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ABSTRACT 

 

Framboids are defined as microscopic, sub-spheroidal clusters of equant and 

equidimensional microcrystals. The microcrystals are usually constituted of pyrite and 

framboidal pyrite is one of the most abundant mineral textures in the natural 

environment. They are of particular interest to geochemists, sedimentologists, 

paleobiologists and materials scientists because of their potential paleoenvironmental 

significance, their widespread involvement in fossilization and their potential for the 

manufacture of self-organizing materials.   Here I use a simple diffusion-nucleation 

model to compute framboid formation times. The results show that pyrite framboids 

take between 3 hours and 3 years to form depending on framboid size. The time taken 

for the average sedimentary framboid to form is about 5 days and the average 

syngenetic framboid forms within 3 days.  The shorter formation times for syngenetic 

compared with diagenetic framboids helps explain the smaller size relative size 

distributions of syngenetic framboids. This has led to the use of framboid size-

frequency measurements as proxies for ancient euxinia. The relatively rapid formation 

of pyrite framboids explains how pyrite infills and preserves soft tissues before cell 

lysis and before deformation through burial has been initiated.  One unexpected 

consequence of the model is that it further explains how commonly observed groups 

of framboids can form contemporaneously.   
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1 Introduction 

Pyrite framboids (Fig. 1) may be one of the most abundant mineral textures on Earth: 

currently there may be up to about 1030 framboids on Earth or about 109 times the 

number of sand grains (Rickard, 2015). At present they are forming at a rate of up to 

around 1014 per second.  They form in a variety of environments from hydrothermal 

systems at temperatures of over 200oC (Duckworth et al., 1994; Kanehira and 

Bachinski, 1967; Love and Amstutz, 1969; Read, 1968; Rickard and Zweifel, 1975) to 

euxinic water columns at less than 4oC (Ross and Degens, 1974; Skei, 1988; Wilkin et 

al., 1996) and meromictic lakes (Perry and Pedersen, 1993). They are most abundant 

in sediments, however. Vallentyne (1963) for example, isolated 105 framboids per 

gram dry sediment from a North American lake.  They are found throughout the 

geologic column: the oldest reported framboids may be those from the late Archean 

(≤ 2.9 Ga) sediments of the Witwatersrand (Guy et al., 2010; Hallbauer, 1986).  

[Figure 1] 

Framboids were originally defined by Rust (1931) because they looked like 

microscopic raspberries (framboise in French). However the physical nature of pyrite 

framboids was not determined until this millennium. They are formed inorganically 

(Sweeney and Kaplan, 1973), although the sulfide is commonly biogenic (Large et al., 

2001; MaClean et al., 2008; Rickard, 1969) and  microbial biofilm may infiltrate the 

microarchitecture.  The exceptional geometric organization displayed by some 

framboids reflects a classically forbidden, five-fold, crystal symmetry (Ohfuji and 
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Akai, 2002) and the individual microcrystals are not crystallographically aligned 

(Ohfuji et al., 2005; Ohfuji et al., 2006) even though they are often topologically 

organized in pseudo-crystalline arrangements. The process leading to the formation of 

framboids is  free energy minimization through aggregation of the pyrite 

microcrystals under the influence of interfacial forces. The development of internal 

organization of microcrystals has been shown to be a subsequent structural 

modification resulting from entropy maximization in a spheroidal space (Wang et al., 

2018). 

That pyrite framboids can form rapidly in sediments has been known since earlier 

times. For example, Daubrée (1875) described globular pyrite in a Roman pavement 

and, more recently, pyrite framboids were observed in a dead newt (Lissotriton 

vulgaris) that had been trodden on by a miner’s boot in an open pit in Ireland no more 

than a couple of years before (Rickard, 2012). Wilkin et al. (1996) used sedimentation 

rates to estimate that it took approximately 7 years to form a 25 µm framboid in Peru 

margin sediments and noted that, if crystal size distribution theory was applied to 

framboids, then a growth time of 0.4 years was indicated for syngenetic framboids in 

the Black Sea water column. Experimental syntheses of pyrite framboids and 

framboid-like textures also suggest that they form rapidly, within days to weeks 

(Ohfuji and Rickard, 2005). At this time, however, there has been no reported 

experimental study of the kinetics of pyrite framboid formation. In this paper, I 

address the question about how long it takes a pyrite framboid in sediments to form at 

ambient temperatures and pressures using a simple physical chemistry model.  
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2 Methods 

