Cardiff University

Discovering User Intent In

E-commerce Clickstreams

by
Humphrey Sheil

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
College of Physical Sciences & Engineering

Cardiff School of Computer Science & Informatics

February 2019

https://www.cardiff.ac.uk/)
Faculty Web Site URL Here (include http://)
http://www.cs.cf.ac.uk/

Declaration

This work has not been submitted in substance for any other degree or award at this
or any other university or place of learning, nor is being submitted concurrently in

candidature for any degree or other award.

STATEMENT 1

This thesis is being submitted in partial fulfilment of the requirements for the degree of
PhD.

STATEMENT 2

This thesis is the result of my own independent work / investigation, except where
otherwise stated, and the thesis has not been edited by a third party beyond what is
permitted by Cardiff University’s Policy on the Use of Third Party Editors by Research
Degree Students. Other sources are acknowledged by explicit references. The views

expressed are my own.

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available online in the University’s
Open Access repository and for inter-library loan, and for the title and summary to be

made available to outside organisations.

Cardiff University

Abstract

College of Physical Sciences & Engineering

Cardiff School of Computer Science & Informatics

Doctor of Philosophy

by Humphrey Sheil

E-commerce has revolutionised how we browse and purchase products and services
globally. However, with revolution comes disruption as retailers and users struggle to
keep up with the pace of change. Retailers are increasingly using a varied number
of machine learning techniques in areas such as information retrieval, user interface
design, product catalogue curation and sentiment analysis, all of which must operate at

scale and in near real-time.

Understanding user purchase intent is important for a number of reasons. Buyers typi-
cally represent <5% of all e-commerce users, but contribute virtually all of the retailer
profit. Merchants can cost-effectively target measures such as discounting, special of-
fers or enhanced advertising at a buyer cohort - something that would be cost prohibitive
if applied to all users. We used supervised classic machine learning and deep learning

models to infer user purchase intent from their clickstreams.

Our contribution is three-fold: first we conducted a detailed analysis of explicit features
showing that four broad feature classes enable a classic model to infer user intent. Sec-
ond, we constructed a deep learning model which recovers over 98% of the predictive
power of a state-of-the-art approach. Last, we show that a standard word language deep
model is not optimal for e-commerce clickstream analysis and propose a combined sam-
pling and hidden state management strategy to improve the performance of deep models

in the e-commerce domain.

We also propose future work in order to build on the results obtained.

https://www.cardiff.ac.uk/)
Faculty Web Site URL Here (include http://)
http://www.cs.cf.ac.uk/

Contents

Declaration

Abstract

List of Figures

List of Tables

1 Introduction

1.1 Whatis E-commerce?
1.2 Evolution of E-commerce,
1.3 Current E-commerce Landscape
1.4 What’'s Missing? e
1.5 Practical Impact of Machine Learning for Merchants

1.5.1

Problem Statement

1.6 Proposition
1.7 OpenQuestions
1.8 Contribution
1.9 ThesisRoadmap.
1.10 Summary e

2 Background and Related Work
2.1 Background
2.2 Machine Learning Lo

221
222
223
224
225
2.2.6

Datasets e
Models e
kNN - k Nearest Neighbours
Gradient Boosted Machines / Decision Trees (GBM / GBDT)

Markov Chains / Hidden Markov Models
Neural Network Models
2.2.6.1 Deep Neural Networks
2.2.6.2 Recurrent Neural Networks

iii

ii

vii

Contents v
22.63 Embeddings 32

2.277 Loss/Objective Functions 32
2.2.77.1 Categorical Cross-entropy 33

2272 AuxiliaryLosses 33

2.2.8 Training and Optimisation 34

2.2.9 The Bias-Variance Tradeoff 35

2.3 Machine Learning In E-Commerce 36
2.4 Predicting Ad Click-through Rates 37
2.5 Content Discovery 37
2.6 Predicting purchase propensity 39
27 UserInterface (Ul) 42
2771 A/BTesting 44

2.77.2 Guided Navigation 45

2.8 Information Retrieval 45
281 Search. 46
28.1.1 BM25 47

2.8.1.2 Ponte-Croft 48

2.8.2 Natural Language Processing 49

2.8.3 Question Answering (QA) L. 50
2.83.1 ChurnPrediction. 53

2.8.4 Customer Relationship Management (CRM) 54

2.9 ResearchvsReal WorldUsage 54
29.1 AutomatedSpend 55

210 Summary L e e e 56
System Architecture and Implementation 58
3.1 Datastorage e 59
32 Datasets Used L 60
3.2.1 DataPreparation 61

3.3 Data Pre-processing and Transformation 63
34 Code Structure oL 64
3.5 PreviousIterations 66
3.6 Model Training 67
377 Summary e e e e e e 68
Traditional Machine Learning and User Propensity 70
4.1 Introduction 70
4.2 Problem Domain: Overview 71
4.2.1 RecSysChallenge 72
422 Wider Applicability 73

4.3 Implementation 74
43.1 Framework 75

432 Features 76

43.3 Modelsand Training 77

Contents v

434 Inference - Initial Results 79

4.3.5 Optimising Click and Buy Item Similarity Features 80

4.4 Summary ... oL e e e e e e 81
5 Predicting purchasing intent: End-to-end Learning using Recurrent Neu-

ral Networks 83

5.1 Introduction 84

5.2 OurApproach 88

5.2.1 Embeddings as item / word representations 88

5.2.2 Recurrent Neural Networks 90

5221 LSTMandGRU 91

5.3 Implementation 93

53.1 EventUnrolling. 95

5.32 SequenceReversal 95

533 Model e 96

5.33.1 Model Architecture 96

5.33.2 SkipConnections 98

5.3.3.3 Sharing Hidden Layer State Across Batch Boundaries 98

5.4 Experimentsandresults 99

54.1 TramningDetails. 0. 99

542 Overallresults 100

5.5 Analysis 101

5.5.1 Sessionlength 101

552 Userdwelltime 102

553 Itemprice 103

554 Gatedvsun-gated RNNs 104

5.5.5 End-to-endlearning 104

5.5.6 Transferring to another dataset 105

5.5.7 Training time and resourcesused L. 106

5.6 Interpretability 108

5.7 Conclusions and future work L. 113

6 Hidden State Management and Sampling 115

6.1 Introduction 116

6.2 RelatedWork 118

6.3 Model Structure / Hidden layers 120

6.3.1 Implementation, 121

6.4 Experiments e e 121

6.4.1 DesiredTask 122

6.42 DatasetUsed 122

643 RNNsvsGRUvVsLSTM 123

6.4.4 Chronological Training Regime 124

6.4.5 Parameter Reduction 125

6.5 Summary and Conclusion 126

Contents vi
7 Hyperparameter Tuning 128
7.1 Hyperparameter tuning 128
7.1.1 Practical Effectiveness of Automated Hyperparameter Tuning . 135

7.1.2 The Advantage of Pluggable Implementations 136

7.2 ExperimentSetup 137
7.2.1 Model Evaluation Protocol 137

722 Datasets e e e 138

7.3 Performance 139

7.4 Conclusion L L 139

8 Ciritical Assessment of Results 140
8.1 Data-driven analysisof GBM vs LSTM 141

8.2 Imterpretability 142

8.3 CausalInference 144

8.4 Online Prediction 147

8.5 Dataset Preprocessing Using Coresets 148

8.6 Contribution 149
8.6.1 Machine Learning and E-commerce 149

8.6.2 Inferring User Intent Using Classical Models 150

8.6.3 Deep Learning Application to User Intent Prediction 151

8.7 Summary 151

9 Further Work and Conclusion 153
9.1 RNN Model - Incremental Improvements 154
9.2 Enabling Inductive Learning 155

9.3 Avoiding Overfittingo 156

9.4 Augmenting Local With Global Interpretability 157

9.5 Substituting RNNs With CNNs 157

9.6 Data Augmentation Using Adversarial Training 158

9.7 Further Hyperparameter Tuning 161

9.8 Conclusion 161
Bibliography 163

List of Figures

1.1
1.2

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

3.1

3.2

4.1

Typical organisation for a main or homepage of an e-commerce website.
The primary actors in an e-commerce system and how they interact with
eachother.

Broad anatomy of an e-commerce website from an end-user perspec-
tive, providing a reference map for future discussions on how ML is
applied toe-commerce.
The primary components of a supervised machine learning system where
we have labelled data and thus can calculate an error as the difference
between the expected and actual output from the model.
In GBDT, each tree is a weak learner, and when combined these sepa-
rate trees form a single strong learner.
This example HMM with 4 states can emit 2 discrete symbols y; or ys.
a;; is the probability to transition from state s; to state s;. b;(yy) is the
probability to emit symbol y, instate s;.
A simple neural network. Units are divided into three types (input, hid-
den, output) and organised into layers. In this example the network is
fully connected in a feedforward manner.
The winner of the 2015 ImageNet competition from Microsoft Research
- ResNet [1], depicted alongside the VGG19 model.
From [2]. Overview of backpropagation.
The golden triangle pattern of user eye-tracking clusters. Hotter (red,
yellow) colours signify more focus by the end-user, while cooler shades
signify low interest and user focus. L.
After [3]. Main components of a hybrid question-answering system
(IBM Watson in this case from 2011), organised as a processing pipeline
with distinct phases: question processing, passage retrieval, answer pro-
CESSING. . v v v o e e e e e e e e e e e

All of our constructed systems share common components, as illus-
trated here: a data loading and transformation layer, configurable mod-
els with a trainer, and finally an evaluation module.
The end-to-end system constructed, including the data load and trans-
form pipeline.

Primary modules of the end-to-end system implementation. The system
currently contains 10 feature builders calculating 68 features in total.

vii

List of Figures viii

5.1

5.2

5.3

54

5.5

5.6

5.7

5.8

59

5.10

5.11

5.12

5.13

5.14

A single LSTM cell, depicting the hidden and cell states, as well as the

three gates controlling memory (input, forget and output). 93
Model architecture used - the output is interpreted as the log probability
that the input represents either a clicker or buyer session. 97
ROC curves for the LSTM and State of the Art models - on the RecSys
2015 testset. e 101

AUC by session length for the LSTM and SotA models, session quan-
tities by length also provided for context - clearly showing the bias to-
wards short sequence / session lengths in the RecSys 2015 dataset. . . . 102
AUC (y-axis) by session length (x-axis) for the LSTM and SotA mod-
els, for any sessions where unrolling by dwelltime was employed. There
are no sessions of length 1 as unrolling is inapplicable for these sessions
(RecSys 2015 dataset).o 103
Model performance (AUC - y-axis) for sessions containing low price
items, split by session length (x-axis) using the RecSys 2015 dataset. . . 103
Model performance (AUC - y-axis) for sessions containing high price
items, split by session length (x-axis) using the RecSys 2015 dataset. . . 104
Area under ROC curves for LSTM and GBM models when ported to
the Retailrocket dataset. On this dataset, the LSTM model slightly out-
performs the GBM model overall. 107
AUC by session length for the LSTM and GBM models when tested on
the Retailrocket dataset. The bias towards shorter sessions is even more
prevalent versus the RecSys 2015 dataset. 108
Strong true positive example: the model correctly has very high confi-
dence (probability = 0.88) that the user has a purchase intention. The
items clicked (214601040 and 214601042) also have a higher than av-
erage buy likelihood at 6% and 8.1% respectively. 111
Weak true positive example: the model is much less sure (probability
= 0.1) that the session ends with a purchase. The items clicked are not
often purchased, so the model has to rely on the day / time of day and
price embeddings instead.o L L 111
Strong false positive example: the model incorrectly (probability = 0.98)
classified this session as a buyer. The model was relying on a reason-
able item price combined with a time of day when buy sessions are more
likely to make its incorrect prediction. 112
Strong true negative example: the model relies on the presence of un-
popular items. For example, item 214842347 occurs only 1,462 times
in the entire clickstream (33 million clicks) and is never purchased. . . . 112
Strong false negative example: this session is a false negative example
(probability = 0.001) - where the session ends with a purchase but our
model failed to detect this. This session appears to show an inability
of the model to detect long tail buy sessions - sessions containing items
that are indeed purchased, but only weakly over the entire dataset. In
this example, item 214826912 has a buy:click ratio of 363:21201 or a
purchase rate of 1.7%. The corresponding statistics for item 214828987
are 592:23740 and 2.49%. 112

List of Figures

iX

6.1
6.2

7.1

7.2

8.1

9.1

9.2

ROC curves for two LSTM models on the RecSys 2015 test set.
Training performance of LSTM under two sampling regimes: chrono-
logical (sequential) and random.

Following the doctrine in [4], we trained for 1 epoch with an initial rate
of 1e~8 and gradually increased this to 0.1. The graph clearly intimates
values for the minimum and maximum learning rates of 5¢ = and 5¢ 3.
In the 1-cycle policy, the learning rate starts low (1e) and increases
gradually to 1e at the mid-way point of the epoch. The rate then cools
again, reaching the original starting point at the end of the epoch.

From [5]: Several examples of LSTM cells with interpretable activa-
tions discovered when trained on two text datasets - Linux kernel source
codeand Warand Peace.

How Graph Convolutional Networks lend inductive capacity to a trans-
ductivemodel. L
In generative adversarial networks, two neural networks (the generator
/ poacher and the discriminator / gamekeeper), duel with each other and
in doing so mutually improve performance.

132

132

List of Tables

2.1

22

3.1

32
33

4.1

4.2

4.3

5.1

5.2

5.3

54

55
5.6

5.7

6.1

Sample questions and answers from [6] spanning a selection of common

CAEEOTICS. . .« v v v v et e e e e e e e e e e 51
The main model candidates covered in this chapter compared using re-
quirements from the e-commerce domain. 57

A short comparison of the two datasets used - RecSys 2015 and Retail-

rocket. . . .o e 61
An example of a clicker session from the RecSys 2015 dataset. 62
Examples of the buy events from a buyer session. 62

The top ten session features after training for 7,500 rounds, ordered by

most important features descending. 77
Top ten item features after training for 5,000 rounds, ordered by most
important first. L 78

Session and item thresholds by session length with scores for the cur-
rent models, showing the increase in model predictive confidence as the
number of events per Session Erows. e 80

Effect of improving different variables on operating profit, from [7].
In three out of four categories, knowing more about a user’s shopping

intent can be used to improve merchant profit. 85
Data field embeddings and dimensions, along with unique value counts
for the training and test splits of the RecSys 2015 dataset. 94

Effect of unrolling by dwelltime on the RecSys 2015 and Retailrocket
datasets. There is a clear difference in the mean / median session dura-

tionof eachdataset. L. 95
Model grid search results for number and size of RNN layers by RNN

type on the RecSys 2015 dataset. 97
Hyper parameters and setup employed during model training. 99

Classification performance measured using Area under the ROC curve
(AUC) of the GBM and LSTM models on the RecSys 2015 and Retail-

rocketdatasets. oL 100
AUC comparisons for n = 30 experiments carried out using random
seeds for the GBM and LSTM models on the Retailrocket dataset. . . . 106

The effect of sharing hidden layer parameters on four widely used RNN
model architectures - LSTM, GRU, and standard RNN units using TANH
or RELU non-linear activation functions. 124

X

List of Tables xi

6.2 The effect of removing the ability of RNN and LSTM to store dataset

7.1

statistics other than those directly obtainable from a session (i.e. local)
by either freezing embedding weights during training or using simpler,
non-gated recurrent units. L. L 126

Model grid search results for number and size of RNN layers by RNN
type on the RecSys 2015 dataset. 133

Chapter 1

Introduction

E-commerce is transforming every avenue of our online lives [8]. Transacting over $2.3
trillion globally in 2017 [9] and growing at an average rate of 10% annually globally,
consumers are increasingly purchasing all types of goods and services online. By con-
trast, many retailers are reporting year-on-year declines in older, physical distribution
channels [8]. The migration is only beginning, with just 3% of global commerce be-
ing conducted online [10]. Since 1995, the capabilities of online retailers have been
driven by parallel advances in all fields of computer science and electronics: informa-
tion retrieval, networking, faster and more scalable hardware have all contributed to the
online explosion. More recently, statistical and machine learning on large datasets has
come to the fore, enabling users to discover content using recommender systems and
search functions to become more relevant. Machine learning holds enormous potential

to further enhance the next wave of e-commerce systems.

