MEDIAL 

TEMPORAL LOBE REGION GREY-MATTER VOLUME AND PERFORMANCE ON THE 

CONJUNCTION LEARNING AND VISUAL PAIRED-COMPARISON TASKS IN YOUNG AND 

MIDDLE-AGED ADULTS

5.1 Introduction 

In the Chapters 2-4, I reported studies applying two distinct and novel cognitive 

tasks with the aim of testing whether there would be behavioural differences, 

specifically when scene stimuli were presented, between groups comprising individuals 

carrying different alleles of the APOE gene. As discussed in Chapter 1, healthy APOE-e4 

carriers (APOE-e4 is associated with a greater risk of developing AD in later life 

compared to the normal population risk) have been reported as showing decreased brain 

volume (Burggren et al., 2008; Chang et al., 2016; Knickmeyer et al., 2014; Shaw et al., 

2007) and altered brain function (Dennis et al., 2010; Filippini et al., 2011, 2009; Hodgetts 

et al., 2018; Mondadori, Quervain, et al., 2007; Shine et al., 2015). This is most often seen 

in regions and networks (medial temporal lobe and posteromedial cortex) known to be 

affected early in AD and seems to be evident decades before there is any clinically 

obvious cognitive change (see Chapter 1.3.1). In the earlier cognitive studies I reported 

in this thesis, therefore, I predicted that these early alterations in brain network might 

elicit differences in performance on tasks that have been designed to preferentially 

engage these regions/networks, specifically between high and low risk groups. 

The tasks I developed were influenced by literature showing that the HC is 

particularly important for aspects of complex scene processing (Graham et al., 2010; Lee 

et al., 2006; Murray et al., 2017); this region is not only structurally and functionally 

vulnerable to AD pathology (Fjell, McEvoy, Holland, Dale, & Walhovd, 2014), but it has 

also been the focal point for previous research that has looked for early behavioural 

changes that might predict AD (e.g. Crutcher et al., 2009; Zola et al., 2013). One problem 
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with this approach is that many of the tasks used are based on the theoretical assumption 

that the HC is solely responsible for declarative memory, which is increasingly being 

challenged by accounts which focus on representational content as a key influencer of 

HC involvement in memory (e.g. Graham et al., 2010; Maguire, Intraub, & Mullally, 

2016; Murray et al., 2017). As I discussed in Chapter 1, the emerging consensus appears 

to be that the HC forms part of a visual ventral stream that is responsible for forming 

increasingly complex representations and, within which, the HC and PRC work to 

resolve spatial and featural ambiguity, respectively (Bussey & Saksida, 2007; Cowell et 

al., 2010; Graham et al., 2010; Lee, Buckley, et al., 2005). Given this change in our 

understanding of the contributions of MTL regions to differentially supporting 

representational information, a clear next step forward in my research approach was to 

develop tasks informed by this emerging literature, with the prediction that these might 

be more sensitive to functional differences in networks aligned to genetic risk of poorer 

later life cognitive health.  

In Chapter 2, I used a conjunction learning task involving scenes and object-like 

fribbles. The fribble condition in the conjunction learning task was used as a control 

condition, as this type of object-like stimuli appears to preferentially recruit MTL regions 

involved in binding conjunctions of distinct features to form complex representations of 

objects, such as the PRC (Barense et al., 2005). The scene condition, however, was aiming 

to preferentially recruit the posteromedial/hippocampal brain network, which is 

thought to be important in distinguishing scenes by forming complex representations 

based on conjunctions of spatial attributes (Buckley et al., 2004). Both comparisons, 

including all participants and a matched subset of young adult APOE-e4 carriers and 

non-carriers, did not show any difference in behaviour between groups. I discussed that 

this may be due to the possibility that the scene condition could be completed by simply 

processing the shape of the back wall, which was a unique single feature. In this task, 

participants may not process the spatial features conjunctively, and the task may, 
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therefore, be more dependent upon extrastriate brain regions involving in scene 

processing rather than MTL areas (see Chapter 1.4). 

In Chapters 3 and 4, I used natural scenes and objects in a VPC task, varying the 

level of similarity across the stimulus pairs. The VPC task has previously been shown to 

be predictive of future cognitive decline (Zola et al., 2013) and atrophy in the HC has 

been shown to impair performance on the task (Bachevalier, Brickson, & Hagger, 1993; 

Clark et al., 2000; McKee & Squire, 1993; Nemanic et al., 2004; Zola et al., 2000). It was 

predicted that modifying the task to use similar and dissimilar scenes, as well as objects, 

might preferentially increase demand on the HC (for scenes) and PRC (for objects). In 

the cohorts used in Chapter 3, I found that high- and normal-risk groups had a reduced 

novelty preference for scenes when the target and distracter were similar, compared to 

the condition in which the distractor was dissimilar. No such difference between 

conditions was evident in the low-risk group; specifically they performed as well in both 

conditions, showing no detrimental influence of closer visual similarity. When looking 

at a matched comparison between APOE-e4 carriers and non-carriers (taking out any 

participants with an APOE-e2 allele) there was a significant interaction of group and 

similarity (collapsed across stimulus-types), with the APOE-e4 non-carrier group 

showing a significant difference between similar and dissimilar. This was not seen in the 

APOE-e4 carrier group. A possible explanation for this finding is that the APOE-e4 

carrier group are using alternative strategies that are less dependent on hippocampal 

function and are therefore less influenced by the presence of visual ambiguity across 

stimuli. Although this theory is speculative, there is some evidence to suggest that young 

APOE-e4 carriers may benefit from enhanced attentional function (Rusted et al., 2013), 

which may contribute to this difference between groups.  

As discussed in Chapter 1, there is increasing evidence to suggest that HC 

volume is associated with inter-individual performance on tasks involving scene stimuli. 

For example, HC grey-matter volume has been found to correlate with degree of HC 

activity and memory performance for scenes (Walker et al., 2017). Maguire et al. (2000) 
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also found that London taxi drivers had increased posterior HC grey-matter volume, 

and decreased anterior hippocampal volume, compared to controls. This relative 

anterior to posterior redistribution of grey-matter became more pronounced the longer 

the individual worked as a taxi driver. The authors argued that this pattern was due to 

localised hippocampal plasticity occurring from the requirement to form complex 

spatial representations of the spatial (London) environment, which increase in detail and 

complexity with time and experience. The work also highlights that there may be a 

distinction between the contributions of anterior and posterior HC regions and their role 

in spatial perception (Brunec et al., 2018; Hirshhorn, Grady, Rosenbaum, Winocur, & 

Moscovitch, 2012; Kim, Jeffery, & Maguire, 2017; Robin & Moscovitch, 2017). 

Zeidman et al. (2015) investigated the relationship between activation in different 

regions of the HC during a scene perception and construction task. In the task, they 

asked participants to either imagine a scene from a prompt (e.g. an old library) or to hold 

the presented image of a scene in their minds eye, whilst being scanned in an fMRI 

scanner. The results were compared to a baseline level of activation using objects as a 

control stimulus. They found that perceiving scenes extensively activated the entire HC 

bilaterally, whereas constructing a scene involved restricted activation of the anterior 

HC. The results of this, along with Maguire et al.’s (2000) taxi driver study, suggest that 

the posterior HC may be preferentially involved in the spatial navigation of our 

environment, and the anterior HC in scene construction and imagining. 

These studies also highlight that the HC is not one unitary structure, but rather 

a region that contains a number of distinct substructures (Duvernoy, Cattin, & Risold, 

2005). Our current understanding of how these subfields map onto how scenes are 

processed in humans is still limited. The HC can be divided into four subfields: CA1, 

CA2/3, dentate gyrus (DG), and the subiculum (Hodgetts et al., 2017). Animal research, 

particularly in rodents, reveal that the CA1 region contains place cells that represent the 

animals location within its environment (O’Keefe & Dostrovsky, 1971), whereas areas 

around the subiculum (such as the pre- and parasubiculum) contain grid cells that may 
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facilitate a framework for spatial representations (Boccara et al., 2010). Boundary vector 

cells have also been found in the subiculum, presubiculum, and parasubiculum, which 

represent the positions of the boundaries of a scene (Lever, Burton, Jeewajee, O’Keefe, & 

Burgess, 2009).  

