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Introduction 

Risk for Late-onset Alzheimer’s disease (LOAD), the most prevalent dementia in the 

elderly1, is partially driven by genetics2.  To identify LOAD risk loci, we performed the 

largest genome-wide association meta-analysis of clinically diagnosed LOAD to date 

(94,437 individuals), analyzing both common and rare variants.  We confirm 20 previous 

LOAD risk loci and identify five new genome-wide loci (IQCK, ACE, ADAM10, ADAMTS1 

and WWOX). Fine-mapping of the human leukocyte antigen (HLA) region confirms the 

neurological and immune-mediated disease haplotype HLA-DR15 as a risk factor for 

LOAD. Pathway analysis implicates the immune system and lipid metabolism, and for the 

first time tau binding proteins and APP metabolism, showing that genetic variants 

affecting APP and Aβ processing are not only associated with early-onset autosomal 

dominant AD but also with LOAD. Analysis of AD risk genes and pathways show 

enrichment for rare variants (P=1.32x10-7) indicating that additional rare variants remain 

to be identified. Finally, we also identify important genetic correlations between LOAD 

and other traits including family history of dementia and education. 

 

Main Text 

Our previous work identified 19 genome-wide significant common variant signals in addition to 

APOE3, that influence risk for LOAD (onset age > 65 years).  These signals, combined with 

‘subthreshold’ common variant associations, account for ~31% of the genetic variance of 

LOAD2, leaving the majority of genetic risk uncharacterized4. To search for additional signals, 

we conducted a genome-wide association (GWAS) meta-analysis of non-Hispanic Whites 

(NHW) using a larger sample (17 new, 46 total datasets) from our group, the International 

Genomics of Alzheimer’s Project (IGAP) (composed of four AD consortia: ADGC, CHARGE, 

EADI, and GERAD).  This sample increases our previous discovery sample (Stage 1) by 29% 

for cases and 13% for controls (N=21,982 cases; 41,944 controls) (Supplementary Tables 1 
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and 2, and Supplementary Note). To sample both common and rare variants (minor allele 

frequency MAF ≥ 0.01, and MAF < 0.01, respectively), we imputed the discovery datasets using 

a 1000 Genomes reference panel consisting of 36,648,992 single-nucleotide variants, 

1,380,736 insertions/deletions, and 13,805 structural variants. After quality control, 9,456,058 

common variants and 2,024,574 rare variants were selected for analysis (a 63% increase from 

our previous common variant analysis in 2013). Genotype dosages were analyzed within each 

dataset, and then combined with meta-analysis (Supplementary Figure 1, Supplementary 

Tables 1-3).  

The Stage 1 discovery meta-analysis produced 12 loci with genome-wide significance (P 

≤ 5 x 10-8) (Table 1), all of which are previously described3,5–12. Genomic inflation factors were 

slightly inflated (lambda median=1.05; lambda regression=1.09; See Supplementary Figure 2 

for QQ-plot), however, univariate linkage disequilibrium score (LDSC) regression13,14 estimates 

indicated that the majority of this inflation was due to a polygenic signal, with the intercept being 

close to 1 (1.026, s.e. = 0.006). The observed heritability (h2) of LOAD was estimated at 0.071 

(0.011) using LDSC.  Stage 1 meta-analysis was first followed by Stage 2 using the I-select chip 

we previously developed in Lambert et al.3 (including 11,632 variants, N=18,845; 

Supplementary Table 4) and finally Stage 3A (N=11,666) or Stage 3B (N=30,511) (for variants 

in regions not well captured in the I-select chip) (See Supplementary Figure 1 for workflow). 

The final sample was 35,274 clinical and autopsy-documented AD cases and 59,163 controls. 

Meta-analysis of Stages 1 and 2 produced 21 genome-wide significant associations (P ≤ 

5 x 10-8) (Table 1 and Figure 1). Of these, 18 were previously reported as genome-wide 

significant in Lambert et al.3. Three other signals were not initially described in the initial IGAP 

GWAS: the rare R47H TREM2 coding variant previously reported by others8,9,15; ECDH3 