2.1 Framboid formation 

The characteristics of pyrite framboids are consistent with the LaMer model (Lamer, 

1952; Lamer and Dinegar, 1950; Wilkin and Barnes, 1997) of nucleation and crystal 

growth (Fig. 2). This model is characterized by (1) a lag phase before nucleation 

becomes significant which can be regarded as the metastable phase zone width 

(Kashchiev, 2011),  (2) burst nucleation (Baronov et al., 2015) where the rate of 

nucleation increases exponentially and may be completed in seconds and  (3) a short 

growth phase where nucleation becomes again insignificant because of limitation in 

the supply of nutrients.   

[Figure 2] 

Burst nucleation was first defined as a key process in framboid formation by Read 

(1968) who realized that the similarity in size and  habit of all the pyrite microcrystals 

in a framboid meant that they must  have been formed at the same time. The lag phase 

in pyrite nucleation was observed as a reluctance of pyrite to nucleate in aqueous 

solutions (Schoonen and Barnes, 1991). Supersaturations of > 1011 are required for 

pyrite to nucleate in aqueous solution even in the presence of an active surface 

(Rickard and Luther, 2007). Burst nucleation is then a consequence of these enormous 

levels of supersaturation.  Once this critical supersaturation is reached, pyrite 

spontaneously nucleates, which causes a catastrophic decrease in the concentration of 

nutrients so that further nucleation is inhibited. The observation that pyrite framboids 

are formed more readily in environments where diffusive flow dominates, such as 

gels (Wang and Morse, 1996), organic matter (Papunen, 1966) and fine-grained 
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clastic sediments (Rickard, 2012), evidences the subsequent nutrient starvation that 

limits pyrite crystal growth. The final product is a myriad of pyrite microcrystals with 

similar habits and a limited size distribution. 

The relative significance of diffusion-controlled growth in the development of the 

monodisperse microcrystals observed in framboids can be evaluated by considering a 

theoretical system in which the concentration of monomers in the bulk solution, cb, is 

constant.  The concentration at the particle surface is c0, the equilibrium 

concentration. The rate of increase in particle radius, r, with time, t, is then  

dr/dt = [D(1 + r/δ) ν0(cb-c0)/r]/ [1+D (1 + r/δ)/kr].      (1) 

where D is the diffusion coefficient, δ is the width of the diffusion boundary layer 

around the particle,  ν0  is the molar volume of the monomer and k is the rate constant 

for the interface reaction.  In a surface reaction controlled process, the interface 

reaction becomes rate controlling (D >> k) the rate of growth is independent of 

particle size. In the diffusion-limited reaction (D << k) the growth rate is a function of 

the particle size: as the particle size increases the growth rate decreases. Therefore 

diffusion-controlled growth has a much stronger tendency to produce the type of 

monodispersed microcrystals observed in framboids.  

The result of the application of the LaMer model to framboid formation is that the 

time of formation of framboids can be estimated as the time from the point of burst 

nucleation to the point at which further crystal growth is negligible. The rate of 

surface growth of pyrite crystals at STP (25oC, 0.1 MPa) is not well constrained but it 
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appears to be relatively rapid (Harmandas et al., 1998) and the time for framboid 

formation is limited by the diffusion of nutrients from the surrounding environment.  

2.2 Length of time to form a framboid.  

Rickard and Luther (2007) showed that the solubility of pyrite in aqueous solutions 

could be described in terms of the concentrations of Fe(II) and S(-II). The reason for 

this is the extremely fast kinetics of the equilibration of species such as FeS0, S2
2-, HS- 

and H2S and the extremely low solubility of pyrite. This means that there is a 

continuous supply of the key species for pyrite formation in sulfide solutions. 