Hodgetts et al. (2017) found increased activation in the subiculum during a scene 

oddity task using ultra-high-field fMRI. Activity elicited while participants performed 

odd-one-out-judgements for scenes was compared to that evident when performing 

similar judgements for faces and objects. Subiculum showed increased activity for scenes 

compared to faces and objects. This was the only hippocampal subfield to show such a 

distinctive BOLD response to scene stimuli (see Figure 5.1). The authors further 

segmented the subiculum into anterior-posterior regions; increased activation for scenes 

was limited to the anterior portion. These findings align with previous suggestions of a 

preferential role for posterior and anterior hippocampal regions in spatial navigation 

and constructing scene representations, respectively (Brunec et al., 2018; Zeidman & 

Maguire, 2016). In the case of the conjunction learning and VPC tasks used in this thesis, 

Figure 5.1 – Hodgetts et al. (2017) found preferential activation of the 
subiculum during the scene condition of an oddity task, but not faces or 
object conditions. This illustration includes, [A] hippocampal subfield 
segmentation using ultra-high-resolution MRI, and [B] Mean percentage signal 
change for the correct scene (S), face (F), and object (O) judgements (relative 
to size baseline) for each subfield. Error bars represent ± SE. Figure taken 
from Hodgetts et al. (2017). 
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it would seem likely that the scene condition in both tasks would preferentially engage 

the subiculum and its surrounding regions, as these appear to be areas involved in 

constructing internal scene representations.  

The aim of this final chapter of my thesis was to bridge the gap between the 

behavioural work outlined in the earlier chapters and brain anatomy, specifically 

following on from some of the literature outlined above to ask if there would be a 

relationship between hippocampal subfield volume and performance on the conjunction 

learning and VPC tasks. Previous work (e.g. Maguire et al., 2000; Walker et al., 2017) 

suggests that greater HC subfield volume, specifically the subiculum (Hodgetts et al., 

2017) would be associated with better performance on the scene conditions in these 

tasks, assuming they are dependent upon representations stored within the HC. 

Conversely, the object/fribble conditions would be expected to preferentially engage the 

PRC which, as discussed in Chapter 1.4 as well as other chapters, is involved in high-

order discrimination of objects.  

Of note, with regard to my hypotheses, in the conjunction learning task (Chapter 

2), there was no relationship between APOE-related risk for AD and the speed of 

learning spatial or featural conjunctions (as measured by both time to criterion and 

response times). It was proposed that this might be due to the task not being sufficiently 

difficult, in that—with hindsight—although the stimuli vary only in two features 

(stressing conjunctive processing) the unique shape of the back wall in the scenes 

provides another way to solve the task. If this is the case, it is possible that the HC (for 

scenes) and PRC (for fribbles) will not be preferentially recruited when performing this 

task. In which case, instead inter-individual variation in response times for the scene 

condition, but not the objects, might be associated with volume of the PHC (which is 

involved in low-level perception of scenes). Similarly, for the fribble condition, inter-

individual variation in volume of the LOC (which is involved in low-level perception of 

objects) might predict performance for the object learning condition, but not scenes (as 

discussed in Chapter 1.4).  
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In the VPC task (Chapters 3 and 4), I found that young adults with a lower risk 

of AD (but not normal- or high risk) showed a reduced novelty preference for similar 

(compared to dissimilar) scenes. When looking more specifically at the relationship 

between APOE-e4 carriers and non-carriers, there was a difference between similar and 

dissimilar stimuli (in both stimulus conditions) in the APOE-e4 non-carriers, but not the 

carriers. Although I had an insufficient sample of individuals with both structural MRI 

and VPC data to look at the relationship between volume, performance and risk-level, it 

seemed worthwhile looking at how inter-individual variation in novelty preference was 

associated with volume of HC sub-regions in the data that was available to me. With 

regard to this analysis, I predicted that novelty preference for similar scenes would be 

positively correlated with subiculum volume, but not with other HC subfields. It is 

further predicted that novelty preference for dissimilar scenes might be more dependent 

upon the PHC, rather than HC subfields, as those scenes should not require high-order 

spatial representations. For the object condition, I predicted that inter-individual 

variation in novelty preference for the similar objects would be related to PRC volume 

but not the HC. Disambiguating between dissimilar objects, however, might be possible 

using lower-level object processing, such as those representations stored within the 

LOC; I hypothesised, therefore, that novelty preference in this condition will be 

positively related to LOC volume, but potentially not PRC volume. It is expected that 

these predictions will be true in both the young and middle-age cohorts in which I had 

available MRI data. 

5.2 Method 

5.2.1 Analysis 1: Conjunction learning task  

5.2.1.1 Participants 

As part of a separate study, 51 individuals from the original all-female young 

adult APOE cohort used in Chapters 2 and 3 were invited to attend an imaging session 
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at Cardiff University Brain Research and Imaging Centre (CUBRIC). This group 

included 40 of the participants that had also completed the conjunction learning task 

(mean age = 19.45 years). For the scanning session, participants were recruited via 

Cardiff University’s experiment management system and were offered a cash payment 

in exchange for their time. Participants were required to pass CUBRIC’s MRI screening 

process, which ensures that individuals with non-removable metal, claustrophobia, or 

health issues (such as epilepsy) are not included in the scanning. All experimental 

processes were approved by the Cardiff University School of Psychology’s ethics 

committee and were in accordance with the British Psychological Society’s Code of 

Ethics and Conduct (The British Psychological Society, 2018). 

For details of the recruitment process for the conjunction learning task, see 

Chapter 2.2.1. 

5.2.1.2 Conjunction learning task 

Details of the conjunction learning task can be found in Chapter 2.2. In summary, 

the task required participants to learn and identify which one of a pair of images was 

correct. The same image was always either correct or incorrect, but the images 

overlapped in all but two visual features with the aim of requiring participants to 

process conjunctions of features or spatial properties. The task included scene and 

fribble conditions.  

In Chapter 2, it was discussed that the lack of task difficulty resulted in most 

individuals scoring close to ceiling. This lack of dispersion and inter-individual variation 

made the measure unsuitable for looking at the relationship with brain volume. 

Therefore, for this analysis, I used the mean response times to all trials. This measure 

had greater distribution and would likely reflect the extent to which the participant 

found the task difficult, with increased difficulty leading to longer time to respond. 
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5.2.1.3 Image acquisition  

Structural imaging was performed at CUBRIC using a Siemens MAGNETOM 

Prisma 3-tesla MRI scanner (Siemens Healthcare Limited, Camberley, UK). The scanner 

had a 32-channel head coil and a T1-weighted magnetisation-prepared rapid gradient-

echo imaging (MPRAGE) sequence was used (TR = 2500ms, TE = 3.24ms, FA = 9°, FOV 

= 256mm x 256mm, slices = 176, slice thickness = 1mm). 

5.2.2 Analysis 2: Visual paired-comparison (young adults)

5.2.2.1 Participants 

Fifty-one participants from the young adult APOE cohort were scanned at 

CUBRIC (see section 5.2.1.1 for details). Forty-one of these individuals had also 

previously completed the VPC task (mean age = 19.44 years) and were included in this 

analysis. These were all the same individuals that had completed the conjunction 

learning task (Analysis 1), but with one additional person. For details of recruitment for 

the VPC task, see Chapter 3.2.1. 

