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E-commerce has revolutionised how we browse and purchase products and services

globally. However, with revolution comes disruption as retailers and users struggle to

keep up with the pace of change. Retailers are increasingly using a varied number

of machine learning techniques in areas such as information retrieval, user interface

design, product catalogue curation and sentiment analysis, all of which must operate at

scale and in near real-time.

Understanding user purchase intent is important for a number of reasons. Buyers typi-

cally represent <5% of all e-commerce users, but contribute virtually all of the retailer

profit. Merchants can cost-effectively target measures such as discounting, special of-

fers or enhanced advertising at a buyer cohort - something that would be cost prohibitive

if applied to all users. We used supervised classic machine learning and deep learning

models to infer user purchase intent from their clickstreams.

Our contribution is three-fold: first we conducted a detailed analysis of explicit features

showing that four broad feature classes enable a classic model to infer user intent. Sec-

ond, we constructed a deep learning model which recovers over 98% of the predictive

power of a state-of-the-art approach. Last, we show that a standard word language deep

model is not optimal for e-commerce clickstream analysis and propose a combined sam-

pling and hidden state management strategy to improve the performance of deep models

in the e-commerce domain.

We also propose future work in order to build on the results obtained.
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Chapter 1

Introduction

E-commerce is transforming every avenue of our online lives [8]. Transacting over $2.3

trillion globally in 2017 [9] and growing at an average rate of 10% annually globally,

consumers are increasingly purchasing all types of goods and services online. By con-

trast, many retailers are reporting year-on-year declines in older, physical distribution

channels [8]. The migration is only beginning, with just 3% of global commerce be-

ing conducted online [10]. Since 1995, the capabilities of online retailers have been

driven by parallel advances in all fields of computer science and electronics: informa-

tion retrieval, networking, faster and more scalable hardware have all contributed to the

online explosion. More recently, statistical and machine learning on large datasets has

come to the fore, enabling users to discover content using recommender systems and

search functions to become more relevant. Machine learning holds enormous potential

to further enhance the next wave of e-commerce systems.

1
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1.1 What is E-commerce?

E-commerce is the purchasing of goods and services - both physical and virtual - on-

line. In its earliest form, merchants focused on low-risk items that users were willing

to purchase without seeing them first - books and CDs. From there, online retailing

expanded to include insurance, leisure and business travel, automotive and property.

Today, anything can be purchased online, from fresh groceries to clothing. For mer-

chants, the attraction of online is reduced cost of distribution - fewer physical stores and

sales staff are needed. For users, e-commerce provides convenience, the ability to com-

pare prices and features easily and the flexibility to shop anytime and from any location

with a connection to the internet. Increasingly, machine learning is used to help users

to pro-actively find what they need.

1.2 Evolution of E-commerce

In our opinion, the progression of e-commerce can be divided into five main phases:

1. Infrastructure build out - the creation of the basic software and hardware building

blocks enabling e-commerce (1996 - 1999).

2. Content discovery and search - providing simple search interfaces which exposed

product inventory to users (2000 - 2004).

3. Improved discovery and search - rapid innovation in user interface design and

information retrieval techniques to improve the overall user experience (2005 -

2009).
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4. Mobile enablement - supporting the browsing and purchasing of content on small-

screen devices (2010 - 2015).

5. Enhanced functionality using machine learning - modifying system behaviour to

reflect user needs using individual and group user implicit feedback (2015 - now).

The first phase of e-commerce focused on enablement and infrastructure build-out. Re-

tailers invested in basic systems to sell inventory online - relational databases, inventory

management systems and websites - creating supply. Concurrently, datacentres, net-

works and ISPs provided connectivity to entire populations to create a complementary

demand. Capacity was grown in parcel delivery services and business processes adapted

to cater for the selling of goods online.

The second phase of e-commerce switched focus to providing content discovery tools

to users, along with better user interfaces. Retailers deployed early versions of systems

to guide users to products they are more likely to purchase and to the most popular

content - the Amazon “users who viewed this item also purchased..” feature [11] is a

good example of this. In this phase, most e-commerce systems used SQL to query

rigidly defined database schemas and thus were unable to apply information retrieval

techniques such as gazettes or fuzzy keyword matching to provide a more natural search

interface.

In the third phase, building a better search capability became the focus, resulting in

search engines which provide better search results to users, even when nondescript

terms and phrases are provided. In this phase, a significant overlap developed between

traditional search / information retrieval and recommender systems [12].



4

In the fourth phase, mobile device enablement became a key focus, with retailers de-

ploying both HTML and native shopping applications for users. The challenge with

mobile e-commerce is to retain functionality that users expect, when operating on a

constricted budget - screen size, processing power and network access. Users actively

prefer to browse on their mobile device for some e-commerce segments, particularly

where they do not need a large screen and / or have purchased the same item before.

We are currently in the fifth phase of e-commerce - continuing to employ machine

learning to enhance the experience of shopping online, through improvements to recom-

mendations, aids to navigation, personalised user interfaces and much more. Machine

Learning describes software which learns to improve its performance on a given task

over time by minimising an error metric or maximising a reward.

It is important to note that although we have (albeit artificially) time boxed the phases

here, it is entirely possible for some merchants to be far behind the capabilities of others.

In fact this is often the case. Leading retailers like Amazon, Netflix, eBay and Microsoft

have superior capabilities to smaller retailers due to their size, access to development

teams and massive investment in IT and machine learning infrastructure.

Figure 1.1 illustrates elements of this machine learning focus on the user. Individual

panels or tiles are populated by machine learning modules such as recommender sys-

tems or simple statistical calculations such as popular products with a high conversion

rate or a time limited special offer.
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Primary / hero offer(s)

Welcome back <<name>>, you have 2 recent orders

Personalised offer 1 Personalised offer 1 Personalised offer 1

Trending offer 1 Trending offer 1 Trending offer 1

FIGURE 1.1: Typical organisation for a main or homepage of an e-commerce website.

In this thesis, our focus is on the fifth phase - the intersection of e-commerce with

machine learning to improve outcomes for all participants, both users and merchants.

There are many ways that machine learning can be used to improve the lot of users,

including:

1. Recommender systems - helping users to discover new content based on their

preferences (both implicit and explicit), similarity to other users and content pop-

ularity.

2. Price / product alerts - helping users to change the timing of their purchases to

minimise cost or maximise value, or to know when a scarce item is in stock and

should be purchased.

3. My account functionality (saving preferences, important dates etc. and then pro-

actively interacting with users to advise on timely purchases etc.).



6

1.3 Current E-commerce Landscape

The advent of e-commerce utterly transformed traditional commerce, and remains dis-

ruptive at its core today - creating new winners and losers as user expectations change

rapidly. The newspaper industry is a good example, with a 50% decline in UK newspa-

per sales since 2005 [13]. People now expect to get their news for free and delivered to

their mobile device on the move - not in a newspaper that they must purchase or have

delivered to one physical location.

Another disruptive e-commerce theme across multiple retail domains is the comparison

website - products that are mostly fungible can be aggregated and compared, enabling

users to save significantly in areas such as insurance, travel, energy supply, mobile

phone contracts and broadband internet [7]. Consumers benefit from this price trans-

parency, and where products are truly fungible and interchangeable e-commerce has

created a more efficient marketplace, but for products that are not fungible or where

post-sales service can be skimped on (or descriptions are less than truthful), the con-

sumer can regret simply purchasing the cheapest option, while more suitable merchants

miss out on sales.

The structure of e-commerce has changed significantly since its inception. Control

of distribution or access to users has coalesced into a small number of portals - for

example Google Shopping, eBay, Amazon and Taobao [14]. Only medium and large

retailers can afford the significant, ongoing investment in e-commerce systems and all

merchants regardless of size, pay very significant marketing and advertising costs to

online partners via programs such as Google AdWords, Bing Ads, Facebook Ads and
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Twitter Ads. In 2010 [15], an important ruling was passed allowing merchants to bid

for display when competitor brand names, terms and keywords are searched on portals

such as Google. The positive impact of this is that any merchant (as long as they have

sufficient marketing budget) can compete with an established merchant with even the

strongest brand equity and recognition. The negative impact is that overall advertising

costs rise, as more companies compete when bidding for a constrained resource [16, 17].

Large portals face multiple challenges - content discovery, information retrieval and

search results ranking chief among them. Continual advances in information retrieval

have helped, but user sessions are often short both in time and number of interactions,

meaning that portals want to present relevant results quickly - in some cases even be-

fore the user has provided any input. Portals increasingly use recommender systems to

present the best (most relevant) mix of content to users.

These portals can use recommender systems with little downside - but for the merchant

who has no product reviews or ratings, or is not the cheapest, recommender systems can

have a catastrophic effect on trading and profit if they fall foul of the ranking algorithm

[12]. This can occur in two main ways:

1. Popularity bias - the merchant is new or is selling a new product which has no

user reviews or interactions - in this case the new entity is said to suffer from the

cold start problem. Although well-understood and mitigating solutions exist, it

still occurs in practice and penalises new merchants and products.
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2. Filter bubbles or lack of diversity - where users are only recommended items

or products related to their previous activity. Even popular items which are not

related to previous activity can suffer under this regime.

The current e-commerce landscape then, is one dominated by extremely large portals,

who use a combination of traditional information retrieval techniques and recommender

systems to help users find what they are looking for.

1.4 What’s Missing?

We argue that the online merchants are more often than not ignored by the field of

Computer Science / Software Engineering. As an example, the large research field of

recommender systems is focused on providing end-user utility (for example, suggesting

the best movie to rent or the book we think you will like best) - but not merchant utility

(here is the best customer for you to spend advertising on, here is the optimal price to

set for this product). A large amount of work has been conducted [3, 12, 18] to agree

the best metrics to measure user satisfaction (e.g. dwelltime per item, Mean Squared

Error (MSE), Discounted Cumulative Gain or DCG), but little work has been conducted

to measure merchant or retailer satisfaction.

It can be argued that a satisfied user implies a satisfied merchant but we rebut this. A

happy user is a user who gets the best value deal - their goal is set directly against the

goal for the merchant, which is to maximise their profit.
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Our focus on the merchant or retailer rather than the end-user is not altruistic, one-sided

or short-sighted. Retailers pay for the e-commerce internet - not end-users and not the

portals. The vast majority of Google’s revenues for example come from merchants who

advertise with Google. If merchants cannot compete or pay too much for advertising and

distribution, then they will go out of business, and competition will reduce, ultimately

resulting in a less efficient marketplace. Consumers will pay more and receive less in

return.

A healthy e-commerce ecosystem requires three sets of actors:

1. Portals / aggregators / agents of discovery.

2. Consumers who use these portals or visit retailers directly.

3. Retailers / merchants who sell or re-sell goods and services to consumers.

Figure 1.2 shows the interplay between the three sets of actors. Consumers can visit

merchant websites directly, but increasingly discover merchants and products via portals

and either purchase directly on that portal (who then claims a distribution or finders fee

from the merchant), or then connect to a merchant. The growth of portals represents

an opportunity and a threat to merchants. While they gain access to larger audiences of

potential customers, they must also pay handsomely for this access. To underline our

earlier point that merchants rely on portals, recently the European Union has opened

an investigation into unfair practices against retailers by one of the most dominant e-

commerce platforms, Amazon [19].
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BP BP BP BP BP

Portals: Amazon, eBay, Google, Facebook, Taobao

Display via advertising

Discover via search

Merchants

Consumers

FIGURE 1.2: The primary actors in an e-commerce system and how they interact with
each other.

1.5 Practical Impact of Machine Learning for Merchants

As we will see in Chapter 2, there are many different ways in which machine learning

can be employed in the e-commerce ecosystem. Therefore we should consider where

best to apply machine learning in order to address a pressing need that can be reason-

ably implemented. Commercially, merchants care deeply about their cost of advertising.

Large portal owners such as Amazon, eBay, Google, Yahoo, Facebook et al. all already

operate closed advertising systems which they control [16, 17]. However, directly run-

ning optimisation experiments in these environments would be prohibitively expensive,

even though we acknowledge that merchants spend an inordinate amount of their op-

erational budget on advertising. Even the best machine learning model will struggle to

compete in a closed and opaque system such as Google AdWords. Despite protestations
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to the contrary, AdWords is naturally run for the benefit of Google, not merchants, and

currently contributes over 85% of Google revenue ($26.6 billion of the $31.1 billion

revenue for Q1 2018) [20].

However, there is one task which can provide valuable input into the following merchant

challenges:

1. Improve bidding strategy (timing, amounts, semantics) on advertising - the largest

single area of operational spend.

2. Improve stocking and product catalogue management - ensuring that popular

items are always in stock.

3. Improve pricing strategy - maximising profit margins where user demand supports

the price and reducing price to grow volume where user demand is weak.

That task is discovering user intent. In information retrieval, intent signifies what infor-

mation the user is searching for based on their queries. Queries can be further segmented

into three main types - informational, navigational and transactional [18].

1.5.1 Problem Statement

In an e-commerce clickstream setting however, we propose a more focused definition

in Equation 1.1:

∀si ∈ S, prob(type(ei) = eb) = f(e0, .., en) (1.1)
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where:

S is the set of all user sessions

s is a user session containing n events {e0 . . . en}

ei is a tuple comprised of {timestamp, itemid, itemcat}

T is the set of event types {tc . . . tb}, with tc and tb representing the click

and buy event

∀e ∈ s ∈ Stest, type(ei) = ec

f is the model implementation (with multiple candidates)

The user intent task is tractable and attractive for a number of reasons:

1. User activity datasets (e-commerce clickstreams) are readily available.

2. Accuracy of user intent prediction is measurable to help refine models over time.

3. Near real-time prediction of user intent represents high-value actionable business

intelligence that merchants can use to only spend time, money and resources on

users who are likely to purchase.

1.6 Proposition

Our proposition is that machine learning can be used in the e-commerce domain for the

direct and measurable benefit of the merchant, and not just the end-user. Merchant ben-

efit or utility can be provided in multiple ways - predicting which users are more likely
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to purchase than others, assisting the merchant in pricing goods to optimise revenue

and profit. Additionally, we can measure the impact of our proposed merchant benefit

directly, rather than use consumer utility or satisfaction as a proxy measurement.

In order to test our theory, e-commerce datasets containing user activity are required.

Then we will either need to construct good features to correctly classify user intent

or use a technique which can construct a good representation by itself. Our goal is

to use data which is readily accessible and does not violate any privacy legislation or

require private data from end-users. In recent years, research has been conducted on

incorporating multiple signals from social networks into ML e-commerce models [21]

but this approach is increasingly frowned upon and difficult to implement. Users do not

want to share their private data and merchants do not want the overhead of storing and

processing it in a GDPR-compliant (General Data Protection Regulation) manner.

Let us consider a counter-argument to make the previous point clearer and illustrate

the trade-off between persuasion and transparency [22]. Imagine that we constructed a

model M0 which required the user to log in with their Facebook, Twitter or Instagram

credentials before a search query could be executed in order to provide more relevant

search results (the M0 model uses features which leverage a user’s friend graph and

other private items). Most users would baulk at these requests, even if they believed

that the search results would be better than those provided by a modelM1, which simply

used current, anonymous session interactions.

Lastly, we favour approaches which are straightforward to implement and can provide

near real-time decision support to merchants.
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1.7 Open Questions

There are three questions that we aim to answer in this thesis:

1. In the user intent discovery task, what is the performance difference between

classic machine learning techniques using explicit features when compared to

deep learning models using a learned representation?

2. What are good representations for e-commerce concepts such as product or user

that can be learned by an appropriate machine learning technique?

3. Can deep neural networks (DNNs) transfer from their traditional applications of

computer vision and natural language understanding to the user intent discovery

task without significant modifications?

1.8 Contribution

Our contribution to these questions is as follows:

1. We conducted a detailed analysis of explicit features showing that four broad

feature classes enable a classic model to infer user intent.

2. We constructed a deep learning model which recovers over 98% of the predictive

power of a state-of-the-art approach.
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3. We show that a standard word language deep model is not optimal for e-commerce

clickstream analysis and propose a combined sampling and hidden state manage-

ment strategy to improve the performance of deep models for the task of user

intent detection in the e-commerce domain.

The work conducted in this thesis was published in the following papers:

1. [23]: Classifying and Recommending Using Gradient Boosted Machines and

Vector Space Models, Humphrey Sheil and Omer Rana, Advances in Compu-

tational Intelligence Systems. UKCI 2017.

2. [24]: Predicting purchasing intent: Automatic Feature Learning using Recurrent

Neural Networks, Humphrey Sheil and Omer Rana and Ronan Reilly, ECOM

workshop at ACM SIGIR 2018.

3. [25]: Understanding E-commerce Clickstreams: a Tale of Two States, Humphrey

Sheil and Omer Rana and Ronan Reilly, Deep Learning Day workshop at ACM

SIGKDD 2018.

1.9 Thesis Roadmap

The following chapters are organised as follows:

• Chapter 2 reviews the current landscape of e-commerce and machine learning to

set the scene for our contributary work.
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• Chapter 3 sets out the system architecture used to construct, train and benchmark

the classic and deep models used in this work.

• Chapter 4 provides a detailed analysis of a particular classic model, Gradient

Boosted Machines (GBM), and the importance of different feature classes in the

e-commerce domain.

• Chapter 5 constructs and benchmarks a competing deep learning model with fur-

ther sections focused on model interpretability and model comparison.

• Chapter 6 explores how standard deep word-based language models must be mod-

ified to function effectively in the e-commerce domain for the user intent discov-

ery task.

• Chapter 7 reviews our hyperparameter tuning efforts.

• Chapter 8 provides a critical assessment of our work and places it in context to

existing work.

• Chapter 9 previews suggested future work and summarises the thesis contribution.

1.10 Summary

E-commerce is a domain where machine learning has already been applied successfully,

but much remains to be done - in particular, serving the needs of merchants more fairly

to ensure a healthy e-commerce ecosystem.
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In addition, the selection of a target e-commerce problem in practice also depends on

the availability of good data, the opportunity to directly impact and measure the perfor-

mance of the machine learning model and ideally, a computationally fast model which

can generate outcomes in near real-time to be effective in an e-commerce context. In

the next chapter, we will set out a short overview of machine learning and how it is

currently utilised in the the e-commerce domain.



Chapter 2

Background and Related Work

In our opinion, the intersection of e-commerce and computer science is an area of active

research for a number of reasons:

1. Clear, significant commercial interest - e-commerce is a real world problem with

immediate applicability.

2. The ready availability of datasets suitable for analysis - from user activity logs to

product catalogues.

3. A well-defined mechanism (A/B testing) to test new implementations and theories

in an online and offline setting.

The diagram below illustrates the broad anatomy of an e-commerce website from a user

/ functional perspective. We use this diagram to ground our further discussion of how

machine learning is currently used across this structure.

18
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Recommendations

Navigation

Search

Intent prediction

Homepage

Shopping basket

Product / item landing pages

Category landing pages

Review order page

Order confirmation page

Machine
learning
services

User
destinations

FIGURE 2.1: Broad anatomy of an e-commerce website from an end-user perspective,
providing a reference map for future discussions on how ML is applied to e-commerce.

2.1 Background

In the following sections, we provide an overview of machine learning, in order to

ground our overview of how it is used in e-commerce currently, and to inform more

detailed discussions in Chapters 3, 4 and 5.
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2.2 Machine Learning

Machine Learning precedes the field of e-commerce significantly - and if we include

statistics as a natural complement / pre-cursor to machine learning, the joint fields are

older still.

E-commerce is an ideal domain in which to train and deploy machine learning models

since good datasets are common and relatively easy to gather, while tasks are often

automated. For example, it is the norm for user sessions to be modelled as a tuple of

{userid − eventtype − itemid} and for these tuples to be grouped into user sessions

based on a maximum time window (for example 30 minutes). Web server logs are

regularly processed to extract these datasets and these datasets can then be fed into

multiple machine learning model candidates.

In Chapter 1 we stated that machine learning (ML) represented a class of software which

can learn to improve its own performance from past experience. Figure 2.2 illustrates

the primary or basic components of any machine learning system.

A minimal ML system consists of [26]:

1. A dataset - the input dataset with either output target labels (desired outputs) or

target mappings.

2. A model - the abstraction of the problem to be solved, or the mathematical struc-

ture by which the prediction yi is made from the input xi.
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Input data

ModelTask Error

Output

Representation learning / feature engineering

FIGURE 2.2: The primary components of a supervised machine learning system where
we have labelled data and thus can calculate an error as the difference between the

expected and actual output from the model.

3. A loss or error function which measures the difference between the actual model

outputs and desired outputs (we assume that our data is labelled and thus we are

training in a supervised setting).

4. A training or optimisation algorithm - using the loss function to modify the model

in some way so that future iterations provide better outputs for the task at hand.

Each of these items may be considered as a pluggable component where the imple-

mentation can be replaced to best fit specific needs (simplicity, speed, scalability, inter-

pretability).



22

2.2.1 Datasets

The input data, combined with the task we wish our model to learn, affects the selec-

tion of all other components in the ML system. Data can be virtually anything - from

images to video, audio, handwriting and so on. For the scope of this thesis however, the

datasets under consideration are e-commerce-related clickstreams, and thus are over-

whelmingly structured text. In addition, we can make the following generalisations

about e-commerce clickstreams:

1. They are large - typically with millions of entries or samples to consider.

2. They are heavily imbalanced - the class label or target we are interested in (buyers,

fraudsters) is far smaller than the dominant label (clickers, non-fraudsters).