Since the kinetics of mackinawite, FeSm, formation are extremely fast, the 

concentration of dissolved Fe and S in solution  at STP is limited by the solubility of 

mackinawite, FeSm, This is constant at pH > 6 and is  equivalent to approximately 10-6  

M FeS0 at pH > 6 (Rickard, 2006). This means that the maximum dissolved 

concentration of Fe (II) + S(-II) available for pyrite formation in most natural aqueous 

solutions is 88 x 10-6 g L-1.   

A 10 µm diameter framboid has a mass of less than 2.6 x10-9 g. This is a maximum 

since the density of microcrystal packing varies according to its packing geometry 

(Rickard, 1970). In such a solution, the mass of pyrite in the 10 µm framboid will be 

contained in a volume of about 2.2 x 1010 µm3 at a limiting dissolved Fe and S 

concentration of 10-6 M.  This is equivalent to a sphere of solution with the framboid 

at its center with a radius of about 1600 µm. 

In the framboid-forming system the limiting bulk solution in the sediment or water 

column can be regarded as approaching a constant value (cf. Rickard and Luther, 
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2007). This means that the rate of formation of the framboids can be closely 

approximated by a steady state solution to the three-dimensional equation for 

spherical diffusion (Berner, 1971; Lasaga, 1998; Raiswell et al., 1993; Rickard, 

1973). If the diffusion coefficient, D, is in µm2 s-1, the framboid diameter, D, and the 

radius of the bulk solution containing the necessary dissolved iron and sulfide, Rb are 

in µm, the concentration of dissolved iron and sulfide in the bulk solution, cb , and at 

the pyrite surface, c0, are in moles µm-3 and the porosity, φ, is dimensionless then the 

flux, J, has units of g µm-2 s-1,   and can be described  by  equation (2). 

J = 2φD Rb (cb - c0)/ D (Rb – D/2).        (2) 

which can be simplified to  

J = φD Rb (cb - c0)/ D/2 (Rb – 1).        (3) 

The flux can be modified to give the amount of material diffusing across the framboid 

boundary, Js, by dividing J by A, the surface area of the framboid. 

Then A = πD2 and equation (3) becomes 

Js = 2φ π D D Rb (cb - c0)/ (Rb – 1).        (4) 

equation (4) can be further simplified since pyrite is relatively insoluble and cb  >> c0 

so that 

cb - c0 ~ cb 

and  
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Rb, in µm, is far greater than 1 so that 

Rb – 1 ~ Rb 

Equation (4) then becomes 

Js = 2φ π D D cb.          (5) 

Equation (5) is interesting since it suggests that, within the precision of the system, 

the flux of dissolved nutrients to the framboid is independent of the radius of the bulk 

solution. Sensitivity analysis shows that the errors in this approximation are within the 

third decimal place of the exponential.  

In sediments, diffusion is represented by the whole sediment diffusion coefficient Ds 

which takes into account the tortuosity Θ, a measure of the actual path length of the 

diffusion process (Berner, 1971). Then  

Ds = D /Θ2.           (6) 

and, since Θ >1,  Ds < D .  Values of the diffusion coefficient in sediments would be 

further reduced by cation exchange with mainly negatively charged clay particles, so 

that the apparent diffusion coefficient for positively-charged ions such as Fe2+ is far 

lower than might be expected from equation (6) whereas the value for negatively 

charged ions may more closely approximate to Ds.  
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In the model the formation of framboids is diffusion-limited. Then D, in equation (6) 

is the largest diffusion coefficient for Fe or S species in solution: the largest diffusion 

coefficient of the dissolved species limits the maximum flux. Various suggestions for 

the value of Ds have been published but the variation is relatively insignificant 

compared with uncertainties in other areas of the diffusion equation. Boudreau (1996) 

suggested D = (3.31 + 0.15T) x 10-6 (where T is oC) in pure water which converts to 

Ds (Fe2+) = 3.53 x 10-6 cm2 s-1 in the first 30 cm of marine sediments (Raiswell and 

Anderson, 2005). 