5.2.2.2 VPC Task 

Further information about the VPC task protocol used in this analysis can be 

found in Chapter 3.2. In summary, the task involved participants viewing a series of 

images, which were then shown again alongside a new image which was either similar 

or dissimilar to the previously shown image. Stimulus-pairs were either scene or object 

stimuli. Eye-movements were recorded, and the main measure obtained from the task 

was the proportion of time spent viewing the novel stimulus, which was assumed to be 

a measure of implicit recognition memory. 
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5.2.2.3 Image acquisition  

Details of the T1 image acquisition can be found in section 4.2.1.3. 

5.2.3 Analysis 3: Visual paired-comparison (mid-age adults)

5.2.3.1 Participants 

As detailed in Chapter 4.2.1, the VPC task was also successfully run in 41 middle-

aged healthy adults. Within this group, 11 participants (mean age = 51.45 years, females 

= 9) also had T1 structural MRI data available. Participants were recruited by email from 

a database of individuals that had previously agreed to be part of a cohort to investigate 

the effects of APOE on cognition at the School of Psychology, University of Sussex and 

were offered cash payment in exchange for their time. Participants were excluded if they 

did not meet the Clinical Imaging Sciences Centre’s screening criteria (similar to that 

outlined above for CUBRIC). All scanning was conducted consistent with the protocol 

that had been approved by the University of Sussex School of Psychology and Life 

Sciences ethical committee, and was in line with the British Psychological Society’s Code 

of Ethics and Conduct (The British Psychological Society, 2018). 

5.2.3.2 VPC task 

The VPC task used in this cohort was identical to the one used in Analysis 2 but 

collected at a different location and using a portable 60hz TOBII eye-tracker (see Chapter 

4.2 for further details). The output measure used for the analysis was the mean 

proportion of time spent viewing the novel stimulus for each of the scene and object 

conditions. 
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5.2.3.3 Image acquisition  

Structural images were acquired on a Siemens MAGNETOM Avanto 1.5-tesla 

MRI scanner (Siemens Healthcare Limited, Camberley, UK ) using a three-dimensional 

T1-weighted magnetisation-prepared rapid gradient-echo imaging (MPRAGE) 

sequence (TR = 1600ms, TE = 4.44ms, FA = 15°, FOV = 230mm x 230mm, slice thickness 

= 0.9mm). 

5.2.4 MRI processing and volume segmentation 

Aligned to my hypotheses, I was interested in the relationship between volume 

of MTL and extrastriate areas known to respond to object and scene stimuli (e.g. Mundy 

et al., 2012), including the LOC/PRC and PHC/HC, respectively. Volume measures 

were obtained using Freesurfer 6.0 image analysis suite (which is freely available to 

download online at http://surfer.nmr.mgh.harvard.edu).  

Before undertaking processing with Freesurfer, the T1-weighted MPRAGE files 

were first converted to the three-dimensional nifti format. The Freesurfer software then 

(a) registers these into Talairach space, (b) normalises for variable intensities caused by 

inhomogeneities in the radiofrequency field, (c) extracts non-brain volume (such as the 

skull and extra-meningeal tissues), (d) segregates the hemispheres, (e) removes the brain 

stem and cerebellum, (f) corrects for topology defects, (g) defines grey-matter, white-

matter and cerebrospinal fluid, and (h) parcellates the subcortical region into distinct 

brain structures (Whelan et al., 2016). 

Following reconstruction of the whole HC and surrounding sub-cortical regions, 

hippocampal subfields were then segmented. In Freesurfer 6.0, the location of each of 

the subfields is predicted based on a probabilistic atlas built from ultra-high resolution 

ex-vivo MRI data and manually annotated structures. This newly-revised method has 

been shown to have a number of advantages over, and be more reliable than, previous 

automated methods of HC subfield segmentation (Whelan et al., 2016; Yushkevich et al., 
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2015), including when used with T1-weighted 3T MR image (Whelan et al., 2016). 

Freesurfer then outputs the following subfields for each hemisphere: CA1, CA2/3, 

fimbria, subiculum, presubiculum, parasubiculum, CA4/DG, HC tail, HC fissure, the 

molecular layer, granule cells in the molecular layer of the DG, and the hippocampal-

amygdala transitional area (HATA) (see Figure 5.2).  

Using these outputs, I created a subiculum cortex region, comprising of the 

presubiculum, parasubiculum, and subiculum subfields. I also generated a CA4/DG 

region, comprising both the CA4/dendrite gyrus and the granule cells in the molecular 

layer of the dendrite gyrus. These were complemented by CA1, CA2/3, LOC, PRC and 

PHC, giving seven regions in total. To correct for head-size, all volumes used were 

divided by the total intercranial volume (ICV) to give a volume ratio of total ICV. 

5.3 Results 

5.3.1 Analysis 1: Conjunction learning task  

 Volumes for each of the regions (for both the left and right hemispheres) and for 

each participant were imported into JASP (JASP Team, 2018), along with the mean 

Figure 5.2 – Example of hippocampal subfield segmentation by Freesurfer 6.0. Views include (A) sagittal, (B) 
coronal, and (C) axial, for a healthy individual. Figure taken from Li et al. (2018).
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response time in milliseconds for the scene and fribble versions of the conjunction 

learning task (see Table 5.1 for descriptive statistics). All volumes (LOC, PRC, PHC, CA1, 

CA2/3, CA4/DG, and subiculum cortex) were entered into a linear regression model 

using a bidirectional elimination stepwise method with fribble and scene response time 

as the dependent variables. This method includes or removes one region at each step 

based on the probability of its F-value, starting with the smallest p-value. Regions were 

only included if their p-value at that step was lower than .05 and variables included in 

the model were subsequently removed if their p-value became greater than .1 as a result 

of the inclusion of another variable. For the fribble condition, the final model indicated 

that right CA2/3 and right LOC volumes accounted for 23.7% of the variance in response 

time (R2 = .237, F(2,37) = 5.74, p = .007), with greater volume in both right CA2/3 (β = -

.386) and right LOC (β = -.372) being associated with lower response times. For the scene 

condition, the model included only the right PHC volume, which predicted 16.6% of the 

variance in response time (R2 = .166, F(1,38) = 7.56, p = .009). Greater right PHC volume 

was associated with lower response times (β = -.407) (see Figure 5.3).  
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MEAN STANDARD DEV 

RESPONSE TIMES (MS): 
SCENES 

2125 937.7 

RESPONSE TIMES (MS): 
FRIBBLES 

2404 674.0 

LOC – RH .008790 .001178 

PHC – RH .001484 .000183 

PRC – RH .001375 .000201 

CA1 – RH .000447 .000046 

CA2/3 – RH .000139 .000020 

CA4/DG – RH .000371 .000036 

SUBICULUM – RH .000536 .000053 

LOC – LH .008344 .000796 

PHC – LH .001576 .000220 

PRC – LH .001256 .000154 

CA1 – LH .000423 .000041 

CA2/3 – LH .000130 .000017 

CA4/DG – LH .000369 .000033 

SUBICULUM – LH .000552 .000049 

Table 5.1 - Table includes the means and standard deviations for response times (in 
milliseconds) for the scene and fribble conditions of the conjunction learning task, as 
well as means and standard deviations for all volumes used (as a proportion of total 
ICV) for the left (LH) and right (RH hemispheres. 
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5.3.2 Analysis 2: Visual paired-comparison (young adults)

 Similar to Analysis 1, volume data for the LOC, PRC, PHC, and HC subfields 

was imported into JASP along with the corresponding VPC data collected in the young 

adults (see Table 5.2 for descriptive statistics). A linear regression model was then 

constructed using a bidirectional elimination stepwise method with all volumes as 

covariates to predict variance in novelty preference for each of the four VPC conditions: 

similar scenes, dissimilar scenes, similar objects, and dissimilar objects. Regions were 

only included if their p-value at that step was lower than .05 and variables included in 

the model were subsequently removed if their p-value became greater than .1 as a result 

of the inclusion of another variable. The final regression model included only the right 

subiculum volume, which accounted for 15.1% of the variance in novelty preference on 

the similar scene condition (R2 = .151, F(1,39) = 6.96, p = .012), with greater right 

subiculum volume being associated with a decrease in novelty preference (β = -.389). For 

dissimilar scenes, similar objects, and dissimilar objects, no volume was found to 

account for variance in novelty preference (see Figure 5.4).  