3. Time plays an important role - users spend time dwelling on items, user sessions

have a length measured in events and time, and the entire dataset can often be

considered and processed as a time series.

2.2.2 Models

There are many types of model implementations available. While there is no single

agreed taxonomy to organise all of the model families, the following categories are

proposed in [26]:

1. Linear models.

2. Tree models.



23

3. Distance-based models.

4. Probabilistic models.

In the following sections, we focus on the subset of models relevant to the user intent

discovery task.

2.2.3 kNN - k Nearest Neighbours

kNN is an example of a distance-based model. It is simple to train - the model iterates

over and memorises the training data. Then at inference time a certain number - k ≥ 1

- of the points closest to the input data are used to vote and predict the majority class.

A variety of distance metrics (e.g. euclidean distance, Jaccard index, cosine similarity)

are used depending on the input data to create clusters of similar exemplars.

The training data consists of feature vectors xi and label pairs yi for each example

(x1, y1), (x2, y2), . . . , (xn, yn) and training time is fast - O(n) while inference perfor-

mance at run-time is slow - also O(n), since all examples need to be compared to the

input xi to find the closest k matches. kNN models have high variance since the decision

regions of the model are created directly from the training data.

2.2.4 Gradient Boosted Machines / Decision Trees (GBM / GBDT)

Tree models are very popular in Machine Learning - high quality implementations exist

and are readily usable [27–29]. They are fast to train and considered more interpretable
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. . .

FIGURE 2.3: In GBDT, each tree is a weak learner, and when combined these separate
trees form a single strong learner.

than other black box approaches (although complex trees or collections of trees are

certainly more difficult to understand). Decision trees used in data mining are of two

main types:

1. Classification tree analysis - used when the desired outcome is to predict the class

to which the data belongs.

2. Regression tree analysis - used when the predicted outcome can be considered a

real number (e.g. the price of a house, or a patient’s length of stay in a hospital).

The term Classification And Regression Tree (CART) analysis is an umbrella term used

to refer to both of the above procedures [26]. As their name suggests, trees are made up

of nodes which represent tests of supplied features (for example, test ifdwell time >

100) and edges which control the path to be followed based on the outcome of these

tests.

Trees used for regression and trees used for classification have some similarities but also

some differences, such as the procedure used to determine where to split. Ensemble

methods construct more than one decision tree: boosted trees incrementally build an

ensemble by training each new instance to emphasise the training instances previously

misclassified.
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Gradient Boosted Decision Trees (GBDT) do exactly this and attempt to iteratively

minimise the residual error, i.e. the error remaining after the most recent tree (weak

learner) has been added to the current ensemble. Figure 2.3 illustrates the concept

of additive trees which combine to form a single strong learner. We use colours to

illustrate that the individual trees constructed vary by structure and features used, and

are combined to minimise the overall error.

Different implementations of GBDT [27–29] use different heuristics and optimisations

to build trees (for example handling categorical variables differently, adding a regular-

isation term and / or favouring simpler trees to guard against overfitting) but all imple-

mentations share a common goal: at each iteration, minimise the remaining residual

error. Regardless of the implementation chosen, the performance of the trained model

is heavily reliant on the quality of the supplied feature set.

GBM / GBDT hold multiple state of the art benchmarks in e-commerce and we investi-

gate the performance of GBM in detail on the user intent discovery task in Chapter 4.

2.2.5 Markov Chains / Hidden Markov Models

Markov chains and their derivative - hidden Markov models, are both examples of prob-

abilistic machine learning models. A Markov chain is a model that represents the prob-

abilities of sequences of random variables. The central assumption in a Markov chain is

that all future states of a sequence can be predicted using only the current state, and no
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s1 s2

a12

s3 s4

y1 y2

b4(y2)

FIGURE 2.4: This example HMM with 4 states can emit 2 discrete symbols y1 or y2.
aij is the probability to transition from state si to state sj . bj(yk) is the probability to

emit symbol yk in state sj .

states prior to it. Figure 2.4 illustrates a very simple 4-state HMM. In this constrained

HMM, states can only reach themselves or their adjacent (prior and subsequent) state.

A hidden Markov model (HMM) is an extension to the standard Markov chain where

some events of interest are hidden or not directly observable. Chapter 8 of [3] (3rd

edition, currently under construction) provides standard terminology for Markov chains

and models as follows:

S = s1, s2, . . . , sn A set of N states

A = a11, a12, . . . , an1, . . . , ann a transition probability matrix A, each aij

representing the probability of moving from state i to state j

π = π1, π2, . . . , πN an initial probability distribution over states. πi is the

probability that the Markov chain will start in state i.

At first glance, HMMs seem like an ideal candidate to construct a model of user pur-

chase intent. Beneath a given complexity threshold, they are intuitively appealing and
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interpretable - much like probabilistic graphical models [30]. Moreover, they can ac-

commodate inputs of variable length so can model clickstreams naturally. However,

they suffer from some limiting drawbacks [31]:

1. They cannot express dependencies between hidden states - therefore long-range

correlations or connections cannot be modelled by a single HMM. In fact, only a

small subset of possible sequences can be modelled by a reasonably constrained

HMM.

2. HMMs model discrete states, and exclude the possibility of encoding other states.

3. If states should depend on multiple states, then the number of states increases

rapidly, e.g. N2 states are required if each state depends on two states.

In direct contrast to HMMs, neural network models (see below) can capture and model

continuous states which is a meaningful advantage. Empirically, a specific type of neu-

ral network model (Long Short Term Memory which we will cover in detail in Chap-

ter 5) began to outperform HMM in the domain of speech recognition in 2012 [32] and

since then in multiple other domains.

In [31], the concept of hybrid HMM - neural network models are proposed to combine

the best of both models however it is fair to say that there is still much work to be

done in this area. Much later in Chapter 8 we will cover a related concept to HMMs

- causal inference - which aims to provide interpretable, more powerful models which

can reason using facts and counter-factuals.
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2.2.6 Neural Network Models

Artificial Neural networks (ANNs) and in particular Deep Neural Networks (DNNs)

are well suited to problems that are non-linear and where the data contains nuances

and patterns not readily obvious to a human. Put another way, deep feedforward neural

networks are associated with complicated, non-convex objective functions that simpler

models cannot solve or approximate.

Artificial Neural Networks are complex, nonlinear and parallel computers composed of

very simple computing units or neurons. A neuron receives signals from other neurons,

combines them and depending on some threshold and an activation function, will either

fire or not. Neurons are organised in layers - input, hidden and output layers. Input

layers directly receive input data, output layer values are the final values from the net-

work after all processing has completed. Hidden layers are not strictly speaking hidden

- their values can be examined at any point during training or inference, but what they

are processing, i.e. the abstractions coded into one or more hidden layers, is always

open to interpretation, hence the name.

Figure 2.5 illustrates the canonical view of a simple neural network.

We note that neural networks fell dramatically out of fashion from 1989 - 2009, primar-

ily as a result of overpromising - the so-called (second) AI winter. They came back into

vogue from 2010 onward due to the proliferation of large datasets and highly parallel

hardware architectures on which to run them.
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FIGURE 2.5: A simple neural network. Units are divided into three types (input, hid-
den, output) and organised into layers. In this example the network is fully connected

in a feedforward manner.

2.2.6.1 Deep Neural Networks

Since 2010 deep neural networks (DNNs) [33, 34] hold state of the art performance

on domains such as language translation, handwriting recognition and varied computer

vision tasks including sequence to sequence translation [35] (relevant for clickstream

analysis). DNNs are closely related to ANNs, and it is largely the joint advent of a

hardware architecture (general purpose GPU or GPGPU) and open datasets such as

MNIST and ImageNet that enabled DNNs to achieve their performance.

The exact meaning of deep in DNN is not defined, but colloquially most researchers

take it to mean 10 or more hidden layers. DNN variants such as Highway Networks

[36] can have hundreds of layers. Figure 2.2.6.1 shows the deep model from Microsoft

Research used to win the 2015 ImageNet competition with 152 layers. The underlying
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trend throughout the ImageNet competition was the increase in number of layers used,

from GoogLeNet, AlexNet and finally ResNet.

FIGURE 2.6: The winner of the 2015 ImageNet competition from Microsoft Research
- ResNet [1], depicted alongside the VGG19 model.

DNNs must be trained in order to work effectively, and it is backpropagation combined

with gradient descent that is most often used to train DNNs. In supervised learning

back-propagation can be seen as the chain rule applied to the error derivatives from

the forward pass through the network [33]. Figure 2.7 illustrates how the forward and
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FIGURE 2.7: From [2]. Overview of backpropagation.

reverse passes are combined using back-propagation and stochastic gradient descent

to train a network. To start, a training pattern is fed forward, generating corresponding

output. Next, the error between actual and desired output is computed. Finally, the error

propagates back through the network, through updates where a ratio of the gradient ( δE
δwi

)

is subtracted from each weight. xi, wi, Φ are the inputs, input weights, and activation

function of a neuron. Error E is computed from output y and desired output or target t.

η is the learning rate.

Due to the large number of parameters, DNNs are particularly susceptible to overfitting,

and can create models which are brittle or behave badly when presented with mildly

perturbed or unexpected data - for example samples never seen before during training,

or samples drawn from a slightly different distribution [37].

A wide range of countermeasures have been designed to address overfitting, including

dropout [38] and regularisation [39].
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2.2.6.2 Recurrent Neural Networks

Recurrent neural networks [40] (RNNs) are a specialised class of neural networks for

processing sequential data. A recurrent network is deep in time rather than space and

arranges hidden state vectors hlt in a two-dimensional grid, where t = 1 . . . T is thought

of as time and l = 1 . . . L is the depth. All intermediate vectors hlt are computed as

a function of hlt−1 and hl−1t . Through these hidden vectors, each output y at some

particular time step t becomes an approximating function of all input vectors up to that

time, x1, . . . , xt [5]. We will see RNNs in more detail in Chapter 5.

2.2.6.3 Embeddings

Neural networks typically deliver their best performance not when consuming explicit

hand-crafted features, but instead learning the best representation through training.

In this regime, concepts in the input data (for example items or categories in the e-

commerce domain) are modelled as words and each word is then transformed into a

low-dimensional distributed representation - the embedding or word vector [41]. A

good vector space model will map semantically similar words close together. We will

cover embeddings in more detail in Chapter 5.

2.2.7 Loss / Objective Functions

A loss provides a numerical measure of the difference between the desired output of

a model and the actual output. Although this may sound obvious, it is a fundamental

design decision for any machine learning model. The loss function is also known as the
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objective function and this name gives a truer account of its purpose - it is measuring

the ability of a model to carry out the task asked of it. In other words, it is framing the

learning component.

Intuitively, we want outputs that are more different to be penalised more, and actual

outputs that are closer to desired outputs to be penalised less. The loss is then used to

update the model in some way by the training algorithm - the essential part of machine

learning.

2.2.7.1 Categorical Cross-entropy

The categorical (also known as multinoulli) distribution is a K class generalisation of

the two class Bernoulli [42]. Generally the prediction is a vector of probabilities for

each class, so the target yt is a class in the one-hot representation as a vector of length

K, k = 0 . . . K, where K is the number of classes. We will see this particular loss in

more detail in Chapter 5.

2.2.7.2 Auxiliary Losses

In deep learning, a useful augmentation to a primary loss is to augment it with another

associated loss - the so-called auxiliary loss. The immediate effect of this is to increase

the size of the loss and thus the size of the gradients and in some cases this can ame-

liorate the vanishing gradient problem, especially in a sequence processing setting with

recurrent neural networks (see Chapters 4 and 5).
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2.2.8 Training and Optimisation

The process of training an ML model involves providing an ML algorithm (that is, the

learning algorithm) with training data to learn from. The term ML model refers to the

model artifact that is created by the training process. Some models are created before

training, in particular deep learning models, while some training algorithms create the

model architecture from the training data e.g. Gradient Boosted Machines (GBM).

Different regimes of machine learning are clearly discernible - supervised, semi-supervised

and unsupervised, but in all cases the goal of training a machine learning model is to

provide the model with example data so that it learns to minimise some error metric

(or maximise some reward if reinforcement learning is used) and then to generalise to

unseen data.

In a supervised setting where labels are known, training is most often implemented as

gradient descent, for example Stochastic Gradient Descent or SGD. Various enhance-

ments have been proposed for gradient descent, including Nesterov momentum etc.

Although it may seem obvious that the goal of gradient descent is to find a global min-

imum in the gradient landscape, i.e. co-ordinates where the overall error is lowest, in

practice this is not the case - in fact a global minimum would represent significant over-

fitting on the training set, preventing good generalisation to unseen data and the over-

trained model would perform poorly in practice. Techniques such as dropout [38, 43],

L1 and L2 regularisation have also been developed to guard against overfitting. In fact,

[39] lists over 50 ways in which a model can be regularised.
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2.2.9 The Bias-Variance Tradeoff

Updating a model during training to minimise a specified error (for example mean

squared error) is a key step in machine learning. Models are affected by three types

of error [44]:

• Bias - aka underfitting, where the model cannot associate between features and

outcomes.

• Variance - aka overfitting, where the model cannot generalise from the training

set to unseen data.

• Noise - or the irreducible error (unpredictable changes or measurement errors),

which cannot be explained by any model.

The bias-variance trade-off essentially states that we can have a model with no bias or

no variance, but not both. Combining the three terms as per [45] we can see in equation

2.1:

E(y0 − f̂(x0))
2 = V ar(f̂(x0)) +Bias(f̂(x0))

2 + V ar(ε) (2.1)

where:

E = the error or difference between target and actual value

x0 = a given value of X

y0 = target value for input x0
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V ar(ε) = the irreducible error or noise in the dataset

f̂(x0) = actual value for input x0 produced by the model.

We can minimise (but not eliminate) bias and variance through the selection of an ap-

propriate training regime and training data. In addition, in some cases it may make

sense to train a biased model or estimator if our goal is to minimise the mean squared

error.

2.3 Machine Learning In E-Commerce

Now that we have provided an overview of machine learning, in the following sections

we propose how machine learning is used in, and influences the field of e-commerce as

follows:

1. As a common, visible service - used to improve the end-user experience directly,

e.g. recommendations, predicting user intent, learning to rank.

2. As a common, invisible service - used to improve the end-user experience indi-

rectly, e.g. catalogue management, fraud detection.

3. As an important e-commerce ecosystem service - for example predicting click-

through rates.

Our aim is to show the breadth and depth of the e-commerce domain, coupled with the

pervasive application of machine learning throughout the domain. An important point

to note is the inherent scale of e-commerce - any successful model must be able to train
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on very large datasets and produce predictions on unseen data in near real-time. Dean

and Barroso provides an insight into the varied techniques used to ensure that virtually

all users are happy with system performance even at massive scale.

2.4 Predicting Ad Click-through Rates

Given that the dominant business model of the web is offering a free service comple-

mented by monetisation through advertising, it comes as no surprise that predicting and

increasing click-through rates has received a lot of research attention [47, 48]. Predict-

ing ad click–through rates (CTR) is a massive-scale learning problem that is central to

the multi-billion dollar online advertising industry.

2.5 Content Discovery

Content discovery is one of the older applications of ML to e-commerce [11]. In this

use-case, the merchant or portal has far more content than the user can browse through

manually, or has noticed that users have low session time / high churn rates on the

service. Recommender systems [12] are widely used to predict what content or product

the user will be interested in based on their previous behaviour. Within the field of

recommender systems, a wide variety of machine learning techniques are employed to

achieve this goal, such as:

1. Statistical analysis (popularity) - this is often used in the cold start setting, where

no user information has been gathered yet [12].
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2. User similarity and item similarity using approaches such as matrix factorisation

[49].

3. Sequence processing using recurrent networks [50].

If unsolved, the user - content mismatch typically manifests in a number of ways, all

detrimental to the overall user experience and hence site popularity and ultimately prof-

itability [12]:

1. User paralysis - the sheer number of options cause the user to freeze and never

consume content [11].

2. The needle in the haystack - the user cannot find what they are looking for, either

by searching or navigation [11].

Recommender systems are designed to directly address this problem, by proposing con-

tent or products to users, after observing only a very small number of interactions or no

interactions at all (the so-called cold start problem). In some domains, recommender

systems work very well, for example 75% of all content consumed on the Netflix plat-

form comes from their various recommendation algorithms. From figure 2.1 we can

see that recommendations are commonly used across an entire e-commerce website - to

suggest new content, up-sell and cross-sell.

However, recommender systems also suffer from a number of drawbacks [51]. Feed-

back loops caused when training data is harvested from a production deployment where

users are already exposed to recommendation engines - causing confounding. Other
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measures such as low diversity of recommendation, high homogeneity of users and the

ability to create filter bubbles are well-known issues in the recommender community.

2.6 Predicting purchase propensity

Knowing what a user intends to do clearly has value. Search results can be made more

relevant, concrete calls to action can be targeted towards the user to help them discover,

browse or purchase new content or to persuade them to complete their purchase.

Most of the data used to infer user intent is implicit, not explicit. It is difficult to get

users to give feedback on their site experience, so instead we use their known behaviour

(i.e. their clickstream) to infer it. Joachims led the way in using implicit signals in the

form of clickthrough data to re-rank documents returned for a given query so that the

most relevant entries are at the top of the list. In this work, a Support Vector Machine

(SVM) was used to implement the ranking algorithm. Although the main purpose of

[52] is to improve the ranking function for a search engine, it is also inferring user

intent from implicit signals, as it is only when user intent is known that more relevant

results can be prioritised. Inferring user intent can also be situated as a special case of

personalised search. In [53], the authors utilise variability in user intent as measured

by several click-based measures (click entropy, potential for personalisation curves) to

show that different users will find different results relevant for the same query.

Another line of work relevant for user intent is change point detection in user prefer-

ences over time. In [54], Hidden Markov Models (HMM) are used to identify these

states based on an empirically-selected threshold of error. The common link here is
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using clickstreams as a proxy for user intent, i.e. an implicit signal. This is a concept

that we leverage heavily in the future chapters.

Forecasting whether or not a user will purchase an item is closely related to, but separate

from that of predicting content interactions. For example if user uk clicks on item im

and we know that im is both popular and frequently purchased, this allows our model

to be more confident in predicting that uk has a higher propensity to purchase than the

median or mean.

But many more local and global variables also need to be taken into account - the user’s

dwelltime or think time per item, the time of day and season, what other users are

currently doing on the site, merchant sales events or special offers [12, 55, 56].

However, the investment involved is worth it to the merchants and portals. Specific

actions can be directed to potential buyers to convince them to commit: targeted adver-

tising, special incentives such as time-limited discounts and so on.

The problem of user intent or session classification in an online setting has been heavily

studied, with a variety of classic machine learning and deep learning modelling tech-

niques employed. [55] was the original competition winner using one of the datasets

considered in later chapters using a commercial implementation of GBM with extensive

feature engineering and is still to our knowledge the state-of-the-art implementation for

this dataset.

Hidasi et al. uses RNNs on a subset of the same dataset to predict the next session

click (regardless of user intent) so removed 1-click sessions and merged clickers and

buyers, whereas this work remains focused on the user intent classification problem.
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[58] compares [57] to multiple models including kNN, Markov chains and association

rules on multiple datasets and finds that performance varies considerably by dataset.

[59] extends [57] with a variant of LSTM to capture variations in dwelltime between

user actions. User dwelltime is considered an important factor in multiple implementa-

tions and has been addressed in multiple ways. For shopping behaviour prediction, [60]

uses a mixture of Recurrent Neural Networks and treats the problem as a sequence-to-

sequence translation problem, effectively combining two models (prediction and rec-

ommendation) into one. However only sessions of length 4 or greater are considered

- removing the bulk from consideration. From [61], we know that short sessions are

very common in e-commerce datasets, moreover a user’s most recent actions are of-

ten more important in deciphering their intent than older actions. Therefore we argue

that all session lengths should be included. [62] adopts a tangential approach - still

focused on predicting purchases, but using textual product metadata to correlate words

and terms that suit a particular geographic market better than others. Broadening our

focus to include the general use of RNNs in the e-commerce domain, Recurrent Rec-

ommender Networks or RRNs are used in [50] to incorporate temporal features with

user preferences to improve recommendations, to predict future behavioural directions,

but not purchase intent. [63] further extends [57] by focusing on data augmentation and

compensating for shifts in the underlying distribution of the data.

In [64], the authors augment a more classical machine learning approach (Singular

Value Decomposition or SVD) to better capture temporal information to predict user

behaviour - an alternative approach to the event replication or unrolling methodology

used in this paper.
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Using embeddings as a learned representation is a common technique. In [65], em-

beddings are used to model items in a low dimensional space to calculate a similarity

metric, however temporal ordering is discarded. Learnable embeddings are also used in

[66] to model items and purchase confirmation emails are used as a high quality signal

of user intent. Unrolling events that exceed an arbitrary threshold to create a better input

representation for user dwelltime or interest is addressed in [67]. In [68], Convolutional

Neural Networks (CNNs) are used as the model implementation and micro-blogging

content is analysed rather than an e-commerce clickstream.

Predicting user intent using a variety of machine learning methods is a central focus

of this thesis. In Chapter 4 and Chapter 5 we will examine classical and deep learning

methods for inferring user intent from their anonymous clickstream data.