1.1 What is E-commerce?

E-commerce is the purchasing of goods and services - both physical and virtual - on-
line. In its earliest form, merchants focused on low-risk items that users were willing
to purchase without seeing them first - books and CDs. From there, online retailing
expanded to include insurance, leisure and business travel, automotive and property.
Today, anything can be purchased online, from fresh groceries to clothing. For mer-
chants, the attraction of online is reduced cost of distribution - fewer physical stores and
sales staff are needed. For users, e-commerce provides convenience, the ability to com-
pare prices and features easily and the flexibility to shop anytime and from any location
with a connection to the internet. Increasingly, machine learning is used to help users

to pro-actively find what they need.

1.2 Evolution of E-commerce

In our opinion, the progression of e-commerce can be divided into five main phases:

1. Infrastructure build out - the creation of the basic software and hardware building

blocks enabling e-commerce (1996 - 1999).

2. Content discovery and search - providing simple search interfaces which exposed

product inventory to users (2000 - 2004).

3. Improved discovery and search - rapid innovation in user interface design and
information retrieval techniques to improve the overall user experience (2005 -

2009).

4. Mobile enablement - supporting the browsing and purchasing of content on small-

screen devices (2010 - 2015).

5. Enhanced functionality using machine learning - modifying system behaviour to

reflect user needs using individual and group user implicit feedback (2015 - now).

The first phase of e-commerce focused on enablement and infrastructure build-out. Re-
tailers invested in basic systems to sell inventory online - relational databases, inventory
management systems and websites - creating supply. Concurrently, datacentres, net-
works and ISPs provided connectivity to entire populations to create a complementary
demand. Capacity was grown in parcel delivery services and business processes adapted

to cater for the selling of goods online.

The second phase of e-commerce switched focus to providing content discovery tools
to users, along with better user interfaces. Retailers deployed early versions of systems
to guide users to products they are more likely to purchase and to the most popular
content - the Amazon “users who viewed this item also purchased..” feature [11] is a
good example of this. In this phase, most e-commerce systems used SQL to query
rigidly defined database schemas and thus were unable to apply information retrieval
techniques such as gazettes or fuzzy keyword matching to provide a more natural search

interface.

In the third phase, building a better search capability became the focus, resulting in
search engines which provide better search results to users, even when nondescript
terms and phrases are provided. In this phase, a significant overlap developed between

traditional search / information retrieval and recommender systems [12].

In the fourth phase, mobile device enablement became a key focus, with retailers de-
ploying both HTML and native shopping applications for users. The challenge with
mobile e-commerce is to retain functionality that users expect, when operating on a
constricted budget - screen size, processing power and network access. Users actively
prefer to browse on their mobile device for some e-commerce segments, particularly

where they do not need a large screen and / or have purchased the same item before.

We are currently in the fifth phase of e-commerce - continuing to employ machine
learning to enhance the experience of shopping online, through improvements to recom-
mendations, aids to navigation, personalised user interfaces and much more. Machine
Learning describes software which learns to improve its performance on a given task

over time by minimising an error metric or maximising a reward.

It is important to note that although we have (albeit artificially) time boxed the phases
here, it is entirely possible for some merchants to be far behind the capabilities of others.
In fact this is often the case. Leading retailers like Amazon, Netflix, eBay and Microsoft
have superior capabilities to smaller retailers due to their size, access to development

teams and massive investment in I'T and machine learning infrastructure.

Figure 1.1 illustrates elements of this machine learning focus on the user. Individual
panels or tiles are populated by machine learning modules such as recommender sys-
tems or simple statistical calculations such as popular products with a high conversion

rate or a time limited special offer.

Primary / hero offer(s)

Welcome back <<name>>, you have 2 recent orders

Personalised offer 1 Personalised offer 1 Personalised offer 1

Trending offer 1 Trending offer 1 Trending offer 1

FIGURE 1.1: Typical organisation for a main or homepage of an e-commerce website.

In this thesis, our focus is on the fifth phase - the intersection of e-commerce with
machine learning to improve outcomes for all participants, both users and merchants.
There are many ways that machine learning can be used to improve the lot of users,

including:

1. Recommender systems - helping users to discover new content based on their
preferences (both implicit and explicit), similarity to other users and content pop-

ularity.

2. Price / product alerts - helping users to change the timing of their purchases to
minimise cost or maximise value, or to know when a scarce item is in stock and

should be purchased.

3. My account functionality (saving preferences, important dates etc. and then pro-

actively interacting with users to advise on timely purchases etc.).

1.3 Current E-commerce Landscape

The advent of e-commerce utterly transformed traditional commerce, and remains dis-
ruptive at its core today - creating new winners and losers as user expectations change
rapidly. The newspaper industry is a good example, with a 50% decline in UK newspa-
per sales since 2005 [13]. People now expect to get their news for free and delivered to
their mobile device on the move - not in a newspaper that they must purchase or have

delivered to one physical location.

Another disruptive e-commerce theme across multiple retail domains is the comparison
website - products that are mostly fungible can be aggregated and compared, enabling
users to save significantly in areas such as insurance, travel, energy supply, mobile
phone contracts and broadband internet [7]. Consumers benefit from this price trans-
parency, and where products are truly fungible and interchangeable e-commerce has
created a more efficient marketplace, but for products that are not fungible or where
post-sales service can be skimped on (or descriptions are less than truthful), the con-
sumer can regret simply purchasing the cheapest option, while more suitable merchants

miss out on sales.

The structure of e-commerce has changed significantly since its inception. Control
of distribution or access to users has coalesced into a small number of portals - for
example Google Shopping, eBay, Amazon and Taobao [14]. Only medium and large
retailers can afford the significant, ongoing investment in e-commerce systems and all
merchants regardless of size, pay very significant marketing and advertising costs to

online partners via programs such as Google AdWords, Bing Ads, Facebook Ads and

Twitter Ads. In 2010 [15], an important ruling was passed allowing merchants to bid
for display when competitor brand names, terms and keywords are searched on portals
such as Google. The positive impact of this is that any merchant (as long as they have
sufficient marketing budget) can compete with an established merchant with even the
strongest brand equity and recognition. The negative impact is that overall advertising

costs rise, as more companies compete when bidding for a constrained resource [16, 17].

Large portals face multiple challenges - content discovery, information retrieval and
search results ranking chief among them. Continual advances in information retrieval
have helped, but user sessions are often short both in time and number of interactions,
meaning that portals want to present relevant results quickly - in some cases even be-
fore the user has provided any input. Portals increasingly use recommender systems to

present the best (most relevant) mix of content to users.

These portals can use recommender systems with little downside - but for the merchant
who has no product reviews or ratings, or is not the cheapest, recommender systems can
have a catastrophic effect on trading and profit if they fall foul of the ranking algorithm

[12]. This can occur in two main ways:

1. Popularity bias - the merchant is new or is selling a new product which has no
user reviews or interactions - in this case the new entity is said to suffer from the
cold start problem. Although well-understood and mitigating solutions exist, it

still occurs in practice and penalises new merchants and products.

2. Filter bubbles or lack of diversity - where users are only recommended items
or products related to their previous activity. Even popular items which are not

related to previous activity can suffer under this regime.

The current e-commerce landscape then, is one dominated by extremely large portals,
who use a combination of traditional information retrieval techniques and recommender

systems to help users find what they are looking for.

1.4 What’s Missing?

We argue that the online merchants are more often than not ignored by the field of
Computer Science / Software Engineering. As an example, the large research field of
recommender systems is focused on providing end-user utility (for example, suggesting
the best movie to rent or the book we think you will like best) - but not merchant utility
(here is the best customer for you to spend advertising on, here is the optimal price to
set for this product). A large amount of work has been conducted [3, 12, 18] to agree
the best metrics to measure user satisfaction (e.g. dwelltime per item, Mean Squared
Error (MSE), Discounted Cumulative Gain or DCG), but little work has been conducted

to measure merchant or retailer satisfaction.

It can be argued that a satisfied user implies a satisfied merchant but we rebut this. A
happy user is a user who gets the best value deal - their goal is set directly against the

goal for the merchant, which is to maximise their profit.

Our focus on the merchant or retailer rather than the end-user is not altruistic, one-sided
or short-sighted. Retailers pay for the e-commerce internet - not end-users and not the
portals. The vast majority of Google’s revenues for example come from merchants who
advertise with Google. If merchants cannot compete or pay too much for advertising and
distribution, then they will go out of business, and competition will reduce, ultimately
resulting in a less efficient marketplace. Consumers will pay more and receive less in

return.

A healthy e-commerce ecosystem requires three sets of actors:

1. Portals / aggregators / agents of discovery.

2. Consumers who use these portals or visit retailers directly.

3. Retailers / merchants who sell or re-sell goods and services to consumers.

Figure 1.2 shows the interplay between the three sets of actors. Consumers can visit
merchant websites directly, but increasingly discover merchants and products via portals
and either purchase directly on that portal (who then claims a distribution or finders fee
from the merchant), or then connect to a merchant. The growth of portals represents
an opportunity and a threat to merchants. While they gain access to larger audiences of
potential customers, they must also pay handsomely for this access. To underline our
earlier point that merchants rely on portals, recently the European Union has opened
an investigation into unfair practices against retailers by one of the most dominant e-

commerce platforms, Amazon [19].

10

AR LR RN
VDOOOOLOO® O™
22222278

JDiscover via search

Portals: Amazon, eBay, Google, Facebook, Taobao

Display via advertising

cecee
BUATAU A B

FIGURE 1.2: The primary actors in an e-commerce system and how they interact with
each other.

1.5 Practical Impact of Machine Learning for Merchants

As we will see in Chapter 2, there are many different ways in which machine learning
can be employed in the e-commerce ecosystem. Therefore we should consider where
best to apply machine learning in order to address a pressing need that can be reason-
ably implemented. Commercially, merchants care deeply about their cost of advertising.
Large portal owners such as Amazon, eBay, Google, Yahoo, Facebook et al. all already
operate closed advertising systems which they control [16, 17]. However, directly run-
ning optimisation experiments in these environments would be prohibitively expensive,
even though we acknowledge that merchants spend an inordinate amount of their op-
erational budget on advertising. Even the best machine learning model will struggle to

compete in a closed and opaque system such as Google AdWords. Despite protestations

11

to the contrary, AdWords is naturally run for the benefit of Google, not merchants, and
currently contributes over 85% of Google revenue ($26.6 billion of the $31.1 billion

revenue for Q1 2018) [20].

However, there is one task which can provide valuable input into the following merchant

challenges:

1. Improve bidding strategy (timing, amounts, semantics) on advertising - the largest

single area of operational spend.

2. Improve stocking and product catalogue management - ensuring that popular

items are always in stock.

3. Improve pricing strategy - maximising profit margins where user demand supports

the price and reducing price to grow volume where user demand is weak.

That task is discovering user intent. In information retrieval, intent signifies what infor-
mation the user is searching for based on their queries. Queries can be further segmented

into three main types - informational, navigational and transactional [18].

1.5.1 Problem Statement

In an e-commerce clickstream setting however, we propose a more focused definition

in Equation 1.1:

Vs; € S, prob(type(e;) =€) = f(eq, .., en) (1.1)

12

where:

S'is the set of all user sessions

s is a user session containing n events {eg ... e, }

e; is a tuple comprised of {timestamp, itemid, itemcat}

T is the set of event types {t°. ..}, with t¢ and t° representing the click

and buy event
Ve € s € Siest, type(e;) = €°
f is the model implementation (with multiple candidates)

The user intent task is tractable and attractive for a number of reasons:

1. User activity datasets (e-commerce clickstreams) are readily available.
2. Accuracy of user intent prediction is measurable to help refine models over time.

3. Near real-time prediction of user intent represents high-value actionable business
intelligence that merchants can use to only spend time, money and resources on

users who are likely to purchase.

1.6 Proposition

Our proposition is that machine learning can be used in the e-commerce domain for the
direct and measurable benefit of the merchant, and not just the end-user. Merchant ben-

efit or utility can be provided in multiple ways - predicting which users are more likely

13

to purchase than others, assisting the merchant in pricing goods to optimise revenue
and profit. Additionally, we can measure the impact of our proposed merchant benefit

directly, rather than use consumer utility or satisfaction as a proxy measurement.

In order to test our theory, e-commerce datasets containing user activity are required.
Then we will either need to construct good features to correctly classify user intent
or use a technique which can construct a good representation by itself. Our goal is
to use data which is readily accessible and does not violate any privacy legislation or
require private data from end-users. In recent years, research has been conducted on
incorporating multiple signals from social networks into ML e-commerce models [21]
but this approach is increasingly frowned upon and difficult to implement. Users do not
want to share their private data and merchants do not want the overhead of storing and

processing it in a GDPR-compliant (General Data Protection Regulation) manner.

Let us consider a counter-argument to make the previous point clearer and illustrate
the trade-off between persuasion and transparency [22]. Imagine that we constructed a
model M, which required the user to log in with their Facebook, Twitter or Instagram
credentials before a search query could be executed in order to provide more relevant
search results (the M, model uses features which leverage a user’s friend graph and
other private items). Most users would baulk at these requests, even if they believed
that the search results would be better than those provided by a model M;, which simply

used current, anonymous session interactions.

Lastly, we favour approaches which are straightforward to implement and can provide

near real-time decision support to merchants.

14

1.7 Open Questions

There are three questions that we aim to answer in this thesis:

1. In the user intent discovery task, what is the performance difference between
classic machine learning techniques using explicit features when compared to

deep learning models using a learned representation?

2. What are good representations for e-commerce concepts such as product or user

that can be learned by an appropriate machine learning technique?

3. Can deep neural networks (DNNs) transfer from their traditional applications of
computer vision and natural language understanding to the user intent discovery

task without significant modifications?

1.8 Contribution

Our contribution to these questions is as follows:

1. We conducted a detailed analysis of explicit features showing that four broad

feature classes enable a classic model to infer user intent.

2. We constructed a deep learning model which recovers over 98% of the predictive

power of a state-of-the-art approach.

15

3. We show that a standard word language deep model is not optimal for e-commerce
clickstream analysis and propose a combined sampling and hidden state manage-
ment strategy to improve the performance of deep models for the task of user

intent detection in the e-commerce domain.

The work conducted in this thesis was published in the following papers:

1. [23]: Classifying and Recommending Using Gradient Boosted Machines and
Vector Space Models, Humphrey Sheil and Omer Rana, Advances in Compu-

tational Intelligence Systems. UKCI 2017.

2. [24]: Predicting purchasing intent: Automatic Feature Learning using Recurrent
Neural Networks, Humphrey Sheil and Omer Rana and Ronan Reilly, ECOM

workshop at ACM SIGIR 2018.

3. [25]: Understanding E-commerce Clickstreams: a Tale of Two States, Humphrey
Sheil and Omer Rana and Ronan Reilly, Deep Learning Day workshop at ACM

SIGKDD 2018.

1.9 Thesis Roadmap

The following chapters are organised as follows:

e Chapter 2 reviews the current landscape of e-commerce and machine learning to

set the scene for our contributary work.

16

o Chapter 3 sets out the system architecture used to construct, train and benchmark

the classic and deep models used in this work.

e Chapter 4 provides a detailed analysis of a particular classic model, Gradient
Boosted Machines (GBM), and the importance of different feature classes in the

e-commerce domain.

e Chapter 5 constructs and benchmarks a competing deep learning model with fur-

ther sections focused on model interpretability and model comparison.

e Chapter 6 explores how standard deep word-based language models must be mod-
ified to function effectively in the e-commerce domain for the user intent discov-

ery task.
e Chapter 7 reviews our hyperparameter tuning efforts.

e Chapter 8 provides a critical assessment of our work and places it in context to

existing work.

e Chapter 9 previews suggested future work and summarises the thesis contribution.