Figure 5.3 – Linear regression slopes for fribbles (left) and scenes (right).
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MEAN SD 

NOVELTY PREF: SIMILAR 
SCENES 

.5935 .0790 

NOVELTY PREF: SIMILAR 
OBJECTS 

.5984 .0735 

NOVELTY PREF: DISSIMILAR 
SCENES 

.6093 .0783 

NOVELTY PREF: DISSIMILAR 
OBJECTS 

.5991 .1064 

LOC – RH .008804 .001166 

PHC – RH .001482 .000182 

PRC – RH .001375 .000199 

CA1 – RH .000446 .000046 

CA2/3 – RH .000139 .000020 

CA4/DG – RH .000370 .000035 

SUBICULUM – RH .000537 .000052 

LOC – LH .008365 .000797 

PHC – LH .001572 .000219 

PRC – LH .001253 .000153 

CA1 – LH .000422 .000041 

CA2/3 – LH .000130 .000017 

CA4/DG – LH .000369 .000033 

SUBICULUM – LH .000553 .000048 

Table 5.2 – Data from young adults. Table includes the means and standard 
deviations (SD) for novelty preference for the similar and dissimilar, scene and 
object conditions of the VPC task, as well as means and standard deviations for all 
volumes used (as a proportion of total ICV) for the left (LH) and right (RH 
hemispheres. 
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5.3.3 Analysis 3: Visual paired-comparison (mid-age adults)

 In line with the previous analyses, volume data for the LOC, PRC, PHC, and HC 

subfields, along with the corresponding VPC data collected in the middle-aged adults, 

was imported into JASP (see Table 5.3). Linear regression models predicting variance in 

novelty preference for each condition (similar scenes, dissimilar scenes, similar objects, 

and dissimilar objects) were constructed using a bidirectional elimination stepwise 

method with all volumes as covariates. Regions were only included if their p-value at 

that step was lower than .05 and variables included in the model were subsequently 

removed if their p-value became greater than .1 as a result of the inclusion of another 

variable. For the both similar scene and similar object conditions, the final model had 

either not included or removed all regions at each step, leaving no region in the model. 

The models for the dissimilar scene (R2 = .373, F(1,9) = 5.34, p = .046) and dissimilar object 

(R2 = .703, F(1,9) = 21.26, p < .001) conditions both included only the right subiculum, 

which accounted for 37.3% and 70.3% of the variance in novelty preference on scenes 

and objects, respectively. For both dissimilar scenes and objects, greater right subiculum 

Figure 5.4– Linear regression slope showing how the right subiculum cortex 
volume negatively relates to novelty preference on the similar scene 
condition.
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volume was associated with a larger novelty preference (dissimilar scenes: β = .611; 

dissimilar objects: β = .838) (see Figure 5.5).  

MEAN SD 

NOVELTY PREF:  
SIMILAR SCENES 

.5842 .0533 

NOVELTY PREF:  
SIMILAR OBJECTS 

.5973 .0565 

NOVELTY PREF:  
DISSIMILAR SCENES 

.6193 .0757 

NOVELTY PREF:  
DISSIMILAR OBJECTS 

.6059 .0554 

LOC – RH .007961 .000961 

PHC – RH .001156 .000113 

PRC – RH .001185 .000162 

CA1 – RH .000491 .000033 

CA2/3 – RH .000130 .000013 

CA4/DG – RH .000339 .000023 

SUBICULUM – RH .000520 .000056 

LOC – LH .007390 .000454 

PHC – LH .001314 .000232 

PRC – LH .001129 .000165 

CA1 – LH .000374 .000027 

CA2/3 – LH .000120 .000012 

CA4/DG – LH .000335 .000027 

SUBICULUM – LH .000520 .000046 

Table 5.3 – Data from mid-age adults. Table includes the means and standard 
deviations (SD) for novelty preference for the similar and dissimilar, scene and 
object conditions of the VPC task, as well as means and standard deviations for 
all volumes used (as a proportion of total ICV) for the left (LH) and right (RH 
hemispheres. 
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5.4 Discussion 

The current chapter aimed to investigate whether there would be an association 

between the volume of areas within the MTL and extrastriate regions, known to be 

recruited during object and scene perception (Mundy et al., 2012), and performance on 

the conjunction learning task (Chapter 2) and VPC task (Chapters 3 and 4). The findings 

from each of the analyses will be discussed in separate sections prior to a brief summary 

section.  

5.4.1 Analysis 1: Conjunction learning task  

 In the conjunction learning task, I anticipated that successful performance might 

be more likely to be driven via low-level representations of scenes and fribbles formed 

in the extrastriate regions, PHC and LOC, respectively. This reflected the good 

performance of participants on this task, and the fact that the single shape at the back of 

the wall could be used to identify the correct stimulus without necessarily processing 

the more complex featural (conjunctive) overlap across stimuli. I predicted, therefore, 

that volume of LOC and PHC extrastriate regions would be negatively correlated with 

Figure 5.5 – Linear regression slopes for the VPC task in mid-age adults. Graphs show the positive relationship 
between right subiculum cortex volume and novelty preference on the dissimilar objects (left) and dissimilar 
scenes (right).
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response times on object and scene conjunctive learning conditions, respectively. More 

specifically, greater volume would be beneficial, resulting in faster decision times. A 

stepwise regression model inputting the volume for all HC subfields, the PRC, the PHC, 

and the LOC in each hemisphere found that inter-individual variability in RTs in the 

fribble condition were, in part, explained by volume of the right LOC, as well as the right 

CA2/3 subfield. This association was negative, as predicted. The same stepwise 

regression inputs for scenes revealed a significant contribution from PHC regions to how 

rapidly individuals undertook a scene discrimination; again, this association was 

negative in direction.  

These findings are mostly in line with my predictions and suggest that the 

conjunction learning task used in Chapter 2 might not preferentially engage the level of 

high-order conjunctive processing that would require recruitment of the PRC and HC 

for fribbles and scenes, respectively. Instead, the findings suggest that extrastriate 

regions are more predictive of individual variability in performance, at least as 

measured by response times. This finding is in line with previous research that suggests 

that disambiguating between simple representations of objects and scenes recruits the 

LOC and PHC, respectively, located in the extrastriate cortex (Mundy et al., 2012). The 

conjunction learning task reported in Chapter 2 aimed to elicit behavioural differences 

in complex conjunctive processing (e.g., complex scene disambiguation), with the 

expectation that this is dependent upon the HC. The findings here provide some 

evidence to suggest that this task may not be as strongly HC-dependent as intended, 

which may explain why there was little evidence of APOE-driven modulations of 

performance (see Chapter 2). 

5.4.2 Analysis 2: Visual paired-comparison (young adults)

Analysis 2 undertook a similar analysis to look at the MTL and extrastriate areas 

contributions to performance on the VPC task reported in Chapter 3 and 4. It was 

predicted that increased performance (as measured by a greater novelty preference) on 
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the similar scene and object conditions would be associated with increased volume in 

the subiculum cortex and the PRC, respectively. Increased novelty preference on the 

dissimilar scene and object conditions, however, would be related to increased volume 

in the PHC and LOC, respectively. The results were somewhat surprising, however. In 

the dissimilar object and scene conditions, and the similar object condition, there was no 

evidence of an association between any specific brain region and degree of novelty 

preference. In the similar scene condition there was indeed a significant relationship 

between the volume of the right subiculum and performance, but in the opposite 

direction to the predictions, with increased subiculum volume being associated with 

decreased novelty preference. 