2.7 User Interface (UI)

Whether the user is browsing a site on a mobile device, laptop or desktop - the user

interface (UI) presented plays a critical role in their perception of the system overall.

Non-functional characteristics such as speed / responsiveness and stability matter, but

increasingly advanced UIs are tailoring or personalising themselves around the user

based on previous interactions [69].

The starting point for all e-commerce UIs is the F-shape or “golden triangle” - the

phenomenon in eye tracking studies which shows that most users focus on the top left

quadrant of a display. Figure 2.8 illustrates the effect clearly. The hot colours represent
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FIGURE 2.8: The golden triangle pattern of user eye-tracking clusters. Hotter (red,
yellow) colours signify more focus by the end-user, while cooler shades signify low

interest and user focus.

the most valuable segment of the screen - both commercially and from an information

retrieval / visualisation point of view.

Conditioned by consistent search engine UIs, users expect to see relevant results at the

top, and then work their way down the list. So the ranking method and algorithm is what

drives the UI experience for traditional search. But new UIs drive new user behaviour -

for example the traditional golden triangle assumption does not hold for image search,

or for browsing shopping results where a user’s attention is spread more equally across

a grid of results. A user can reasonably expect to find the best search result high up

for traditional search, and in the middle of the page (and in a central column) for e-

commerce search.

In [70], the authors propose reinforcement learning (Q-Learning) to infer how best to
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rank and dynamically display results based on a users preference, using permuted Dis-

counted Cumulative Gain (DCG) rather than normalised DCG as a reward signal. The

method ranks both the documents and positions, rather than just the positions. On-

demand video providers such as Netflix and Amazon also use UI layouts where the best

match may be multiple rows below the top row, and not even in the first position for that

row. The larger the product catalogue (and the more categories contained within it), the

more UI innovation is needed to help users find what they are looking for.

2.7.1 A/B Testing

A/B testing is the primary mechanism whereby the effectiveness of a new approach

or technique is tested by online experimentation. A statistically significant proportion

of traffic / users is diverted to the new variant (the B variant), while the remainder of

users continue to use the current variant (A). After enough data has been gathered, the

new variant either becomes the default or is discarded because it under-performs the

incumbent variant for a specific goal. Multi-variate (> 2 variants) testing can also be

used, as long as the mutations are all of the same base feature.

A large body of empirical work exists to support A/B testing [71] and all technology

companies such as eBay, Netflix, Google use A/B testing as a matter of course to guide

future product direction. At scale, Google and Microsoft regularly run hundreds or

thousands of experiments concurrently.

A/B testing suffers from a number of weaknesses which should be addressed during

experiment design [72]. A more nuanced criticism is that A/B testing can only directly
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measure short, not long-term gains (A/B testing is a greedy optimisation strategy, simply

selecting the variant with the most clicks when a more nuanced metric may offer better

long-term results), although [73] claims to address this flaw.

2.7.2 Guided Navigation

In guided navigation, machine learning is employed within the UI widgets normally

used to traverse the hierarchical structure of the e-commerce site - which is itself a mir-

ror of the product or item catalogue which underpins the site. Normally, as the catalogue

grows the navigation menu grows, until it is unfeasible to render it on a smartphone or

tablet, and / or unreasonable to expect a user to scroll past unwanted options in their

search for what they really need.

The optimisation of navigation and menus while minimising un-needed change has been

widely studied [74], [75] and multiple solutions have been proposed. In [76], an inno-

vative display widget is combined with a learning component to reduce item selection

time, while minimising the disruption factor to the user (users prefer static menus as a

remembering aid, but dislike very large / unwieldy static menus).

2.8 Information Retrieval

In this section, we move away from the user interface and focus on servicing user re-

quests, i.e. providing answers to user queries posed as efficiently as possible. Informa-

tion Retrieval (IR) operates at the very heart of search engines which are the dominant
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mechanism used to index and query e-commerce product catalogues.

2.8.1 Search

In e-commerce, search queries remain the dominant mechanism used to find content.

In classical search, users enter one or more terms or keywords and receive the top match-

ing index entries matching those terms. Calculating the top matching or most relevant

documents is an active area of research. One of the simplest and most widespread ways

is to use the well-known tf-idf mechanism [18]. In tf-idf, term frequency (tf) and in-

verse document frequency (idf) are combined to produce a composite weight for each

unique term in each document. The tf-idf weighting scheme assigns to term t a weight

in document d given by:

tf-idft,d = tft,d × idft.

In other words, tf-idft,d assigns to term t a weight in document d that is highest when t

occurs many times within a small number of documents (thus lending high discriminat-

ing power to those documents); lower when the term occurs fewer times in a document,

or occurs in many documents (thus offering a less pronounced relevance signal); lowest

when the term occurs in virtually all documents.

Two open-source search engines (Solr [77] and Elasticsearch [78]) dominate e-commerce

usage and both use the same component to perform document ranking - Lucene [79]. In

a practical setting, various heuristics are used to further increase or boost relevance, for
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example boolean conditions (must have / must not have), tf-idf and vector space models

which encapsulate domain-specific concepts.

The central concepts used in IR are a dictionary of terms, and an inverted index which

stores documents - term occurrences [18].

Other well-known IR algorithms are Ponte-Croft’s language model and BM25, which

we describe in the next section.

2.8.1.1 BM25

A widely-known and empirically successful term probabilistic relevance framework is

the Okapi Best Match 25 Model, commonly referred to as BM25 [80]. The model

computes local weights as parameterised term frequencies and global weights as RSJ

(Robertson Sparck Jones) weights. The original BM25 algorithm omitted the structure

of documents in the weighting process, clearly an important signal when we consider

that HTML documents are almost always organised using tags such as head, body, title,

description, paragraphs, divisions, forms, etc. To address this issue, the original BM25

researchers proposed a simple BM25 extension for weighting terms present in multiple

fields that they referred to as the BM25F Model [81]. To underline how important BM25

is to day-to-day e-commerce search, since Apache Lucene 6.0.0 was released (2016),

BM25 is the default similarity function used.
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2.8.1.2 Ponte-Croft

A language modelling (LM) approach to information retrieval was first proposed in [82].

In contrast to approaches such as BM25, in [82] Ponte and Croft argued strongly for the

effectiveness of the term weights that come from the language modelling approach over

traditional tf-idf weights. The difference between LM and PRF is that instead of overtly

modelling the probability P (R = 1|q, d) of relevance of a document d to a query q, the

LM approach instead builds a probabilistic language model Md from each document

d, and ranks documents based on the probability of the model generating the query:

P (q|Md).

Increasingly however, it is becoming clear that e-commerce search is not the same as

normal web search. The user behaviour is different - dwelltimes are longer, a user

may be happy / satisfied with search results but still continue to search as they are

comparing products. In [83], the authors call out the difference between e-commerce

search compared to generic search and propose a framework to model the different

stages of the conversion journey.

Looking beyond the current state of e-commerce search, we believe that there are three

open challenges to improving search in the future - these are not new challenges, but

they do sum up the current research focus:

• Improving results relevance.

• Increasing user satisfaction.

• Enabling discovery of new content.
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As the field of e-commerce matures and grows, the limitations of traditional search are

being explored and addressed. In [84], the authors are motivated by the restrictions

imposed by “bag of words” search queries to propose a simplified query ontology that

is optimised explicitly for e-commerce (allowing users to quickly find specific concepts

such as brands and products). Visual search is also becoming popular, and in [85] the

authors propose an extension to standard inverted-index search techniques by encoding

image feature vectors or embeddings into a collection of string tokens in a way such

that more similar vectors will share more string tokens in common. Enabling this type

of search means that users no longer need to know exact terms such as manufacturer,

model number - simply uploading a photograph taken from a smartphone camera will

suffice to locate the product in a catalogue.

2.8.2 Natural Language Processing

Parsing and tokenisation of product descriptions is a key problem to solve in e-commerce

- without this step, the inverted index and associated postings data structure used in the

search process cannot be created correctly, resulting in less relevant answers to queries.

In earlier generations of e-commerce systems, users became accustomed to providing

the system with exact-matching keywords in order to obtain search results. However,

users are increasingly less likely to do this and expect to receive relevant search results

when more natural terms are used.
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2.8.3 Question Answering (QA)

The advent of accurate speech-to-text systems has opened up an entirely new way of

searching and navigating while shopping: dialog or question answering [3].

Here is a concrete example - imagine a user wants to purchase an inexpensive camera

to begin learning photography. Typical search queries would be “cheap camera”, “best

starter camera” etc. In question-answer mode however, the user can naturally ask “what

is the best value camera for a beginner” and expect a relevant result - a good camera to

start out with at a reasonable price point.

Servicing these requests is not trivial. Just some of the problems that require solutions

to be in place are Named Entity Recognition, word disambiguation and anaphora (an

expression whose interpretation depends upon another expression) resolution. Within

the domain of question-answering, there is a wide range of tasks. Jurafsky and Martin

lists some common question topologies or categories such as abbreviation expansion,

description, entity, human, location and numeric. Additionally, well-curated product

taxonomies need to be in place to help situate questions and answers.

Table 2.1 contains a cross-vertical sampling of questions and answers from [6]. The

dataset used in [6] is a 1.4 million set of question-answer pairs from Amazon, thus

representing a good cross-section of the kinds of questions, concepts, entities and nu-

meric values we can reasonably expect any competent e-commerce QA system to learn.

In the table, ’?’ indicates an open-ended answer, i.e. where a clear binary yes or no
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does not suffice. An ellipsis indicates a long question or answer. It is clear that for e-

commerce QA, specific challenges exist such as understanding and incorporating prod-

uct attributes, SKUs, quantities, weights, sizes as well as subjective properties such as

’cheap’ or ’large’.

Category Question Answer Type
Video
Games

Will it work with Win-
dows 8?

Yes Y

Appliances Does this come with
power cord and dish-
washer hook up?

It does not come with a power cord.
It does come with the dishwasher
hookup.

?

Appliances Is it compatible to
replace my Maytag
UKF8001 Pur Refrig-
erator Water filter?

Yes, of course. The Woder Fridge
Filter fits behind the fridge or any-
where along the water line. There-
fore..

Y

Beauty can you fit make up
brushes in the trays

yes it comes with adjustable di-
viders..

Y

Automotive Are these cables made
of copper or aluminum?

Coleman’s website does indeed say
copper equivalent..

Y

Grocery Is there sugar added to
this product? Thank
you...

The best of my knowledge there is
no added sugar. There..

N

Home and
Kitchen

I’d like to use this for
a 34 oz capacity teapot.
Is it large enough?

Sorry, no. It makes one really
strong cup of tea or two “normal”
strength.

N

Sport and
Outdoor

Could you please con-
firm that this is made in
the USA? Thank you!

Yes this product is made in the
USA. The manufacturer is in Texas.

Y

Pet Sup-
plies

What is the smallest or
lowest weight dog it
will fit on?

It doesn’t work too well on my dog,
he’s a mix breed 10-12 lbs it needs
to be about a 15-20 lb at least I
would say.

?

Clothing,
Shoes and
Jewellery

How long does it take
to fully charge the bat-
tery?

About two hours from the com-
puter.

?

Musical In-
struments

Anyone tried this in
an effect loop, without
amp or cabinet mod-
elling?..

It works totally fine man, pretty
amazing sound for the cheap price.

?

TABLE 2.1: Sample questions and answers from [6] spanning a selection of common
categories.
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In fact, the problem of Question-Answering illustrates clearly how traditional informa-

tion retrieval techniques must be augmented by machine learning to provide an adequate

solution. Probabilistic or language model approaches cannot infer user intent, or pro-

vide a deep enough semantic search capability. Framed as a machine learning problem,

multiple techniques and approaches are brought together to understand user questions

and provide good answers:

• Deep Learning to learn embeddings (allows semantic matching between ques-

tions and snippets) [3].

• Loss functions such as Siamese contrastive loss [86] that maximise difference in

class scores.

Jurafsky and Martin characterises question-answering systems as either IR-based (text-

based) or knowledge-based. IR-based QA systems can rely on the tried and tested

methods such as tf-idf, BM25 etc. to try and find the most relevant snippet that answers

a user question. Knowledge-based systems however, attempt to construct a semantic

understanding of both the query and potential answer candidates to provide a suitable

answer.

In practice, current best empirical results are obtained from hybrid systems using both

IR and knowledge base components. Figure 2.9 shows the major components of a

question-answering system. We extend the original diagram and include e-commerce

specific steps such as integrating a curated product catalogue to cross-reference prod-

ucts and also user purchase intent prediction to help rank answers (a user just entering



53

Focus Detection

Question
Classification

Parsing

Named Entity
Tagging

Relation
Extraction

Coreference

Lexical Answer
Type Detection

From Text Resources

Document and
Passage Retrieval

Answer Extraction

passages

From Structured Data

Relation Retrieval

Product
Catalogue

E-commerce
Taxonomy Evidence

Retrieval
and

Scoring

User
Intent

Prediction

Answer
Type

Evidence
Sources

Merge and
Rank

Answers

Best Answer
with

Confidence

candidates

candidates
with

confidence

(1) Question Processing (2) Candidate An-
swer Generation

(3) Candidate
Answer Scoring

(4) Confidence
Merging and Ranking

FIGURE 2.9: After [3]. Main components of a hybrid question-answering system
(IBM Watson in this case from 2011), organised as a processing pipeline with distinct

phases: question processing, passage retrieval, answer processing.

the research phase may prefer longer, more involved answers whereas a user close to

purchasing may prefer short, unambiguous answers).

2.8.3.1 Churn Prediction

For merchants who rely on recurring revenue from users (e.g. telecommunications

providers, insurers), predicting (and then trying to dissuade) users from leaving is an

important topic. A large telecoms provider made a significant dataset available in [87]

to predict churn as well as buy new products or services (appetency), or buy upgrades

or add-ons proposed to them to make the sale more profitable (up-selling).
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2.8.4 Customer Relationship Management (CRM)

The discipline of Customer Relationship Management or CRM attempts to build up a

multi-modal, long-term view of the customer for the mutual benefit of the customer

and the merchant. Therefore rather than focusing on short-term user intents such as

purchase prediction or content interaction, CRM applies a more holistic approach. An

example would be understanding the user’s longer-term and / or recurring motivations

as well as shorter-term actions.

2.9 Research vs Real World Usage

The e-commerce domain is inherently empirical - any new research technique or claim

will be tested with real users and products and rejected if it fails to meet expectations.

But there are also nuances in the commercialisation of e-commerce research (i.e. how

research permeates into production systems), particularly as it relates to hybrid ML

research.

The largest e-commerce retailers (Amazon, eBay, Taobao et al) build, maintain and

extend their own systems, leveraging open-source components heavily but retaining

full control over the software development stack.

In contrast, middle-tier operators (and certainly small operators) do not do this due to

lack of expertise and high cost - most of these operators standardise on a commercial

offering such as ATG Web Commerce [88], IBM Websphere [89] or SAP Hybris [90].
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Therefore their ability to incorporate ML into their e-commerce presence is limited by

two factors:

1. How quickly and how well their selected platform vendor adds ML capabilities

to the platform.

2. How open the platform is, enabling the operator to integrate ML capabilities di-

rectly.

As the saying goes, “the future is here, it is just not evenly distributed”.

2.9.1 Automated Spend

A unique characteristic of e-commerce environments is that real spend is immediately

measurable. All major portals such as Amazon, eBay, Google, Taobao, Facebook, Twit-

ter and Instagram offer real-time APIs that can be used to place bids for targeted adver-

tisements to reach specific subsets of users. Through these APIs, substantial spends can

be entirely automated and placed in the control of a trained model. However, given the

current lack of interpretability and good visualisations for trained models (see Chapter

7), it is a very brave e-commerce director who would choose to do this. At the very

least, a skilled human administrator will still be used to monitor and supervise model

selections before money is spent on advertising bids.
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2.10 Summary

In this chapter, we have briefly described the e-commerce domain, and how machine

learning has been applied to it. The fields of information retrieval and recommender

systems have figured heavily in our review since search and content discovery are so im-

portant to e-commerce. We have identified the problem of deciphering user intent from

anonymous clickstreams as one which remains important and acts as a cross-cutting

concern affecting many other e-commerce tasks. In the following chapters we will con-

struct and test various models to solve the user intent task - in Table 2.2 we compare

the models covered in this chapter and our logic for selecting the candidates chosen for

detailed examination. No single model is entirely suitable for the task at hand, but some

models (HMM, kNN) are disqualified outright due to significant flaws which cannot be

remedied. This analysis shows that deep neural networks and gradient boosted decision

trees hold the most promise as candidate models for the user intent task. In our opinion

the most important model capabilities are:

1. The ability to process streams of data, i.e. data which loses fidelity when ex-

pressed as a single row or entry.

2. The ability to reconstruct the target function, which is non-linear and complex.

3. Interpretability - allowing an end-user to understand model reasoning underpin-

ning outcomes.

4. Scalability - as previously noted, e-commerce datasets are at least reasonable in

size (tens of millions of events).
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5. Simplicity - we prefer models that are more simple to train and perform inference

on as these models can be promoted into production environments in a straight-

forward manner.

Characteristic Deep Neu-
ral

Boosted kNN Hidden

networks Decision
Trees

Models Markov
Models

Process stream-
ing data

Y N Y Y

Expressive power
for user intent
task

Y Y Y Y

Interpretable N Y Y Y
Scalable to large
datasets

Y Y N N

Straightforward
to train

N Y Y N

TABLE 2.2: The main model candidates covered in this chapter compared using re-
quirements from the e-commerce domain.

In the next chapter we commence our detailed evaluation of machine learning ap-

proaches focused on the user intent detection task, beginning with a system architecture

overview.



Chapter 3

System Architecture and

Implementation

In this chapter we describe the practical implementation details of our system - encom-

passing data storage, pre-processing and feature construction, model training, hyper-

parameter tuning and evaluation. The experiments conducted in Chapters 4-6, as well

as the hyperparameter searches we employed to select the optimal model configuration

stem directly from design and implementation decisions documented in this chapter. In

particular, the code we authored combined with selected third party libraries enabled:

• Formal measurement of e-commerce clickstream feature importance in Chapter 4

to discover user intent using explicit features.

• Tuning of hyperparameters including model architecture in Chapter 5 to recover

close to state-of-the-art performance using learned, rather than explicit features.

58
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• Experiments relating to training set sampling strategy and hidden state manage-

ment in Chapter 6.

Figure 3.1 illustrates the major system components in the architecture. Hyperparame-

ter tuning was provided by Spearmint [91, 92], which integrated with our Torch (Lua),

Python and Java code by invoking operating system processes with command-line ar-

guments.

Model evaluation Hyperparameter tuning

Output

Models Model configuration

Data loading, preprocessing, feature construction

Spark storage Flat file storage

FIGURE 3.1: All of our constructed systems share common components, as illustrated
here: a data loading and transformation layer, configurable models with a trainer, and

finally an evaluation module.

3.1 Data storage

We used an Apache Spark database [93] as a queryable store for the clickstream datasets

used. For our Gradient Boosted Machines (GBM) model, feature builders / extractors

were written in the Java programming language, while our RNN models were coded in
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Python using the PyTorch [94] deep learning library. While Spark itself is designed to

be a fast and general-purpose cluster computing system, we used it in our architecture as

a data store, using the Spark SQL dialect (which supports most but not all of the ANSI

SQL specification) to query the clickstream data to calculate session-level and global

feature values. The Spark project also provides implementations of machine learning

classification and regression algorithms such as logistic regression, decision trees and

gradient-boosted tree regression, however we did not use these elements of Spark in

our implementation. Instead we used a dedicated GBM implementation [28] due to its

widespread use in the recommender systems community [56, 95, 96] - enabling straight-

forward comparison between our work and that of the wider research community. Spark

does not provide any deep learning model or training algorithm implementations itself,

although it is straightforward to load data from Spark and create input tensors for any

deep learning framework such as Keras, Tensorflow or PyTorch.

3.2 Datasets Used

The RecSys 2015 Challenge [97] and the Retailrocket Kaggle [98] datasets provide

anonymous e-commerce clickstream data well suited to testing purchase prediction

models. Both datasets are reasonable in size - consisting of 9.2 million and 1.4 million

user sessions respectively. These sessions are anonymous and consist of a chronologi-

cal sequence of time-stamped events describing user interactions (clicks) with content

while browsing and shopping online. The logic used to mark the start and end of a

user session is dataset-specific - the RecSys 2015 dataset contains more sessions with a

small item catalogue while the Retailrocket dataset contains less sessions with an item
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catalogue 5x larger than the RecSys 2015 dataset. Both datasets contain a very high

proportion of short length sessions (<= 3 events), making this problem setting quite

difficult for RNNs to solve. The Retailrocket dataset contains much longer sessions

when measured by duration - the RecSys 2015 user sessions are much shorter in dura-

tion. In summary, the datasets differ in important respects, and provide a good test of

model generalisation ability.

For both datasets, no sessions were excluded - both datasets in their entirety were used

in training and evaluation. This means that for sequences with just one click, we require

the trained embeddings to accurately describe the item, and time of viewing by the user

to accurately classify the session, while for longer sessions, we can rely more on the

RNN model to extract information from the sequence. This decision makes the training

task much harder for our RNN model, but is a fairer comparison to previous work using

GBM where all session lengths were also included [23, 55, 56]. Table 3.1 provides a

brief comparison of the main characteristics for each dataset.