1.10 Summary

E-commerce is a domain where machine learning has already been applied successfully,
but much remains to be done - in particular, serving the needs of merchants more fairly

to ensure a healthy e-commerce ecosystem.

17

In addition, the selection of a target e-commerce problem in practice also depends on
the availability of good data, the opportunity to directly impact and measure the perfor-
mance of the machine learning model and ideally, a computationally fast model which
can generate outcomes in near real-time to be effective in an e-commerce context. In
the next chapter, we will set out a short overview of machine learning and how it is

currently utilised in the the e-commerce domain.

Chapter 2

Background and Related Work

In our opinion, the intersection of e-commerce and computer science is an area of active

research for a number of reasons:
1. Clear, significant commercial interest - e-commerce is a real world problem with
immediate applicability.

2. The ready availability of datasets suitable for analysis - from user activity logs to

product catalogues.
3. A well-defined mechanism (A/B testing) to test new implementations and theories

in an online and offline setting.

The diagram below illustrates the broad anatomy of an e-commerce website from a user
/ functional perspective. We use this diagram to ground our further discussion of how

machine learning is currently used across this structure.

18

19

User
) destinations
Machine
learning
services
[Homepage]
[Recommendations

)
n
=
=}

=
o
— o
=]
oQ
c‘
o
~
aQ
—
————

{ Navigation

{ Search

{Intent prediction |

* Order confirmation pageJ

—

FIGURE 2.1: Broad anatomy of an e-commerce website from an end-user perspective,
providing a reference map for future discussions on how ML is applied to e-commerce.

2.1 Background

In the following sections, we provide an overview of machine learning, in order to
ground our overview of how it is used in e-commerce currently, and to inform more

detailed discussions in Chapters 3, 4 and 5.

20

2.2 Machine Learning

Machine Learning precedes the field of e-commerce significantly - and if we include
statistics as a natural complement / pre-cursor to machine learning, the joint fields are

older still.

E-commerce is an ideal domain in which to train and deploy machine learning models
since good datasets are common and relatively easy to gather, while tasks are often
automated. For example, it is the norm for user sessions to be modelled as a tuple of
{userid — eventtype — itemid} and for these tuples to be grouped into user sessions
based on a maximum time window (for example 30 minutes). Web server logs are
regularly processed to extract these datasets and these datasets can then be fed into

multiple machine learning model candidates.

In Chapter 1 we stated that machine learning (ML) represented a class of software which
can learn to improve its own performance from past experience. Figure 2.2 illustrates

the primary or basic components of any machine learning system.

A minimal ML system consists of [26]:

1. A dataset - the input dataset with either output target labels (desired outputs) or

target mappings.

2. A model - the abstraction of the problem to be solved, or the mathematical struc-

ture by which the prediction y; is made from the input x;.

21

Output

Task ’%‘ Model ’%‘ Error

Representation learning / feature engineering

Input data

FIGURE 2.2: The primary components of a supervised machine learning system where
we have labelled data and thus can calculate an error as the difference between the
expected and actual output from the model.

3. Aloss or error function which measures the difference between the actual model
outputs and desired outputs (we assume that our data is labelled and thus we are

training in a supervised setting).

4. A training or optimisation algorithm - using the loss function to modify the model

in some way so that future iterations provide better outputs for the task at hand.

Each of these items may be considered as a pluggable component where the imple-
mentation can be replaced to best fit specific needs (simplicity, speed, scalability, inter-

pretability).

22

2.2.1 Datasets

The input data, combined with the task we wish our model to learn, affects the selec-
tion of all other components in the ML system. Data can be virtually anything - from
images to video, audio, handwriting and so on. For the scope of this thesis however, the
datasets under consideration are e-commerce-related clickstreams, and thus are over-
whelmingly structured text. In addition, we can make the following generalisations

about e-commerce clickstreams:

1. They are large - typically with millions of entries or samples to consider.

2. They are heavily imbalanced - the class label or target we are interested in (buyers,

fraudsters) is far smaller than the dominant label (clickers, non-fraudsters).

3. Time plays an important role - users spend time dwelling on items, user sessions
have a length measured in events and time, and the entire dataset can often be

considered and processed as a time series.

2.2.2 Models

There are many types of model implementations available. While there is no single

agreed taxonomy to organise all of the model families, the following categories are

proposed in [26]:

1. Linear models.

2. Tree models.

23

3. Distance-based models.

4. Probabilistic models.

In the following sections, we focus on the subset of models relevant to the user intent

discovery task.

2.2.3 kNN - k Nearest Neighbours

kNN is an example of a distance-based model. It is simple to train - the model iterates
over and memorises the training data. Then at inference time a certain number - £ > 1
- of the points closest to the input data are used to vote and predict the majority class.
A variety of distance metrics (e.g. euclidean distance, Jaccard index, cosine similarity)

are used depending on the input data to create clusters of similar exemplars.

The training data consists of feature vectors z; and label pairs y; for each example
(x1,11), (T2, y2), - ., (Tn,yn) and training time is fast - O(n) while inference perfor-
mance at run-time is slow - also O(n), since all examples need to be compared to the
input x; to find the closest £ matches. kNN models have high variance since the decision

regions of the model are created directly from the training data.

2.2.4 Gradient Boosted Machines / Decision Trees (GBM / GBDT)

Tree models are very popular in Machine Learning - high quality implementations exist

and are readily usable [27-29]. They are fast to train and considered more interpretable

24

N A AN
8 N NN

FIGURE 2.3: In GBDT, each tree is a weak learner, and when combined these separate
trees form a single strong learner.

than other black box approaches (although complex trees or collections of trees are
certainly more difficult to understand). Decision trees used in data mining are of two

main types:

1. Classification tree analysis - used when the desired outcome is to predict the class

to which the data belongs.

2. Regression tree analysis - used when the predicted outcome can be considered a

real number (e.g. the price of a house, or a patient’s length of stay in a hospital).

The term Classification And Regression Tree (CART) analysis is an umbrella term used
to refer to both of the above procedures [26]. As their name suggests, trees are made up
of nodes which represent tests of supplied features (for example, test i fdwell_time >
100) and edges which control the path to be followed based on the outcome of these

tests.

Trees used for regression and trees used for classification have some similarities but also
some differences, such as the procedure used to determine where to split. Ensemble
methods construct more than one decision tree: boosted trees incrementally build an
ensemble by training each new instance to emphasise the training instances previously

misclassified.

25

Gradient Boosted Decision Trees (GBDT) do exactly this and attempt to iteratively
minimise the residual error, i.e. the error remaining after the most recent tree (weak
learner) has been added to the current ensemble. Figure 2.3 illustrates the concept
of additive trees which combine to form a single strong learner. We use colours to
illustrate that the individual trees constructed vary by structure and features used, and

are combined to minimise the overall error.

Different implementations of GBDT [27-29] use different heuristics and optimisations
to build trees (for example handling categorical variables differently, adding a regular-
isation term and / or favouring simpler trees to guard against overfitting) but all imple-
mentations share a common goal: at each iteration, minimise the remaining residual
error. Regardless of the implementation chosen, the performance of the trained model

is heavily reliant on the quality of the supplied feature set.

GBM / GBDT hold multiple state of the art benchmarks in e-commerce and we investi-

gate the performance of GBM in detail on the user intent discovery task in Chapter 4.

2.2.5 Markov Chains / Hidden Markov Models

Markov chains and their derivative - hidden Markov models, are both examples of prob-
abilistic machine learning models. A Markov chain is a model that represents the prob-
abilities of sequences of random variables. The central assumption in a Markov chain is

that all future states of a sequence can be predicted using only the current state, and no

26

L0 —0 —.0

S1 S92 53 S4

Y1 k 1 Y2

FIGURE 2.4: This example HMM with 4 states can emit 2 discrete symbols y; or ys.
a;j is the probability to transition from state s; to state s;. b;(yy) is the probability to
emit symbol y;, in state s;.

states prior to it. Figure 2.4 illustrates a very simple 4-state HMM. In this constrained

HMM, states can only reach themselves or their adjacent (prior and subsequent) state.

A hidden Markov model (HMM) is an extension to the standard Markov chain where
some events of interest are hidden or not directly observable. Chapter 8 of [3] (3rd
edition, currently under construction) provides standard terminology for Markov chains

and models as follows:
S = s1,89,...,8, Asetof N states

A = a1, a12,...,an1,. .., 0y, a transition probability matrix A, each a;;

representing the probability of moving from state ¢ to state j

T = m,me,..., Ty an initial probability distribution over states. 7; is the

probability that the Markov chain will start in state i.

At first glance, HMMs seem like an ideal candidate to construct a model of user pur-

chase intent. Beneath a given complexity threshold, they are intuitively appealing and

27

interpretable - much like probabilistic graphical models [30]. Moreover, they can ac-
commodate inputs of variable length so can model clickstreams naturally. However,

they suffer from some limiting drawbacks [31]:

1. They cannot express dependencies between hidden states - therefore long-range
correlations or connections cannot be modelled by a single HMM. In fact, only a
small subset of possible sequences can be modelled by a reasonably constrained

HMM.

2. HMMs model discrete states, and exclude the possibility of encoding other states.

3. If states should depend on multiple states, then the number of states increases

rapidly, e.g. N2 states are required if each state depends on two states.

In direct contrast to HMMs, neural network models (see below) can capture and model
continuous states which is a meaningful advantage. Empirically, a specific type of neu-
ral network model (Long Short Term Memory which we will cover in detail in Chap-
ter 5) began to outperform HMM in the domain of speech recognition in 2012 [32] and

since then in multiple other domains.

In [31], the concept of hybrid HMM - neural network models are proposed to combine
the best of both models however it is fair to say that there is still much work to be
done in this area. Much later in Chapter 8 we will cover a related concept to HMMs
- causal inference - which aims to provide interpretable, more powerful models which

can reason using facts and counter-factuals.

28

2.2.6 Neural Network Models

Artificial Neural networks (ANNs) and in particular Deep Neural Networks (DNNs)
are well suited to problems that are non-linear and where the data contains nuances
and patterns not readily obvious to a human. Put another way, deep feedforward neural
networks are associated with complicated, non-convex objective functions that simpler

models cannot solve or approximate.

Artificial Neural Networks are complex, nonlinear and parallel computers composed of
very simple computing units or neurons. A neuron receives signals from other neurons,
combines them and depending on some threshold and an activation function, will either
fire or not. Neurons are organised in layers - input, hidden and output layers. Input
layers directly receive input data, output layer values are the final values from the net-
work after all processing has completed. Hidden layers are not strictly speaking hidden
- their values can be examined at any point during training or inference, but what they
are processing, i.e. the abstractions coded into one or more hidden layers, is always

open to interpretation, hence the name.

Figure 2.5 illustrates the canonical view of a simple neural network.

We note that neural networks fell dramatically out of fashion from 1989 - 2009, primar-
ily as a result of overpromising - the so-called (second) Al winter. They came back into
vogue from 2010 onward due to the proliferation of large datasets and highly parallel

hardware architectures on which to run them.

29

Input Hidden Output
layer layer layer

Input #1 —

Input #2 —

Output
Input #3 —

Input #4 —

FIGURE 2.5: A simple neural network. Units are divided into three types (input, hid-
den, output) and organised into layers. In this example the network is fully connected
in a feedforward manner.

2.2.6.1 Deep Neural Networks

Since 2010 deep neural networks (DNNs) [33, 34] hold state of the art performance
on domains such as language translation, handwriting recognition and varied computer
vision tasks including sequence to sequence translation [35] (relevant for clickstream
analysis). DNNs are closely related to ANNs, and it is largely the joint advent of a
hardware architecture (general purpose GPU or GPGPU) and open datasets such as

MNIST and ImageNet that enabled DNNSs to achieve their performance.

The exact meaning of deep in DNN is not defined, but colloquially most researchers
take it to mean 10 or more hidden layers. DNN variants such as Highway Networks
[36] can have hundreds of layers. Figure 2.2.6.1 shows the deep model from Microsoft

Research used to win the 2015 ImageNet competition with 152 layers. The underlying

30

trend throughout the ImageNet competition was the increase in number of layers used,

from Googl.eNet, AlexNet and finally ResNet.

sanE
alem 224

sizes 117

utput
sipe: 86

SAnE
spe I8

sipe: 14

SAE
alaez ¥

SRR
s |

FIGURE 2.6: The winner of the 2015 ImageNet competition from Microsoft Research
- ResNet [1], depicted alongside the VGG19 model.

VGGE-19 Jd-layer plain 34-layer residual
mage mage image
[deomiz |
[adcoms2 |
pel, 1
[Chebemew iz | [Pfeomgs (|
¥ ¥ ¥
poal, 3 Pl ST pod, 3
¥
[o ase | 33 carw, 64 [=acmms |
¥ ¥ ¥
[admwme | 3 carw, 54 [maomss]
¥ i
[| 33 carw, 64 [=amms |
¥ ¥ ¥
[(mimmsme] 203 qarw, 64 [=amms_]
L] L
[aadems | [hswi:w.sl 1
[SeScemds | [SeScemds |
poal, /1 Ind conw, 128, /2 [3a8 corm, 128,72 |““"'-~.
+ ¥ ¥
[Sabcorw, S22 Sk oy, 238 [=i com, 228 Lt
r ¥ e .
b oere, 511 [asteomeam | [com,
¥ ¥ ¥
[Chabeewir | [atemam |
¥ ¥
[Cadmwsz | [xdmeim | ad oo, 130
¥ ¥
[3:!-::;-.]273 |]
[a1z | ol rgr, 128
¥ ¥
[iz | [madem. 128
poal, /2 [[awmw. 60 | [[mioow.as6ia | -
¥ ¥
[Sedamewiaa | [Scieomisd | [edeomisd |
[S iaa | Sxfeome, 258 | [
[Sedcorw S22 | Sod o, 256 | [
L]
[Sedemewiaa | Sxbeom, 258 | [
S8 porm, 258
I ad oo, 156
¥ ¥
a3 convw, 156 a3 com, 3155
3 tow. 256 | []
¥
Fdrom 35 | []
¥
[?u;tu‘-‘..ms 1 [zaewmass |
[deomcass | [o258 |
¥ =
sol, [(dsSeminn | [(dSem i | e
¥ ¥
[Emdeome iz | [e i |
%
[asdcomestz |
¥
Aed comma, 512
[et i |
e o, 512
A0 g 00
4096] [e 1000 |
fe 1000

DNNSs must be trained in order to work effectively, and it is backpropagation combined

with gradient descent that is most often used to train DNNs. In supervised learning

back-propagation can be seen as the chain rule applied to the error derivatives from

the forward pass through the network [33]. Figure 2.7 illustrates how the forward and

31

Input Hidden Output
layer layer layer (a) Forward Pass

T

Wy y (b) Error at the Output
; 1
. ws T E = 3(t—y)?
w3

(c) Backward Pass
Awi = - oE

6wi

FIGURE 2.7: From [2]. Overview of backpropagation.

reverse passes are combined using back-propagation and stochastic gradient descent
to train a network. To start, a training pattern is fed forward, generating corresponding
output. Next, the error between actual and desired output is computed. Finally, the error
propagates back through the network, through updates where a ratio of the gradient (f—fi

is subtracted from each weight. z;, w;, ® are the inputs, input weights, and activation
function of a neuron. Error £ is computed from output y and desired output or target ¢.

7 is the learning rate.

Due to the large number of parameters, DNNs are particularly susceptible to overfitting,
and can create models which are brittle or behave badly when presented with mildly
perturbed or unexpected data - for example samples never seen before during training,

or samples drawn from a slightly different distribution [37].

A wide range of countermeasures have been designed to address overfitting, including

dropout [38] and regularisation [39].

32

2.2.6.2 Recurrent Neural Networks

Recurrent neural networks [40] (RNNs) are a specialised class of neural networks for
processing sequential data. A recurrent network is deep in time rather than space and
arranges hidden state vectors h! in a two-dimensional grid, where t = 1...T is thought
of as time and [= 1...L is the depth. All intermediate vectors h. are computed as
a function of h!_, and hi~'. Through these hidden vectors, each output y at some
particular time step ¢ becomes an approximating function of all input vectors up to that

time, x4, ..., 2; [S]. We will see RNNs in more detail in Chapter 5.