One possible explanation for this might be that individuals with a greater novelty 

preference for these similar scenes have a larger anterior subiculum, aligned with a 

reduction in volume of the posterior subiculum, or visa-versa (as seen in Maguire et al.’s 

(2000) study on taxi-drivers). Freesurfer’s method of segmenting the subiculum may 

feasibly include a posterior/anterior bias as the two parts are combined. It is also feasible 

that combining the pre- and parasubiculum with the subiculum may cause a similar 

effect. To address this possibility, I looked at the presubiculum, parasubiculum and 

subiculum separately. Both the presubiculum (R = -.370, p =.017) and subiculum (R = -

.424, p =.006) were found to be negatively correlated with novelty preference (large 

volume associated with a smaller novelty preference). There was no relationship with 

the parasubiculum (R = .013, p =.936). There was no evidence of distinct patterns of 

association between volume and novelty preference in subiculum regions. As with the 

taxi driver study, Hodgetts et al. (2017) also found an anterior/posterior split of the 

subiculum during an scene oddity task; with anterior subiculum strongly driving the 

preferential BOLD response to scene stimuli. The lack of either a T2-weighted or ultra-

high-resolution image in this dataset limits the possibility of investigating this question 

further in this study, but would be an interesting future study providing better 

anatomical resolution around HC subfields.  
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It is reassuring to note that other studies have found either a negative or a non-

linear relationship between cognitive performance and HC subfield volume in cases 

where the opposite effect might be expected (Foster et al., 1999; Riggins et al., 2018; 

Schlichting, Guarino, Schapiro, Turk-Browne, & Preston, 2017; Van Petten, 2004). For 

example, Schlichting et al. (2017) tested children, adolescents, and adults using an 

associative inference test, whereby participants had to learn multiple pairs of novel 

objects, after which they were presented with an object and asked to select the object that 

it was paired with. In some cases, objects were paired twice (e.g. objects A+B and B+C) 

and the participant would have to remember the indirect connection (e.g. presented with 

object A and the correct answer is object C). This task therefore required participants to 

remember not only the item representation, but also the associations of multiple object 

pairs. They found this task to be sensitive to CA1 HC subfield volume, and interestingly 

the relationship was negative in children (lower CA1 volume = increased performance) 

but positive in adults (greater CA1 volume = increased performance). 

Van Petten (2004) argues that there are three perspectives to the relationship 

between HC volume and memory: a bigger is better hypothesis, which simply predicts a 

linear relationship between memory and volume; a neuropsychological perspective, that 

any normal size structure will support normal levels of function, but that loss of tissue 

(such as AD related atrophy) will result in declined function; and a developmental 

perspective, whereby the fast growth of HC grey-matter (particularly as a proportion of 

whole brain) during early childhood is reversed during adolescence, during which the 

brain continues to grow in size, whilst the HC goes through a reduction process called 

pruning. This pruning process is the removal of weak synapses and a decrease in the 

number of neurons during maturation of the brain (Huttenlocher & Dabholkar, 1997). 

Considering that this process is removing inefficient synapses and neurons, it could be 

argued that—in young adults who have gone through adolescence—that smaller grey-

matter volume may actually equate to more efficient processing (Kanai & Rees, 2011). 
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The developmental perspective offers an intuitive explanation for the results 

found in Analysis 2 where my prediction that inter-individual differences in subiculum 

volume would be associated with novelty preference was confirmed, albeit that smaller 

subiculum volume was associated with greater novelty preference. In this task, greater 

novelty preference is considered better cognitive processing, specifically recognition of 

the prior presentation of an item. Riggins et al. (2018) investigated the size of 

hippocampal subfields in children from 4 to 9 years and found that the subiculum begins 

to decrease in volume relative to brain size during this time. This suggests that the 

subiculum might be a region that is receptive to cortical pruning. Furthermore, 

Schlichting et al. (2017) found a nonlinear relationship between the head and body of the 

HC and age, with volume of the HC-head peaking during adolescence before reducing 

during adulthood, and the HC-body showing a pruning effect (e.g., decreasing in size) 

during childhood before increasing again in early adulthood (see Figure 5.6). 

Figure 5.6 – Image of HC volume data taken from Schlichting et al. (2017). (A) Example regions of interest 
from a representative child (top) and adult (bottom) participant. (B) Relationship between age and volume 
for the HPC head. (C) Relationship between age and volume for the HPC body.
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5.4.3 Analysis 3: Visual paired-comparison (mid-age adults)

 In Analysis 3, I looked at the relationship between HC subfields, PRC, LOC and 

PHC and performance on the VPC task in mid-age adults. As with the analysis with the 

young adults (Analysis 2), it was predicted that increased volume in the subiculum and 

the PRC would be associated with better performance (as measured by a greater novelty 

preference) on the similar scene and object conditions, respectively. By contrast, 

increased volume in the PHC and LOC would be associated with greater novelty 

preference on the dissimilar scene and object conditions, respectively. In this analysis I 

found no significant relationship between volume (of any region included in the 

analysis) and stimulus-type (for the similar conditions). There was, however, a 

relationship between novelty preference for dissimilar scenes and objects with right 

subiculum; unlike in the young adult analysis (Analysis 2) this was in a positive (and 

predicted) direction.  

Firstly, it should be acknowledged that the sample size for this analysis was very 

small and therefore the results need to be considered cautiously and would need to be 

replicated to be sure they were robust. That said, both the significant relationships 

identified in the analysis were very strong, with beta values between right subiculum 

volume and scenes/objects being .611/.838, respectively. In the dissimilar object 

condition, right subiculum volume accounted for over 70% of the variance in novelty 

preference. One potential risk with such a small sample is that outliers inflate the effect. 

To check for this, I also ran non-parametric Spearman correlations (which are not 

sensitive to outliers) to see if this reduced the significance of the association; this analysis 

only increased the strength of the association in both instances, suggesting that outliers 

are not driving the effect. Furthermore, the findings (at least in terms of the brain region 

implicated in novelty preference) replicate those reported in young adults (Analysis 2), 

where there was also a relationship between novelty preference and right subiculum in 

a separate, larger cohort, albeit that this effect was only evident in the similar scene 

condition. The lack of effect in the similar conditions in the older group is somewhat 
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confusing, but may be more easily explained by the small sample size, as low degrees of 

freedom mean only the very strongest of effects would be significant. 

Interestingly, the positive relationship between novelty preference and 

subiculum volume in older adults fits with the previously made suggestion that cortical 

pruning is responsible for the inverse relationship found in the young adults. Indeed, it 

would be a feasible prediction that the effects of synaptic pruning, which peak during 

late adolescence, would reduce with age. Specifically, a negative association between 

HC volume and performance (whether novelty preference, discrimination learning or 

other tasks dependent upon the HC) would be seen in young individuals, while as we 

age and experience progressive loss of functional flexibility and neurons within the HC 

this may move towards a positive relationship between volume and performance 

(novelty preference) as measured in this study. 

In summary, this Chapter investigated the relationships between grey-matter 

volume in extrastriate and MTL regions that are associated with object and scene 

memory and perception. The findings suggest that the conjunction learning task 

(Chapter 2) was not sufficiently demanding on MTL lobe regions, and may be more 

reliant on the simple representations formed in the extrastriate cortex, which may 

explain why there was no relationship found between task performance and APOE-risk. 

I also found that the relationship between novelty preference on the VPC is sensitive to 

volume of the subiculum subfield of the HC, but with a negative relationship in young 

adults and a positive one in older adults, which could be explained by theoretical models 

of cortical pruning (Van Petten, 2004). In the final chapter, I summarise the findings from 

the experiments included in my thesis and relate them back to the wider body of 

literature. I also discuss the how future research could address some of the questions 

that have been raised following my research. 
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CHAPTER 6: 
GENERAL DISCUSSION

6.1 Thesis summary 

One of the strongest genetic risk factors for sporadic AD is the presence of an 

epsilon-4 allele on the APOE gene (Bertram & Tanzi, 2008). The gene codes for a protein 

that binds to cholesterols and other lipids, and transports them around the body (Bu, 

2009). In all animals except humans, there is only one isoform of APOE (Bu, 2009). In 

humans, however, there are three major isoforms—APOE-e2, APOE-e3, and APOE-e4—

with APOE-e3 being structurally similar to the APOE protein found in other species. 