RecSys 2015 Retailrocket
Sessions 9,249,729 1,398,795

Buyer sessions 5.5% 0.7%
Unique items 52,739 227,006

TABLE 3.1: A short comparison of the two datasets used - RecSys 2015 and Retail-
rocket.

3.2.1 Data Preparation

The RecSys 2015 challenge dataset consists of 9.2 million user-item click sessions.

Sessions are anonymous and classes are imbalanced with only 5% of sessions ending

in one or more buy events. Each user session captures the interactions between a single
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user and items or products : Sn = e1, e2, .., ek, where ek is either a click or buy event.

An example 2-event session is:

SID Timestamp Item ID Cat ID
1 2014-04-07T10:51:09.277Z 214536502 0
1 2014-04-07T10:57:09.868Z 214536500 0

TABLE 3.2: An example of a clicker session from the RecSys 2015 dataset.

Both datasets contain missing or obfuscated data - presumably for commercially sen-

sitive reasons. Where sessions end with one or more purchase events, the item price

and quantity values are provided only 30% of the time in the case of the RecSys 2015

dataset, while prices are obfuscated for commercial reasons in the Retailrocket dataset.

Therefore these elements of the data provide limited value.

SID Timestamp Item ID Price Quantity
420374 2014-05-27T10:03:09.277Z 214537888 12462 1
420374 2014-05-27T10:05:09.277Z 214537850 10471 1

TABLE 3.3: Examples of the buy events from a buyer session .

The Retailrocket dataset consists of 1.4 million sessions. Sessions are also anonymous

and are even more imbalanced - just 0.7% of the sessions end in a buy event. This

dataset also provides item metadata but in order to standardise our approach across both

datasets, we chose not to use any information that was not common to both datasets.

In particular we discard and do not use the additional “addtobasket” event type that is

present in the Retailrocket dataset. Since it is so closely correlated with the buy event

(users add to a basket before purchasing that basket), it renders the buyer prediction task

trivial and an AUC of 0.97 is easily achievable for both our RNN and GBM models.



63

3.3 Data Pre-processing and Transformation

The primary tasks encountered when dealing with clickstream data are:

• Conduct exploratory data analysis [99] - for example to count the number of

unique entries in a given column which is then used to select the width of the

relevant embedding for LSTM, or as input into a feature design for GBM.

• Remove (filter out) unwanted sessions in the data - e.g. in the Retailrocket dataset

[98], sessions that are too long will cause the GPU to run out of memory when

they are loaded into a training batch and the entire batch is zero-padded to the

longest length (long sessions can be thousands of events in length once unrolled).

The data pipeline must support two use-cases depending on the model being trained:

• For GBM, instantiate feature builders, load and transform the raw clickstream

data to features and output the constructed features in the LIBSVM file format

required by our chosen GBM implementation.

• For RNN / LSTM, load the raw clickstream data, transform the data to lookup

IDs for use with the embedding layer and maintain the session grouping in a 2-

dimensional tensor.

Figure 3.2 illustrates the colour-coded structure of the data pipeline used for the primary

models in this thesis - GBM and RNN / LSTM, as well as the third-party libraries

(PyTorch and XGBoost) used in the implementation. For both the GBM and RNN
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models, the underlying core libraries (i.e. XGBoost and PyTorch) were pre-installed

on the training server. Additional dependencies necessary for GPU training of RNN-

based word language models were also pre-installed - CUDA and cuDNN. Our chosen

implementation of GBM [28] loads LIBSVM flat files from disk, while our RNN /

LSTM models use 2D in-memory tensors which are then converted to 3D tensors when

passed through an embedding layer - the pipeline supports both outputs. The colour

coding is as follows: green represents code assets written as part of this thesis. Blue

represents an output type from the system. Red represents a third-party library used by

the code.

In the case of GBM, new feature extraction code was deployed to the server while for the

RNN models, new model code and configuration was deployed. The code file transfer

mechanism used in both cases was rsync and code version control was provided by git.

In the future we would like to explore the use of containers to distribute well-defined

code packages as a way to exploit multiple servers during training. Containers were

not necessary in this work as we were able to train both GBM and LSTM models on a

single server.

3.4 Code Structure

Our design ethos for the Python code was to separate the main ML tasks and so the

structure is:
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Clickstreams
Data loader

<

Feature builder engine (GBM)

FB1 FBn
. . .

Type-specific UID generator
for embeddings (RNN models)

Output
writer

In-memory
2D tensor

LIBSVM
file format

<

Models
(RNN,GRU,LSTM)

and training code

Spearmint
hyperparameter
tuning library

PyTorch
library

GBM
training code

Model
configuration

service

XGBoost
library

Main tensor and book keeping
tensors: targets, session

lengths, session IDs

Sessions summarised into
1 row of

training data and book keeping
lists: targets, session IDs

Our Data loader uses
the PyTorch

DataLoader and Sampler
classes.

Spearmint-generated
experiments.

FIGURE 3.2: The end-to-end system constructed, including the data load and transform
pipeline.

• session runner.py: invoked directly from the command line or by Spearmint [91]

and used the argparse library heavily to configure the system, especially to tune

hyperparameters.

• session trainer.py: contains the main training and evaluation loops, as well as

initiating the initial data load and model creation.

• session data.py: load data and transform it to a 2D tensor ready for training. Re-

lies heavily on the DataLoader framework from PyTorch for structure and logic.

• session model.py: Creates the model architecture being trained and also contains

the implementation of the forward pass which is then reversed by the PyTorch

auto-differentiation sub-framework for error back-propagation.
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This split reflects some practical considerations in deep learning - in particular the reali-

sation that models change more frequently than data loading or training code. This code

organisation allows us to make model changes quickly (and controlled by configuration

flags so that they can be tested in both on / off configurations and with different hyper-

parameters) while insulating the rest of the codebase from these changes. The Python

code described here was deployed as the module titled “Models (RNN, GRU, LSTM)

and training code” in Figure 3.2.

3.5 Previous Iterations

All of the results in this thesis were generated using version 2 of the system. The first

implementation had a number of drawbacks which we addressed in the second version:

• The use of WEKA [100] to provide data loading and model implementations. We

found that while WEKA is full-featured, it did not scale to our datasets, nor does

it contain a robust RNN or GBM model implementation.

• Our chosen RNN implementation - Torch - contained a robust RNN model imple-

mentation but was deprecated during our development and replaced by PyTorch.

• Our code structure required us to calculate standard statistical metrics such as

mean, median, variance in Java, which lacks good implementations of both ML

and numerical analysis libraries when compared to Python.

We remedied these weaknesses in the second implementation - our codebase allowed us

to use Python libraries such as scikit-learn, pandas, numpy, scipy, and matplotlib. For
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example, by moving to use the Python Pandas project [101], the need for Spark storage

was removed and the data could be loaded directly from the file system without any

reduction in speed. We ported our Torch Lua code to PyTorch Python code - this task

was relatively simple to complete for two reasons:

• PyTorch still relies on the old Lua core libraries but exposes their functionality

via a new Python API - thus we did not encounter any missing or different func-

tionality issues.

• Even the earliest PyTorch release came with some code samples and API docu-

mentation.

For the reasons outlined previously, in the second iteration of our system we moved to

use XGBoost [28] over the decision tree implementations we used previously in WEKA.

3.6 Model Training

Each model was trained according to its own specific algorithm. For GBM, there is a

single training algorithm and the metric to optimise for is changeable - we used AUC

(Area under the ROC curve). The GBM training algorithm however requires significant

hyperparameter tuning which we cover below.

In contrast to GBM, for RNNs the training setup is more complex. In order to train an

RNN we require:
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• A model with randomly-initialised weights (but carefully initialised and drawn

from a small range).

• A criterion which implements our desired loss function.

• A forward pass which propagates the inputs all the way through the model and

generates outputs.

• A backward pass which propagates the criterion error or loss all the way through

the model.

The RNN framework used here supported Automatic Differentiation (AD) [94], there-

fore only the forward pass needed to be implemented in our code.

3.7 Summary

In this chapter we described the implementation of the system used to generate and

record the experiments carried out in Chapter 4, Chapter 5 and Chapter 6. We also

described the datasets used to carry out experiments in those chapters.

Having designed and built two iterations of a machine learning system, we would add

the following improvements to a third iteration:

• Provide support for deep learning frameworks other than PyTorch, for example

MXNet [102] and Tensorflow [103]. This would allow us to test different im-

plementations concurrently, and provide access to more training algorithms and
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RNN variants as paper authors typically provide implementations in one favoured

framework.

• Provide support for Gradient Boosted Machine frameworks other than XGBoost,

for example CatBoost [29] and LightGBM [27] which have recently experienced

a surge in popularity in the recommender system and e-commerce analysis re-

search communities and claim superior training speed and test accuracy over XG-

Boost.

• Automate experiment management further - including automatic syncing of file

system, data, code and github issue tracking.

• Incorporate Tensorboard (a visualisation component of Tensorflow) for improved

visualisation of error rates during training.

• Preserve expensive data transformations using caching to speed up initial experi-

ment start times.

Overall, we believe that the second iteration of the system architecture has been success-

ful in supporting our research and experiments. It possesses flexibility where necessary,

and incorporates widely-used GBM and RNN implementations which are widely cited,

permitting us to compare our research and techniques with other researchers and groups.

In the next chapter we use Gradient Boosted Machines (GBM) to conduct a thorough

review of feature importance in the explicit feature setting.



Chapter 4

Traditional Machine Learning and

User Propensity

4.1 Introduction

In the first two chapters, we provided an overview of the machine learning and e-

commerce fields, as well as illustrating how machine learning - initially through im-

proving information retrieval has become indispensable to providing users with a good

experience when they browse and shop online. We also identified that the application of

machine learning to e-commerce has created a “squeezed middle” - merchants who face

steeply increasing advertising costs and price pressures in a race to the bottom as por-

tals make it easy for customers to compare similar products by attribute - but especially

price.

70
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These merchants can tilt the balance back in their favour by focusing limited budget and

resources on the small subset of all e-commerce users who possess an intent to buy. In

this chapter, we analyse the problem of analysing user sessions to infer intent, including

the twin problems of model selection and feature design.

As previously stated, deciphering user purchase intent from website clickstreams and

providing more relevant product recommendations to users remains an important chal-

lenge in e-commerce. We outline our approach to the twin tasks of user classification

and content ranking in an e-commerce setting using an open dataset. Design and devel-

opment lessons learned through the use of gradient boosted machines are described and

initial findings reviewed. We also describe a novel application of word embeddings to

the dataset chosen to model item-item similarity which we build on in later chapters.

4.2 Problem Domain: Overview

The primary method used to gather data in the e-commerce domain is to log browser

requests for web pages ordered temporally and grouped by a session ID. These logs

are then used to train models which classify users by their intent (clicking, browsing,

buying) and what items those users are most interested in. Our motivation is to predict

the intent of web users using their individual and group prior behaviour and to select

from a potentially large set of available content, the items of most interest to match with

a specific user. Correctly identifying user intent and matching users to the most relevant

content directly impacts retailer revenue and profit [11].
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4.2.1 RecSys Challenge

This work focused on an open dataset from the ACM RecSys 2015 conference chal-

lenge [97]. The challenge ran for nine months, involved 850 teams from 49 countries,

with a total of 5,437 solutions submitted. The winners of the challenge scored approx-

imately 50% of the maximum score. A variety of linear and non-linear classifiers were

employed as ensembles and two of the top three accepted submissions [55] and [56]

relied heavily on Gradient Boosted Machine (GBM) classifiers, with [56] employing

both Neural Networks and GBM.

The challenge dataset is a snapshot of web user activity where users mostly browse and

infrequently purchase items from a catalogue. The data is:

1. Reasonable in size - containing 34,154,697 events grouped into 9,249,729 ses-

sions. The sessions comprise events over 52,739 items distributed over 338 cate-

gories, with 19,949 of the items purchased.

2. Imbalanced - buyer sessions represent just 5.51% (509,696) of the total.

3. Incomplete - for example 49.5% of the clicks do not contain a category ID for the

item clicked.

The objective function to maximise is:

Score(Sl) =
∑
∀s∈Sl


ifs ∈ Sb → |Sb|

|S| + |As∩Bs|
|As∪Bs|

else→ − |Sb|
|S|

(4.1)
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where:

Sl = sessions in submitted solution

S = all sessions in the test set

s = session in the test set

Sb = buy sessions in the test set

As = predicted buy items in session s

Bs = actual bought items in session s

The top submission for the competition achieved a score of 63, 102, 47% of the maxi-

mum score attainable: 135, 176, underlining the difficult nature of the task. Moreover,

virtually all submissions achieved a negative score on the first component of the score

(separating buyer sessions from clicker sessions), again demonstrating the difficulty in

discerning between true and false positive cases.

The score is maximised by correctly classifying true buyers while minimising the num-

ber of false buyers (i.e. clickers). This is followed by the recommendation or ranking

task, where for each buyer the exact items purchased are predicted from the click set for

that buyer (a buyer can purchase just one item clicked, all or some).

4.2.2 Wider Applicability

Classification and ranking in order to recommend are not specific to the e-commerce

domain. Multiple other domains such as security, finance and healthcare apply similar

techniques to solve domain-specific problems. Our intent is to generalise our framework

and approach to multiple domains. However, different domain problems will have sub-

stantially different objective functions - Table 4.3 shows that in the e-commerce domain

high false negative and false positive scores are inevitable but that model confidence



74

grows as the session length increases. It is easy to imagine a problem in the finance,

security or healthcare domains where better classification performance is required (but

equally better distinguishing data must also be available).

4.3 Implementation

We described Gradient Boosted Machines (GBM) in Chapter 2 and selected GBM here

as the initial model for a number of reasons. The trained models are interpretable in

terms of feature usage, gain and coverage. A robust, fast and scalable implementation of

GBM is available in [28]. GBM is also straightforward to train as it iteratively grows an

ensemble of Classification and Regression Trees (CART) to learn an objective function

with regularisation applied to promote generalisation on unseen data. New trees are

iteratively added during training to better model the objective function and correct for

the errors made by earlier trees. Figure 4.1 illustrates the data flow through the primary

modules of the system. Calculated features are saved in LIBSVM format (label:value)

and consumed by GBM to build a forest of CART trees. word2vec receives all sessions

(Sc and Sb) and is used to calculate two distinct similarity embeddings - modelling items

that are frequently clicked together, and items that are frequently bought together. The

item model is trained on buyer sessions Sb only, as only buyer sessions can contribute

towards the item component of the target score.
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FIGURE 4.1: Primary modules of the end-to-end system implementation. The system
currently contains 10 feature builders calculating 68 features in total.

4.3.1 Framework

During the implementation, specific functions and attributes to enable efficient and

rapid progress were identified and coded into a re-usable machine learning manage-

ment framework which we cover in more detail in Chapter 7. The main properties of

this framework are:

1. Reproducibility. Threshold optimisation and hyperparameter values have a sig-

nificant impact on the accuracy obtained and thus final score. The framework

supports version control of code, data, logs and configuration relating to each

experiment.

2. Composition and Combinability. Currently we combine homogeneous models

together to solve a target task, however the framework also admits heterogeneous

models.
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3. Rich data querying capabilities. Spark SQL is used to enable rapid, iterative data

analysis to test feature accuracy and to suggest new feature designs.

4. Consistent Feature generation across models. Feature re-use across models pro-

motes code re-use across models and experiments.

5. Labelling and aggregation. The framework stores labels at session and item level

through all segments of the transformation, training and scoring pipeline.

4.3.2 Features

For the session model, 40+ features and a one-hot item vector for the top 5,000 most

popular items were calculated from the dataset. For the item model, 20+ features were

calculated. The features overlap significantly with other competition submissions ([56],

[55]). The most common features used are well understood information retrieval met-

rics - Table 4.1 and Table 4.2 describe the top ten features for the session and item

models, graded by their feature importance score. Importance values are lower here

than for the item model in table 4.2 due to the number of features used in the session

model. GBM models are interpretable, allowing feature importance scores to be easily

calculated. Features are grouped into four types - Temporal, Counts, Similarity and

Price. In our opinion, temporal features model user engagement, price features model

item competitiveness (item prices rise and fall over time), count features model popu-

larity statistics over the dataset and similarity features model user intent - casual versus

focused browsing.
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TABLE 4.1: The top ten session features after training for 7,500 rounds, ordered by
most important features descending.

Description Relative importance Type
Max time spent on an item (millisecs) 0.049 T

Global buys (last item) / Global clicks (last item) 0.048 C
Session duration (millisecs) 0.044 T

Global clicks (last item) 0.043 C
Min item price in session 0.041 P

Max value of(buys / clicks) in the session 0.04 P
Cross entropy of dwelltime across items 0.038 T

Max item price in session 0.038 P
Max click similarity in session 0.037 S

Click similarity standard deviation 0.037 S

The click and buy similarity metrics carry significant weight in this model, resulting in

a focused effort to improve them - beginning with a simple count-based Jaccard similar-

ity, progressing to matrix factorisation using Alternating Least Squares, to the current

best solution - using pair-wise cosine similarity on embeddings or vectors calculated for

each item. The current embeddings are of length 300, with each vector co-ordinate rep-

resenting a latent variable modelling the item set. Similarity-based features are strongly

represented in table 4.2, showing the effectiveness of the current similarity implemen-

tation.

4.3.3 Models and Training

The two terms of the objective function are independent, so a divide and conquer ap-

proach is a rational strategy [55, 56]. Two models were trained in parallel - the ses-

sion predictor and the item predictor. During the training phase, the quality of models

generated by GBM is sensitive to values chosen for some key values: the tree depth
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TABLE 4.2: Top ten item features after training for 5,000 rounds, ordered by most
important first.

Description Relative Type
importance

Summed buy similarity 0.099 S
Max click similarity in session 0.097 S

Summed click similarity 0.097 S
Buy similarity standard deviation 0.096 S

Std deviation of buy similarity / click similarity x num clicks 0.091 S
Summed buy similarity / click similarity x num session clicks 0.083 S

Item dwelltime in this session 0.065 T
Global clicks for this item 0.064 C

Global item buys / global item clicks 0.063 C
(Global buys / global clicks) x num session clicks for this item 0.054 C

(max depth), learning rate (eta) and breakpoint for new tree nodes (min child weight).

We currently use sensible values for these parameters as suggested by [56], with a hy-

perparameter search planned in future work.

It quickly became apparent that the classification task is more difficult to learn than the

recommending task - Area under the curve (AUC) is used to measure training progress

on a validation set and the best session classification AUC is 0.853 vs 0.895 for the

item prediction task. This is due to the imbalanced nature of the dataset and because

some of the most common sessions comprise those with lengths between one and three,

removing valuable context from some of the global features (for example cross-entropy,

click similarity and buy similarity). We partly mitigated the class imbalance issue by

down-sampling clickers by 50% and this resulted in a small score increase. Thus with

appropriate hyperparameter selection, GBM appears to be reasonably resistant to over-

fitting on the dominant class in an imbalanced setting.
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4.3.4 Inference - Initial Results

The model confidence in predicting user behaviour and recommending items increases

based on session length. Therefore the thresholds (the probability value used to separate

clickers from buyers) were selected at a session-length level, instead of using a one fits

all value. Thresholds for both models were selected using grid search with a stepsize of

0.01 after training, using threshold start and end ranges known empirically to bracket

the optimal thresholds. As shown in table 4.3, it is necessary to reduce the probability

thresholds for session selection to an average of just 0.09 (0.069 if clickers are not

under-sampled), compared to an average of 0.47 for item selection. This low session

threshold value demonstrates the difficulty of the session classification task. In general,

it is important to use dynamic confidence thresholds predicated on session length to

maximise both the session and item components of the overall score.

The current implementation would have placed 6th or 7th (the conference did not con-

tain a paper from the second placed team) on the competition leaderboard out of 850 and

makes 99.4% of the GBM-only target score (58,442 vs 58,820 in [56]). The code for

the original scoring methodology used in the competition is no longer available [104],

however we reverse-engineered and validated the scoring methodology using three in-

put sources - the solution file provided after the competition ended, the solution file

provided by the authors of [55] and our own solution file.
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TABLE 4.3: Session and item thresholds by session length with scores for the current
models, showing the increase in model predictive confidence as the number of events

per session grows.

Session Session Item Session Item
Length Threshold Threshold Score Score

1 0.05 0.4 -3276 3344
2 0.06 0.6 -11224 21620
3 0.07 0.54 -6393 14421
4 0.07 0.51 -4328 11246
5 0.08 0.53 -2620 8222
6 0.09 0.49 -1701 6537
7 0.11 0.44 -1067 4942
8 0.11 0.43 -777 3993
9 0.1 0.44 -601 3125

10 0.08 0.44 -485 2530
11 0.1 0.47 -322 2076
12 0.1 0.42 -252 1702
13 0.08 0.46 -212 1335
14 0.14 0.45 -119 1104

15+ 0.14 0.42 -554 6175
Totals -33931 92373

4.3.5 Optimising Click and Buy Item Similarity Features

The optimal similarity measure discovered to date is unique in the competition we be-

lieve. Multiple similarity implementations were evaluated including Jaccard similarity

and Alternating Least Squares (ALS) matrix factorisation - a staple technique in the rec-

ommender community. Currently, items are modelled as words, sessions as sentences

and each word is transformed into a low-dimensional distributed representation - the

embedding or word vector [41]. This feature is trained by maximising its log-likelihood

on the training set:

JNEG = logQθ(D = 1|wt, h) + k E
w̃∼Pnoise

[logQθ(D = 0|w̃, h)]
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where:

Qθ(D = 1|w, h) = the binary logistic regression probability

h = the context (user session)

w = word (item ID)

θ = learned embedding vectors

D = corpus of all sessions

A good vector space model will map semantically similar words close together and

this feature exploits this property by calculating item-item similarity using pair-wise

cosine similarity. Further experimentation for these features can also be carried out,

focusing on document ordering, parameters such as embedding length (currently 300),

context (currently 15 words) and the best internal word2vec model to use - Skip Grams

vs Continuous Bag Of Words (CBOW).