2.2.6.3 Embeddings

Neural networks typically deliver their best performance not when consuming explicit
hand-crafted features, but instead learning the best representation through training.
In this regime, concepts in the input data (for example items or categories in the e-
commerce domain) are modelled as words and each word is then transformed into a
low-dimensional distributed representation - the embedding or word vector [41]. A
good vector space model will map semantically similar words close together. We will

cover embeddings in more detail in Chapter 5.

2.2.7 Loss/ Objective Functions

A loss provides a numerical measure of the difference between the desired output of
a model and the actual output. Although this may sound obvious, it is a fundamental

design decision for any machine learning model. The loss function is also known as the

33

objective function and this name gives a truer account of its purpose - it is measuring
the ability of a model to carry out the task asked of it. In other words, it is framing the

learning component.

Intuitively, we want outputs that are more different to be penalised more, and actual
outputs that are closer to desired outputs to be penalised less. The loss is then used to
update the model in some way by the training algorithm - the essential part of machine

learning.

2.2.7.1 Categorical Cross-entropy

The categorical (also known as multinoulli) distribution is a K class generalisation of
the two class Bernoulli [42]. Generally the prediction is a vector of probabilities for
each class, so the target y; is a class in the one-hot representation as a vector of length
K,k =0...K, where K is the number of classes. We will see this particular loss in

more detail in Chapter 5.

2.2.7.2 Auxiliary Losses

In deep learning, a useful augmentation to a primary loss is to augment it with another
associated loss - the so-called auxiliary loss. The immediate effect of this is to increase
the size of the loss and thus the size of the gradients and in some cases this can ame-
liorate the vanishing gradient problem, especially in a sequence processing setting with

recurrent neural networks (see Chapters 4 and 5).

34

2.2.8 Training and Optimisation

The process of training an ML model involves providing an ML algorithm (that is, the
learning algorithm) with training data to learn from. The term ML model refers to the
model artifact that is created by the training process. Some models are created before
training, in particular deep learning models, while some training algorithms create the

model architecture from the training data e.g. Gradient Boosted Machines (GBM).

Different regimes of machine learning are clearly discernible - supervised, semi-supervised
and unsupervised, but in all cases the goal of training a machine learning model is to
provide the model with example data so that it learns to minimise some error metric
(or maximise some reward if reinforcement learning is used) and then to generalise to

unseen data.

In a supervised setting where labels are known, training is most often implemented as
gradient descent, for example Stochastic Gradient Descent or SGD. Various enhance-

ments have been proposed for gradient descent, including Nesterov momentum etc.

Although it may seem obvious that the goal of gradient descent is to find a global min-
imum in the gradient landscape, i.e. co-ordinates where the overall error is lowest, in
practice this is not the case - in fact a global minimum would represent significant over-
fitting on the training set, preventing good generalisation to unseen data and the over-
trained model would perform poorly in practice. Techniques such as dropout [38, 43],
L1 and L2 regularisation have also been developed to guard against overfitting. In fact,

[39] lists over 50 ways in which a model can be regularised.

35

2.2.9 The Bias-Variance Tradeoff

Updating a model during training to minimise a specified error (for example mean
squared error) is a key step in machine learning. Models are affected by three types

of error [44]:

e Bias - aka underfitting, where the model cannot associate between features and

outcomes.

e Variance - aka overfitting, where the model cannot generalise from the training

set to unseen data.

e Noise - or the irreducible error (unpredictable changes or measurement errors),

which cannot be explained by any model.

The bias-variance trade-off essentially states that we can have a model with no bias or
no variance, but not both. Combining the three terms as per [45] we can see in equation

2.1:

E(yo — f(x0))? = Var(f(zo)) + Bias(f(x0))* + Var(e) 2.1)

where:

E' = the error or difference between target and actual value
xo = a given value of X

Yo = target value for input x,

36

Var(e) = the irreducible error or noise in the dataset

~

f(zo) = actual value for input z, produced by the model.

We can minimise (but not eliminate) bias and variance through the selection of an ap-
propriate training regime and training data. In addition, in some cases it may make
sense to train a biased model or estimator if our goal is to minimise the mean squared

CITOr.

2.3 Machine Learning In E-Commerce

Now that we have provided an overview of machine learning, in the following sections
we propose how machine learning is used in, and influences the field of e-commerce as

follows:

1. As a common, visible service - used to improve the end-user experience directly,

e.g. recommendations, predicting user intent, learning to rank.

2. As a common, invisible service - used to improve the end-user experience indi-

rectly, e.g. catalogue management, fraud detection.

3. As an important e-commerce ecosystem service - for example predicting click-

through rates.

Our aim is to show the breadth and depth of the e-commerce domain, coupled with the
pervasive application of machine learning throughout the domain. An important point

to note is the inherent scale of e-commerce - any successful model must be able to train

37

on very large datasets and produce predictions on unseen data in near real-time. Dean
and Barroso provides an insight into the varied techniques used to ensure that virtually

all users are happy with system performance even at massive scale.

2.4 Predicting Ad Click-through Rates

Given that the dominant business model of the web is offering a free service comple-
mented by monetisation through advertising, it comes as no surprise that predicting and
increasing click-through rates has received a lot of research attention [47, 48]. Predict-
ing ad click—through rates (CTR) is a massive-scale learning problem that is central to

the multi-billion dollar online advertising industry.

2.5 Content Discovery

Content discovery is one of the older applications of ML to e-commerce [11]. In this
use-case, the merchant or portal has far more content than the user can browse through
manually, or has noticed that users have low session time / high churn rates on the
service. Recommender systems [12] are widely used to predict what content or product
the user will be interested in based on their previous behaviour. Within the field of
recommender systems, a wide variety of machine learning techniques are employed to

achieve this goal, such as:

1. Statistical analysis (popularity) - this is often used in the cold start setting, where

no user information has been gathered yet [12].

38

2. User similarity and item similarity using approaches such as matrix factorisation

[49].

3. Sequence processing using recurrent networks [50].

If unsolved, the user - content mismatch typically manifests in a number of ways, all
detrimental to the overall user experience and hence site popularity and ultimately prof-

itability [12]:

1. User paralysis - the sheer number of options cause the user to freeze and never

consume content [11].

2. The needle in the haystack - the user cannot find what they are looking for, either

by searching or navigation [11].

Recommender systems are designed to directly address this problem, by proposing con-
tent or products to users, after observing only a very small number of interactions or no
interactions at all (the so-called cold start problem). In some domains, recommender
systems work very well, for example 75% of all content consumed on the Netflix plat-
form comes from their various recommendation algorithms. From figure 2.1 we can
see that recommendations are commonly used across an entire e-commerce website - to

suggest new content, up-sell and cross-sell.

However, recommender systems also suffer from a number of drawbacks [51]. Feed-
back loops caused when training data is harvested from a production deployment where

users are already exposed to recommendation engines - causing confounding. Other

39

measures such as low diversity of recommendation, high homogeneity of users and the

ability to create filter bubbles are well-known issues in the recommender community.

2.6 Predicting purchase propensity

Knowing what a user intends to do clearly has value. Search results can be made more
relevant, concrete calls to action can be targeted towards the user to help them discover,

browse or purchase new content or to persuade them to complete their purchase.

Most of the data used to infer user intent is implicit, not explicit. It is difficult to get
users to give feedback on their site experience, so instead we use their known behaviour
(i.e. their clickstream) to infer it. Joachims led the way in using implicit signals in the
form of clickthrough data to re-rank documents returned for a given query so that the
most relevant entries are at the top of the list. In this work, a Support Vector Machine
(SVM) was used to implement the ranking algorithm. Although the main purpose of
[52] is to improve the ranking function for a search engine, it is also inferring user
intent from implicit signals, as it is only when user intent is known that more relevant
results can be prioritised. Inferring user intent can also be situated as a special case of
personalised search. In [53], the authors utilise variability in user intent as measured
by several click-based measures (click entropy, potential for personalisation curves) to

show that different users will find different results relevant for the same query.

Another line of work relevant for user intent is change point detection in user prefer-
ences over time. In [54], Hidden Markov Models (HMM) are used to identify these

states based on an empirically-selected threshold of error. The common link here is

40

using clickstreams as a proxy for user intent, i.e. an implicit signal. This is a concept

that we leverage heavily in the future chapters.

Forecasting whether or not a user will purchase an item is closely related to, but separate
from that of predicting content interactions. For example if user uy clicks on item i,
and we know that 7, is both popular and frequently purchased, this allows our model
to be more confident in predicting that u; has a higher propensity to purchase than the

median or mean.

But many more local and global variables also need to be taken into account - the user’s
dwelltime or think time per item, the time of day and season, what other users are

currently doing on the site, merchant sales events or special offers [12, 55, 56].

However, the investment involved is worth it to the merchants and portals. Specific
actions can be directed to potential buyers to convince them to commit: targeted adver-

tising, special incentives such as time-limited discounts and so on.

The problem of user intent or session classification in an online setting has been heavily
studied, with a variety of classic machine learning and deep learning modelling tech-
niques employed. [55] was the original competition winner using one of the datasets
considered in later chapters using a commercial implementation of GBM with extensive
feature engineering and is still to our knowledge the state-of-the-art implementation for

this dataset.

Hidasi et al. uses RNNs on a subset of the same dataset to predict the next session
click (regardless of user intent) so removed 1-click sessions and merged clickers and

buyers, whereas this work remains focused on the user intent classification problem.

41

[58] compares [57] to multiple models including kNN, Markov chains and association
rules on multiple datasets and finds that performance varies considerably by dataset.
[59] extends [57] with a variant of LSTM to capture variations in dwelltime between
user actions. User dwelltime is considered an important factor in multiple implementa-
tions and has been addressed in multiple ways. For shopping behaviour prediction, [60]
uses a mixture of Recurrent Neural Networks and treats the problem as a sequence-to-
sequence translation problem, effectively combining two models (prediction and rec-
ommendation) into one. However only sessions of length 4 or greater are considered
- removing the bulk from consideration. From [61], we know that short sessions are
very common in e-commerce datasets, moreover a user’s most recent actions are of-
ten more important in deciphering their intent than older actions. Therefore we argue
that all session lengths should be included. [62] adopts a tangential approach - still
focused on predicting purchases, but using textual product metadata to correlate words
and terms that suit a particular geographic market better than others. Broadening our
focus to include the general use of RNNs in the e-commerce domain, Recurrent Rec-
ommender Networks or RRNs are used in [50] to incorporate temporal features with
user preferences to improve recommendations, to predict future behavioural directions,
but not purchase intent. [63] further extends [57] by focusing on data augmentation and

compensating for shifts in the underlying distribution of the data.

In [64], the authors augment a more classical machine learning approach (Singular
Value Decomposition or SVD) to better capture temporal information to predict user
behaviour - an alternative approach to the event replication or unrolling methodology

used in this paper.

42

Using embeddings as a learned representation is a common technique. In [65], em-
beddings are used to model items in a low dimensional space to calculate a similarity
metric, however temporal ordering is discarded. Learnable embeddings are also used in
[66] to model items and purchase confirmation emails are used as a high quality signal
of user intent. Unrolling events that exceed an arbitrary threshold to create a better input
representation for user dwelltime or interest is addressed in [67]. In [68], Convolutional
Neural Networks (CNNs) are used as the model implementation and micro-blogging

content is analysed rather than an e-commerce clickstream.

Predicting user intent using a variety of machine learning methods is a central focus
of this thesis. In Chapter 4 and Chapter 5 we will examine classical and deep learning

methods for inferring user intent from their anonymous clickstream data.

2.7 User Interface (UI)

Whether the user is browsing a site on a mobile device, laptop or desktop - the user
interface (UI) presented plays a critical role in their perception of the system overall.
Non-functional characteristics such as speed / responsiveness and stability matter, but
increasingly advanced Uls are tailoring or personalising themselves around the user

based on previous interactions [69].

The starting point for all e-commerce Uls is the F-shape or “golden triangle” - the
phenomenon in eye tracking studies which shows that most users focus on the top left

quadrant of a display. Figure 2.8 illustrates the effect clearly. The hot colours represent

43

FIGURE 2.8: The golden triangle pattern of user eye-tracking clusters. Hotter (red,
yellow) colours signify more focus by the end-user, while cooler shades signify low
interest and user focus.

the most valuable segment of the screen - both commercially and from an information

retrieval / visualisation point of view.

Conditioned by consistent search engine Uls, users expect to see relevant results at the
top, and then work their way down the list. So the ranking method and algorithm is what
drives the Ul experience for traditional search. But new Uls drive new user behaviour -
for example the traditional golden triangle assumption does not hold for image search,
or for browsing shopping results where a user’s attention is spread more equally across
a grid of results. A user can reasonably expect to find the best search result high up
for traditional search, and in the middle of the page (and in a central column) for e-

commerce search.

In [70], the authors propose reinforcement learning (Q-Learning) to infer how best to

44

rank and dynamically display results based on a users preference, using permuted Dis-
counted Cumulative Gain (DCG) rather than normalised DCG as a reward signal. The
method ranks both the documents and positions, rather than just the positions. On-
demand video providers such as Netflix and Amazon also use Ul layouts where the best
match may be multiple rows below the top row, and not even in the first position for that
row. The larger the product catalogue (and the more categories contained within it), the

more Ul innovation is needed to help users find what they are looking for.

2.7.1 A/B Testing

A/B testing is the primary mechanism whereby the effectiveness of a new approach
or technique is tested by online experimentation. A statistically significant proportion
of traffic / users is diverted to the new variant (the B variant), while the remainder of
users continue to use the current variant (A). After enough data has been gathered, the
new variant either becomes the default or is discarded because it under-performs the
incumbent variant for a specific goal. Multi-variate (> 2 variants) testing can also be

used, as long as the mutations are all of the same base feature.

A large body of empirical work exists to support A/B testing [71] and all technology
companies such as eBay, Netflix, Google use A/B testing as a matter of course to guide
future product direction. At scale, Google and Microsoft regularly run hundreds or

thousands of experiments concurrently.

A/B testing suffers from a number of weaknesses which should be addressed during

experiment design [72]. A more nuanced criticism is that A/B testing can only directly

45

measure short, not long-term gains (A/B testing is a greedy optimisation strategy, simply
selecting the variant with the most clicks when a more nuanced metric may offer better

long-term results), although [73] claims to address this flaw.

2.7.2 Guided Navigation

In guided navigation, machine learning is employed within the Ul widgets normally
used to traverse the hierarchical structure of the e-commerce site - which is itself a mir-
ror of the product or item catalogue which underpins the site. Normally, as the catalogue
grows the navigation menu grows, until it is unfeasible to render it on a smartphone or
tablet, and / or unreasonable to expect a user to scroll past unwanted options in their

search for what they really need.

The optimisation of navigation and menus while minimising un-needed change has been
widely studied [74], [75] and multiple solutions have been proposed. In [76], an inno-
vative display widget is combined with a learning component to reduce item selection
time, while minimising the disruption factor to the user (users prefer static menus as a

remembering aid, but dislike very large / unwieldy static menus).

2.8 Information Retrieval

In this section, we move away from the user interface and focus on servicing user re-
quests, 1.e. providing answers to user queries posed as efficiently as possible. Informa-

tion Retrieval (IR) operates at the very heart of search engines which are the dominant

46

mechanism used to index and query e-commerce product catalogues.

2.8.1 Search

In e-commerce, search queries remain the dominant mechanism used to find content.

In classical search, users enter one or more terms or keywords and receive the top match-
ing index entries matching those terms. Calculating the top matching or most relevant
documents is an active area of research. One of the simplest and most widespread ways
is to use the well-known tf-idf mechanism [18]. In tf-idf, term frequency (tf) and in-
verse document frequency (idf) are combined to produce a composite weight for each
unique term in each document. The tf-idf weighting scheme assigns to term ¢ a weight

in document d given by:

tf-idf; 4 = tf; 4 x idf;.