Each isoform codes for an APOE protein that are both structurally (with APOE-e2 being 

the most stable and APOE-e4 being the least stable), and functionally unique in their 

binding preferences (Hatters, Peters-Libeu, & Weisgraber, 2006). It is these differences 

that are thought to influence variations in the extent to which Aß is cleared in the brain, 

with extensive deposits leading to the formation of the plaques that are a hallmark 

feature of AD (Selkoe, 1991). Although the exact mechanisms of how different APOE 

isoforms affect AD pathogenesis are still undetermined, the different variants have a 

linear association with AD risk, with APOE-e4 being associated with an increased 

likelihood of developing sporadic AD and APOE-e2 reducing this risk (Corder et al., 

1993), compared to APOE-e3. The increase or reduction in risk dramatically increases in 

APOE-e4 and APOE-e2 homozygotes, respectively (Corder et al., 1993). 

It has been proposed that the biological impact of APOE, and subsequent Aß

deposition associated with those biological changes, occurs gradually over the lifetime 

(Selkoe & Hardy, 2016). There have been reports of differences in brain structure 

between carriers of different APOE alleles at different points in the lifespan, with a 

particular impact on the HC and key regions/networks that project to/from it. This 
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includes evidence from neonates and children (Knickmeyer et al., 2014; Shaw et al., 

2007), young- and middle-age adults (Burggren et al., 2008; Heise et al., 2014; Nao et al., 

2017; O’Dwyer, Lamberton, Matura, Scheibe, et al., 2012; O’Dwyer, Lamberton, Matura, 

Tanner, et al., 2012), and the healthy elderly (Hostage et al., 2013; Hua et al., 2008; Lu et 

al., 2011). APOE-e4 also impacts on brain function in regions connected to the HC, such 

as the PCC, in young healthy adults (Dennis et al., 2010; Filippini et al., 2011, 2009; Shine 

et al., 2015). These findings suggest that each APOE allele impacts brain structure and 

function differently over the lifespan, with a particular focus on the hippocampal 

networks. 

The general aim of this thesis was to investigate whether, and to what extent, the 

three main APOE alleles differentially affect scene perception and memory in young and 

middle-aged healthy adults. This question was addressed by creating novel tasks 

comprising of stimuli, such as scenes, that has been previously shown to preferentially 

recruit the HC (Aly et al., 2013; Barense, Henson, et al., 2010; Douglas et al., 2017; Kolarik 

et al., 2016; Lee, Buckley, et al., 2005; Lee et al., 2008), and therefore might be sensitive to 

potential early cognitive changes related to the biological impact of distinct APOE alleles 

on the brain. In particular, recent theoretical models have argued against a unitary role 

of the HC in memory, in favour of it being part of a wider hierarchical visual ventral 

stream (Bussey & Saksida, 2007; Graham et al., 2010; Murray et al., 2017). The HC is a 

key part of this network, as well as the PRC, potentially involved in disambiguating 

complex spatial and object representations, respectively (Bussey & Saksida, 2007; 

Graham et al., 2010). Research carried out over the last two decades have identified a 

dependency on the posteromedial/hippocampal brain network during tasks involving 

the perception and memory of scenes (e.g. Buckley et al., 2004). Specifically, it appears 

that the HC is recruited when a problem requires distinguishing between topological 

environments, such as two similar scenes (Bonnici et al., 2012). 

My thesis attempted to address three questions: (a) whether there would be a 

APOE dose-linked pattern of performance on tasks in which scenes with a high degree 
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of featural overlap needed to be discriminated (e.g., APOE-e2 < -e3 < e4); (b) how any 

APOE-related changes in scene and object perception and memory might differ between 

young and middle-aged participants; and (c) whether individual performance on new 

tasks, developed in this thesis, would be associated with inter-individual variation in 

the volume of extrastriate and MTL brain regions known to be involved in scene and 

object processing. 

6.2 Main findings 

In Chapter 2, I used a conjunction learning task that required participants to learn 

which scenes (or objects as a control) were consistently being rewarded. The stimuli 

combinations had been designed such that the participant should only be able to 

distinguish the correct scene based on the specific configuration of two spatial 

properties, the length of the room and the gradient of the ceiling. Once the participant 

had worked out the conjunction of spatial features, it was assumed that they would then 

only select the correct images, and, after eight successful correct responses, criterion was 

achieved. In a control condition, participants saw object-like fribbles in a task with the 

same design, only this time the conjunctions that the participant had to learn were of a 

combination of two different appendages, the type of ‘tail’ and type of ‘base’. Based on 

the previous literature (e.g. Barense et al., 2007; Barense, Rogers, Bussey, Saksida, & 

Graham, 2010; Lee et al., 2006) I hypothesised that the scene and fribble conditions 

would preferentially recruit the HC and PRC, respectively. It was therefore predicted 

that the scene, but not fribble, condition would be sensitive to the early structural and 

functional changes reported in the posteromedial/hippocampal brain network of 

APOE-e4 carriers (Filippini et al., 2009; Hodgetts et al., 2018; Shine et al., 2015), resulting 

in the slower identification (as measured by trials to criterion and mean response times) 

of spatial conjunctions in the scenes in APOE-e4 carriers compared to APOE-e3 and 

APOE-e2 carriers.
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These predictions, however, did not materialise, and there were no significant 

differences evident across groups possessing distinct forms of APOE allele. There were 

a number of potential reasons for this that were outlined in the chapter discussion, but 

the most likely explanation is that the task was simply not demanding enough to elicit 

any noticeable differences. This is evidenced by the high success rates seen in all groups, 

leading to a lack of variability in the trials to criterion measure. Upon closer scrutiny, it 

became evident that the scene stimuli could, in fact, be discriminated by a single 

stimulus feature - the back wall. As the two spatial changes involved the three-

dimensional length of the room and the gradient of the roof, this unexpectedly created 

a unique feature, in the shape of the back wall, that may have simplified this task. Mundy 

et al. (2012) reported that simple scene and object discriminations could be resolved in 

the PHC and LOC, respectively, so it would seem likely that using a single feature (such 

the shape of the back wall) may not stress the neural network thought to be particularly 

vulnerable in APOE-e4 carriers.  

This hypothesis was partially tested in Chapter 5, when I looked at the 

relationship between response times on the conjunction learning task and grey-matter 

volume in the LOC, PHC, PRC, and HC subfields. In both the scene and object condition, 

there was a strong association between inter-individual variation in response times and 

grey-matter volume in the PHC and LOC, respectively. Specifically, those individuals 

with faster responses times showed greater grey-matter volume. This finding implies 

that discrimination of both scenes and objects in the conjunction learning task may be 

more dependent upon posterior ventral stream regions, which other studies have shown 

to be involved in resolving simple, non-conjunctive, representations. The finding from 

Chapter 5 supports the explanation for the lack of differences between groups in Chapter 

2, suggesting that the task was not sufficiently sensitive to changes in the HC, and by 

proxy, any functional differences in the HC and its related network due to APOE-e4. 

In Chapter 3, I modified a VPC task using real-life similar and dissimilar pairs of 

scenes and objects. Young adult participants were familiarised with a series of images, 
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following which they were shown the same images alongside either a similar or 

dissimilar novel image. As healthy individuals normally preferentially attend novel 

stimuli (Manns et al., 2000), the extent to which they remembered the familiar stimulus 

can be determined by the extent to which they view the novel stimulus. Distinguishing 

between similar scenes has been shown to recruit the HC (Bonnici et al., 2012), which is 

capable of resolving a high level of ambiguity. 