(rs7920721) which was recently identified as a potential genome-wide significant AD risk locus 

in several studies23-25 and ACE (rs138190086) (Supplementary Figures 3-4). In addition, 

seven signals showed suggestive association with a P < 5 x 10-7 (respectively rs593742, 
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rs830500, rs7295246, rs7185636, rs2632516, rs4735340, and rs10467994 for their closest 

gene ADAM10, ADAMTS1, ADAMTS20, IQCK, miR142/TSPOAP1-AS1, NDUFAF6 and 

SPPL2A) (Supplementary Figures 5-11). Stage 3A and meta-analysis of all three stages for 

these 9 variants (excluding the TREM2 signal; see Supplementary Table 5 for variant list) 

identified five genome-wide significant loci. In addition to ECDH3, this included four new 

genome-wide AD risk signals not previously described in other clinical AD GWAS at IQCK, 

ADAMTS1, ACE and ADAM10 (Table 2). ACE and ADAM10 were previously reported as AD 

candidate genes16–20 that were not replicated in some subsequent studies19,21–24. Two of the four 

other signals were close to genome-wide significance: miR142/TSPOAP1-AS1 (P = 5.3 x 10-8) 

and NDUFAF6 (P = 9.2 x 10-8) (Table 2).  We also extended the analyses of the two loci (NME8 

and MEF2C) in Stage 3 that were previously genome-wide significant in our 2013 meta-

analysis. These loci were not genome-wide significant in our current study and will deserve 

further investigations (NME8: P = 2.7 x 10-7; MEF2C: P = 9.1 x 10-8; Supplementary Figures 

12-13). Of note, GCTA-COJO25 conditional analysis of the genome-wide loci indicates that 

TREM2 and three other loci (BIN1, ABCA7, and PTK2B/CLU) have multiple independent LOAD 

association signals (Supplementary Table 6), suggesting that the genetic variance associated 

with some GWAS loci is probably under-estimated. 

We also selected 33 variants from Stage 1 (28 common variants and 5 rare variants in 

loci not well captured in the I-select chip; see methods for full selection criteria) for genotyping in 

Stage 3B (including populations of Stage 2 and Stage 3A). We nominally replicated a rare 

variant (rs71618613) within an intergenic region near SUCLG2P4 (MAF = 0.01; P = 6.8 x 10-3; 

combined-P = 3.3 x 10-7) and replicated a low-frequency variant in the TREM2 region 

(rs114812713, MAF=0.03, P = 7.2 x 10-3; combined-P = 2.1x10-13) in the gene OARD1 that may 

represent an independent signal according to our conditional analysis (Table 2, Supplementary 

Figures 14-15, Supplementary Tables 6 and 7). In addition, rs62039712 in the WWOX locus 

reached genome-wide significance (P = 3.7 x 10-8) and rs35868327 in the FST locus reached 
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suggestive significance (P = 2.6 x 10-7) (Table 2 and Supplementary Figures 16-17). WWOX 

may play a role in AD through its interaction with Tau26,27, and it’s worth noting the sentinel 

variant (defined as variants with the lowest p-values) is just 2.4 megabases from PLCG2, which 

contains a rare variant we recently associated with AD15. Since both rs62039712 and 

rs35868327 were only analyzed in a restricted number of samples, these loci deserve further 

attention.  

To evaluate the biological significance and attempt to identify the underlying risk genes 

for the newly identified genome-wide signals (IQCK, ACE, ADAM10, ADAMTS1 and WWOX) 

and those found previously, we pursued five strategies: 1) annotation and gene-based testing 

for deleterious coding, loss-of-function (LOF) and splicing variants, 2) expression-quantitative 

trait loci (eQTL) analyses, 3) evaluation of transcriptomic expression in LOAD clinical traits 

(correlation with BRAAK stage28 and differential expression in AD versus control brains29), 4) 

evaluation of transcriptomic expression in AD-relevant tissues30–32, and 5) gene cluster/pathway 

analyses. For the 24 signals reported here, other evidence indicates that APOE33,34, ABCA735–

38, BIN139, TREM28,9, SORL140,41, ADAM1042, SPI143, and CR144 are the true AD risk gene, 

though there is a possibility that multiple risk genes exist in these regions45.  Because many 

GWAS loci are intergenic, and the closest gene to the sentinel variant may not be the actual risk 

gene, in these analyses, we considered all protein coding genes within ±500kb of the sentinel 

variant linkage disequilibrium (LD) regions (r2 ≥ 0.5) for each locus as a candidate AD gene (N = 

400 genes) (Supplementary Table 8). 