4.4 Summary

In this chapter we showed how a homogeneous GBM implementation can learn to solve

the user intent classification problem on a well-known e-commerce dataset - competing

well with more advanced heterogeneous [56] and proprietary [55] solutions. In our

experiments, GBM functioned consistently well as a robust classifier, therefore we posit

that the score achieved relies substantially on careful feature engineering.

Given the preponderance of click / user event datasets in the e-commerce and rec-

ommender domains, we expect the work completed so far to generalise well to other

datasets in the same domain but we also note the strong possibility for some engineered
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features to be domain or dataset-specific and also the significant feature engineering

effort required

In the next chapter we continue to focus on the problem of deciphering user intent, but

now our approach will change significantly. From this chapter, we can see that represen-

tation learning adds value in modelling e-commerce items, when used in conjunction

with hand-crafted features. Our modelling approach in the next chapter will use repre-

sentation learning exclusively, combined with a suitable model, to remove the feature

engineering burden associated with gradient boosting.

The material in this chapter draws substantially from [23], published at the 17th Annual

UK Workshop on Computational Intelligence.



Chapter 5

Predicting purchasing intent:

End-to-end Learning using Recurrent

Neural Networks

In the previous chapter, we demonstrated the importance of different types of features in

allowing the Gradient Boosted Machine model to accurately separate e-commerce user

sessions or clickstreams into our two target classes - clicker or buyer. One feature type

which is particularly effective is to build word vectors for clicked items based on session

co-occurrence using word2vec [41] and then to apply a simple similarity metric to these

vectors - cosine similarity in our case. Recall from Chapter 4 that learned word vectors

provided our best item similarity feature. In this chapter we build on this principle, and

extend it to the entire dataset, and progress from GBM to a machine learning model

which consumes word vectors in a more natural fashion - Recurrent Neural Networks

or RNN.

83
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5.1 Introduction

We present a neural network for predicting purchasing intent in an e-commerce setting.

Our main contribution is to address the significant investment in feature engineering that

is usually associated with state-of-the-art methods such as Gradient Boosted Machines.

We use trainable vector spaces to model varied, semi-structured input data compris-

ing categoricals, quantities and unique instances. Multi-layer recurrent neural networks

capture both session-local and dataset-global event dependencies and relationships for

user sessions of any length. An exploration of model design decisions including param-

eter sharing and skip connections further increase model accuracy. Results on bench-

mark datasets deliver classification accuracy within 98% of state-of-the-art on one and

exceed state-of-the-art on the second without the need for any domain / dataset-specific

feature engineering on both short and long event sequences.

In the e-commerce domain, we propose that merchants can increase their sales volume

and profit margin by acquiring better answers for two questions:

• Which users are most likely to purchase (predict purchasing intent).

• Which elements of the product catalogue do users prefer (rank content).

By how much can merchants realistically increase profits? Table 5.1 illustrates that

merchants can improve profit by between 2% and 11% depending on the contributing

variable. In the fluid and highly competitive world of online retailing, these margins are

significant, and understanding a user’s shopping intent can positively influence three

out of four major variables that affect profit. In addition, merchants increasingly rely on
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and pay advertising to much larger third-party portals (for example eBay, Google, Bing,

Taobao, Amazon) to achieve their distribution, so any direct measures the merchant

group can use to increase their profit is sorely needed.

McKinsey A.T. Kearney Affected by
shopping intent

Price management 11.1% 8.2% Yes
Variable cost 7.8% 5.1% Yes
Sales volume 3.3% 3.0% Yes

Fixed cost 2.3% 2.0% No

TABLE 5.1: Effect of improving different variables on operating profit, from [7]. In
three out of four categories, knowing more about a user’s shopping intent can be used

to improve merchant profit.

As we saw in Chapters 2 and 3, e-commerce systems can be thought of as a generator

of clickstream data - a log of {item - userid - action} tuples which captures user interac-

tions with the system. A chronological grouping of these tuples by user ID is commonly

known as a session.

Predicting a users intent to purchase is more difficult than ranking content for the follow-

ing reasons [23]: Clickers (users who only click and never purchase within a session)

and buyers (users who click and also purchase at least one item within a single session)

can appear to be very similar, right up until a purchase action occurs. Additionally,

the ratio between clickers and buyers is always heavily imbalanced - and can be 20:1 in

favour of clickers or higher [83]. An uninterested user will often click on an item during

browsing as there is no cost to doing so - an uninterested user will not purchase an item

however. In our opinion, this user behaviour is in stark contrast to other settings such

as predicting if a user will “like” or “pin” a piece of content hosted on a social media

platform after viewing it, where there is no monetary amount at stake for the user. As
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noted in [60], shoppers behave differently when visiting online vs physical stores and

online conversion rates are substantially lower, for a variety of reasons.

When a merchant has increased confidence that a subset of users are more likely to

purchase, they can use this information in the form of proactive actions to maximise

conversion and yield. The merchant may offer a time-limited discount, spend more on

targeted (and relevant) advertising to re-engage these users, create bundles of comple-

mentary products to push the user to complete their purchase, or even offer a lower-

priced own-brand alternative if the product is deemed to be fungible.

However there are counterweights to the desire to create more and more accurate models

of online user behaviour - namely user privacy and ease of implementation. Users are

increasingly reluctant to share personal information with online services, while complex

machine learning models are difficult to implement and maintain in a production setting

[105].

We surveyed existing work in this area [55, 56, 106–108] and found that well-performing

approaches have a number of factors in common:

• Heavy investment in dataset-specific feature engineering was necessary, regard-

less of the model implementation chosen.

• Model choices favour techniques such as Gradient Boosted Machines (GBM)

[106] and Field-aware Factorisation Machines (FFM) [107] which are well-suited

to creating representations of semi-structured clickstream data once good features

have been developed [55, 56, 108].



87

In Chapter 4, an important feature class employed the notion of item similarity, mod-

elled as a learned vector space generated by word2vec [41] and calculated using a stan-

dard pairwise cosine metric between item vectors. In an e-commerce context, items

are more similar if they co-occur frequently over all user sessions in the corpus and

are dissimilar if they infrequently co-occur. The items themselves may be physically

dissimilar (for example - headphones and batteries), but they are often browsed and

purchased together.

However, in common with other work our model in Chapter 4 still requires a heavy in-

vestment in feature engineering. The drawback of specific features is how tied they are

to either a domain, dataset or both. The ability of deep learning models to discover good

representations without explicit feature engineering is well-known [109]. In addition,

artificial neural networks (ANNs) perform well with distributed representations such as

embeddings, and ANNs with a recurrence capability to model events over time - Re-

current Neural Networks (RNNs) - are well-suited to sequence processing and labelling

tasks [110].

Our motivation then is to build a good model of user intent prediction which does not

rely on private user data, and is also straightforward to implement in a real-world envi-

ronment. We address the following issues:

• What performance can RNNs with an appropriate input representation and end-

to-end training regime achieve on the prediction of purchasing intent task?
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• Can this performance be achieved within the constraint of only processing anony-

mous session data and remaining straightforward to implement on other e-commerce

datasets?

5.2 Our Approach

As demonstrated in the previous chapter, classical machine learning approaches such

as GBM work well and are widely used on e-commerce data, at least in part because

the data is structured. GBM is an efficient model as it enables an additive expansion

in a set of basis functions or weak learners to continually minimise a residual error.

The weakness of GBM is a propensity for overly wide or deep decision trees to overfit

the training data and thus record poor performance on the validation and test set due to

high variance. GBM also requires significant feature engineering effort and does not

naturally process the sequence in order, rather it consumes a compressed version of it

(although it is possible to provide a one-hot vector representation of the input sequence

as a feature). Our approach is dual in nature - firstly we construct an input represen-

tation for clickstream / session data that eliminates the need for feature engineering.

Second, we design a model which can consume this input representation and predict

user purchase intent in an end-to-end, sequence to prediction manner.

5.2.1 Embeddings as item / word representations

Natural Language Processing (NLP) tasks, such as information retrieval, part-of-speech

tagging and chunking, operate by assigning a probability value to a sequence of words.
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To this end, language models have been developed, defining a mathematical model

to capture statistical properties of words and the dependencies among them. Not-

ing the parallels between language modelling and user intent prediction with docu-

ments=clickstream sessions and words=items, we adapted a word language model [111]

to our target task.

Learning good representations of input data is a central task in designing a machine

learning model that can perform well. An embedding is a vector space model where

words are converted to a low-dimensional vector. Vector space models embed words

where semantically similar words are mapped to nearby points. Popular generators of

word to vector mappings such as [41] and [112], operate in an unsupervised manner -

predicting similarity or minimising a perplexity metric using word co-occurrence counts

over a target corpus. We decided to employ embeddings as our target representation

since:

• We can train the embeddings layer at the same time as training the model itself -

promoting simplicity.

• E-commerce data is straightforward to model as a dictionary of words.

• Embedding size can be increased or decreased based on dictionary size and word

complexity during the architecture tuning / hyper parameter search phase.

Unlike [41] and [112], we chose not to pre-train the embeddings to minimise a per-

plexity error measure. We observed that our model was less accurate under this regime

(which also required embedding weights to be frozen at training time).Instead we allow

the model to modify the embedding weights at training time by back-propagating the
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loss from a binary classification criterion. Algorithm 1 outlines how embeddings are

created from the input data. A concrete example serves to illustrate how the algorithm

operates: if we consider the item ID 214536502 in our session from Chapter 4, then

214536502 is mapped onto the item lookup ID 1 and this ID is linked to the embedding

[−0.075, . . . ,+0.075].

Algorithm 1 The embedding creation algorithm.
1: for all fields ∈ S do
2: idi ← unique(fielditype)//Return a unique lookup ID for the input field. IDs are

unique per type (datetime quantile, item ID, item category).
3: embeddingi ← uniform(min,max, size) //An initialised 1-D vector of the

specified size drawn from a normal distribution bounded by min and max.
4: save(idi, embeddingi) //Link and store the unique ID - embedding pair for future

use.
5: end for

5.2.2 Recurrent Neural Networks

Recurrent neural networks [40] (RNNs) are a specialised class of neural networks for

processing sequential data. A recurrent network is deep in time rather than space and

arranges hidden state vectors hlt in a two-dimensional grid, where t = 1 . . . T is thought

of as time and l = 1 . . . L is the depth. All intermediate vectors hlt are computed as

a function of hlt−1 and hl−1t . Through these hidden vectors, each output y at some

particular time step t becomes an approximating function of all input vectors up to that

time, x1, . . . , xt [5].
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5.2.2.1 LSTM and GRU

Long Short-Term Memory (LSTM) [113] is an extension to standard RNN units de-

signed to address the twin problems of vanishing and exploding gradients during train-

ing [114]. Vanishing gradients make learning difficult as the correct (downward) tra-

jectory of the gradient is difficult to discern, while exploding gradients make training

unstable - both are undesirable outcomes. Long-term dependencies in the input data,

causing a deep computational graph which must iterate over the data are the root cause

of vanishing / exploding gradients. Goodfellow et al. explains this phenomenon suc-

cinctly. Like all deep learning models, RNNs require multiplication by a matrix W .

After t steps, this equates to multiplying by W t as shown in Equation 5.1 [109].

W t = (V diag(λ)V −1)t = V diag(λ)tV −1 (5.1)

Eigenvalues (λ) that are not more or less equal to 1 will either explode if they are > 1,

or vanish if they are < 1 as t → ∞. Gradients will then be scaled by diag(λ)t and are

similarly affected, tending towards∞ for very large values of diag(λ)t or approaching

0 for very small values.

LSTM solves this problem by possessing an internal recurrence, which stabilises the

gradient flow, even over long sequences. However this comes at a price of complexity.

For each element in the input sequence, each layer computes the following function as

shown in equation 5.2.
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it = σ(Wiixt + bii +Whih(t−1) + bhi)

ft = σ(Wifxt + bif +Whfh(t−1) + bhf )

gt = tanh(Wigxt + big +Whch(t−1) + bhg)

ot = σ(Wioxt + bio +Whoh(t−1) + bho)

ct = ft ∗ c(t−1) + it ∗ gt

ht = ot ∗ tanh(ct)

(5.2)

where:

ht is the hidden state at time t,

ct is the cell state at time t,

xt is the hidden state of the previous layer at time t or inputt for the first layer,

it, ft, gt, ot are the input, forget, cell, and out gates, respectively,

σ is the sigmoid function.

Figure 5.1 provides a graphical representation of a single LSTM cell and its compo-

nents.

Gated Recurrent Units, or GRU [115] are a simplification of LSTM, with one less gate

and the hidden state and cell state vectors combined. In practice, both LSTM and GRU

are used interchangeably and the performance difference between both cell types is

often minimal and / or dataset-specific.
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FIGURE 5.1: A single LSTM cell, depicting the hidden and cell states, as well as the
three gates controlling memory (input, forget and output).

5.3 Implementation

We prepared each column in the dataset as follows:

• Session IDs are discarded (of course we retain the sequence grouping indicated

by the IDs).

• Timestamps are quantised into bins of 4 hours in duration.

• Item IDs are unchanged.

• Category IDs are unchanged.

• Purchase prices are unchanged. We calculate price variance per item to convey

price movements to our model (e.g. a merchant special offer).
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• Purchase quantities are unchanged.

Each field is then converted to an embedding vocabulary - simply a lookup table map-

ping values to integer IDs. We do not impose a minimum occurrence limit on any field

- a value occurring even once will be represented in the respective embedding. This

ensures that even long tail items will be presented to the model during training. Lookup

tables are then converted to an embedding with embedding weights initialised from a

range {-0.075, +0.075} - Table 5.2 identifies the number of unique items per embedding

and the width used. The testing dataset contains both item IDs and category IDs that

are not present in the training set - however only a very small number of sessions are

affected by this data in the test set.

This approach, combined with the use of Artificial Neural Networks, provides a learn-

able capacity to encode more information than just the original numeric value. In our

opinion for example, an item price of $100 vs $150 is not simply a numeric price dif-

ference, it can also signify learnable information on brand, premium vs value and so

on.

Data name Train Train+Test Embedding
Width

Item ID 52,739 54,287 100
Category ID 340 348 10
Timestamp 4,368 4,368 10

Price 667 667 10
Quantity 1 1 10

TABLE 5.2: Data field embeddings and dimensions, along with unique value counts
for the training and test splits of the RecSys 2015 dataset.
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Dataset Events before Events after % increase
RecSys 2015 41,255,735 56,059,913 36%
Retailrocket 2,351,354 11,224,267 377%

TABLE 5.3: Effect of unrolling by dwelltime on the RecSys 2015 and Retailrocket
datasets. There is a clear difference in the mean / median session duration of each

dataset.

5.3.1 Event Unrolling

In [67], a more explicit representation of user dwelltime or interest in a particular item

ik in a sequence ei1 , . . . , eik is provided to the model by repeating the presentation of

the event containing the item to the model in proportion to the elapsed time between

eik and eik+1
. In the example 2-event session displayed previously, the elapsed time

between the first and second event is 6 minutes, therefore the first event is replayed

3 times during training and inference (d360/150e). In contrast to [67], we found that

session unrolling provided a smaller improvement in model performance - for example

on the RecSys 2015 dataset our best AUC increased from 0.839 to 0.841 when using

the optimal unrolling value (which we discovered empirically using grid search) of 150

seconds. Unrolling also comes with a significant cost of increasing session length and

thus training time - Table 5.3 demonstrates the effect of session unrolling on the size of

the training / validation and test sets on both datasets.

5.3.2 Sequence Reversal

From [23], we know that the most important item in a user session is the last item

(followed by the first item). We also know that sequence reversal has been reported to

improve model performance in the sequence to sequence translation setting [35]. To
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capitalise on this, we reversed the sequence order for each session before presenting

them as batches to the model. Re-ordering the sequences provided an increase in test

AUC on the RecSys 2015 dataset of 0.005 - from 0.836 to 0.841.

5.3.3 Model

5.3.3.1 Model Architecture

The data embedding modules are concatenated and presented to a configurable number

of RNN layers (typically 3), with a final linear layer combining the output of the hidden

units from the last layer. This output value represents the models confidence probability

in class membership. Figure 5.2 illustrates the model architecture.

Given that we wish to distinguish user intent into two main classes, the model is trained

by minimising an unweighted binary cross entropy loss as shown in Equation 5.3. Al-

though the classes are heavily imbalanced, we do not rescale the weight of the under-

represented class to compensate as we found this approach slightly reduced perfor-

mance.

ln = − [yn · log xn + (1− yn) · log(1− xn)] (5.3)

where:

xn is the output label value from the model [0..1]

yn is the target label value {0, 1}.

We conducted a grid search over the number of layers and layer size by RNN type, as

indicated in Table 5.4 below. The State of the Art baseline for comparison is 0.853. For
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(256)

RNN 2
(256)
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Linear
layer

Shared h(t)
(and c(t))
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co-trained with
RNNs or frozen
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perimental setting

Input
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Output
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FIGURE 5.2: Model architecture used - the output is interpreted as the log probability
that the input represents either a clicker or buyer session.

all cell values, we trained the model in question for 4 epochs. For the standard RNN

model variant with 512 cells, training became unstable after 2 epochs, which explains

why these AUC values are slightly lower than expected. We limited the layer search to

3 as we noted no discernible improvement above this level.

RNN (RELU) GRU LSTM
Layers 1 2 3 1 2 3 1 2 3
Layer size

64 0.828 0.835 0.836 0.830 0.834 0.836 0.829 0.835 0.836
128 0.831 0.835 0.838 0.832 0.837 0.838 0.833 0.838 0.838
256 0.831 0.836 0.838 0.835 0.838 0.839 0.835 0.840 0.840
512 0.828 0.834 0.834 0.836 0.839 0.839 0.836 0.840 0.841

TABLE 5.4: Model grid search results for number and size of RNN layers by RNN
type on the RecSys 2015 dataset.
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5.3.3.2 Skip Connections

Skip connections are a device used to preserve inputs across model layers and reduce

signal attenuation during training. Li et al. show that skip connections simplify the

loss surface for some tasks, enabling quicker convergence at training time. In essence,

we are re-presenting the original inputs to each successive model layer along with the

output from the previous layer. The intuition here is that the model is more easily

able to solve the objective task by seeing both the original inputs as well as per-layer

abstractions at the same time.

5.3.3.3 Sharing Hidden Layer State Across Batch Boundaries

One model design decision worthy of elaboration is how hidden state information (and

cell state for LSTM) is shared between training batches. We found that best results

were obtained by not re-using any hidden state across RNN layers, in conjunction with

a randomised sampler for selecting batch candidates. For e-commerce datasets, trying

to connect batches together by sharing hidden state and deploying chronological / se-

quential sampling is not the best training approach to use - indeed far from it. This

insight led to a very significant improvement in AUC, increasing from 0.75 to 0.84 and

this finding is expanded on in Chapter 6.
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5.4 Experiments and results

In this section we describe the experimental setup, and the results obtained when com-

paring our best RNN model to GBM, and a comparison of different RNN variants (stan-

dard, GRU, LSTM).

5.4.1 Training Details

Both datasets were split into a training set and validation set in a 90:10 ratio. We chose

this ratio empirically to maximise the number of buyer sessions presented to the model

at training time as buyer sessions are relatively rare compared to clicker sessions. The

model was trained using the Adam optimiser [117], coupled with a binary cross entropy

loss metric and a learning rate annealer. Training was halted after 2 successive epochs of

worsening validation AUC. Table 5.5 illustrates the main hyperparameters and setting

used during training.

Dataset split 90/10 (training / validation)
Hidden units range 128− 512 : 512 optimal
Embedding width 10− 300 : 100 optimal for items
Embedding weight −0.075 to +0.075

Batch size 32− 256 : 256 optimal for speed
and regularisation

Optimiser Adam, cyclic learning rate (1-cycle policy: 1e-5 - 1e-3)

TABLE 5.5: Hyper parameters and setup employed during model training.

We tested three main types of recurrent cells (standard RNN, GRU, LSTM) as well as

varying the number of cells per layer and layers per model. While a 3-layer LSTM

achieved the best performance, standard RNNs which possess no memory mechanism

are able to achieve a competitive AUC. The datasets are heavily weighted towards
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shorter session lengths (even after unrolling - see Figure 5.4 and 5.9). We posit that

the power of LSTM and GRU is not needed for the shorter sequences of the dataset, and

standard recurrence with embeddings has the capacity to model sessions over a short

enough sequence length.