In other words, tf-idf; ; assigns to term ¢ a weight in document d that is highest when ¢
occurs many times within a small number of documents (thus lending high discriminat-
ing power to those documents); lower when the term occurs fewer times in a document,
or occurs in many documents (thus offering a less pronounced relevance signal); lowest

when the term occurs in virtually all documents.

Two open-source search engines (Solr [77] and Elasticsearch [78]) dominate e-commerce
usage and both use the same component to perform document ranking - Lucene [79]. In

a practical setting, various heuristics are used to further increase or boost relevance, for

47

example boolean conditions (must have / must not have), tf-idf and vector space models

which encapsulate domain-specific concepts.

The central concepts used in IR are a dictionary of terms, and an inverted index which

stores documents - term occurrences [18].

Other well-known IR algorithms are Ponte-Croft’s language model and BM25, which

we describe in the next section.

2.8.1.1 BM25

A widely-known and empirically successful term probabilistic relevance framework is
the Okapi Best Match 25 Model, commonly referred to as BM25 [80]. The model
computes local weights as parameterised term frequencies and global weights as RSJ
(Robertson Sparck Jones) weights. The original BM25 algorithm omitted the structure
of documents in the weighting process, clearly an important signal when we consider
that HTML documents are almost always organised using tags such as head, bodyj, title,
description, paragraphs, divisions, forms, etc. To address this issue, the original BM25
researchers proposed a simple BM25 extension for weighting terms present in multiple
fields that they referred to as the BM25F Model [81]. To underline how important BM25
is to day-to-day e-commerce search, since Apache Lucene 6.0.0 was released (2016),

BM25 is the default similarity function used.

48

2.8.1.2 Ponte-Croft

A language modelling (LM) approach to information retrieval was first proposed in [82].
In contrast to approaches such as BM25, in [82] Ponte and Croft argued strongly for the
effectiveness of the term weights that come from the language modelling approach over
traditional tf-idf weights. The difference between LM and PRF is that instead of overtly
modelling the probability P(R = 1|q, d) of relevance of a document d to a query ¢, the
LM approach instead builds a probabilistic language model M ; from each document

d, and ranks documents based on the probability of the model generating the query:

P(q|Ma).

Increasingly however, it is becoming clear that e-commerce search is not the same as
normal web search. The user behaviour is different - dwelltimes are longer, a user
may be happy / satisfied with search results but still continue to search as they are
comparing products. In [83], the authors call out the difference between e-commerce
search compared to generic search and propose a framework to model the different

stages of the conversion journey.

Looking beyond the current state of e-commerce search, we believe that there are three
open challenges to improving search in the future - these are not new challenges, but

they do sum up the current research focus:

e Improving results relevance.

e Increasing user satisfaction.

e Enabling discovery of new content.

49

As the field of e-commerce matures and grows, the limitations of traditional search are
being explored and addressed. In [84], the authors are motivated by the restrictions
imposed by “bag of words” search queries to propose a simplified query ontology that
is optimised explicitly for e-commerce (allowing users to quickly find specific concepts
such as brands and products). Visual search is also becoming popular, and in [85] the
authors propose an extension to standard inverted-index search techniques by encoding
image feature vectors or embeddings into a collection of string tokens in a way such
that more similar vectors will share more string tokens in common. Enabling this type
of search means that users no longer need to know exact terms such as manufacturer,
model number - simply uploading a photograph taken from a smartphone camera will

suffice to locate the product in a catalogue.

2.8.2 Natural Language Processing

Parsing and tokenisation of product descriptions is a key problem to solve in e-commerce
- without this step, the inverted index and associated postings data structure used in the

search process cannot be created correctly, resulting in less relevant answers to queries.

In earlier generations of e-commerce systems, users became accustomed to providing
the system with exact-matching keywords in order to obtain search results. However,
users are increasingly less likely to do this and expect to receive relevant search results

when more natural terms are used.

50

2.8.3 Question Answering (QA)

The advent of accurate speech-to-text systems has opened up an entirely new way of

searching and navigating while shopping: dialog or question answering [3].

Here is a concrete example - imagine a user wants to purchase an inexpensive camera
to begin learning photography. Typical search queries would be “cheap camera”, “best
starter camera” etc. In question-answer mode however, the user can naturally ask “what
is the best value camera for a beginner” and expect a relevant result - a good camera to

start out with at a reasonable price point.

Servicing these requests is not trivial. Just some of the problems that require solutions
to be in place are Named Entity Recognition, word disambiguation and anaphora (an
expression whose interpretation depends upon another expression) resolution. Within
the domain of question-answering, there is a wide range of tasks. Jurafsky and Martin
lists some common question topologies or categories such as abbreviation expansion,
description, entity, human, location and numeric. Additionally, well-curated product

taxonomies need to be in place to help situate questions and answers.

Table 2.1 contains a cross-vertical sampling of questions and answers from [6]. The
dataset used in [6] is a 1.4 million set of question-answer pairs from Amazon, thus
representing a good cross-section of the kinds of questions, concepts, entities and nu-
meric values we can reasonably expect any competent e-commerce QA system to learn.

In the table, ’?” indicates an open-ended answer, i.e. where a clear binary yes or no

51

does not suffice. An ellipsis indicates a long question or answer. It is clear that for e-
commerce QA, specific challenges exist such as understanding and incorporating prod-

uct attributes, SKUs, quantities, weights, sizes as well as subjective properties such as

"cheap’ or ’large’.

Category Question Answer Type

Video Will it work with Win- | Yes Y

Games dows 87?7

Appliances | Does this come with | It does not come with a power cord. | ?
power cord and dish- | It does come with the dishwasher
washer hook up? hookup.

Appliances | Is it compatible to | Yes, of course. The Woder Fridge | Y
replace my Maytag | Filter fits behind the fridge or any-
UKF8001 Pur Refrig- | where along the water line. There-
erator Water filter? fore..

Beauty can you fit make up | yes it comes with adjustable di- | Y
brushes in the trays viders..

Automotive | Are these cables made | Coleman’s website does indeed say | Y
of copper or aluminum? | copper equivalent..

Grocery Is there sugar added to | The best of my knowledge there is | N
this product? Thank | no added sugar. There..
you...

Home and | I’d like to use this for | Sorry, no. It makes one really | N

Kitchen a 34 oz capacity teapot. | strong cup of tea or two “normal”
Is it large enough? strength.

Sport and | Could you please con- | Yes this product is made in the | Y

Outdoor firm that this is made in | USA. The manufacturer is in Texas.
the USA? Thank you!

Pet Sup- | What is the smallest or | It doesn’t work too well on my dog, | ?

plies lowest weight dog it | he’s a mix breed 10-12 lbs it needs
will fit on? to be about a 15-20 Ib at least I

would say.

Clothing, How long does it take | About two hours from the com- | ?

Shoes and | to fully charge the bat- | puter.

Jewellery tery?

Musical In- | Anyone tried this in | It works totally fine man, pretty | ?

struments an effect loop, without | amazing sound for the cheap price.
amp or cabinet mod-
elling?..

TABLE 2.1: Sample questions and answers from [6] spanning a selection of common

categories.

52

In fact, the problem of Question-Answering illustrates clearly how traditional informa-
tion retrieval techniques must be augmented by machine learning to provide an adequate
solution. Probabilistic or language model approaches cannot infer user intent, or pro-
vide a deep enough semantic search capability. Framed as a machine learning problem,
multiple techniques and approaches are brought together to understand user questions

and provide good answers:

e Deep Learning to learn embeddings (allows semantic matching between ques-

tions and snippets) [3].

e [oss functions such as Siamese contrastive loss [86] that maximise difference in

class scores.

Jurafsky and Martin characterises question-answering systems as either IR-based (text-
based) or knowledge-based. IR-based QA systems can rely on the tried and tested
methods such as tf-idf, BM2S5 etc. to try and find the most relevant snippet that answers
a user question. Knowledge-based systems however, attempt to construct a semantic
understanding of both the query and potential answer candidates to provide a suitable

ansSwer.

In practice, current best empirical results are obtained from hybrid systems using both
IR and knowledge base components. Figure 2.9 shows the major components of a
question-answering system. We extend the original diagram and include e-commerce
specific steps such as integrating a curated product catalogue to cross-reference prod-

ucts and also user purchase intent prediction to help rank answers (a user just entering

53

(3) Candidate (4) Confidence

(1) Question Processing (2) Candidate An- Answer Scoring Merging and Ranking

swer Generation

candidates

Focus Detection User with

e Passage Retrieval candidates Intent confidence | Merge and
. . oo assages — T Rank

Classification passag l

Prediction

; AN g Answers
- Answer Extraction \| | Answer
Named Entity From Text Resources Evidence
Tagging Sources
Relation B A
. Relation Retrieval
Extraction =
/ A
Product | E-commerce ! : Best Answer
.| | Catalogue | Taxonomy = Ev1df3nce with
Lexical Answer Retrieval Confidence
Type Detection and
From Structured Data Scoring

FIGURE 2.9: After [3]. Main components of a hybrid question-answering system
(IBM Watson in this case from 2011), organised as a processing pipeline with distinct
phases: question processing, passage retrieval, answer processing.

the research phase may prefer longer, more involved answers whereas a user close to

purchasing may prefer short, unambiguous answers).

2.8.3.1 Churn Prediction

For merchants who rely on recurring revenue from users (e.g. telecommunications
providers, insurers), predicting (and then trying to dissuade) users from leaving is an
important topic. A large telecoms provider made a significant dataset available in [87]
to predict churn as well as buy new products or services (appetency), or buy upgrades

or add-ons proposed to them to make the sale more profitable (up-selling).

54

2.8.4 Customer Relationship Management (CRM)

The discipline of Customer Relationship Management or CRM attempts to build up a
multi-modal, long-term view of the customer for the mutual benefit of the customer
and the merchant. Therefore rather than focusing on short-term user intents such as
purchase prediction or content interaction, CRM applies a more holistic approach. An
example would be understanding the user’s longer-term and / or recurring motivations

as well as shorter-term actions.

2.9 Research vs Real World Usage

The e-commerce domain is inherently empirical - any new research technique or claim
will be tested with real users and products and rejected if it fails to meet expectations.
But there are also nuances in the commercialisation of e-commerce research (i.e. how
research permeates into production systems), particularly as it relates to hybrid ML

research.

The largest e-commerce retailers (Amazon, eBay, Taobao et al) build, maintain and
extend their own systems, leveraging open-source components heavily but retaining

full control over the software development stack.

In contrast, middle-tier operators (and certainly small operators) do not do this due to
lack of expertise and high cost - most of these operators standardise on a commercial

offering such as ATG Web Commerce [88], IBM Websphere [89] or SAP Hybris [90].

55

Therefore their ability to incorporate ML into their e-commerce presence is limited by

two factors:

1. How quickly and how well their selected platform vendor adds ML capabilities

to the platform.

2. How open the platform is, enabling the operator to integrate ML capabilities di-

rectly.

As the saying goes, “the future is here, it is just not evenly distributed”.

2.9.1 Automated Spend

A unique characteristic of e-commerce environments is that real spend is immediately
measurable. All major portals such as Amazon, eBay, Google, Taobao, Facebook, Twit-
ter and Instagram offer real-time APIs that can be used to place bids for targeted adver-
tisements to reach specific subsets of users. Through these APIs, substantial spends can
be entirely automated and placed in the control of a trained model. However, given the
current lack of interpretability and good visualisations for trained models (see Chapter
7), it is a very brave e-commerce director who would choose to do this. At the very
least, a skilled human administrator will still be used to monitor and supervise model

selections before money is spent on advertising bids.

56

2.10 Summary

In this chapter, we have briefly described the e-commerce domain, and how machine
learning has been applied to it. The fields of information retrieval and recommender
systems have figured heavily in our review since search and content discovery are so im-
portant to e-commerce. We have identified the problem of deciphering user intent from
anonymous clickstreams as one which remains important and acts as a cross-cutting
concern affecting many other e-commerce tasks. In the following chapters we will con-
struct and test various models to solve the user intent task - in Table 2.2 we compare
the models covered in this chapter and our logic for selecting the candidates chosen for
detailed examination. No single model is entirely suitable for the task at hand, but some
models (HMM, kNN) are disqualified outright due to significant flaws which cannot be
remedied. This analysis shows that deep neural networks and gradient boosted decision
trees hold the most promise as candidate models for the user intent task. In our opinion

the most important model capabilities are:

1. The ability to process streams of data, i.e. data which loses fidelity when ex-

pressed as a single row or entry.
2. The ability to reconstruct the target function, which is non-linear and complex.

3. Interpretability - allowing an end-user to understand model reasoning underpin-

ning outcomes.

4. Scalability - as previously noted, e-commerce datasets are at least reasonable in

size (tens of millions of events).

57

5. Simplicity - we prefer models that are more simple to train and perform inference
on as these models can be promoted into production environments in a straight-

forward manner.

Characteristic Deep Neu- | Boosted kNN Hidden
ral
networks Decision Models Markov
Trees Models
Process stream- | Y N Y Y
ing data
Expressive power | Y Y Y Y
for user intent
task
Interpretable N Y Y Y
Scalable to large | Y Y N N
datasets
Straightforward N Y Y N
to train

TABLE 2.2: The main model candidates covered in this chapter compared using re-
quirements from the e-commerce domain.

In the next chapter we commence our detailed evaluation of machine learning ap-
proaches focused on the user intent detection task, beginning with a system architecture

OVErview.

Chapter 3

System Architecture and

Implementation

In this chapter we describe the practical implementation details of our system - encom-
passing data storage, pre-processing and feature construction, model training, hyper-
parameter tuning and evaluation. The experiments conducted in Chapters 4-6, as well
as the hyperparameter searches we employed to select the optimal model configuration
stem directly from design and implementation decisions documented in this chapter. In

particular, the code we authored combined with selected third party libraries enabled:

e Formal measurement of e-commerce clickstream feature importance in Chapter 4

to discover user intent using explicit features.

e Tuning of hyperparameters including model architecture in Chapter 5 to recover

close to state-of-the-art performance using learned, rather than explicit features.

58

59

e Experiments relating to training set sampling strategy and hidden state manage-

ment in Chapter 6.

Figure 3.1 illustrates the major system components in the architecture. Hyperparame-

ter tuning was provided by Spearmint [91, 92], which integrated with our Torch (Lua),

Python and Java code by invoking operating system processes with command-line ar-

guments.

[Model evaluation} [Hyperparameter tuning}\‘

AN e

E Output } \

4

v
y /
e /
,/ /

E Models }H { Model configuration]’/

AN
Ny
N
N
N

EData loading, preprocessing, feature construction}

X AN
/ AN
/ .
AN
AN
AN
_ N

/

/
\

\

EFlat file storage}

Rpark storage

FIGURE 3.1: All of our constructed systems share common components, as illustrated
here: a data loading and transformation layer, configurable models with a trainer, and

finally an evaluation module.

3.1 Data storage

We used an Apache Spark database [93] as a queryable store for the clickstream datasets

used. For our Gradient Boosted Machines (GBM) model, feature builders / extractors

were written in the Java programming language, while our RNN models were coded in

60

Python using the PyTorch [94] deep learning library. While Spark itself is designed to
be a fast and general-purpose cluster computing system, we used it in our architecture as
a data store, using the Spark SQL dialect (which supports most but not all of the ANSI
SQL specification) to query the clickstream data to calculate session-level and global
feature values. The Spark project also provides implementations of machine learning
classification and regression algorithms such as logistic regression, decision trees and
gradient-boosted tree regression, however we did not use these elements of Spark in
our implementation. Instead we used a dedicated GBM implementation [28] due to its
widespread use in the recommender systems community [56, 95, 96] - enabling straight-
forward comparison between our work and that of the wider research community. Spark
does not provide any deep learning model or training algorithm implementations itself,
although it is straightforward to load data from Spark and create input tensors for any

deep learning framework such as Keras, Tensorflow or PyTorch.