The porosity, φ, varies from 0.2 for a fine-grained clastic sediment to 1 for open 

water. With these parameters the flux, J, is 2.66 x 10-15 g FeS2 s-1 and the 10 µm 

framboid will form within 11 days in open water.  Note that in a fine-grained clastic 

sediment with φ = 0.2 the time will be extended to around 14 days. The sum effect of 

φ in equation (5) is that framboids form faster in the water column than in sediments. 

 

3 Results 

 

The time taken for framboids to form at STP (Fig. 3) is derived from the solutions to 

equation (5) for the flux, Js (g µm-2 s-1), to the framboid surface for various values of 

the framboid diameter.  The framboid formation time is the period between burst 

nucleation and the final assembly of the microcrystals into the complete framboid.  
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Secondary internal structural reorganization may continue in some framboids over a 

period of time after aggregation (e.g. Wang et al., 2018) but this is not considered as 

part of the framboid formation time. The computations are for the limiting conditions 

where (a) the concentration of dissolved Fe and S in the bulk solution is controlled by 

the solubility of FeSm (mackinawite) and (b) the density of the framboid is equivalent 

to that of a solid pyrite sphere with the framboid diameter. Both these are maxima but 

work in opposite directions. Thus if the concentrations of dissolved Fe and S in the 

bulk are less than the solubility product of FeSm, then the formation time will be 

longer.  By contrast, the actual density of pyrite in a framboid depends on the packing 

geometry of its constituent microcrystals and will be up to 20% less than the density 

of solid pyrite. This means that the framboid formation time will be less than the 

computed time. The net result of these approximations is that the computed value for 

the framboid formation time is accurate to within a magnitude. 

[Figure 3] 

 

 Raiswell and Berner (1985) divided framboids into two groups: syngenetic (those 

formed within the water column) and diagenetic (those formed within the sediments). 

The time taken to form each of these types of framboid is shown in figure 4.  

Diagenetic framboids are assumed to form within fine-grained clastic sediments with 

typical porosities of around 20%. The range of framboid diameters is limited at a 

minimum of 2 µm and a maximum of 80 µm. Most framboids are within this size 

range but rare framboids have been reported with diameters >80 µm. However, the 

exponential nature of the curves suggests that these larger framboids will not take 
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significantly longer to form than the 80 µm framboids: the time taken is measured in 

years. For example the largest framboid reported in the literature (Sweeney and 

Kaplan, 1973) is 250 µm in diameter and this took around 3 years to form.  By 

contrast an 80 µm diameter framboid would take about 2.2 years to form. In the 

natural environment the maintenance of steady state in dissolved Fe and S supply over 

relatively large distances in a biologically-active sediment for periods of over a year is 

likely to be uncommon and large framboids are consequently less abundant.   

[Figure 4] 

 

The mean size of sedimentary framboids is ~ 6 µm and they formed within about 5 

days [Fig. 4]. The mean diameter of modern syngenetic framboids is 5 µm 

(recalculated from Wilkin et al, 1996) and these formed more rapidly, in about 3 days.   

The markedly shorter formation time for syngenetic framboids is due to a 

combination of their smaller sizes and the larger effective diffusion coefficients for 

dissolved components in water compared to sediments in sediments.  

The smaller mean diameters of syngenetic framboids have been widely used as a 

proxy for the oxygenation state of paleo-water columns. In particular, researchers 

have used framboid sizes to probe the framboid populations for potential signatures of 

ancient euxinia.  These syngenetic framboids form mainly at the redoxcline within the 

water column and their settling rates vary as the square of their radii.  This means that 

potentially, the time available for framboid growth within the redoxcline is inversely 

proportional to their size and the formation of larger syngenetic framboids is less 

favored.  
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Although pyrite framboids can be formed at any stage during sediment evolution, 

most framboids are formed during the earliest stages of diagenesis. Calculations based 

on sedimentation rates have suggested bulk framboid formation mainly completed 

within about 5 years (Schieber and Schimmelmann 2007; Wilkin et al. 1996). This 

time period encompasses the computed formation times for all framboids, even the 

largest reported. 