Similar to Chapter 2, in this study I predicted that an increased risk for poor later 

life cognitive health (associated with the presence of different forms of APOE allele) 

would reduce novelty preferences for scenes, but not objects, with the similar scene 

condition being most likely to elicit a greater reduction in novelty preference than 

dissimilar scenes. The results suggested that the task may sensitive to APOE-related 

changes, albeit with some reservations. Both normal- (APOE-e3) and high-risk (APOE-

e4) groups showed a significant reduction in novelty preference for similar, compared 

to dissimilar, scenes. The low-risk (APOE-e2) group, however, did not show any 

significant difference between similar and dissimilar scenes. This may be indicative of a 

facilitation of APOE-e2 in distinguishing between similar scenes, due to improved HC 

functioning. It is, however, difficult to make any strong conclusions based on the lack of 

a significant difference, as it may be, in part, be due to the smaller low-risk group size.  

The second analysis looking at matched APOE-e4 carriers vs APOE-e4 non-

carrier found that the APOE-e4 non-carriers were significantly affected by similarity 

(collapsed across stimulus-type), whereas the APOE-e4 carriers were not. The data 

suggested that the APOE-e4 carriers showed a similar level of performance for both 

similar and dissimilar stimuli, but that APOE-e4 non-carriers were better for dissimilar 

stimuli, showing a decrement in performance for similar stimuli. In the chapter 

discussion, it was proposed that this may be due to the APOE-e4 carriers using an 

alternative non-hippocampal dependent strategy in order to resolve the featural 

ambiguity between stimuli. There is some evidence that different alleles of APOE vary 
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dependence on spatial strategies, with APOE-e2 carriers being more likely to use spatial 

strategies during a navigation task, compared to APOE-e3 and -e4 (Konishi et al., 2016). 

There is also evidence that APOE-e4 facilitates attention, with APOE-e4 carriers 

performing better on tests of sustained and covert attention (Rusted et al., 2013). These 

factors could impact on the susceptibility to ambiguity in the APOE-e4 carriers, as 

carriers may utilise non-spatial strategies (that are less sensitive to HC function and 

structure) or be facilitated by improved attention during the familiarisation phase.  

In Chapter 5, I looked at the relationship between the volume of the PHC, LOC, 

PRC, and HC subfields and inter-individual variation in novelty preference for these 

young adults in the VPC. This produced some interesting results, with a significant 

association between increased volume of the right subiculum and decreased novelty 

preference for similar scenes. This was in the opposite direction to my predictions, as it 

would be expected that the similar scene condition might be particularly dependent 

upon the subiculum (Hodgetts et al., 2017), and therefore that greater volume of this 

subfield would be associated with increased novelty preference. It was discussed in 

Chapter 5 that this unexpected directionality in the finding may be due to neuronal 

pruning—where inefficient brain cells are removed and replaced with fewer, more 

efficient, neurons (Huttenlocher & Dabholkar, 1997). This is thought to occur mostly 

during adolescence and may result in a negative relationship between volume and 

cognitive function in some brain regions, including the HC (Kanai & Rees, 2011). As the 

participants being tested in this study were a group of young adults, this seems a 

plausible explanation for the findings from the analyses of this cohort in Chapter 5, 

although it should be noted that this is a speculative explanation. 

Chapter 4 reported data from the same VPC task that was used in the young 

adults, but this time in a cohort of middle-aged adults. There was no evidence of any 

significant relationship between APOE genotype and novelty preference in any 

condition. There was a trend indicating that the APOE-e2 carriers had better 

performance compared to the other groups across all conditions, but the very low 
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numbers of APOE-e2 carriers make this conclusion extremely tentative, requiring further 

follow-up to be reassured that it is a robust finding.  

The results of the comparison between brain volume in the LOC, PHC, PRC and 

HC subfields in the middle-aged participants (outlined in Chapter 5) were interesting. 

They suggested a very strong positive association between the right subiculum and 

novelty preference for dissimilar scenes and objects. The subiculum has previously been 

shown to be active during scene discrimination (Hodgetts et al., 2017), so it is not a 

surprise to unveil an association with the scenes and novelty preference from the VPC 

tasks. It was surprising, however, that there was also a strong association with dissimilar 

objects, which would be expected to be more closely related to PRC volume (Mundy et 

al., 2012), and also that there was no significant relationship with similar scenes. Of 

course, the sample size for these analyses are low, making any interpretation difficult; 

nevertheless, the strength of the relationships (particularly on the a-priori assumed 

scene-subiculum association) and the high significance factor make these results tough 

to ignore. The fact that the relationship in these middle-aged adults is in the direction I 

expected, suggests that any negative relationship that results from adolescent neuronal 

pruning may be limited to young-adults. 

Unfortunately, it is difficult to make any cross-cohort analysis between the young 

and middle-aged adults recruited for the VPC task. As I collected the data from the 

middle-aged participants at the University of Sussex, I used a slightly different setup, 

with a lower resolution portable eye-tracker and monitor. Although this is unlikely to 

affect performance on the task, the data obtained from the two cohorts are, consequently, 

not comparable. There were also a number of other factors that changed between groups 

that could have affected performance. One obvious difference was in recruitment; the 

Sussex cohort was comprised mostly of staff from the University of Sussex, which could 

result in an over-representation of highly educated individuals who may also be more 

invested in the study as they were less likely to be doing it for explicitly motivated 

reasons (such as course credits). This may partly explain why the older group had a 
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slightly higher performance had (a larger overall novelty preference signifying increased 

implicit recognition memory) than the younger group from Chapter 3. 

In summary, these findings suggest that the VPC task may be sensitive to early 

changes in the brain that result from different risk alleles of the APOE gene. Zola et al. 

(2013) used a simpler version of the VPC in elderly individuals, and found that it was 

predictive of further cognitive decline over the following three years. My findings 

suggest that the task sensitivity can be increased by using stimuli in which complex 

spatial discriminations are required, such as similar scenes. Furthermore, my analyses 

of brain volume suggest that the subiculum subfield of the HC may be involved in 

supporting those discriminations, noting that it is this same subfield that has been 

reported to be the earliest anatomical marker of AD in the HC (Carlesimo et al., 2015). 

6.3 Addressing the key questions 

With regards to the key questions I posed at the start of this thesis, firstly I asked 

whether there would be an APOE dose-linked pattern of performance on tasks in which 

scenes with a high degree of featural overlap needed to be discriminated (e.g., APOE-e2 

< -e3 < e4). The results from my studies to not lead to a conclusive answer. The findings 

of Chapter 3 provide some evidence that different APOE alleles may differentially 

impact on the ability of participants to resolve feature ambiguity. For example, the 

low/normal/high risk analysis hinted at the possibility that APOE-e2 carriers may be 

better able to disambiguate similar scenes. The APOE-e4 carrier/non-carrier analysis 

also suggested that carriers perform comparatively for both similar and dissimilar, 

whereas there was a significant difference in non-carriers due to similarity. The results 

only show within-group differences though, not between-groups, which may be due to 

the increased power in the within-group linear mixed-effects model comparisons. With 

no significant evidence of APOE related performance differences in either the 

conjunction learning task (Chapter 2) or the VPC task in mid-age adults (Chapter 4), 
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there is insufficient evidence in this thesis to be confident of any dose-dependent pattern 

of performance for scene, or object stimuli. 