3.2 Datasets Used

The RecSys 2015 Challenge [97] and the Retailrocket Kaggle [98] datasets provide
anonymous e-commerce clickstream data well suited to testing purchase prediction
models. Both datasets are reasonable in size - consisting of 9.2 million and 1.4 million
user sessions respectively. These sessions are anonymous and consist of a chronologi-
cal sequence of time-stamped events describing user interactions (clicks) with content
while browsing and shopping online. The logic used to mark the start and end of a
user session is dataset-specific - the RecSys 2015 dataset contains more sessions with a

small item catalogue while the Retailrocket dataset contains less sessions with an item

61

catalogue 5x larger than the RecSys 2015 dataset. Both datasets contain a very high
proportion of short length sessions (<= 3 events), making this problem setting quite
difficult for RNNs to solve. The Retailrocket dataset contains much longer sessions
when measured by duration - the RecSys 2015 user sessions are much shorter in dura-
tion. In summary, the datasets differ in important respects, and provide a good test of

model generalisation ability.

For both datasets, no sessions were excluded - both datasets in their entirety were used
in training and evaluation. This means that for sequences with just one click, we require
the trained embeddings to accurately describe the item, and time of viewing by the user
to accurately classify the session, while for longer sessions, we can rely more on the
RNN model to extract information from the sequence. This decision makes the training
task much harder for our RNN model, but is a fairer comparison to previous work using
GBM where all session lengths were also included [23, 55, 56]. Table 3.1 provides a

brief comparison of the main characteristics for each dataset.

RecSys 2015 | Retailrocket
Sessions 9,249,729 1,398,795
Buyer sessions 5.5% 0.7%
Unique items 52,739 227.006

TABLE 3.1: A short comparison of the two datasets used - RecSys 2015 and Retail-
rocket.

3.2.1 Data Preparation

The RecSys 2015 challenge dataset consists of 9.2 million user-item click sessions.
Sessions are anonymous and classes are imbalanced with only 5% of sessions ending

in one or more buy events. Each user session captures the interactions between a single

62

user and items or products : S, = ey, s, .., €x, Where e, is either a click or buy event.

An example 2-event session is:

SID Timestamp ItemID | CatlID
1 | 2014-04-07T10:51:09.277Z | 214536502 0
1 | 2014-04-07T10:57:09.868Z | 214536500 0

TABLE 3.2: An example of a clicker session from the RecSys 2015 dataset.

Both datasets contain missing or obfuscated data - presumably for commercially sen-
sitive reasons. Where sessions end with one or more purchase events, the item price
and quantity values are provided only 30% of the time in the case of the RecSys 2015
dataset, while prices are obfuscated for commercial reasons in the Retailrocket dataset.

Therefore these elements of the data provide limited value.

SID Timestamp Item ID Price | Quantity
420374 | 2014-05-27T10:03:09.277Z | 214537888 | 12462 1
420374 | 2014-05-27T10:05:09.277Z | 214537850 | 10471 1

TABLE 3.3: Examples of the buy events from a buyer session .

The Retailrocket dataset consists of 1.4 million sessions. Sessions are also anonymous
and are even more imbalanced - just 0.7% of the sessions end in a buy event. This
dataset also provides item metadata but in order to standardise our approach across both
datasets, we chose not to use any information that was not common to both datasets.
In particular we discard and do not use the additional “addtobasket” event type that is
present in the Retailrocket dataset. Since it is so closely correlated with the buy event
(users add to a basket before purchasing that basket), it renders the buyer prediction task

trivial and an AUC of 0.97 is easily achievable for both our RNN and GBM models.

63

3.3 Data Pre-processing and Transformation

The primary tasks encountered when dealing with clickstream data are:

e Conduct exploratory data analysis [99] - for example to count the number of
unique entries in a given column which is then used to select the width of the

relevant embedding for LSTM, or as input into a feature design for GBM.

e Remove (filter out) unwanted sessions in the data - e.g. in the Retailrocket dataset
[98], sessions that are too long will cause the GPU to run out of memory when
they are loaded into a training batch and the entire batch is zero-padded to the

longest length (long sessions can be thousands of events in length once unrolled).

The data pipeline must support two use-cases depending on the model being trained:

e For GBM, instantiate feature builders, load and transform the raw clickstream
data to features and output the constructed features in the LIBSVM file format

required by our chosen GBM implementation.

e For RNN / LSTM, load the raw clickstream data, transform the data to lookup
IDs for use with the embedding layer and maintain the session grouping in a 2-

dimensional tensor.

Figure 3.2 illustrates the colour-coded structure of the data pipeline used for the primary
models in this thesis - GBM and RNN / LSTM, as well as the third-party libraries

(PyTorch and XGBoost) used in the implementation. For both the GBM and RNN

64

models, the underlying core libraries (i.e. XGBoost and PyTorch) were pre-installed
on the training server. Additional dependencies necessary for GPU training of RNN-
based word language models were also pre-installed - CUDA and cuDNN. Our chosen
implementation of GBM [28] loads LIBSVM flat files from disk, while our RNN /
LSTM models use 2D in-memory tensors which are then converted to 3D tensors when
passed through an embedding layer - the pipeline supports both outputs. The colour
coding is as follows: green represents code assets written as part of this thesis. Blue
represents an output type from the system. Red represents a third-party library used by

the code.

In the case of GBM, new feature extraction code was deployed to the server while for the
RNN models, new model code and configuration was deployed. The code file transfer
mechanism used in both cases was rsync and code version control was provided by git.
In the future we would like to explore the use of containers to distribute well-defined
code packages as a way to exploit multiple servers during training. Containers were
not necessary in this work as we were able to train both GBM and LSTM models on a

single server.

3.4 Code Structure

Our design ethos for the Python code was to separate the main ML tasks and so the

structure is:

65

Type-specific UID generator
for embeddings (RNN models)

FBy FB, Output
writer
Clickstreams Feature builder engine (GBM)
Data loader
&

Sessions summarised into
1 row of

Main tensor and book keeping
tensors: targets, session
| lengths, session IDs
Our Data loader uses |

the PyTorch I
Datal.oader and Sampler f-memory
2D tensor
classes.

Models
(RNN,GRU,LSTM)
and training code

PyTorch
library

Spearmint-generated
experiments.

Spearmint

hyperparameter
tuning library

| training data and book keeping
| lists: targets, session IDs

\

LIBSVM
file format
&
GBM XGBoost
training code library

Model

configuration
service

FIGURE 3.2: The end-to-end system constructed, including the data load and transform

pipeline.

e session_runner.py: invoked directly from the command line or by Spearmint [91]

and used the argparse library heavily to configure the system, especially to tune

hyperparameters.

initiating the initial data load and model creation.

session_trainer.py: contains the main training and evaluation loops, as well as

session_data.py: load data and transform it to a 2D tensor ready for training. Re-

lies heavily on the DatalLoader framework from PyTorch for structure and logic.

session_model.py: Creates the model architecture being trained and also contains

the implementation of the forward pass which is then reversed by the PyTorch

auto-differentiation sub-framework for error back-propagation.

66

This split reflects some practical considerations in deep learning - in particular the reali-
sation that models change more frequently than data loading or training code. This code
organisation allows us to make model changes quickly (and controlled by configuration
flags so that they can be tested in both on / off configurations and with different hyper-
parameters) while insulating the rest of the codebase from these changes. The Python
code described here was deployed as the module titled “Models (RNN, GRU, LSTM)

and training code” in Figure 3.2.

3.5 Previous Iterations

All of the results in this thesis were generated using version 2 of the system. The first

implementation had a number of drawbacks which we addressed in the second version:

e The use of WEKA [100] to provide data loading and model implementations. We
found that while WEKA is full-featured, it did not scale to our datasets, nor does

it contain a robust RNN or GBM model implementation.

e Our chosen RNN implementation - Torch - contained a robust RNN model imple-

mentation but was deprecated during our development and replaced by PyTorch.

e Our code structure required us to calculate standard statistical metrics such as
mean, median, variance in Java, which lacks good implementations of both ML

and numerical analysis libraries when compared to Python.

We remedied these weaknesses in the second implementation - our codebase allowed us

to use Python libraries such as scikit-learn, pandas, numpy, scipy, and matplotlib. For

67

example, by moving to use the Python Pandas project [101], the need for Spark storage
was removed and the data could be loaded directly from the file system without any
reduction in speed. We ported our Torch Lua code to PyTorch Python code - this task

was relatively simple to complete for two reasons:

e PyTorch still relies on the old Lua core libraries but exposes their functionality
via a new Python API - thus we did not encounter any missing or different func-

tionality issues.

e Even the earliest PyTorch release came with some code samples and API docu-

mentation.

For the reasons outlined previously, in the second iteration of our system we moved to

use XGBoost [28] over the decision tree implementations we used previously in WEKA.

3.6 Model Training

Each model was trained according to its own specific algorithm. For GBM, there is a
single training algorithm and the metric to optimise for is changeable - we used AUC
(Area under the ROC curve). The GBM training algorithm however requires significant

hyperparameter tuning which we cover below.

In contrast to GBM, for RNNs the training setup is more complex. In order to train an

RNN we require:

68

A model with randomly-initialised weights (but carefully initialised and drawn

from a small range).

A criterion which implements our desired loss function.

A forward pass which propagates the inputs all the way through the model and

generates outputs.

A backward pass which propagates the criterion error or loss all the way through

the model.

The RNN framework used here supported Automatic Differentiation (AD) [94], there-

fore only the forward pass needed to be implemented in our code.

3.7 Summary

In this chapter we described the implementation of the system used to generate and
record the experiments carried out in Chapter 4, Chapter 5 and Chapter 6. We also

described the datasets used to carry out experiments in those chapters.

Having designed and built two iterations of a machine learning system, we would add

the following improvements to a third iteration:

e Provide support for deep learning frameworks other than PyTorch, for example
MXNet [102] and Tensorflow [103]. This would allow us to test different im-

plementations concurrently, and provide access to more training algorithms and

69

RNN variants as paper authors typically provide implementations in one favoured

framework.

e Provide support for Gradient Boosted Machine frameworks other than XGBoost,
for example CatBoost [29] and LightGBM [27] which have recently experienced
a surge in popularity in the recommender system and e-commerce analysis re-
search communities and claim superior training speed and test accuracy over XG-

Boost.

e Automate experiment management further - including automatic syncing of file

system, data, code and github issue tracking.

e Incorporate Tensorboard (a visualisation component of Tensorflow) for improved

visualisation of error rates during training.

e Preserve expensive data transformations using caching to speed up initial experi-

ment start times.

Overall, we believe that the second iteration of the system architecture has been success-
ful in supporting our research and experiments. It possesses flexibility where necessary,
and incorporates widely-used GBM and RNN implementations which are widely cited,

permitting us to compare our research and techniques with other researchers and groups.

In the next chapter we use Gradient Boosted Machines (GBM) to conduct a thorough

review of feature importance in the explicit feature setting.

Chapter 4

Traditional Machine Learning and

User Propensity

4.1 Introduction

In the first two chapters, we provided an overview of the machine learning and e-
commerce fields, as well as illustrating how machine learning - initially through im-
proving information retrieval has become indispensable to providing users with a good
experience when they browse and shop online. We also identified that the application of
machine learning to e-commerce has created a “squeezed middle” - merchants who face
steeply increasing advertising costs and price pressures in a race to the bottom as por-
tals make it easy for customers to compare similar products by attribute - but especially

price.

70

71

These merchants can tilt the balance back in their favour by focusing limited budget and
resources on the small subset of all e-commerce users who possess an intent to buy. In
this chapter, we analyse the problem of analysing user sessions to infer intent, including

the twin problems of model selection and feature design.

As previously stated, deciphering user purchase intent from website clickstreams and
providing more relevant product recommendations to users remains an important chal-
lenge in e-commerce. We outline our approach to the twin tasks of user classification
and content ranking in an e-commerce setting using an open dataset. Design and devel-
opment lessons learned through the use of gradient boosted machines are described and
initial findings reviewed. We also describe a novel application of word embeddings to

the dataset chosen to model item-item similarity which we build on in later chapters.

4.2 Problem Domain: Overview

The primary method used to gather data in the e-commerce domain is to log browser
requests for web pages ordered temporally and grouped by a session ID. These logs
are then used to train models which classify users by their intent (clicking, browsing,
buying) and what items those users are most interested in. Our motivation is to predict
the intent of web users using their individual and group prior behaviour and to select
from a potentially large set of available content, the items of most interest to match with
a specific user. Correctly identifying user intent and matching users to the most relevant

content directly impacts retailer revenue and profit [11].

72

4.2.1 RecSys Challenge

This work focused on an open dataset from the ACM RecSys 2015 conference chal-
lenge [97]. The challenge ran for nine months, involved 850 teams from 49 countries,
with a total of 5,437 solutions submitted. The winners of the challenge scored approx-
imately 50% of the maximum score. A variety of linear and non-linear classifiers were
employed as ensembles and two of the top three accepted submissions [55] and [56]
relied heavily on Gradient Boosted Machine (GBM) classifiers, with [56] employing

both Neural Networks and GBM.

The challenge dataset is a snapshot of web user activity where users mostly browse and

infrequently purchase items from a catalogue. The data is:

1. Reasonable in size - containing 34,154,697 events grouped into 9,249,729 ses-
sions. The sessions comprise events over 52,739 items distributed over 338 cate-

gories, with 19,949 of the items purchased.
2. Imbalanced - buyer sessions represent just 5.51% (509,696) of the total.

3. Incomplete - for example 49.5% of the clicks do not contain a category ID for the

item clicked.

The objective function to maximise is:

, [Ss] | |AsnBs|

Score(SI) = Z 4.1)

VseSl |Sp|

else — — 5]

73

where:
SI = sessions in submitted solution A, = predicted buy items in session s
S = all sessions in the test set B, = actual bought items in session s

s = session in the test set

S, = buy sessions in the test set

The top submission for the competition achieved a score of 63, 102, 47% of the maxi-
mum score attainable: 135,176, underlining the difficult nature of the task. Moreover,
virtually all submissions achieved a negative score on the first component of the score
(separating buyer sessions from clicker sessions), again demonstrating the difficulty in

discerning between true and false positive cases.

The score is maximised by correctly classifying true buyers while minimising the num-
ber of false buyers (i.e. clickers). This is followed by the recommendation or ranking
task, where for each buyer the exact items purchased are predicted from the click set for

that buyer (a buyer can purchase just one item clicked, all or some).

4.2.2 Wider Applicability

Classification and ranking in order to recommend are not specific to the e-commerce
domain. Multiple other domains such as security, finance and healthcare apply similar
techniques to solve domain-specific problems. Our intent is to generalise our framework
and approach to multiple domains. However, different domain problems will have sub-
stantially different objective functions - Table 4.3 shows that in the e-commerce domain

high false negative and false positive scores are inevitable but that model confidence

74

grows as the session length increases. It is easy to imagine a problem in the finance,
security or healthcare domains where better classification performance is required (but

equally better distinguishing data must also be available).

4.3 Implementation

We described Gradient Boosted Machines (GBM) in Chapter 2 and selected GBM here
as the initial model for a number of reasons. The trained models are interpretable in
terms of feature usage, gain and coverage. A robust, fast and scalable implementation of
GBM is available in [28]. GBM is also straightforward to train as it iteratively grows an
ensemble of Classification and Regression Trees (CART) to learn an objective function
with regularisation applied to promote generalisation on unseen data. New trees are
iteratively added during training to better model the objective function and correct for
the errors made by earlier trees. Figure 4.1 illustrates the data flow through the primary
modules of the system. Calculated features are saved in LIBSVM format (label:value)
and consumed by GBM to build a forest of CART trees. word2vec receives all sessions
(S. and Sp) and is used to calculate two distinct similarity embeddings - modelling items
that are frequently clicked together, and items that are frequently bought together. The
item model is trained on buyer sessions S, only, as only buyer sessions can contribute

towards the item component of the target score.