5.4.2 Overall results

The metric we used in our analysis was Area Under the ROC Curve or AUC. AUC is

insensitive to class imbalance, and also the raw predictions from [55] were available to

us, thus a detailed, like-for-like AUC comparison using the test set is the best model

comparison. The organisers of the challenge also released the solution to the challenge,

enabling the test set to be used. After training, the LSTM model AUC obtained on

the test set was 0.841 - 98.6% of the AUC (0.853) obtained by the state-of-the-art

(SotA) model. As the subsequent experiments demonstrate, a combination of feature

embeddings and model architecture decisions contribute to this performance. For all

model architecture variants tested (see table 5.4), the best performance was achieved

after training for a small number of epochs (2 - 3). This held true for both datasets.

Our LSTM model achieved within 98% of the winning GBM-based model on the Rec-

Sys 2015 dataset, and outperformed our GBM model by 1.1% on the Retailrocket

dataset, as Table 5.6 shows.

RecSys 2015 Retailrocket
LSTM 0.841 0.843
GBM 0.853 0.834

TABLE 5.6: Classification performance measured using Area under the ROC curve
(AUC) of the GBM and LSTM models on the RecSys 2015 and Retailrocket datasets.
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FIGURE 5.3: ROC curves for the LSTM and State of the Art models - on the RecSys
2015 test set.

5.5 Analysis

We constructed a number of tests to analyse model performance based on subsets of

the test data where we can reasonably expect a divergence in model performance (for

example sessions with longer item dwelltimes could favour RNNs over GBM).

5.5.1 Session length

Figure 5.4 graphs the best RNN model (a 3-layer LSTM with 256 cells per layer) and

the SotA model, with AUCs broken down by session length. For context, the quantities

for each session length in the test set is also provided. Both models underperform for

sessions with just one click - clearly it is difficult to split clickers from buyers with such

a small input signal. For the remaining session lengths, the relative model performance
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FIGURE 5.4: AUC by session length for the LSTM and SotA models, session quan-
tities by length also provided for context - clearly showing the bias towards short se-

quence / session lengths in the RecSys 2015 dataset.

is consistent, although the LSTM model does start to close the gap after sessions with

length > 10.

5.5.2 User dwelltime

Given that we unrolled long-running events in order to provide more input to the RNN

models, we evaluated the relative performance of each model when presented with ses-

sions with any dwelltime > 1. As Figure 5.5 shows, LSTM is closer to SotA for this

subset of sessions and indeed outperforms SotA for session length = 14, but the volume

of sessions affected (5,433 ) is not enough to materially impact the overall AUC.



103

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Session length

0.6

0.7

0.8

AU
C

LSTM AUC
SotA AUC

FIGURE 5.5: AUC (y-axis) by session length (x-axis) for the LSTM and SotA models,
for any sessions where unrolling by dwelltime was employed. There are no sessions of

length 1 as unrolling is inapplicable for these sessions (RecSys 2015 dataset).

5.5.3 Item price

Like most e-commerce catalogues, the catalogue under consideration here displays a

considerable range of item prices. We first selected all sessions where any single item

price was > 10,000 (capturing 544,014 sessions) and then user sessions where the price

was <= 750 (roughly 25% of the maximum price - capturing 1,063,034 sessions). Fig-

ures 5.6 and 5.7 show the relative model performance for each session grouping. As

with other selections, the relative model performance is broadly consistent - there is no

region where LSTM either dramatically outperforms or underperforms the SotA model.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Session length

0.7

0.8

0.9
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FIGURE 5.6: Model performance (AUC - y-axis) for sessions containing low price
items, split by session length (x-axis) using the RecSys 2015 dataset.
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FIGURE 5.7: Model performance (AUC - y-axis) for sessions containing high price
items, split by session length (x-axis) using the RecSys 2015 dataset.

5.5.4 Gated vs un-gated RNNs

Table 5.4 shows that while gated RNNs clearly outperform ungated RNNs, the differ-

ence is 0.02 of AUC which is less than might be expected. We believe the reason for

this is that the dataset contains many more shorter (< 5) than longer sequences. This

is to be expected for anonymised data - user actions are only aggregated based on a

current session token and there is no lifetime set of user events. For many real-world

cases then, using ungated RNNs may deliver acceptable performance.

5.5.5 End-to-end learning

To measure the effect of allowing (or not) the gradients from the output loss to flow un-

encumbered throughout the model (including the embeddings), we froze the embedding

layer so no gradient updates were applied during the back-propagation phase and then

trained the network. Model performance decreased to an AUC of 0.808 and training

time increased by 3x to reach this AUC. In addition the number of trainable model pa-

rameters also reduces significantly. This demonstrates that depriving the model of the
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ability to dynamically modify the input data representation at training time using gra-

dients derived from the output loss metric reduces its ability to solve the classification

problem posed.

5.5.6 Transferring to another dataset

We tested our claim that learned features should be more robust than hand-engineered

features when ported to a new dataset [98] as learned features are not dataset or domain-

specific. The GBM model used in [55] is not available, however we were able to use

the GBM model described in [23]. Figure 5.8 shows the respective ROC curves for the

RNN (LSTM) and GBM models when they are ported to the Retailrocket dataset. Both

models still perform well on the second dataset, however the LSTM model out-performs

the GBM model (mean AUC of 0.8434 vs 0.8338) by a clear and reproducible margin.

We ran 60 experiments using different initial random seeds (30 GBM, 30 LSTM) and

measured the final test AUC for each model. A two-tailed t-test was carried out on

the data in Table 5.7 which indicated that the LSTM algorithm gave significantly better

performance than GBM (t = −20.372, df = 32.998, p < 2.2e−16).

A deeper analysis of the Area under the ROC curve demonstrates how the characteristics

of the dataset can impact on model performance. The Retailrocket dataset is heavily

weighted towards single-click sessions as Figure 5.9 shows. LSTM out-performs GBM

for these sessions - which can be attributed more to the learned embeddings since there

is no sequence to process. GBM by contrast can extract only limited value from single-

click sessions as important feature components such as dwelltime, similarity etc. are

unavailable.
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Experiment GBM (AUC) LSTM (AUC)
1 0.8344 0.8430
2 0.8349 0.8424
3 0.8342 0.8432
4 0.8342 0.8451
5 0.8340 0.8464
6 0.8344 0.8409
7 0.8336 0.8427
8 0.8339 0.8381
9 0.8325 0.8494

10 0.8338 0.8434
11 0.8335 0.8476
12 0.8341 0.8440
13 0.8336 0.8427
14 0.8336 0.8453
15 0.8346 0.8398
16 0.8330 0.8429
17 0.8338 0.8456
18 0.8333 0.8432
19 0.8337 0.8428
20 0.8340 0.8431
21 0.8333 0.8436
22 0.8338 0.8414
23 0.8332 0.8448
24 0.8349 0.8377
25 0.8349 0.8428
26 0.8337 0.8424
27 0.8331 0.8421
28 0.8324 0.8432
29 0.8346 0.8455
30 0.8343 0.8464

TABLE 5.7: AUC comparisons for n = 30 experiments carried out using random seeds
for the GBM and LSTM models on the Retailrocket dataset.

5.5.7 Training time and resources used

We used PyTorch [94] to construct and train the LSTM models while XGBoost [28]

was used to train the GBM models. The LSTM implementation was trained on a single

Nvidia GeForce GTX TITAN Black (circa 2014 and with single-precision performance

of 5.1 TFLOPs vs a 2017 GTX 1080 Ti with 11.3 TFLOPs) and consumed between 1
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FIGURE 5.8: Area under ROC curves for LSTM and GBM models when ported to the
Retailrocket dataset. On this dataset, the LSTM model slightly outperforms the GBM

model overall.

and 2 GB RAM. The results reported were obtained after 3 epochs of training on the

full dataset - an average of 6 hours (2 hours per epoch). This compares favourably to

the training times and resources reported in [55], where 150 machines were used for 12

hours. However, 12 hours denotes the time needed to train two models (session pur-

chase and item ranking) whereas we train just one model. While we cannot compare

GBM (which was trained on a CPU cluster) to RNN (trained on a single GPU with a

different parallelisation strategy) directly, we note that the hardware resources required

for our model are modest and hence accessible to most commercial or academic labs. In
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FIGURE 5.9: AUC by session length for the LSTM and GBM models when tested
on the Retailrocket dataset. The bias towards shorter sessions is even more prevalent

versus the RecSys 2015 dataset.

addition, real-world e-commerce datasets are large (thousands of concurrent users gen-

erating billions of events over time) [118] and change rapidly, therefore usable models

must be able to consume large datasets and be re-trained readily to cater for new items

/ documents.

5.6 Interpretability

The RNN / LSTM model under discussion has low interpretability, whereas the GBM

model admits at least some introspection of the decision tree created. In particular,

the importance of the different features can be gauged, and the ranking of features for

different datasets can also be analysed.
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Understanding model behaviour is fast becoming a key requirement before deploying

to a production setting - good performance on a test set is no longer enough. We used

LIME [119] to construct simpler proxy models for our deep learning model, focusing

on 4 specific data points of interest: a true positive, true negative, false positive and

finally a false negative example. In this way we endeavour to understand what aspects

of the input data cause the model to behave correctly and incorrectly.

Local Interpretable Model-Agnostic Explanations (LIME) [119] is a technique com-

pletely external to a target model which aims to improve the interpretability of highly

complex models such as RNNs. The core idea of LIME (not justified formally in the

LIME literature) is that even the most complex model can be reasonably approximated

locally using a simpler model.

LIME generates an explanation by approximating the underlying model by an inter-

pretable one (such as a linear model with only a few non-zero coefficients), learned by

modifying the original instance (in our case by removing words from session events

which are then replaced with a data not present value). The key intuition behind LIME

is that it is much easier to approximate a black-box model by a simple model locally,

instead of trying to approximate a very complex model globally.

For our particular model which is an RNN that consumes word embeddings as input,

LIME works as follows:

1. Generate 1 seed output from RNN for a given input (so output ŷ for input x).

2. Pass the original string representation of the user session x to LIME (i.e. not

the embedding lookup IDs) which generates n perturbed samples. We used n =
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2048, the default is 5, 000 however using this value increases the run-time of

LIME significantly and we observed no noticeable reduction in output when using

the lower value. LIME does warn if n is set too low as its own internal matrices

become ill-conditioned.

3. For each sample in n, translate the sample back to embedding IDs and present

this new, perturbed example to our RNN and return the output value to LIME.

4. LIME calculates a similarity metric for the n samples and corresponding RNN

output values according to their proximity to the original input instance.

5. m features (we used m = 10 to maintain a balance between explanation com-

plexity and power) are selected which best describe or cover the original model

behaviour.

6. These m features are used to construct and fit a simpler model (by default LIME

uses ridge regression to construct a linear model).

7. The simpler model feature weights are then used in the local behaviour explana-

tion.

LIME is not without disadvantages however. As well as the direct overhead of LIME

itself, the model under analysis will be invoked n times to generate outputs for the

perturbed examples. Also LIME does not interpret the model under analysis directly

since it is a model-agnostic approach. The simpler proxy model that LIME generates

is intended to provide textual or visual artifacts that provide links between the input

data (the user clickstream) and the model prediction of user intent, as opposed to a true

equivalent to our original model.
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FIGURE 5.10: Strong true positive example: the model correctly has very high con-
fidence (probability = 0.88) that the user has a purchase intention. The items clicked
(214601040 and 214601042) also have a higher than average buy likelihood at 6% and

8.1% respectively.

FIGURE 5.11: Weak true positive example: the model is much less sure (probability =
0.1) that the session ends with a purchase. The items clicked are not often purchased,

so the model has to rely on the day / time of day and price embeddings instead.

Figures 5.10, 5.11, 5.12, 5.13 and 5.14 provide illustrations of our deep model behaviour

for specific inputs. All of the sample sessions were drawn from the test set. In reading

all of the figures, please note that each session is comprised of one or more sentences

(separated by a newline) and each sentence is comprised of: item, category, datetime

quantile, price, price variance and quantity - all separated by the ‘,’ character. For each

example, we provide statistics drawn from the dataset to support our interpretation of

the LIME result. Words highlighted in orange contribute to a prediction that the user

has a buyer intent, whereas words in blue are associated with a clicker intent.
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FIGURE 5.12: Strong false positive example: the model incorrectly (probability =
0.98) classified this session as a buyer. The model was relying on a reasonable item
price combined with a time of day when buy sessions are more likely to make its

incorrect prediction.

FIGURE 5.13: Strong true negative example: the model relies on the presence of un-
popular items. For example, item 214842347 occurs only 1,462 times in the entire

clickstream (33 million clicks) and is never purchased.

FIGURE 5.14: Strong false negative example: this session is a false negative example
(probability = 0.001) - where the session ends with a purchase but our model failed to
detect this. This session appears to show an inability of the model to detect long tail buy
sessions - sessions containing items that are indeed purchased, but only weakly over the
entire dataset. In this example, item 214826912 has a buy:click ratio of 363:21201 or a
purchase rate of 1.7%. The corresponding statistics for item 214828987 are 592:23740

and 2.49%.
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5.7 Conclusions and future work

We presented a Recurrent Neural Network (RNN) model which recovers 98.4% of the

best GBM model performance on the user purchase prediction problem in e-commerce

without using explicit features. On a second dataset, our RNN model fractionally ex-

ceeds the performance of our GBM model. The model is straightforward to implement,

generalises to different datasets with comparable performance and can be trained with

modest hardware resource requirements.

We applied LIME to generate interpretable models explaining how our model behaves

in practice for selected data points of interest.

It is promising that gated RNNs with no feature engineering can be competitive with

Gradient Boosted Machines on short session lengths and structured data - GBM is a

more established model choice in the domain of recommender systems and e-commerce

in general. We believe additional work on input representation (while still avoiding

feature engineering) can further improve results for both gated and non-gated RNNs.

Our approach is transductive - in other words our model will perform poorly when

presented with items never seen in the training set. In Chapter 9 we outline further

planned improvements to the model including a proposal to address this limitation.

A surprising finding from this chapter is that the standard configuration of RNN-based

word language models perform poorly when naively applied to the task of e-commerce

user intent prediction. In Chapter 6 we examine this phenomenon more closely in order

to document the best strategy for RNN usage for the buyer prediction task.
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The material in this chapter draws substantially from [24], published at the ECOM

workshop held during the 41st International ACM SIGIR Conference on Research and

Development in Information Retrieval.



Chapter 6

Hidden State Management and

Sampling

In the previous chapter, we described how a deep learning model was constructed to

compete with a Gradient Boosted Machine (GBM) model in discovering user intent

in an e-commerce setting. During our design and implementation of this deep learn-

ing model (LSTM), we noted that the accuracy of our model suffered when we used

perceived best practices around batch management and the training sampler used - in

particular how hidden state is either re-used or discarded across batch boundaries. In

this chapter, we provide more details about our findings and subsequent recommenda-

tions in this area - particularly relevant for clickstream analysis.

115
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6.1 Introduction

Recurrent Neural Networks (RNNs) are one of the most common forms of neural net-

works in use today. They are well-suited to sequence processing tasks such as language

modelling, tagging, translation and image captioning [110].

In Chapter 5, we applied multiple variants of the base RNN model to the problem of

analysing user clickstream data in order to predict user intent in an e-commerce set-

ting. In that work we tuned standard RNN hyperparameters such as dropout, batch size,

learning rate, optimiser selection, sampling strategy, number and size of layers and also

tested and employed less common techniques such as skip connections. However, im-

plementing skip connections required us to apply fine grained control over each layer

in the model, in particular how hidden state is passed between batches. We noticed that

choosing whether or not to pass hidden state between batches had a substantial impact

on model performance. In fact, deciding how to handle hidden state and order of pre-

sentation of examples to the model during training were the two most important design

decisions contributing to the final predictive power of the model.

Although RNNs have been used recently to process clickstream sequences [110], more

traditional work has utilised Gradient Boosted Machines (GBM) [106] and Field-aware

Factorisation Machines (FFM) [120] to perform this analysis. Both of these approaches

work well, especially when domain and dataset-specific features are used. Typical fea-

tures constructed provide global context to the model, e.g. frequency-based measures

of item popularity. RNNs by contrast do not receive this information explicitly, but can

accrue it over time and training epochs.
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Virtually all e-commerce systems can be thought of as a generator of clickstream data

- a log of {item − userid − action} tuples which captures user interactions with the

system. A chronological set of these tuples grouped by user ID is commonly known as

a session.

In an e-commerce context, we can think of local state as the individual story for a single

user - their clicks including dwelltime (conveying interest) and items provide insight

into their intent (buy vs browse). Additionally, we posit that there is a global state

telling a second story about the dataset, over and above the first and most immediate

local story encoded in each individual user session. Examples of global state are specific

items going on sale for a short period of time and seasonality of particular items over

weeks and months. It is intuitively appealing to think of both global and local patterns

encoded in clickstream data that can be parsed and understood by LSTM to improve

predictive performance. However, the inability of LSTM to handle very long sequences

(and thus learn global patterns) is also well-known [121]. Our goal is to examine how

well LSTM can learn global state in an e-commerce context.

Electing to pass hidden state between batches when training is, inasmuch as we can

determine, the default setting for RNN word language models. RNN word language

models are also frequently used as the starting point for new sequence processing mod-

els and applications. Colloquially, passing state is referred to as stateful LSTM while

choosing not to pass state is known as stateless LSTM. However there do not appear

to be any formal references to this model configuration in the literature, even as a tips

and tricks entry. Moreover, these names are confusing as “stateless LSTM” would seem

to indicate state is not maintained in the cells (and thus reduces to standard RNN) but
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this is not the case. With stateless LSTM, the learned weights are retained during the

training phase, but no knowledge is retained in the form of hidden state from previous

batches.

Practitioners are also faced with another important decision - how to sample from the

dataset at training time to maximise performance at inference time. In the Experiments

section, we measure the performance of multiple RNN variants under different settings

to propose the optimal RNN configuration for e-commerce clickstream analysis.

Sampling and hidden state strategy are very important to overall model performance.

One example of the difference in model predictive power when hidden layer state is ei-

ther re-used or discarded between batches is shown in Figure 6.1. When it is discarded,

our best LSTM model is able to recover over 98% of the performance of a strong base-

line - the GBM model for this task [55]. With re-use, the LSTM model is far less

effective. Sharing hidden state and using sequential sampling represents current word

language model best practices to extract maximum predictive accuracy from models.

However, in an e-commerce clickstream setting, we find that it is more advantageous to

use random sampling and to eliminate hidden state sharing across batches completely,

since our modified model displays superior classification accuracy.

6.2 Related Work

This section focuses on two sub-problems:

• How to process and classify clickstreams effectively.
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FIGURE 6.1: ROC curves for two LSTM models on the RecSys 2015 test set.

• The search for an optimal RNN model architecture.

The search for better LSTM model architectures is almost as old as LSTM itself [122],

[123]. In [124], the authors found that the forget gate and the output activation function

are the most critical components in the LSTM cell. In [125], the authors found that

more advanced recurrent units (i.e. variants such as LSTM and GRU that incorporate

gating mechanisms) regularly outperform standard recurrent units and that for the most

part, LSTM and GRU provide equivalent performance. Ba et al. employs layer nor-

malisation to reduce the training time for recurrent neural networks - an important goal

given the inordinate time reported to train state-of-the-art models on larger datasets.

In [127], regularisation is applied to RNNs stochastically, with the aim of improving

generalisation.
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That the performance of neural network-based models depends heavily on the ordering

of input sequences is well known. Bengio et al. argue that careful selection of training

samples can achieve better generalisation. In [129], optimal performance on a sequence

generation task is achieved by preserving order during training, while [130] observes

that faster convergence can be observed if batch order is randomised between epochs.

These observations are seemingly at odds with each other, and serve to illustrate the

requirement for domain and dataset-specific tuning of training algorithms.

6.3 Model Structure / Hidden layers

In deep learning, the term hidden layers is used to refer to any model layer where the

training data does not stipulate the desired output for these layers. Instead the training

algorithm is free to use these layers to construct the best approximation for the desired

function f ∗ - in other words hidden layers contribute to the overall model capacity in

the form of learnable / trainable parameters.

Recall from Chapter 5 the standard model under discussion here is as illustrated in

figure 5.2 - independent of the recurrent cell type used. The cells are organised into

three layers with 256 cells per layer. The first layer accepts input from a group of input

embeddings (unique input values are mapped to a corresponding vector of real values),

while the output of the last layer is combined using a linear layer and passed through a

non-linearity to generate a session prediction.
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6.3.1 Implementation

The implementation consisted of three main areas: data generation, model training and

finally inference and measurement on the test set. We re-used the data generation and

inference modules from previous chapters without modification, and we extended the

training module to accept new runtime parameters to alternate between different sam-

plers and hidden state management regimes.

Our chronological and random training regimes were implemented as pluggable Py-

Torch [94] samplers, selectable at runtime. Hidden state was initialised as a zero tensor

in all experiments and then either re-zeroed between batches (the no-sharing regime), or

re-used between batches in the chronological training case (the sharing regime). When

training chronologically, the hidden state was detached from the computational graph

after each batch to avoid the automatic differentiation from back-propagating all the

way back to the beginning of each epoch.

6.4 Experiments

Our experiments focused on the two areas of RNN training where we observed signifi-

cant differences in RNN performance depending on the choice taken:

• Whether or not hidden state was shared between batches.