 We first annotated all sentinel variants for each locus and variants in LD (r2 > 0.7) with 

these variants in a search for deleterious coding, loss-of-function (LOF) or splicing variants. In 

line with findings that most causal variants for complex disease are non-coding46, only 2% of 

1,073 variants across the 24 loci (excluding APOE) were exonic variants, with a majority (58%) 

being intronic (Supplementary Figure 18 and Supplementary Table 9). Potentially deleterious 

variants include the rare R47H missense variant in TREM2, common missense variants in CR1, 
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SPI1, MS4A2, and IQCK, and a relatively common (MAF = 0.16) splicing variant in IQCK. Using 

results of a large whole-exome sequencing study conducted in the ADGC and CHARGE 

sample47 (N = 5,740 LOAD cases and 5,096 cognitively normal controls), we also identified 10 

genes located in our genome-wide loci as having rare deleterious coding, splicing or LOF 

burden associations with LOAD (FDR P < 0.01), including previously implicated rare-variant 

signals in ABCA7, TREM2, and SORL115,47–53, and additional associations with TREML4 in the 

TREM2 locus, TAP2 and PSMB8 in the HLA-DRB1 locus, PIP in the EPHA1 locus, STYX in the 

FERMT2 locus, RIN3 in the SLC24A4 locus, and KCNH6 in the ACE locus (Supplementary 

Table 10). 

For eQTL analyses, we searched existing eQTL databases and studies for cis-acting 

eQTLs in a prioritized set of variants (N = 1,873) with suggestive significance or in LD with the 

sentinel variant in each locus. 71-99% of these variants have regulatory potential when 

considering all tissues according to RegulomeDB54 and HaploReg55, but restricting to AD-

relevant tissues (via Ensembl Regulatory Build56 and GWAS4D57) appears to aid in regulatory 

variant prioritization, with probabilities for functional variants increasing substantially when using 

GWAS4D cell-dependent analyses with brain or monocytes for instance (these and other 

annotations are provided in Supplementary Table 11). Focusing specifically on eQTLs, we 

found overlapping cis-acting eQTLs for 153 of the 400 protein coding genes, with 136 eQTL-

controlled genes in AD relevant tissues (i.e. brain and blood/immune cell types; see methods for 

details) (Supplementary Tables 12 and 13). For our newly identified loci, there were significant 

eQTLs in AD relevant tissue for: ADAM10 in prefrontal cortex and blood, FAM63B in blood, and 

SLTM in putamen in the ADAM10 locus; ADAMTS1 in blood in the ADAMTS1 locus; and 

ACSM1 and ANKS4B in monocytes, C16orf62 in blood, GDE1 in cerebellum, and GPRC5B, 

IQCK, and KNOP1 in several brain and blood tissue types in the IQCK locus. There were no 

eQTLs in AD-relevant tissues in the WWOX or ACE locus, though several eQTLs for PSMC5 in 

coronary artery tissue were found for the ACE locus. eQTL’s for genes in previously identified 
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loci include BIN1 in monocytes and cerebellum, INPP5D in prefrontal cortex and blood, CD2AP 

in cerebellum and prefrontal cortex, and SLC24A4 in monocytes. Co-localization analysis 

confirmed evidence of a shared causal variant affecting expression and disease risk in 66 genes 

over 20 loci, including 31 genes over 13 loci in LOAD relevant tissue (see Supplementary 

Table 14 and 15 for a complete lists). Genes implicated include: CR1 and ABCA7 in brain (in 

the CR1 and ABCA7 loci respectively); BIN1 (in the BIN1 locus), SPI1 and MYBPC3 (both in the 

SPI1 locus) in blood; MS4A2, MS4A6A, and MS4A4A (all at the MS4A2 locus) in blood; and 

KNOP1 (in the IQCK locus) and HLA-DRB1 (in the HLA-DRB1 locus) in both blood and brain. 

(Supplementary Table 12). 

To study the differential expression of genes in brains of AD patients versus controls, we 

used thirteen expression studies29. 58% of the 400 protein coding genes within the genome-

wide loci had evidence of differential expression in at least one study (Supplementary Table 

16). Additional comparisons to AD related gene expression sets revealed 62 genes were 

correlated with pathogenic stage (BRAAK) in at least one brain tissue28 (44 genes in the 

prefrontal cortex, the most relevant LOAD tissue; 36 in cerebellum, and 1 in visual cortex). 