75

word2vec item
Scy Sb .
(click, purchase)
similarity embeddings

cosine GBM

similarity S, | item model
- ~

Feature builders Threshold optimiser

Datastore
Sh
—— (unprocessed

Fi. F, for predictions
events) L p
consistent GBM
numenc session model
labels
Scorer session
Label)
and item
management .
predictions

FIGURE 4.1: Primary modules of the end-to-end system implementation. The system
currently contains 10 feature builders calculating 68 features in total.

4.3.1 Framework

During the implementation, specific functions and attributes to enable efficient and
rapid progress were identified and coded into a re-usable machine learning manage-
ment framework which we cover in more detail in Chapter 7. The main properties of

this framework are:

1. Reproducibility. Threshold optimisation and hyperparameter values have a sig-
nificant impact on the accuracy obtained and thus final score. The framework
supports version control of code, data, logs and configuration relating to each

experiment.

2. Composition and Combinability. Currently we combine homogeneous models
together to solve a target task, however the framework also admits heterogeneous

models.

76

3. Rich data querying capabilities. Spark SQL is used to enable rapid, iterative data

analysis to test feature accuracy and to suggest new feature designs.

4. Consistent Feature generation across models. Feature re-use across models pro-

motes code re-use across models and experiments.

5. Labelling and aggregation. The framework stores labels at session and item level

through all segments of the transformation, training and scoring pipeline.

4.3.2 Features

For the session model, 40+ features and a one-hot item vector for the top 5,000 most
popular items were calculated from the dataset. For the item model, 20+ features were
calculated. The features overlap significantly with other competition submissions ([56],
[55]). The most common features used are well understood information retrieval met-
rics - Table 4.1 and Table 4.2 describe the top ten features for the session and item
models, graded by their feature importance score. Importance values are lower here
than for the item model in table 4.2 due to the number of features used in the session
model. GBM models are interpretable, allowing feature importance scores to be easily
calculated. Features are grouped into four types - Temporal, Counts, Similarity and
Price. In our opinion, temporal features model user engagement, price features model
item competitiveness (item prices rise and fall over time), count features model popu-
larity statistics over the dataset and similarity features model user intent - casual versus

focused browsing.

77

TABLE 4.1: The top ten session features after training for 7,500 rounds, ordered by
most important features descending.

Description Relative importance Type
Max time spent on an item (millisecs) 0.049 T
Global buys (last item) / Global clicks (last item) 0.048 C
Session duration (millisecs) 0.044 T
Global clicks (last item) 0.043 C
Min item price in session 0.041 P
Max value of(buys / clicks) in the session 0.04 P
Cross entropy of dwelltime across items 0.038 T
Max item price in session 0.038 P
Max click similarity in session 0.037 S
Click similarity standard deviation 0.037 S

The click and buy similarity metrics carry significant weight in this model, resulting in
a focused effort to improve them - beginning with a simple count-based Jaccard similar-
ity, progressing to matrix factorisation using Alternating Least Squares, to the current
best solution - using pair-wise cosine similarity on embeddings or vectors calculated for
each item. The current embeddings are of length 300, with each vector co-ordinate rep-
resenting a latent variable modelling the item set. Similarity-based features are strongly
represented in table 4.2, showing the effectiveness of the current similarity implemen-

tation.

4.3.3 Models and Training

The two terms of the objective function are independent, so a divide and conquer ap-
proach is a rational strategy [55, 56]. Two models were trained in parallel - the ses-
sion predictor and the item predictor. During the training phase, the quality of models

generated by GBM is sensitive to values chosen for some key values: the tree depth

78

TABLE 4.2: Top ten item features after training for 5,000 rounds, ordered by most
important first.

Description Relative Type
importance
Summed buy similarity 0.099 S
Max click similarity in session 0.097 S
Summed click similarity 0.097 S
Buy similarity standard deviation 0.096 S
Std deviation of buy similarity / click similarity x num clicks 0.091 S
Summed buy similarity / click similarity X num session clicks 0.083 S
Item dwelltime in this session 0.065 T
Global clicks for this item 0.064 C
Global item buys / global item clicks 0.063 C
(Global buys / global clicks) x num session clicks for this item 0.054 C

(max_depth), learning rate (eta) and breakpoint for new tree nodes (min_child_weight).
We currently use sensible values for these parameters as suggested by [56], with a hy-

perparameter search planned in future work.

It quickly became apparent that the classification task is more difficult to learn than the
recommending task - Area under the curve (AUC) is used to measure training progress
on a validation set and the best session classification AUC is 0.853 vs 0.895 for the
item prediction task. This is due to the imbalanced nature of the dataset and because
some of the most common sessions comprise those with lengths between one and three,
removing valuable context from some of the global features (for example cross-entropy,
click similarity and buy similarity). We partly mitigated the class imbalance issue by
down-sampling clickers by 50% and this resulted in a small score increase. Thus with
appropriate hyperparameter selection, GBM appears to be reasonably resistant to over-

fitting on the dominant class in an imbalanced setting.

79

4.3.4 Inference - Initial Results

The model confidence in predicting user behaviour and recommending items increases
based on session length. Therefore the thresholds (the probability value used to separate
clickers from buyers) were selected at a session-length level, instead of using a one fits
all value. Thresholds for both models were selected using grid search with a stepsize of
0.01 after training, using threshold start and end ranges known empirically to bracket
the optimal thresholds. As shown in table 4.3, it is necessary to reduce the probability
thresholds for session selection to an average of just 0.09 (0.069 if clickers are not
under-sampled), compared to an average of 0.47 for item selection. This low session
threshold value demonstrates the difficulty of the session classification task. In general,
it is important to use dynamic confidence thresholds predicated on session length to

maximise both the session and item components of the overall score.

The current implementation would have placed 6th or 7th (the conference did not con-
tain a paper from the second placed team) on the competition leaderboard out of 850 and
makes 99.4% of the GBM-only target score (58,442 vs 58,820 in [56]). The code for
the original scoring methodology used in the competition is no longer available [104],
however we reverse-engineered and validated the scoring methodology using three in-
put sources - the solution file provided after the competition ended, the solution file

provided by the authors of [55] and our own solution file.

80

TABLE 4.3: Session and item thresholds by session length with scores for the current
models, showing the increase in model predictive confidence as the number of events
per session grows.

Session Session Item Session Item
Length Threshold Threshold Score Score
1 0.05 0.4 -3276 3344
2 0.06 0.6 -11224 21620

3 0.07 0.54 -6393 14421

4 0.07 0.51 -4328 11246

5 0.08 0.53 -2620 8222

6 0.09 0.49 -1701 6537

7 0.11 0.44 -1067 4942

8 0.11 0.43 =177 3993

9 0.1 0.44 -601 3125

10 0.08 0.44 -485 2530
11 0.1 0.47 -322 2076
12 0.1 0.42 -252 1702
13 0.08 0.46 -212 1335
14 0.14 0.45 -119 1104
15+ 0.14 0.42 -554 6175
Totals -33931 92373

4.3.5 Optimising Click and Buy Item Similarity Features

The optimal similarity measure discovered to date is unique in the competition we be-
lieve. Multiple similarity implementations were evaluated including Jaccard similarity
and Alternating Least Squares (ALS) matrix factorisation - a staple technique in the rec-
ommender community. Currently, items are modelled as words, sessions as sentences
and each word is transformed into a low-dimensional distributed representation - the
embedding or word vector [41]. This feature is trained by maximising its log-likelihood

on the training set:

Ine = logQo(D = 1wy, h) +k E [logQa(D = 0|w, h)]

W Pyoise

81

where:

Qo(D = 1|w, h) = the binary logistic regression probability

h = the context (user session) D = corpus of all sessions
w = word (item ID)

f = learned embedding vectors

A good vector space model will map semantically similar words close together and
this feature exploits this property by calculating item-item similarity using pair-wise
cosine similarity. Further experimentation for these features can also be carried out,
focusing on document ordering, parameters such as embedding length (currently 300),
context (currently 15 words) and the best internal word2vec model to use - Skip Grams

vs Continuous Bag Of Words (CBOW).

4.4 Summary

In this chapter we showed how a homogeneous GBM implementation can learn to solve
the user intent classification problem on a well-known e-commerce dataset - competing
well with more advanced heterogeneous [56] and proprietary [55] solutions. In our
experiments, GBM functioned consistently well as a robust classifier, therefore we posit

that the score achieved relies substantially on careful feature engineering.

Given the preponderance of click / user event datasets in the e-commerce and rec-
ommender domains, we expect the work completed so far to generalise well to other

datasets in the same domain but we also note the strong possibility for some engineered

82

features to be domain or dataset-specific and also the significant feature engineering

effort required

In the next chapter we continue to focus on the problem of deciphering user intent, but
now our approach will change significantly. From this chapter, we can see that represen-
tation learning adds value in modelling e-commerce items, when used in conjunction
with hand-crafted features. Our modelling approach in the next chapter will use repre-
sentation learning exclusively, combined with a suitable model, to remove the feature

engineering burden associated with gradient boosting.

The material in this chapter draws substantially from [23], published at the 17th Annual

UK Workshop on Computational Intelligence.

Chapter 5

Predicting purchasing intent:
End-to-end Learning using Recurrent

Neural Networks

In the previous chapter, we demonstrated the importance of different types of features in
allowing the Gradient Boosted Machine model to accurately separate e-commerce user
sessions or clickstreams into our two target classes - clicker or buyer. One feature type
which is particularly effective is to build word vectors for clicked items based on session
co-occurrence using word2vec [41] and then to apply a simple similarity metric to these
vectors - cosine similarity in our case. Recall from Chapter 4 that learned word vectors
provided our best item similarity feature. In this chapter we build on this principle, and
extend it to the entire dataset, and progress from GBM to a machine learning model
which consumes word vectors in a more natural fashion - Recurrent Neural Networks

or RNN.
83

84

5.1 Introduction

We present a neural network for predicting purchasing intent in an e-commerce setting.
Our main contribution is to address the significant investment in feature engineering that
is usually associated with state-of-the-art methods such as Gradient Boosted Machines.
We use trainable vector spaces to model varied, semi-structured input data compris-
ing categoricals, quantities and unique instances. Multi-layer recurrent neural networks
capture both session-local and dataset-global event dependencies and relationships for
user sessions of any length. An exploration of model design decisions including param-
eter sharing and skip connections further increase model accuracy. Results on bench-
mark datasets deliver classification accuracy within 98% of state-of-the-art on one and
exceed state-of-the-art on the second without the need for any domain / dataset-specific

feature engineering on both short and long event sequences.

In the e-commerce domain, we propose that merchants can increase their sales volume

and profit margin by acquiring better answers for two questions:

e Which users are most likely to purchase (predict purchasing intent).

e Which elements of the product catalogue do users prefer (rank content).

By how much can merchants realistically increase profits? Table 5.1 illustrates that
merchants can improve profit by between 2% and 11% depending on the contributing
variable. In the fluid and highly competitive world of online retailing, these margins are
significant, and understanding a user’s shopping intent can positively influence three

out of four major variables that affect profit. In addition, merchants increasingly rely on

85

and pay advertising to much larger third-party portals (for example eBay, Google, Bing,
Taobao, Amazon) to achieve their distribution, so any direct measures the merchant

group can use to increase their profit is sorely needed.

McKinsey | A.T. Kearney | Affected by
shopping intent

Price management 11.1% 8.2% Yes
Variable cost 7.8% 5.1% Yes
Sales volume 3.3% 3.0% Yes

Fixed cost 2.3% 2.0% No

TABLE 5.1: Effect of improving different variables on operating profit, from [7]. In
three out of four categories, knowing more about a user’s shopping intent can be used
to improve merchant profit.
As we saw in Chapters 2 and 3, e-commerce systems can be thought of as a generator
of clickstream data - a log of {item - userid - action} tuples which captures user interac-

tions with the system. A chronological grouping of these tuples by user ID is commonly

known as a session.

Predicting a users intent to purchase is more difficult than ranking content for the follow-
ing reasons [23]: Clickers (users who only click and never purchase within a session)
and buyers (users who click and also purchase at least one item within a single session)
can appear to be very similar, right up until a purchase action occurs. Additionally,
the ratio between clickers and buyers is always heavily imbalanced - and can be 20:1 in
favour of clickers or higher [83]. An uninterested user will often click on an item during
browsing as there is no cost to doing so - an uninterested user will not purchase an item
however. In our opinion, this user behaviour is in stark contrast to other settings such
as predicting if a user will “like” or “pin” a piece of content hosted on a social media

platform after viewing it, where there is no monetary amount at stake for the user. As

86

noted in [60], shoppers behave differently when visiting online vs physical stores and

online conversion rates are substantially lower, for a variety of reasons.

When a merchant has increased confidence that a subset of users are more likely to
purchase, they can use this information in the form of proactive actions to maximise
conversion and yield. The merchant may offer a time-limited discount, spend more on
targeted (and relevant) advertising to re-engage these users, create bundles of comple-
mentary products to push the user to complete their purchase, or even offer a lower-

priced own-brand alternative if the product is deemed to be fungible.

However there are counterweights to the desire to create more and more accurate models
of online user behaviour - namely user privacy and ease of implementation. Users are
increasingly reluctant to share personal information with online services, while complex
machine learning models are difficult to implement and maintain in a production setting

[105].

We surveyed existing work in this area [55, 56, 106—108] and found that well-performing

approaches have a number of factors in common:

e Heavy investment in dataset-specific feature engineering was necessary, regard-

less of the model implementation chosen.

e Model choices favour techniques such as Gradient Boosted Machines (GBM)
[106] and Field-aware Factorisation Machines (FFM) [107] which are well-suited
to creating representations of semi-structured clickstream data once good features

have been developed [55, 56, 108].

87

In Chapter 4, an important feature class employed the notion of item similarity, mod-
elled as a learned vector space generated by word2vec [41] and calculated using a stan-
dard pairwise cosine metric between item vectors. In an e-commerce context, items
are more similar if they co-occur frequently over all user sessions in the corpus and
are dissimilar if they infrequently co-occur. The items themselves may be physically
dissimilar (for example - headphones and batteries), but they are often browsed and

purchased together.

However, in common with other work our model in Chapter 4 still requires a heavy in-
vestment in feature engineering. The drawback of specific features is how tied they are
to either a domain, dataset or both. The ability of deep learning models to discover good
representations without explicit feature engineering is well-known [109]. In addition,
artificial neural networks (ANNs) perform well with distributed representations such as
embeddings, and ANNs with a recurrence capability to model events over time - Re-
current Neural Networks (RNNs) - are well-suited to sequence processing and labelling

tasks [110].

Our motivation then is to build a good model of user intent prediction which does not
rely on private user data, and is also straightforward to implement in a real-world envi-

ronment. We address the following issues:

e What performance can RNNs with an appropriate input representation and end-

to-end training regime achieve on the prediction of purchasing intent task?

88

e Can this performance be achieved within the constraint of only processing anony-
mous session data and remaining straightforward to implement on other e-commerce

datasets?

5.2 Our Approach

As demonstrated in the previous chapter, classical machine learning approaches such
as GBM work well and are widely used on e-commerce data, at least in part because
the data is structured. GBM is an efficient model as it enables an additive expansion
in a set of basis functions or weak learners to continually minimise a residual error.
The weakness of GBM is a propensity for overly wide or deep decision trees to overfit
the training data and thus record poor performance on the validation and test set due to
high variance. GBM also requires significant feature engineering effort and does not
naturally process the sequence in order, rather it consumes a compressed version of it
(although it is possible to provide a one-hot vector representation of the input sequence
as a feature). Our approach is dual in nature - firstly we construct an input represen-
tation for clickstream / session data that eliminates the need for feature engineering.
Second, we design a model which can consume this input representation and predict

user purchase intent in an end-to-end, sequence to prediction manner.

5.2.1 Embeddings as item / word representations

Natural Language Processing (NLP) tasks, such as information retrieval, part-of-speech

tagging and chunking, operate by assigning a probability value to a sequence of words.

89

To this end, language models have been developed, defining a mathematical model
to capture statistical properties of words and the dependencies among them. Not-
ing the parallels between language modelling and user intent prediction with docu-
ments=clickstream sessions and words=items, we adapted a word language model [111]

to our target task.