• The sampling method used to construct batches as part of the training algorithm.
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6.4.1 Desired Task

Predicting a users intent to purchase from their clickstream is a difficult task [23]. Click-

ers (users who only click and never purchase within a session) and buyers (users who

click and also purchase at least one item within a single session) can appear to be very

similar, right up until a purchase action occurs. Additionally, the ratio between click-

ers and buyers is always heavily imbalanced - and can be 20:1 in favour of clickers or

higher. An uninterested user will often click on an item during browsing as there is no

cost to doing so - an uninterested user will not purchase an item however. As noted

in [60], shoppers behave differently when visiting online vs physical stores and online

conversion rates are substantially lower, for a variety of reasons.

When a merchant has increased confidence that a subset of users are more likely to

purchase, they can use this information in the form of preemptive actions to maximise

conversion and yield. The merchant may offer a time-limited discount, spend more on

targeted (and relevant) advertising to re-engage these users, create bundles of comple-

mentary products to push the user to complete their purchase, or even offer a lower-

priced own-brand alternative if the product is deemed to be fungible.

6.4.2 Dataset Used

The RecSys 2015 Challenge [97] is a set of e-commerce clickstreams well suited to

testing purchase prediction models. It is reasonable in size, consisting of 9.2 million

user sessions. These sessions are anonymous and consist of a chronological sequence of

time-stamped events describing user interactions (clicks) with content while browsing
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and shopping online. The dataset also contains a very high proportion of short length

sessions (<= 3 events), making this problem setting quite difficult for RNNs to solve.

No sessions were excluded - the dataset was used in its entirety. This means that for

sequences with just one click, we require the trained embeddings to accurately describe

the item, and time of viewing by the user to accurately classify the session, while for

longer sessions, we can rely more on the RNN model to extract information from the

sequence. This decision makes the training task harder for our RNN model, but is a

fairer comparison to previous work using GBM where all session lengths were also

included [23, 55, 56]. Lastly, the dataset is quite imbalanced - the class of interest

(buyers) represents just 5% of the total number of samples.

6.4.3 RNNs vs GRU vs LSTM

Gated Recurrent Units, or GRU [115] are a simplification of LSTM, with one less gate

and the hidden state and cell state vectors combined. These modifications mean that

GRU is less computationally intensive to train versus LSTM. In practice, both LSTM

and GRU are often used interchangeably and the performance difference between both

cell types is often minimal and / or dataset-specific. RNN cells are the simplest of all

recurrence cell types, with just a feedback loop from time t−1 to time t and possessing

none of the gate structures / arrays used by GRU or LSTM.

Table 6.1 shows the impact of stateful vs stateless hidden state sharing on four widely

used RNN architectures. In all cases the effect of not using non-local state is a noticeable
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increase in AUC performance for a binary classification task. We use AUC to measure

model performance since the classes are imbalanced.

Model Stateful AUC Stateless AUC
LSTM 0.75 0.841
GRU 0.756 0.839

RNN (TANH) 0.716 0.826
RNN (RELU) 0.789 0.834

TABLE 6.1: The effect of sharing hidden layer parameters on four widely used RNN
model architectures - LSTM, GRU, and standard RNN units using TANH or RELU

non-linear activation functions.

6.4.4 Chronological Training Regime

A common technique to prevent overfitting is to randomly sample from the training

set during training and present disjoint samples to the model. However, if our goal is

for LSTM to learn trends that develop over time then we must train chronologically

and assume that there is a progression through time that our LSTM model can learn to

discern between session outcomes. Therefore we re-order the training and testing set by

time and perform both training and inference chronologically. As Figure 6.2 shows, the

initial results are very positive with a higher training performance, but roughly 20% into

the epoch, training degrades substantially and does not recover. Validation performance

is also significantly reduced. Therefore we conclude, that with conventional LSTM at

least, there is no clear evolution in patterns over linear time that can be used to improve

performance. Even though clickstreams are at some level a time series, the best model

performance is achieved when not treating them as time series and instead sampling

randomly. This finding is closely related to the initial finding shown in Figure 6.1,

where it is counter-productive to pass hidden state across batch boundaries.
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FIGURE 6.2: Training performance of LSTM under two sampling regimes: chrono-
logical (sequential) and random.

6.4.5 Parameter Reduction

Our second experiment tests the theory that by selective ablation of certain parts of the

model, we can remove the model’s ability to pay attention to global data features. We

reduce model capacity by freezing the embeddings only and retaining all of the RNN

capacity. Our motivation in doing this is that not all model parameters are created equal

- the embedding for an infrequently-encountered item will have far less effect on model

performance than the hidden state contained directly in the model itself. Therefore we:

• Froze the entire embeddings layer - model loss was not back-propagated to the

input layer.

• Moved from LSTM to standard RNN with RELU activations - removing internal

memory from the model itself.
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Under normal training conditions, the model loss is back-propagated all the way into the

aggregate embedding layer, in effect treating these embeddings as a trainable memory

for concepts such as popular and unpopular items / categories / dates, similar versus

dissimilar item pairs and so on. With the embedding layers frozen, model performance

does indeed reduce, as Table 6.2 demonstrates. The restrictions imposed do reduce the

predictive power of the model - for example both RNN models have 5% of the best

model parameters yet are able to recover 86% and 90% of its predictive power.

These two changes resulted in a very large decrease in the number of the model parame-

ters - from 6,945,871 to 367,873, or a reduction of 94%. The changes caused the model

to under-perform our best model.

Type Model parameters Test AUC
LSTM: learnable embeddings 6,945,871 0.841

LSTM: frozen embeddings 1,470,721 0.74
RNN: TANH activation + frozen embeddings 367,873 0.722
RNN: RELU activation + frozen embeddings 367,873 0.762

TABLE 6.2: The effect of removing the ability of RNN and LSTM to store dataset
statistics other than those directly obtainable from a session (i.e. local) by either freez-

ing embedding weights during training or using simpler, non-gated recurrent units.

6.5 Summary and Conclusion

We presented a series of experiments using different Recurrent Neural Network types

to investigate if both global and local (session-level) patterns in e-commerce datasets

are used to infer user intent. The conclusion is yes, albeit with some caveats: although

training results were substantially affected when the training set-up was configured to

enable global training, results on the validation and test sets under-performed a training
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configuration where no global patterns or context were assumed. Instead, RNNs can

use trainable embeddings to learn global statistics over time to improve performance.

Our results demonstrate that careful selection and configuration of both model and train-

ing regime is necessary when applying RNNs / LSTM to the domain of e-commerce and

clickstream analysis. Moreover, the current best practice in word language models of

propagating hidden state between batches does not transfer to clickstream analysis and

should be tested carefully on new datasets and domains.

In the next chapter, we provide details of our hyperparameter tuning approach.

The material in this chapter draws substantially from [25], published at the Deep Learn-

ing workshop day held during the 24th ACM SIGKDD Conference on Knowledge Dis-

covery and Data Mining.



Chapter 7

Hyperparameter Tuning

In this chapter we detail our experiences with hyperparameter tuning, especially auto-

matic tuning. Considerable time and effort was expended in this tuning effort, however

we found that while hyperparameter tuning has its place, it is not a replacement for

algorithmic insights and advances.

7.1 Hyperparameter tuning

The two model implementations used in this thesis - Gradient Boosted Machines (GBM)

and Recurrent Neural Networks (RNN) - rely heavily on good hyperparameter selection

in order to achieve good performance. A hyperparameter is any variable of the model or

learning algorithm which must be selected external to the training process, i.e. it cannot

be learned by the algorithm itself.
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For example, GBM can train to very high levels of precision and recall if the tree depth

is large and new decision and leaf nodes are created to reduce training error (max depth,

min child weight and gamma respectively), but then will perform badly on a validation

or test set (displaying overfitting or high variance).

RNNs have equally important hyperparameters to prevent overfitting - training batch

size and dropout to promote loss regularisation, architecture parameters such as the

number of layers to improve performance and so on. In fact, hyperparameter tuning

for neural networks is often likened to a dark or magic art, and depends on the domain,

dataset and model architecture employed [131].

We invested considerable time and effort in automating the selection of optimal hyper-

parameters. Initially we used default hyperparameter values as per [111, 117] since our

model is inspired by the word language model and we used Adam as our optimiser,

and then expanded our search for the optimal values to use for clickstream analysis.

Spearmint [92] was used to partially automate the discovery process of the best com-

bination of hyperparameters to use. Spearmint is a Bayesian optimiser which can be

used to find machine learning hyperparameters that minimise a loss function and are

expressible as a float, integer, boolean or enumeration (a discrete range of values). A

Bayesian prior is initialised and updated after every experiment to converge on the best

combination of parameters. Algorithm 2 provides an overview of the algorithm used

in Spearmint - the real-world code makes some simplifications and approximations that

are not described in the Spearmint literature.

Our experience of Spearmint was mixed. We found that for large combinations of

hyperparameters with wide ranges, Spearmint wasted time exploring hyperparameter
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Algorithm 2 The Spearmint hyperparameter tuning algorithm.
1: init experiments() //Create 2 experiments. Size is configurable, purpose is to

initialise the population to draw from.
2: g ← build grid(20000) //Creates a Sobol grid with 20,000 cells. A Sobol sequence

is a low discrepancy quasi-random sequence. This models the potential space of
solutions (in theory unlimited, in practice set to 20,000).

3: g ← populate grid() //Place valid values in each cell subject to user-provided
constraints.

4: g ← overlay previous() //Add previously visited points to the grid. Ensures
Spearmint does not make the same recommendation twice.

5: while true do
6: fit() //Fit using known information to maximise Expected Improvement (EI).
7: s← suggestion() // Retrieve the next suggestion to try
8: scb ← current best()//Compute the current best suggestion.
9: mean = find mean() //Compute the Gaussian Process (GP) mean.

10: meanmin,meanargmin ← optimise gp mean() //Find the min and argmin of the
GP mean

11: meanmin ← un normalise(meanmin) //Un-normalise the min of mean to orig-
inal units

12: sb ← best() //Compute the best value seen so far
13: sbm ← best model() //Return best value according to model, not observed
14: c← candidates(sbm) //Add some extra candidates around the best so far
15: eig ← expected improvement(g) //Compute Expected Improvement (EI) on the

grid
16: eihighest ← highest ei(g) //Find the points on the grid with highest EI
17: end while

combinations that we knew were sub-optimal. An exhaustive exploration of a large hy-

perparameter space would require very large amounts of compute capability as well as

wall clock time. However Spearmint can run in reasonable time when the number and

range of hyperparameters are reduced.

We illustrate our experience with Spearmint using a positive and negative example. Our

positive example relates to the dropout rate hyperparameter - the rate we used in chap-

ters 4 and 5 was discovered by Spearmint and is considerably lower than our original

value (0.004873 vs 0.1 / 0.2). During our experiments we increased the training batch

size from 32 to 256 and this increase acted as a regulariser on our model preventing

overfitting, removing the need for dropout to perform the same function.
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Our negative example is learning rate. Originally we used Spearmint to select a learning

rate for the Adam optimiser of 1e-3. Using this learning rate value for the model grid

search exercise reported in table 5.4 results in the test AUC values reported in 7.1.

Clearly, the results in Table 5.4 from Chapter 5 which use a 1-cycle cyclical learning

rate policy [4] are better than those in Table 7.1.

Like any automated hyperparameter tuning mechanism, Spearmint can only explore

values in a specified range, using a specified step-size. It cannot discover a new learning

rate scheduler.

Figure 7.2 shows the key idea behind the 1-cycle cyclical learning rate policy - although

simple in conception and implementation, Spearmint cannot discover this when probing

a linear range of candidate values. Using the technique detailed in [4] we selected

the minimum and maximum values for the learning rate by gradually increasing the

learning rate over a single epoch and plotted the average loss against the log learning

rate. Our goal is to select a minimum learning rate close to where the loss begins

to reduce considerably, and set the maximum learning rate before the loss increases

dramatically, indicating that the model is diverging, and not converging. Figure 7.1

demonstrates the selection strategy for the RecSys dataset.

In [132], hyperparameter auto-tuning is expanded to include the entire model architec-

ture itself. Good results are reported, however again we note the inordinate amount

of compute resources required. In our opinion, algorithmic improvements and targeted

heuristics such as cyclical learning rates [4] offer better prospects for model improve-

ment, while spare compute capacity should be used in an automated continual refine-

ment manner to fine-tune hyperparameters.
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FIGURE 7.1: Following the doctrine in [4], we trained for 1 epoch with an initial rate
of 1e−8 and gradually increased this to 0.1. The graph clearly intimates values for the

minimum and maximum learning rates of 5e−5 and 5e−3.
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FIGURE 7.2: In the 1-cycle policy, the learning rate starts low (1e-4) and increases
gradually to 1e-3 at the mid-way point of the epoch. The rate then cools again, reaching

the original starting point at the end of the epoch.
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RNN GRU LSTM
Layers 1 2 3 1 2 3 1 2 3
Layer size

64 0.72 0.81 0.81 0.741 0.832 0.833 0.735 0.832 0.831
128 0.72 0.80 0.80 0.755 0.833 0.833 0.729 0.834 0.834
256 0.71 0.80 0.80 0.732 0.834 0.834 0.724 0.834 0.839
512 0.69 0.80 0.77 0.746 0.832 0.833 0.759 0.835 0.839

TABLE 7.1: Model grid search results for number and size of RNN layers by RNN
type on the RecSys 2015 dataset.

In order to make the hyperparameter search process more tractable in time and compute

resources, we note that some hyperparameters are more important than others [133].

For GBM we chose to optimise tree depth and the node creation penalty (new nodes

help reduce training error, but can adversely impact validation / test error).

For RNNs, we chose to optimise the number of layers in the model, batch size and

dropout rate.

Normally, the learning rate used to update RNN model parameter weights would be

an important parameter to include, however we chose to use the Adam [117] optimiser

(the name is derived from adaptive moment estimation) which is more immune to the

initial learning rate selected. Adam is different to classical Stochastic Gradient Descent

(SGD), which uses a single learning rate α, for all weight updates and the learning rate

does not change during training. Therefore selecting the correct / best α when using

SGD is critically important to model performance.

With Adam, a learning rate is maintained for each network weight (parameter) and sep-

arately adapted as learning unfolds. The method computes individual adaptive learn-

ing rates for different parameters from estimates of first and second moments of the
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gradients. Kingma and Ba describe Adam as combining the advantages of two other

extensions of stochastic gradient descent:

• Adaptive Gradient Algorithm (AdaGrad) that maintains a per-parameter learning

rate that improves performance on problems with sparse gradients (e.g. natural

language and computer vision problems).

• Root Mean Square Propagation (RMSProp) that also maintains per-parameter

learning rates that are adapted based on the average of recent magnitudes of the

gradients for the weight (e.g. how quickly it is changing). This means the algo-

rithm does well on online and non-stationary problems (where the data itself is

noisy).

In practice we found Adam to require little tuning of hyperparameters - in contrast to

SGD which is very sensitive to the learning rate selected. For the datasets we used,

Adam also performed comparably well to SGD, thus it became our default optimiser

selection in all experiments.

Spearmint offers straightforward integration with Python code - a small glue script

needs to be implemented which maps Spearmint suggestions for hyperparameters onto

configurable values in the machine learning model and / or algorithm. A single exper-

iment is run at a time, as the result is needed to update Spearmint priors / beliefs and

then selecting the next experiment to run.
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7.1.1 Practical Effectiveness of Automated Hyperparameter Tun-

ing

In Chapter 5, we demonstrated that a model from the deep learning family (LSTM)

combined with an appropriate input representation (word vectors), could recover over

98% of the state of the art performance, and with virtually no feature engineering used.

The state of the art approach by contrast, required a very significant investment in fea-

ture engineering.

However, our deep learning approach is not without drawbacks. Although we were

successful in removing almost all of the feature engineering effort, the number of model

architecture parameters and training hyperparameters meant that we spent time in tuning

the model architecture and associated hyperparameters. Part of this is simply because,

as we showed in Chapter 6, current best practices and configuration for RNN models

are very domain and dataset-specific. Moreover, there is no strong theoretical basis for

choosing hyperparameters - the process is inherently empirical and time-consuming.

Therefore, the time, domain expertise and coding effort required to generate good fea-

tures for GBM is partly offset by the time and computational resources needed to find

the best combination of model architecture configuration and hyperparameters to use

with LSTM. A brief example serves to illustrate the time required for even a cursory

scan over a small number of hyperparameters:

• training batch size - one of 32, 64, 128, 256.

• dropout rate - from 0.1 . . . 0.5 with 0.1 increments.
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• learning rate - from 1e−3 . . . 1e−4 with 0.0001 increments.

A single training epoch takes 1 hour on the RecSys dataset and at least 3 epochs are

needed to evaluate the effect of hyperparameter selection. Therefore this example re-

quires 4× 5× 10× 3 = 600 hours of compute time. Moreover, the increments used are

often more fine-grained (1e−3 vs 1e−2 to tune dropout for example). Although this rep-

resents the worst case scenario of running hyperparameter tuning experiments to cover

an entire grid, considerable compute time is also needed for the two major alternatives

- random search and approaches using Bayesian optimisation.

In practice, we chose sensible defaults for hyperparameters for both GBM and LSTM

as detailed in the relevant literature [28, 56, 111, 117] and then scheduled Spearmint

sessions to fine-tune parameters within narrower ranges to reduce the potential search

space.

7.1.2 The Advantage of Pluggable Implementations

While the GBM model and training algorithm is relatively monolithic, the RNN model

is composed of interchangeable components, for example:

• The optimisation algorithm used to update weights after each batch - we used the

Adam optimiser as already described but alternatives include SGD, Adagrad and

LBFGS among others.

• The learning rate scheduler - we used a cyclic rate scheduler as detailed in [4] over

more standard schedulers such as a step or plateau scheduler. We found that using
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a 1-cycle cyclical learning rate policy which scaled from 1e−5 to 1e−3 improved

our AUC from 0.839 to 0.841 on the RecSys challenge dataset, an improvement

of 0.3%.

7.2 Experiment Setup

7.2.1 Model Evaluation Protocol

We wrote a number of scripts to evaluate model performance. Since the buyer and

clicker classes are so imbalanced (20:1 in favour of clickers for the YOOCHOOSE

RecSys 2015 dataset and 100:1 for the Retailrocket dataset), our primary evaluation

metric is AUC-ROC, we used two independent implementations to check our calcula-

tions. Both are based on the composite trapezoidal method [134].

In statistics, a receiver operating characteristic curve, i.e. ROC curve, is a graphical plot

that illustrates the diagnostic ability of a binary classifier system as its discrimination

threshold is varied. Therefore, a good classifier as measured by AUC-ROC can still

deliver poor performance if the threshold is poorly chosen, but the AUC-ROC curve

illustrates the ability of the model to discriminate between two classes. The ROC curve

is created by plotting the true positive rate (TPR) against the false positive rate (FPR)

at various threshold settings and is considered to show the expectation that a uniformly

drawn random positive is ranked before a uniformly drawn random negative[135].
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We do not claim that the AUC-ROC curve is a perfect measure of model power, but for

the binary classification problem focused on in this thesis where the dataset is imbal-

anced, we do believe it is the most suitable.

In general, we evaluated different model performance as follows:

• The models to compare were loaded into memory.

• Each model predicted a probability score for user intent and these outputs were

then sorted by session ID.

• We calculated the overall model AUC-ROC twice using two independent ap-

proaches and compared them to ensure correctness.

• For deeper comparisons, we obtained subsets of the data (low price, high price,

session length) and again compared AUC values for each model.

• The various results obtained were logged, graphed and then written to disk for

further use.

7.2.2 Datasets

We used two e-commerce clickstream datasets in our experiments:

• The RecSys 2015 challenge dataset supplied by YOOCHOOSE.

• The Retailrocket dataset supplied by Retailrocket.
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In Chapter 4 and Chapter 5 we provided a detailed comparison of both datasets - in-

cluding size, complexity and class imbalance ratios. One important difference which

affects experiment design is that the RecSys dataset contains a dedicated test set (20%

of the entire dataset) while the Retailrocket dataset does not. For consistency, with each

dataset we reserved 10% of the main dataset as a validation set, and we used the RecSys

test set when comparing it to the original models from the competition.

7.3 Performance

The GBM training algorithm runs on a CPU, while our RNN models are trained on a

GPU, therefore they are not directly comparable. However the wall clock time taken to

train each model is relevant when we consider a production deployment. In generating

the values for Table 5.7 in Chapter 5, the average training time for LSTM was 341.36

seconds with a standard deviation of 9.75 while the average for GBM was 752 seconds

with a standard deviation of 10.21.

7.4 Conclusion

In this chapter, we described our overall approach to hyperparameter tuning and con-

trasted it with specific algorithmic improvements. We showed that hyperparameter tun-

ing is most beneficial when used conservatively to explore well-defined ranges bounding

specific variables. In the next chapter, we perform a critical assessment of our results so

far.



Chapter 8

Critical Assessment of Results

So far our work has followed a methodical path. First we strove to understand which

features in e-commerce clickstreams work best for the user intent prediction task and

why Gradient Boosted Machines (GBM) is a suitable model implementation to use.

In Chapter 4 and Chapter 5, we noted that model choices such as GBM yield good

results only if a significant investment in feature engineering is also undertaken. This

investment is problematic for a number of reasons:

• Features are time-consuming to generate - there is no automatic way to build

features.

• Features can be reliant on a single dataset.

• Features can be reliant on a single domain.