[Figure 5] 

 

Measurements of groups of actual framboids show that formation times can be 

relatively homogeneous. Figure 5 shows that 9 of the 14 framboids in figure 1 formed 

over about 11 days. One formed in just 4 days and the largest took 33 days to form. 

The different framboid sizes reflect the relative chemical and physical stability of the 

local sites: the larger framboids form in sites with a longer period of time available for 

diffusive nutrient supply to occur. Trace and isotopic analyses of these framboids 

would thus reflect the chemistry of an instant of 30 million-year -old time.   If it is 

assumed that a group of framboids, such as the one illustrated in figure 1, represents 

the same event, then the different framboid formation times provide a potential 

relative history of the sediment biogeochemistry at exceptionally high precision, 

diurnal scales.  

The common occurrence of groups of framboids, such as those in figure 1, in 

sediments or within fossils has previously been problematic to explain.  In extreme 

examples, framboids are observed in spheroidal clusters sometimes called 

polyframboids (Love, 1971)  or Rogenpyrit (Fabricius, 1961).   If each framboid 
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required a given volume of solution in which to form then we might expect to see 

framboids distributed at a distance from each other dependent on the size of the 

system necessary to contain the mass of dissolved Fe and S contained within the 

framboid.  A feature of the model is that the rate of formation is independent of the 

size of the framboid-forming system, which is consistent with the observation of 

framboids commonly occurring in groups. In fact, burst nucleation only depletes a 

solution volume similar to that of the individual framboid. Subsequent pyrite crystal 

growth is relatively rapid and determined by the diffusion gradient caused by the 

difference between the extremely low solubility of pyrite and the concentrations of 

dissolved iron and sulfur in the bulk solution.  

This model consistent with the common occurrence of pyrite framboids within dead 

organisms and fossils, such as shells and plant remains. Framboid formation is 

independent, for example, of the shell volume. Once the critical supersaturation for 

pyrite is reached at points within the shell, the size of the shell itself – which 

effectively constitutes the volume of the bulk solution in the model  - is irrelevant 

The relative short mean time for framboid formation of around 5 days is consistent 

with the common observation of pyrite framboids being formed within plant and 

animal cells before they have begun to deform on burial and during the earliest stages 

of cellular lysis when the broad structure of the cells are still intact.  

4 Conclusions 

Pyrite framboid formation involves the LaMer process of burst nucleation within a 

diffusion –limited regime. The consequence of the combination of burst nucleation, 
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extreme critical supersaturations and the diffusion –limited regime is that the time 

taken for pyrite framboid formation in sediments can be calculated.  

The results show that sedimentary pyrite framboids take around 5 days to form on 

average. Rare larger framboids ( ≥ 80 µm in diameter) take years to form whereas 

smaller syngenetic framboids average 3 days.  The relative short time required to form 

smaller framboids in the water column is consistent with the development of 

populations of small framboids in euxinic environments, where the time available for 

framboid formation is relatively limited through the influence of advection and the 

Stoke’s law settling velocities of denser pyrite particles.  

The sizes of the framboids are time-dependent and might be used to probe the 

evolution of the sedimentary environment at exceptionally high precision, diurnal 

scales.  
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FIGURE CAPTIONS 

Figure 1. Scanning electron micrograph of pyrite framboids from the Oligocene (28.1 

-33.9 Ma)  Rupel  Clay Member, Netherlands. Photo: Arnold Kruize.  

Figure 2. Elements of the LaMer theory for the formation of uniform colloidal 

particles. An initial induction period with insignificant nucleation rates is followed by 

a short period of burst nucleation (bn) where the rate increases exponentially followed 

by a growth dominated period where the formation of new nuclei is again 

insignificant.  
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Figure 3. Logarithm of time in seconds versus framboid size in µm for limiting 

conditions (see text) for water column and sediment at 25oC and 0.1 MPa. 

Figure 4. Linear plot of framboid size versus formation time in days for small 

syngenetic and diagenetic framboids  

Figure 5. Time taken (in days) for the framboids in figure 1 to form. 
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