Learning good representations of input data is a central task in designing a machine
learning model that can perform well. An embedding is a vector space model where
words are converted to a low-dimensional vector. Vector space models embed words
where semantically similar words are mapped to nearby points. Popular generators of
word to vector mappings such as [41] and [112], operate in an unsupervised manner -
predicting similarity or minimising a perplexity metric using word co-occurrence counts
over a target corpus. We decided to employ embeddings as our target representation

since:

e We can train the embeddings layer at the same time as training the model itself -

promoting simplicity.

e E-commerce data is straightforward to model as a dictionary of words.

e Embedding size can be increased or decreased based on dictionary size and word

complexity during the architecture tuning / hyper parameter search phase.

Unlike [41] and [112], we chose not to pre-train the embeddings to minimise a per-
plexity error measure. We observed that our model was less accurate under this regime
(which also required embedding weights to be frozen at training time).Instead we allow

the model to modify the embedding weights at training time by back-propagating the

90

loss from a binary classification criterion. Algorithm 1 outlines how embeddings are
created from the input data. A concrete example serves to illustrate how the algorithm
operates: if we consider the item ID 214536502 in our session from Chapter 4, then
214536502 is mapped onto the item lookup ID 1 and this ID is linked to the embedding

[—0.075, ..., +0.075].

Algorithm 1 The embedding creation algorithm.

1: for all fields € S do

2: id; < unique(f@'eldiype)//Retum a unique lookup ID for the input field. IDs are
unique per type (datetime quantile, item ID, item category).

3: embedding; < wuniform(min, maz,size) //An initialised 1-D vector of the
specified size drawn from a normal distribution bounded by min and maz.

4: save(id;, embedding;) I/Link and store the unique ID - embedding pair for future
use.

5: end for

5.2.2 Recurrent Neural Networks

Recurrent neural networks [40] (RNNs) are a specialised class of neural networks for
processing sequential data. A recurrent network is deep in time rather than space and
arranges hidden state vectors h! in a two-dimensional grid, where t = 1...T is thought
of as time and [= 1...L is the depth. All intermediate vectors h. are computed as
a function of Al , and hl='. Through these hidden vectors, each output y at some
particular time step ¢ becomes an approximating function of all input vectors up to that

time, xq,...,2;: [S].

91

5.2.21 LSTM and GRU

Long Short-Term Memory (LSTM) [113] is an extension to standard RNN units de-
signed to address the twin problems of vanishing and exploding gradients during train-
ing [114]. Vanishing gradients make learning difficult as the correct (downward) tra-
jectory of the gradient is difficult to discern, while exploding gradients make training
unstable - both are undesirable outcomes. Long-term dependencies in the input data,
causing a deep computational graph which must iterate over the data are the root cause
of vanishing / exploding gradients. Goodfellow et al. explains this phenomenon suc-
cinctly. Like all deep learning models, RNNs require multiplication by a matrix W.

After ¢ steps, this equates to multiplying by W* as shown in Equation 5.1 [109].

W' = (Vdiag(\)V ™! = Vdiag(\)'V ! 5.1

Eigenvalues () that are not more or less equal to 1 will either explode if they are > 1,
or vanish if they are < 1 as ¢ — oo. Gradients will then be scaled by diag(\)" and are
similarly affected, tending towards oo for very large values of diag(\)" or approaching

0 for very small values.

LSTM solves this problem by possessing an internal recurrence, which stabilises the
gradient flow, even over long sequences. However this comes at a price of complexity.
For each element in the input sequence, each layer computes the following function as

shown in equation 5.2.

92

iy = 0 (Wiiy + big + Whihe—1) + bpi)
fi = U(I/Vifl’t + bz’f + thh(t—l) + bhf)
gt = tanh(Wigxt + big + thh(t—l) + bhg)
(5.2)
Oy = 0<Wioxt + bio + Whoh(tfl) + bho)

Cr = firxcu—1) i * g

hy = oy * tanh(¢;)

where:

h; is the hidden state at time t,

¢; 1s the cell state at time t,

x, 1s the hidden state of the previous layer at time ¢ or input, for the first layer,
i, ft» g, 0¢ are the input, forget, cell, and out gates, respectively,

o is the sigmoid function.

Figure 5.1 provides a graphical representation of a single LSTM cell and its compo-

nents.

Gated Recurrent Units, or GRU [115] are a simplification of LSTM, with one less gate
and the hidden state and cell state vectors combined. In practice, both LSTM and GRU
are used interchangeably and the performance difference between both cell types is

often minimal and / or dataset-specific.

93

Output Gate

Forget Gate

FIGURE 5.1: A single LSTM cell, depicting the hidden and cell states, as well as the
three gates controlling memory (input, forget and output).

5.3 Implementation

We prepared each column in the dataset as follows:

Session IDs are discarded (of course we retain the sequence grouping indicated

by the IDs).

Timestamps are quantised into bins of 4 hours in duration.

Item IDs are unchanged.

Category IDs are unchanged.

Purchase prices are unchanged. We calculate price variance per item to convey

price movements to our model (e.g. a merchant special offer).

94

e Purchase quantities are unchanged.

Each field is then converted to an embedding vocabulary - simply a lookup table map-
ping values to integer IDs. We do not impose a minimum occurrence limit on any field
- a value occurring even once will be represented in the respective embedding. This
ensures that even long tail items will be presented to the model during training. Lookup
tables are then converted to an embedding with embedding weights initialised from a
range {-0.075, +0.075} - Table 5.2 identifies the number of unique items per embedding
and the width used. The testing dataset contains both item IDs and category IDs that
are not present in the training set - however only a very small number of sessions are

affected by this data in the test set.

This approach, combined with the use of Artificial Neural Networks, provides a learn-
able capacity to encode more information than just the original numeric value. In our
opinion for example, an item price of $100 vs $150 is not simply a numeric price dif-

ference, it can also signify learnable information on brand, premium vs value and so

on.
Dataname | Train | Train+Test | Embedding
Width

Item ID 52,739 04,287 100

Category ID | 340 348 10

Timestamp | 4,368 4,368 10

Price 667 667 10

Quantity 1 1 10

TABLE 5.2: Data field embeddings and dimensions, along with unique value counts
for the training and test splits of the RecSys 2015 dataset.

95

Dataset Events before | Events after | % increase
RecSys 2015 41,255,735 56,059,913 36%
Retailrocket 2,351,354 11,224,267 377%

TABLE 5.3: Effect of unrolling by dwelltime on the RecSys 2015 and Retailrocket
datasets. There is a clear difference in the mean / median session duration of each
dataset.

5.3.1 Event Unrolling

In [67], a more explicit representation of user dwelltime or interest in a particular item
15 1n a sequence e;,, ..., ¢; 1s provided to the model by repeating the presentation of
the event containing the item to the model in proportion to the elapsed time between
e;, and e;_ . In the example 2-event session displayed previously, the elapsed time
between the first and second event is 6 minutes, therefore the first event is replayed
3 times during training and inference ([360/150]). In contrast to [67], we found that
session unrolling provided a smaller improvement in model performance - for example
on the RecSys 2015 dataset our best AUC increased from 0.839 to 0.841 when using
the optimal unrolling value (which we discovered empirically using grid search) of 150
seconds. Unrolling also comes with a significant cost of increasing session length and

thus training time - Table 5.3 demonstrates the effect of session unrolling on the size of

the training / validation and test sets on both datasets.

5.3.2 Sequence Reversal

From [23], we know that the most important item in a user session is the last item
(followed by the first item). We also know that sequence reversal has been reported to

improve model performance in the sequence to sequence translation setting [35]. To

96

capitalise on this, we reversed the sequence order for each session before presenting
them as batches to the model. Re-ordering the sequences provided an increase in test

AUC on the RecSys 2015 dataset of 0.005 - from 0.836 to 0.841.

5.3.3 Model

5.3.3.1 Model Architecture

The data embedding modules are concatenated and presented to a configurable number
of RNN layers (typically 3), with a final linear layer combining the output of the hidden
units from the last layer. This output value represents the models confidence probability

in class membership. Figure 5.2 illustrates the model architecture.

Given that we wish to distinguish user intent into two main classes, the model is trained
by minimising an unweighted binary cross entropy loss as shown in Equation 5.3. Al-
though the classes are heavily imbalanced, we do not rescale the weight of the under-
represented class to compensate as we found this approach slightly reduced perfor-

mance.

where:
x,, 1s the output label value from the model [0..1]

Yy, 1s the target label value {0, 1}.

We conducted a grid search over the number of layers and layer size by RNN type, as

indicated in Table 5.4 below. The State of the Art baseline for comparison is 0.853. For

97

Input RNN 1 RNN 2 RNN 3 Linear Output
layer (256) skip (256) (256) layer layer

Item embedding —

Category embedding — . \
Time embedding — ‘ —()— Output
N //
Quantity embedding — ‘ S/
///
Price embedding — . 1

N\

=

Price variance embedding —— ‘ . ‘

Input embeddings
co-trained with
RNNs or frozen

depending on ex-

perimental setting

Shared h(t)
(and c(t))

FIGURE 5.2: Model architecture used - the output is interpreted as the log probability
that the input represents either a clicker or buyer session.

all cell values, we trained the model in question for 4 epochs. For the standard RNN
model variant with 512 cells, training became unstable after 2 epochs, which explains
why these AUC values are slightly lower than expected. We limited the layer search to

3 as we noted no discernible improvement above this level.

RNN (RELU) GRU LSTM
Layers | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3
Layer size
64 [0.828 [0.835 [0.836 [0.830 [0.834 [0.836 | 0.829 | 0.835 | 0.836
128 [0.831 | 0.835 | 0.838 [0.832 | 0.837 | 0.838 [0.833 | 0.838 | 0.838
256 | 0.831 [0.836 | 0.838 | 0.835 | 0.838 | 0.839 | 0.835 | 0.840 | 0.840
512]0.828 | 0.834 [0.834 | 0.836 | 0.839 | 0.839 | 0.836 | 0.840 | 0.841

TABLE 5.4: Model grid search results for number and size of RNN layers by RNN
type on the RecSys 2015 dataset.

98

5.3.3.2 Skip Connections

Skip connections are a device used to preserve inputs across model layers and reduce
signal attenuation during training. Li et al. show that skip connections simplify the
loss surface for some tasks, enabling quicker convergence at training time. In essence,
we are re-presenting the original inputs to each successive model layer along with the
output from the previous layer. The intuition here is that the model is more easily
able to solve the objective task by seeing both the original inputs as well as per-layer

abstractions at the same time.

5.3.3.3 Sharing Hidden Layer State Across Batch Boundaries

One model design decision worthy of elaboration is how hidden state information (and
cell state for LSTM) is shared between training batches. We found that best results
were obtained by not re-using any hidden state across RNN layers, in conjunction with
a randomised sampler for selecting batch candidates. For e-commerce datasets, trying
to connect batches together by sharing hidden state and deploying chronological / se-
quential sampling is not the best training approach to use - indeed far from it. This
insight led to a very significant improvement in AUC, increasing from 0.75 to 0.84 and

this finding is expanded on in Chapter 6.

99

5.4 Experiments and results

In this section we describe the experimental setup, and the results obtained when com-
paring our best RNN model to GBM, and a comparison of different RNN variants (stan-

dard, GRU, LSTM).

5.4.1 Training Details

Both datasets were split into a training set and validation set in a 90:10 ratio. We chose
this ratio empirically to maximise the number of buyer sessions presented to the model
at training time as buyer sessions are relatively rare compared to clicker sessions. The
model was trained using the Adam optimiser [117], coupled with a binary cross entropy
loss metric and a learning rate annealer. Training was halted after 2 successive epochs of
worsening validation AUC. Table 5.5 illustrates the main hyperparameters and setting

used during training.

Dataset split 90/10 (training / validation)
Hidden units range 128 — 512 : 512 optimal
Embedding width 10 — 300 : 100 optimal for items
Embedding weight —0.075 to +0.075
Batch size 32 — 256 : 256 optimal for speed
and regularisation
Optimiser Adam, cyclic learning rate (1-cycle policy: le™ - 1)

TABLE 5.5: Hyper parameters and setup employed during model training.

We tested three main types of recurrent cells (standard RNN, GRU, LSTM) as well as
varying the number of cells per layer and layers per model. While a 3-layer LSTM
achieved the best performance, standard RNNs which possess no memory mechanism

are able to achieve a competitive AUC. The datasets are heavily weighted towards

100

shorter session lengths (even after unrolling - see Figure 5.4 and 5.9). We posit that
the power of LSTM and GRU is not needed for the shorter sequences of the dataset, and
standard recurrence with embeddings has the capacity to model sessions over a short

enough sequence length.

5.4.2 Overall results

The metric we used in our analysis was Area Under the ROC Curve or AUC. AUC is
insensitive to class imbalance, and also the raw predictions from [55] were available to
us, thus a detailed, like-for-like AUC comparison using the test set is the best model
comparison. The organisers of the challenge also released the solution to the challenge,
enabling the test set to be used. After training, the LSTM model AUC obtained on
the test set was 0.841 - 98.6% of the AUC (0.853) obtained by the state-of-the-art
(SotA) model. As the subsequent experiments demonstrate, a combination of feature
embeddings and model architecture decisions contribute to this performance. For all
model architecture variants tested (see table 5.4), the best performance was achieved

after training for a small number of epochs (2 - 3). This held true for both datasets.

Our LSTM model achieved within 98% of the winning GBM-based model on the Rec-
Sys 2015 dataset, and outperformed our GBM model by 1.1% on the Retailrocket

dataset, as Table 5.6 shows.

RecSys 2015 | Retailrocket
LSTM 0.841 0.843
GBM 0.853 0.834

TABLE 5.6: Classification performance measured using Area under the ROC curve
(AUC) of the GBM and LSTM models on the RecSys 2015 and Retailrocket datasets.

101

ROC curves for LSTM and State of the art models

1.0 — LST™M -
SotA

0.8

0.6

0.4

True Positive Rate

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

FIGURE 5.3: ROC curves for the LSTM and State of the Art models - on the RecSys
2015 test set.

5.5 Analysis

We constructed a number of tests to analyse model performance based on subsets of
the test data where we can reasonably expect a divergence in model performance (for

example sessions with longer item dwelltimes could favour RNNs over GBM).

5.5.1 Session length

Figure 5.4 graphs the best RNN model (a 3-layer LSTM with 256 cells per layer) and
the SotA model, with AUCs broken down by session length. For context, the quantities
for each session length in the test set is also provided. Both models underperform for
sessions with just one click - clearly it is difficult to split clickers from buyers with such

a small input signal. For the remaining session lengths, the relative model performance

102

AUC for LSTM and SotA with session quantities by session length

1,200,000 1.0
--e-- LSTM AUC
--m-- SotA AUC
1,000,000 e -
A I e 08
¥ - e L QI iniuluiut: vtvisiets SenEt TECTE]
,» 800,000
s
ke 0.6
wn
4]
2 600,000 g
e ' <
9]
o
€ 0.4
2
400,000
0.2
200,000
0 0.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Session length

FIGURE 5.4: AUC by session length for the LSTM and SotA models, session quan-
tities by length also provided for context - clearly showing the bias towards short se-
quence / session lengths in the RecSys 2015 dataset.

is consistent, although the LSTM model does start to close the gap after sessions with

length > 10.

5.5.2 User dwelltime

Given that we unrolled long-running events in order to provide more input to the RNN
models, we evaluated the relative performance of each model when presented with ses-
sions with any dwelltime > 1. As Figure 5.5 shows, LSTM is closer to SotA for this
subset of sessions and indeed outperforms SotA for session length = 14, but the volume

of sessions affected (5,433) is not enough to materially impact the overall AUC.

103

0.8 1=
o.\\."“l---l—- ——
“0——-.-——o——:--:-21:21331223:::::1"1-:-..
2 0.7
--e-- LSTM AUC
--m-- SotA AUC
0.6

2 345 6 7 8 9101112131415
FIGURE 5.5: AUC