In Chapter 5 and Chapter 6 we moved on to investigate deep learning as a model sub-

stitute for GBM in the user intent prediction problem - yielding promising results when

140



141

compared to state of the art and practical contributions on how to apply deep learning

to e-commerce clickstreams.

In the following sections we review the precision, thoroughness and contribution of our

work with the current state of the art approach. We also illustrate the limitations of our

current method when compared to potential future work.

8.1 Data-driven analysis of GBM vs LSTM

In Chapter 5, we segmented the RecSys dataset in a number of ways in an attempt

to find either a segment where RNN / LSTM outperformed GBM, or the opposite - a

segment where GBM significantly out-performed RNN / LSTM. However in all of the

segmentations we conducted, RNN / LSTM underperforms GBM in a consistent way,

demonstrating the power of designed features that exploit the characteristics of a specific

dataset. Our segmentations were designed based on domain expertise as follows:

• High value items - common intuition suggests that users will browse carefully

and compare often, generating more clicks and dwelltime pauses for LSTM to

analyse.

• Low value items - the opposite logic to high value items suggests that users will

purchase quickly, favouring GBM.

• Long dwelltime - related to high price, but a user may spend a longer time

analysing an item for reasons other than price - reading terms and conditions

for example. We posited that LSTM should do well on these user sessions.
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As the figures in Chapter 5 illustrate, relative model performance between GBM and

LSTM was stable regardless of the data segmentation used.

8.2 Interpretability

Interpretability is a key concern in the deployment and use of machine learning models

in real world production settings. Although the domain of e-commerce does not require

models to support (or make) potentially life and death decisions as opposed to medical

care or policing, significant profits and losses can be earned.

Understanding what a model is doing and why it returns the output ŷ for a given input x

is challenging, perhaps for any model more complex than linear or logistic regression.

As an example, although Gradient Boosted Machines (GBM) claim to admit analysis

(the tree structure and rules can be viewed by a human assessor) for any complex prob-

lem the tree depth, width and recurrence of the same variable in the tree quickly renders

the model unsuitable for human interpretation.

Deep learning models are less interpretable than Gradient Boosted Machines (GBM).

Neural networks are complex dynamic systems with multiple non-linearities. Increas-

ingly, input data xi is translated into embeddings as part of the inference process to

extract the best model performance. These embeddings muddy the waters even further,

especially when we move away from sequence to sequence translation and towards clas-

sification tasks. Figure 8.1 from [5] attempts to show how some cells activate strongly

for some corpus features while other features are much harder to interpret, but overall

any end-user will struggle to use these visualisations in a useful manner. Text colour
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FIGURE 8.1: From [5]: Several examples of LSTM cells with interpretable activations
discovered when trained on two text datasets - Linux kernel source code and War and

Peace.

corresponds to tanh(c), where −1 is red and +1 is blue. According to [5], these are

interpretable, saturated gate activations with values < 0.1 named left-saturated, and

values > 0.9 right-saturated. Right-saturated values are said to correspond to cells that

remember values for very long time periods but this is not quantified or explained. In

general, this regime can only be considered as providing partial or incomplete inter-

pretability of RNNs. The author realises that this approach is not optimal, and in [136],

provides multiple examples where this approach to interpretability yields both insight-

ful, confusing and contradictory results.

Hinton diagrams are also used to visualise the values of a 2D array (e.g. a weight matrix

or tensor) and thus the connection strength between cells or units. Positive and negative

values are represented by white and black squares respectively, and the size of each

square represents the magnitude of each value. Again however, we argue that these

weight plots do not confer interpretability.

An alternative approach is to substitute (only approximately) the model in question
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with a simpler one (e.g. a linear classifier) which is easier to understand. Then the

proxy model can be used to help understand the more complex and impenetrable model,

in part at least. This is the approach offered in [119], which proposes LIME (Local

Interpretable Model-Agnostic Explanations). In LIME, an explanation is a local linear

approximation of the model’s behaviour. We provided a detailed overview of LIME in

Chapter 5 and applied it to specific user sessions of interest to gain a better insight into

the operation of our RNN model.

Solving interpretability is a key milestone in the widespread adoption of complex ma-

chine learning models in e-commerce. If users do not understand a model and its predic-

tions, they will not trust it. Given that our thesis focuses on how merchants can improve

their efficiency using machine learning, a lack of trust will remove opportunities to

make savings, reduce waste and increase profits.

8.3 Causal Inference

The machine learning field has always been aware of its own limitations. Some prob-

lems are endemic - overfitting, underfitting, unnecessary complexity, lack of inter-

pretability, opaque results achieved by hyperparameter tuning, and especially for deep

learning, a sense that model performance cannot be explained theoretically. Of all the

machine learning approaches, deep learning is the most empirical. Our deep learning

model suffers equally from these drawbacks and will only improve as the field in general

improves.
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Within e-commerce, merchants can further improve their profitability if they can plausi-

bly answer some central questions relating to volume, price and factors affecting conver-

sion. But as we see below, questions of this ilk require advances over current machine

learning approaches.

Most recently [137] (although the author has been working on it for decades [138]), the

lack of causal inference in current machine learning approaches has been decried. Pro-

ponents of causal inference claim that without it, machine learning models are merely

curve fitting. Adding the ability to understand and reason with counterfactuals for ex-

ample, would improve machine learning model performance considerably. Our models

can also be critiqued in this way, however we appeal to the reader that curve fitting used

correctly provides real value.

To demonstrate the reasoning capability that Pearl believes is missing from current ma-

chine learning models, we note here the key ideas from [137]. Firstly, a 3-layer hi-

erarchy where each successive layer relies on the layers beneath it being in place and

solved:

• Layer 1 - association, or P (y|x). e-commerce example: what is the conversion

rate of item ik.

• Layer 2 - intervention, or P (y|do(x), z). e-commerce example: what is the pro-

jected conversion rate of item ik if we double the price.

• Layer 3 - counterfactuals, or P (yx|x′, y′). e-commerce example: what would the

conversion rate of item ik be if we doubled its price a year ago.
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Being able to answer these types of question would add significant value to e-commerce

merchants when used in conjunction with our user intent discovery models - for example

enabling merchants to implement optimal pricing and stocking strategies. Pearl further

proposes how such an analytic capacity would be built, namely:

• Encoding causal assumptions – transparency and testability. The author prefers

graphical models to achieve these two goals using the structure of the graph for

transparency and d-separation (dependence separation) to test statistical predic-

tions.

• Do-calculus and the control of confounding. Confounding (the presence of un-

observed causes of two or more variables) is a major obstacle to drawing causal

inference from data, however progress in the form of back-door criteria and the

do-calculus has been made.

• Algorithmisation of counterfactuals, or the formalisation of counterfactual rea-

soning within a graphical model representation.

• Mediation analysis and the assessment of direct and indirect effects. Again the

formalisation of counterfactual reasoning within a graphical representation admits

this analysis and assessment.

• Adaptability, external validity and sample selection bias. These are common con-

cerns in all machine learning settings, and the author proposes do-calculus to

overcome bias due to environmental changes.
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• Recovering from missing data. This is another common issue, however the au-

thor proposes a causal model of missing data, to inform conditions under which

incomplete data can be used robustly.

• Causal discovery. Following on from the d-separation criteria above, a compact

set of models can be inferred from the data and used to answer causal queries.

We note that at least 3 of these “seven pillars” are not unique to causal inference and are

common to all branches of machine and statistical learning.

Building a system to encode, organise and reason about facts will require probabilistic

graphical models (PGM) [30], structural equations and counterfactual and interven-

tional logic.

Causal inference is not without its own challenges - for Structured Causal Models

(SCM) the graph structure must be validated against domain expertise and assumptions

(i.e. edges which are not present) are as important as facts / influences (defined edges).

Additionally, confounding variables can affect the logic of the graph.

In practical terms, the performance and scalability of PGM is problematic for large fea-

ture sets. But overall, the potential benefits are significant and causal inference promises

to augment interpretability and understanding in the field of machine learning.

8.4 Online Prediction

Knowing the intent of a user is only useful if that knowledge is acted upon - and

promptly. Both GBM and LSTM models can be deployed to a production setting in
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a straightforward manner and used in near real time to inform system actions.

“Near real time” however is a fuzzy requirement. Speed is essential in the online realm.

Particularly when searching or browsing, users have been shown to be remarkably in-

tolerant of slow systems [139], with 53% of mobile site visits abandoned if pages take

longer than 3 seconds to load. Incorporating the prediction of a model into an exist-

ing recommender or search engine, and returning the rendered page to the user within

3 seconds represents a significant challenge. Further work is needed in the efficient

deployment of trained machine learning models to production in a low-latency environ-

ment.

8.5 Dataset Preprocessing Using Coresets

In Chapter 6 we showed that a random sampling strategy was necessary during training

to achieve the best RNN model performance. However more work in filtering and

refining the training set is certainly possible. We would like to explore the idea of

constructing a coreset [140] - a small, weighted subset of the data that approximates the

full dataset to speed up model training time.

In the current work, we employed two strategies to address the class imbalance problem:

• Weighting positive labels to force the network to pay more attention to them dur-

ing training.

• Removing clicker sessions to partially address the imbalance issue.
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We found that positive weighting had no impact on model performance, and that it

was possible to remove 50% of the clicker sessions before training without impacting

test performance. However it is likely that there is even more redundancy to exploit in

e-commerce datasets, enabling faster, more accurate training on a smaller dataset.

8.6 Contribution

We used our literature review to paint a comprehensive picture of the current e-commerce

domain, and particularly the usage of machine learning within that domain. After focus-

ing on the task of predicting user intent in order to provide better insight to merchants,

we constructed classical and deep learning models, compared them to a strong state-of-

the-art baseline and to each other.

8.6.1 Machine Learning and E-commerce

Our literature review and survey demonstrated that machine learning has much to offer

the field of e-commerce. Until recently, e-commerce has relied on information retrieval

techniques based primarily on statistics, such as tf-idf ranking of documents in search.

Recommender systems move more into machine learning, but do not explicitly model

user intent. However almost every aspect of e-commerce - user interface, results rank-

ing, question-answering and recommendations is moving to use machine learning algo-

rithms. Behind the scenes, machine learning is used to control stock levels and predict

refill orders, as well as set optimal pricing strategies
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We also noted that of all the stakeholders in e-commerce, merchants are often excluded

from explicit measurements of satisfaction - it is often deemed enough to have satisfied

users. But the evolution of e-commerce and coalescence into extremely large portals

such as Amazon, eBay and Google undermines this theory. We argue that merchant

satisfaction must be measured more directly and that an important tool to give merchants

is understanding user intent.

8.6.2 Inferring User Intent Using Classical Models

In order to understand what elements of e-commerce data are important to user intent

classification, in Chapter 4 we used a superset of features and the state-of-the-art mod-

els from the top scoring submissions on a well-studied and open dataset, before adding

our own features and then analysing overall contribution at the individual feature level.

In this work, our best-performing item similarity feature was based on word vectors /

embeddings and we grouped the feature set into three categories: popularity / frequency-

based, time-based and item similarity-based. The success of our embedding approach,

combined with the significant effort we invested into feature engineering, led us to ex-

plore feature-free alternatives - the class of model and learning algorithm that can learn

their own internal representation during training without explicit feature engineering.
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8.6.3 Deep Learning Application to User Intent Prediction

In Chapter 5 we presented a Recurrent Neural Network (RNN) model which recovers

98.4% of current state-of-the-art performance on the user purchase prediction prob-

lem in e-commerce using item and session representations learned during training. In

contrast, state-of-the-art approaches use machine learning techniques such as Gradient

Boosted Machines coupled with comprehensive feature engineering.

On a second clickstream dataset, our RNN model exceeds GBM performance, demon-

strating that explicit features designed for one dataset do not automatically translate to

other datasets, even when closely related and learned features can outperform them.

Our model is straightforward to implement, generalises to different datasets in the same

domain with comparable performance and can be trained using modest hardware.

In Chapter 6 we demonstrated that a canonical word-based language model is not suited

for e-commerce session / clickstream analysis. Specifically we show that a random

sampling training regime must be used in conjunction with no hidden state sharing

across training batch boundaries.

8.7 Summary

In this chapter, we placed our research to date in a wider context. In Chapter 5 we

showed that although our best RNN model requires no feature engineering at all, its

performance when compared to the GBM state-of-the-art model is always slightly less.

In Chapter 9 we propose additional research avenues to address this.
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Although the problem of user intent prediction is important and valuable, we can see

that a more general and interpretable model for e-commerce such as causal inference

would represent a major, positive addition to the domain.

In the next and final chapter, we outline multiple directions for future work building on

the work in this thesis and summarise our main conclusions and contributions.



Chapter 9

Further Work and Conclusion

In this chapter we outline the main future avenues of research that are indicated by the

research conducted to date, before summarising our main contributions and concluding

the thesis.

Our work to date presages a number of ways in which our research can be extended and

refined. In summary, these are:

• Incremental improvements to the existing RNN model.

• Augmenting the item representation method used to meaningfully encode previ-

ously unseen data.

• Improving the predictive performance of the deep learning model (without oner-

ous feature engineering).

153
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9.1 RNN Model - Incremental Improvements

The training process achieved remarkably similar results across a wide variety of mu-

tations to the model architecture - recurrence type, number of layers. We posit that

this means that the current model architecture and training regime are optimal for the

classification task.

Therefore, general improvements to the model are more likely to come from improving

the input representation to the model, and further refinements in converting the model

output to a probability score.

The input representation at this point has not yet been exhaustively explored. Although

we conducted a hyperparameter search for the optimal embedding widths to use, we

believe further work is necessary in this area. Hierarchical embeddings have been ex-

plored in [141] and may add value for the item embedding, since e-commerce product

catalogues have an inherently hierarchical structure.

We also note that the general set of best practices used by the deep learning community

evolves continuously. As already noted in Chapter 7, we improved model performance

by a further 0.3% by applying cyclical learning rates [4] during training and it is likely

that further incremental improvements will be found.

It is also possible that there are additional pooling or aggregation techniques which

could bolster the connection between recurrent and output layers, although we have

already applied the balanced pooling technique outlined in [142] without observing any

increase in model power.
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In the same vein, we trained a model using a bidirectional LSTM in order to use the

reverse pass as a simple self-attention mechanism, again without observing any increase

in the predictive power of the model. We believe that our attempts to apply attention to

our model had little effect since the sequences are much shorter than typical sentences,

however more work is needed here.

9.2 Enabling Inductive Learning

Using the same terminology as [143], our current embedding approach is shallow. From

[144], shallow embedding representations have the following drawbacks:

• O(|V |) parameters are needed: there is no parameter sharing and every node has

its own unique embedding vector.

• Inherently transductive: It is not possible to generate meaningful embeddings for

nodes that were not seen during training.

• Do not incorporate node features: Many graphs have features that we can and

should leverage.

Using Graph Convolutional Networks (GCN) [145], a (domain-specific) encoder is used

to generate embeddings for new, unseen items based on initial similarity to existing

members of an embedding set. The accuracy of this initial similarity is important to

effectively including new items but offers significant advantages as datasets expand. In

other words, we delegate more computational complexity to the embedding input layer,
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FIGURE 9.1: How Graph Convolutional Networks lend inductive capacity to a trans-
ductive model.

and allow the RNN layer to take advantage of the new, oriented embeddings at inference

time.

One interesting side effect (not necessarily a drawback) of this approach is that under

this regime, items will continue to affect the graph embeddings even after deletion. This

is not a problem for the e-commerce domain, but may be for other domains.

Figure 9.1 demonstrates the key idea - existing nodes in the embedding graph are used

to place, orient and connect new nodes so that the model is instantly able to compute

over the new nodes without any training. This new data is placed using a similarity

measure and then a new embedding is generated for the new item. Figure taken from

[144].

9.3 Avoiding Overfitting

Overfitting is a problem that affects all supervised machine learning approaches [146],

but because of the number of parameters in a neural network, they are especially prone

to this problem. In the e-commerce domain, overlapping classes (also known as con-

fusing examples) is a particular problem (buyers can be mislabelled as clickers if they
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purchase elsewhere) and we plan to investigate an approach to remove these erroneous

examples from e-commerce datasets using [147]. Erroneous samples are removed iter-

atively using a simple approach and then new models are trained on the newly pruned

dataset. The goal is to roughly estimate the conditional probabilities of training set

samples labels and to exclude those samples, for which P (−yi|xi) > 0.5 > P (yi|xi).

9.4 Augmenting Local With Global Interpretability

In Chapter 5, we used LIME - a local interpretability approach to construct simple

proxy models which explained our deep model behaviour for specific session samples

of interest. This local technique provided some interpretability to our RNN / LSTM

model. However, LIME is data-point specific and also generates a proxy model for our

deep model - we are not analysing the deep model directly.

SVCCA (Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics

and Interpretability) [148] is a complementary approach which analyses deep models

directly through comparison of internal representations. We would like to compare our

model using SVCCA as well as LIME so that we have both global and local inter-

pretability.

9.5 Substituting RNNs With CNNs

A consistent theme in this thesis has been the natural suitability of RNNs to process

sequential data. The ability of RNNs to unroll themselves in time makes for a seamless



158

application to datasets that have a definite temporal ordering - like e-commerce click-

streams. In contrast, Convolutional Neural Networks (CNNs) [149] are traditionally

employed in the field of computer vision and not for sequence processing. Tradition-

ally, CNNs are held to outperform RNNs in extracting position-invariant features while

RNNs excel at modelling sequential data.

However, recently [150], a CNN variant known as Temporal Convolutional Networks

(TCNs) [150] have been used to process sequential data and the initial results are posi-

tive - comparable accuracy coupled with a lower computational complexity [151]. We

note that the experiment tasks used in [150] do not bear a close resemblance to the prob-

lems set out in this thesis and given the counter-intuitive findings we note in the best

training algorithm and sampling strategy to use, we would like to compare TCN with

RNN in the e-commerce domain.

9.6 Data Augmentation Using Adversarial Training

Generative Adversarial Networks (GANs) [152] have recently attracted significant re-

search interest. GANs work by using two neural network components in an antagonistic

setting to improve their mutual performance. One generator network creates forgeries

designed to trick the other network, which functions as a forgery detector or discrimi-

nator. In this adversarial setting, the forgery detector network becomes better at recog-

nising valid or true samples while the generator can simulate samples with increasing

fidelity.
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There are multiple uses of GANs in an e-commerce setting. For example, one network

would create synthetic buyer sessions in an attempt to trick the detector network, while

we would expect the detector network to improve its recognition of true buyer sessions

over time. In Chapter 5 we saw that our deep model is less robust when presented with

rarely purchased or long tail items. In our experiments we also noted that traditional

mechanisms used to address imbalanced datasets such as oversampling the smaller pos-

itive class and weighting positive class samples did not improve performance. Therefore

good data augmentation techniques could help to improve model performance without

artificially affecting the dataset distribution or core characteristics.

We could use GANs in an offline data augmentation role as a precursor to normal train-

ing, creating additional plausible buyer sessions which also contain these long tail items

to reduce the class imbalance problem (buyers are far less represented than clickers in

e-commerce clickstreams) when training.

Figure 9.2 below illustrates how the discriminator and generator components are trained

in a GAN network. Our intention is to use a GAN to generate additional plausible buyer

sessions and to use these when training our existing RNN model, thus addressing the

class imbalance problem.

However, GANs possess their own problems which are not associated with the RNN

models used in this thesis:

• Non-convergence: the model parameters oscillate, destabilise and never converge

to a usable phase or attractor point.
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RNN model

fake session samples

real session
samples

fine tune training

sample from
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augmented data

FIGURE 9.2: In generative adversarial networks, two neural networks (the generator
/ poacher and the discriminator / gamekeeper), duel with each other and in doing so

mutually improve performance.

• Mode collapse: the generator collapses and is only able to synthesise limited

varieties of samples - more clickers in our case.

• Diminished gradient: the discriminator gets too successful that the generator gra-

dient vanishes and so no learning can occur.
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9.7 Further Hyperparameter Tuning

Although we have invested considerable time and effort into hyperparameter selection

for both our GBM and RNN models, it is not proven that the values we have selected

are optimal. Not only must we consider very fine-grained float values for parameters

such as dropout and learning rate, but also combinations of parameters. Although [133]

claims that only a few hyperparameters ultimately matter, even this subset of possible

combinations requires copious amounts of time and compute power. Lastly, the struc-

ture of our codebase allowed us to tune not just obvious parameters but also to modify

the model architecture and training regime during experiments, for example the number

of layers, sampler used, gradient descent method employed. Selecting the best combi-

nation of all of these options remains an open question, not just in our research, but for

machine learning as a field.

9.8 Conclusion

In conclusion, our work shows that deep learning is competitive with classical machine

learning for specific tasks in the e-commerce domain - specifically the task of inferring

user purchase propensity which is an important problem in e-commerce. In addition,

deep learning has the added benefit of representation learning, so in settings where new

features may be required quickly, or assumptions underpinning features become invalid

as the data set changes, may in fact out-perform classical techniques as we showed in

Chapter 5.
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Nevertheless, deep learning cannot be simply applied wholesale and unchanged to the

e-commerce domain. As we showed in Chapter 6, significant modifications are required

to the default training regime and hidden state management strategy in order to extract

the best model performance.

Finally, further work is suggested on multiple avenues of research, ranging from better

interpretability to causal inference and inductive learning.
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