Finally, 38 genes were present in a set of 1,054 genes preferentially expressed in aged 

microglial cells, a gene set shown to be enriched for AD genes (P = 4.1 x 10-5)32. We also 

annotated our list of genes with Brain RNA-seq data which showed that 80% were expressed in 

at least one type of brain cell, and the genes were most highly expressed in fetal astrocytes 

(26%), followed by microglia/macrophage (15.8%), neurons (14.8%), astrocytes (11.5%) and 

oligodendrocytes (6.5%). When not considering fetal astrocytes, mature astrocytes (21%) and 

microglial cells (20.3%), the resident macrophage cell of the brain thought to play a key role in the 

pathologic immune response in LOAD9,15,58, become the highest expressed cell type (20.3%) in 

the genome-wide set of genes, with 5.3% of the 400 genes showing high microglial expression 

(Supplementary Table 17; see Supplementary Table 18 for highly expressed gene list by cell 

type). 
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We conducted pathway analyses (MAGMA59) using five gene set resources.  Analysis 

were conducted separately for common (MAF > 0.01) and rare variants (MAF < 0.01). For 

common variants, we detected four function clusters including: 1) APP metabolism/Aβ-formation 

(regulation of beta-amyloid formation: P = 4.56x10-7 and regulation of amyloid precursor protein 

catabolic process: P = 3.54 x 10-6), 2) tau protein binding (P = 3.19 x 10-5), 3) lipid metabolism 

(four pathways including protein-lipid complex assembly: P = 1.45 x 10-7), and 4) immune 

response (P = 6.32 x 10-5) (Table 3 and Supplementary Table 19). Enrichment of the four 

pathways remains after removal of genes in the APOE region.  When APOE-region genes and 

genes in the vicinity of genome-wide significant genes are removed, tau shows moderate 

association (P = 0.027) and lipid metabolism and immune related pathways show strong 

associations (P < 0.001) (Supplementary Table 20).  Genes driving these enrichments (i.e. 

having a gene-wide P < 0.05) include SCNA, a Parkinson’s risk gene that encodes alpha-

synuclein, the main component of Lewy bodies, and may play a role in tauopathies60,61, for the 

tau pathway; apolipoprotein genes (APOM, APOA5) and ABCA1, a major regulator of cellular 

cholesterol, for the lipid metabolism pathways; and 52 immune pathway genes (Supplementary 

Table 21). While no pathways were significantly enriched for rare variants, lipid and Aβ-

pathways did have nominal significance in rare-variant-only analyses. Importantly, we also 

observe a highly significant correlation between common and rare pathway gene results (P = 

1.32 x 10-7), suggesting that risk AD genes and pathways are enriched for rare variants. In fact, 

50 different genes within tau, lipid, immunity and Aβ pathways show nominal rare-variant driven 

associations (P < 0.05) with LOAD.  

To further explore the APP/Aβ-pathway enrichment we analyzed a comprehensive set of 

335 APP metabolism genes62 curated from the literature. We observed significant enrichment of 

this gene-set in common variants (P = 2.27 x 10-4; P = 3.19 x 10-4 excluding APOE), with both 

ADAM10 and ACE nominally significant drivers of this result (Table 4 and Supplementary 

Table 22 and 23). Several ‘sub-pathways’ were also significantly enriched in the common-
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variants including ‘clearance and degradation of Aβ’ and ‘aggregation of Aβ’, along with its 

subcategory ‘microglia’, the latter supporting microglial cells suspected role in response to Aβ in 

LOAD63. Nominal enrichment for risk from rare variants was found for the pathway ‘aggregation 

of Aβ: chaperone’ and 23 of the 335 genes.  

To identify candidate genes for our novel loci, we combined results from our eQTL, 

clinical and AD-relevant tissue expression, and gene function/pathway analyses in a priority 

ranking method similar to Fritsche et al.64 (Table 5 and Supplementary Table 24). For our 

ADAM10 signal, of the 11 genes within this locus, ADAM10 was the top ranked gene. ADAM10, 

the most important α-secretase in the brain, is a component of the non-amyloidogenic pathway 

of APP metabolism65, and sheds TREM266, an innate immunity receptor expressed selectively in 

microglia. Over-expression of ADAM10 in mouse models can halt Aβ production and 

subsequent aggregation67.  Also two rare ADAM10 mutations segregating with disease in LOAD 

families increased Aβ plaque load in “Alzheimer-like” mice, with diminished α-secretase activity 

from the mutations likely the causal mechanism17,42.  For the IQCK signal, which is also an 

obesity locus68,69, IQCK, a relatively uncharacterized gene, was top ranked, though four of the 

other 11 genes in the locus have a priority rank ≥ 4 including KNOP1 and GPRC5B, the latter 

being a regulator of neurogenesis70,71 and inflammatory signalling in obesity72. Of the 22 genes 

in the ACE locus, PSMC5, a key regulator of major histocompatibility complex (MHC)73,74, has a 

top score of 4, while DDX42, MAP3K3, an important regulator of macrophages and innate 

immunity75,76, and CD79B, a B lymphocyte antigen receptor sub-unit each have a score of 3. 