The second question identified at the start of the thesis was whether any APOE-

related changes in scene and object perception and memory might differ between young 

and middle-aged participants? I tried to address this question by studying two different 

cohorts on the same task, my VPC paradigm, which I ran in young adults (Chapter 3) 

and middle-age adults (Chapter 4). The hope was that I would see more pronounced 

differences between APOE groups as they became older. Unfortunately, as I was blinded 

to the genotype status during recruitment (a requirement for ethics and ensuring due 

diligence in data collection), I was unable to assess how many of each group I was 

recruiting while collecting data. Additionally, APOE-e2 is a rare allele in the normal, and 

many individuals need to be recruited in order to ensure a suitably sized sample of this 

group. In my final studies, the sample-size of both APOE-e2 and APOE-e4 carriers were 

on the low side, making group comparisons less robust than I would have liked. There 

were some visible trends suggestion of better cognitive performance for APOE-e2 

participants compared to both APOE-e3 and APOE-e4 participants, but these cannot be 

considered robust due to these sample size issues.  

The final question I wanted to address in my research was whether individual 

performance on new tasks, developed in this thesis, would be associated with inter-

individual variation in the volume of extrastriate and MTL brain regions, which are 

known to be involved in scene and object processing. By obtaining grey-matter volume 

data from the structural MRI images available in some of my participants, and asking 

how inter-individual variation in volume was associated with behavioural performance 

on both the conjunction learning and VPC tasks, I was able to partly answer this 

question. Evidence of a significant association between volume in the LOC and PHC and 

response times for objects and scenes, respectively, is in line with previous research 

suggesting that these regions are involved in low-level object and scene disambiguation 

(Mundy et al., 2012). The lack of a relationship with the MTL regions suggests that the 
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task was not as demanding on high-level conjunctive processing as was hoped, although 

it is also possible that this null relationship is due to a more sensitive relationship 

between MTL regions and performance than potentially evident for extrastriate regions. 

Specifically, a null result does not necessarily mean that these regions are not involved 

in this task. It is worth noting, however, that these results are consistent with the 

negative association between grey-matter and VPC in young adults reported in Chapter 

5. 

The identification of this negative relationship between the right subiculum and 

novelty preference is particularly interesting. Firstly, it augments previous literature 

suggesting that this subfield is preferentially engaged by scenes (Dalton & Maguire, 

2017; Hodgetts et al., 2017). It also aligns with work in rodents and non-human primates 

that have found an abundance of grid, border, and head direction cells, which are all 

likely to be critical in disambiguating very similar spatial environments, within the 

region including the pre/parasubiculum and the subiculum ((Boccara et al., 2010; Lever 

et al., 2009; Robertson, Rolls, Georges-François, & Panzeri, 1999; Stewart, Jeewajee, Wills, 

Burgess, & Lever, 2014). The findings in this thesis build upon these findings to suggest 

that, (a) the subiculum is a key region of interest in recognition memory for similar, but 

not dissimilar, scenes; and (b) that increased subiculum volume may be associated with 

reduced memory performance for similar scenes in young adults. 

These findings highlight that the relationship between volume and cognition 

may not be straightforward and may differ at various stages over the lifespan. In 

particular, reassessing our approach to what we consider to be ‘healthier’ in terms of 

brain structure may further our knowledge of how different APOE genotypes also affect 

the brain, particularly in young adults. There is increasing evidence to suggest that 

different alleles of APOE may modulate synaptic pruning (Lane-Donovan & Herz, 2017). 

This was evidenced by Chung et al. (2016), who used APOE knock-out mice to study 

how different APOE genotypes modulate the rate of astrocyte-mediated phagocytosis—

a process by which cell debris is removed. They found that APOE-e2 increases and 
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APOE-e4 decreases the phagocytic rate, resulting in potentiated and reduced, 

respectively, efficiency of synaptic elimination. In other words, APOE-e2 appears to 

increase the efficiency of synaptic pruning in rodents. If this translates into humans, it 

could have profound effects on how we interpret both grey- and white-matter structural 

differences in young adults and children with different APOE alleles, as well as how 

these relate to cognition.  

6.4 Addressing the limitations with future research 

The findings from Chapter 2 suggest that it is likely that the current version of 

the conjunction learning task does not sufficiently engage conjunctive processing to elicit 

dose-dependent differences of APOE. That does not, however, mean that the task does 

not have potential. It appears clear that, at least in the scene condition, the task can be 

completed by observing a single feature; any further versions of that task should ensure 

that manipulation of the spatial features does not result in a single feature which 

discriminates the stimuli. It would also be possible to make the task more demanding 

by introducing a probabilistic learning element (e.g. Schutte et al., 2017), whereby the 

accuracy of the feedback is systematically reduced to make the learning process more 

demanding. 

The VPC task does appear to be sensitive to APOE-related differences in 

disambiguating similar scenes, potentially even in young adults. Although the results of 

Chapter 3 did not uncover between-group statistical differences, there were observable 

differences that were specific to particular alleles. It is likely that a much larger scale 

study would be required in order to see differences between different APOE groups in 

young adults. Any measurable behavioural differences due to APOE at this stage in life 

are likely to be small, and more closely related to altered functioning in scene networks 

(e.g. Shine et al., 2015) rather than any obvious cognitive impairment. New technology 

developments that are making eye-tracking increasingly accessible, such as techniques 

to use standard web-cams for tracking VPC eye-movements (Bott et al., 2017), may 
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enable the use of this task in large-scale cohort studies. This could provide the kind of 

sample sizes that might be needed to detect differences between different APOE alleles. 

The availability of entire genome data may also allow for comparisons by polygenic risk, 

which take into account other genetic risk variants, which may be a more robust measure 

of future risk for AD (Escott-Price, Shoai, Pither, Williams, & Hardy, 2017; Escott-Price 

et al., 2015).  

Another limitation of the VPC design used in this thesis is the dichotomic split 

of similarity. It may be possible to manipulate the stimuli pairs in such a way that 

similarity is measured in a linear fashion. One way of doing this would be to collect 

subjective measures of how similar each pair of images are. Another way could use a 

more objective measure, such as image analysis software that is capable of detecting 

similarity using a number of low- and high-order parameters (e.g. Kornel, 2018). 

In terms of furthering the interesting MRI findings from Chapter 5, future 

research into whether the findings in rodents, that different alleles of APOE modulate 

synaptic pruning (e.g. Chung et al., 2016), translate into humans is needed. New 

methods of MRI imaging, such as the new Connectom scanner (Siemens Healthcare 

Limited, Camberley, UK) that has vastly increased gradient strength, allow for white-

matter microstructure to be measured in much finer resolution that we have seen 

previously. Furthermore, ultra-high resolution 7-tesla MRI allows us to now measure 

grey-matter in smaller structures, such as hippocampal subfields, with much more 

validity. It may be possible to combine such methods in a longitudinal study to measure 

how both grey- and white-matter integrity and volume differentially alters during 

adolescence between different APOE genotypes. Such a study could provide critical 

information about how APOE impacts upon the brain during this important window of 

time.  
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6.5 General conclusion 

This thesis provides some evidence that the VPC task may be sensitive to future 

risk of AD, as measured by the presence of low- (APOE-e2) or high-risk (APOE-e4) alleles 

of the APOE gene, in young and middle-aged adults. The detrimental impact of 

increasing similarity during implicit discriminations of stimulus-pairs appears to be 

reduced in young APOE-e4 carriers, compared to non-carriers, which may be indicative 

of them using cognitive strategies that are less sensitive to ambiguity. Furthermore, in 

middle-aged adults, there was a trend for increased implicit recognition memory (as 

measured by novelty preference) on the VPC task for APOE-e2 carriers, though the 

limited sample size made statistical inferences impossible. Data from structural MRI 

found supporting evidence for a role of the LOC and PHC in distinguishing object and 

scene representations, respectively, in line with similar previous findings (e.g. Mundy et 

al., 2012). Furthermore, I found that implicit recognition memory for similar scenes may 

be selectively dependent upon the size of the subiculum subfield of the HC, with lower 

volume increasing novelty preference (a measure of recognition memory) in young 

adults. This furthers our understanding of how synaptic pruning may potentially create 

a negative relationship between this hippocampal subfield and cognitive performance 

during this post-adolescent phase of adulthood. 
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