Candidate gene studies previously associate ACE variants with AD risk18,20,77, including a strong 

association in the Wadi Ara, an Israeli Arab community with high risk of AD19. However, these 

studies yielded inconsistent results21, and our work is the first to report a clear genome-wide 

association in NHW at this locus. While our analyses did not prioritize ACE, it should not be 

rejected as a candidate gene, as its expression in AD brain tissue is associated with Aβ load 

and AD severity78. Furthermore, CSF levels of the angiotensin-converting enzyme (ACE) are 
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associated with Aβ levels79 and LOAD risk80, and studies show ACE can inhibit Aβ toxicity and 

aggregation81. Finally, angiotensin II, a product of ACE function mediates a number of 

neuropathological processes in AD82 and is now a target for intervention in phase II clinical trials 

of AD83. Another novel genome-wide locus reported here ADAMTS1, is within 665 kb of APP on 

chromosome 21.  Of three genes at this locus (ADAMTS1, ADAMTS5, CYYR1), our analyses 

nominates ADAMTS1, as the likely risk gene, though we cannot rule out that this signal is a 

regulatory element for APP. ADAMTS1 is elevated in Down Syndrome with neurodegeneration 

and AD84 and is a potential neuroprotective gene85,86,87, or a neuroinflammatory gene important 

to microglial response88. Finally, WWOX and MAF, which surround an intergenic signal in an 

obesity associated locus89, were both prioritized, with MAF, another important regulator of 

macrophages90,91, being highly expressed in microglia in the Brain-RNA-seq database, and 

WWOX, an HDL-cholesterol and triglyceride associated gene92,93, being expressed in several 

brain cell types, most highly in astrocytes and neurons. WWOX has been implicated in several 

neurological phenotypes94, binds Tau and may play a critical role in regulating Tau hyper- 

phosphorylation, neurofibrillary formation, and amyloid β aggregation26,27. Intriguingly, treatment 

of mice with its binding partner restores memory deficits95, hinting at its potential in 

neurotherapy. 

For previously reported loci, named for the closest gene, applying the same approach for 

prioritization highlights several genes as described in Table 5, some of which are involved in 

APP metabolism (FERMT2, PICALM) or Tau toxicity (BIN1, CD2AP, FERMT2, CASS4, 

PTK2B)96–99. Pathway, tissue and disease traits enrichment analysis supports the utility of our 

prioritization method, as the 53 prioritized genes with a score ≥ 5 are: 1) enriched in 

substantially more AD relevant pathways, processes, and dementia-related traits, 2) enriched in 

candidate AD cell types such as monocytes (adjusted-P = 9.0 x 10-6) and macrophages 

(adjusted-P = 5.6 x 10-3), and 3) increased in strength of associations for dementia-related traits 

and AD relevant pathways (Supplementary Table 25 and 26; see Supplementary Figure 19 
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for the interaction network of these prioritized genes). To further investigate the cell types and 

tissues the prioritized genes are expressed in, we performed differentially expressed gene 

(DEG) set enrichment analysis of the prioritized genes using GTEx100 tissues, and identified 

significant differential expression in several potentially relevant AD tissues including: immune-

related tissues (upregulation in blood and spleen), obesity-related tissue (upregulation in 

adipose), heart tissues (upregulation in left ventricle and atrial appendage) and brain tissues 

(dowregulation in cortex, cerebellum, hippocampus, basal ganglia, and amygdala). Furthermore, 

the 53 genes are overexpressed in ‘adolescence’ and ‘young adult’ brain tissues in 

BrainSpan101, a transcriptomics atlas of the developing human brain, which is consistent with 

accumulating evidence suggesting AD may start decades before the onset of disease102,103 

(Supplementary Figure 20; see Supplementary Figure 21 for a tissue expression heat map 

for the 53 genes). 

The above approach prioritized HLA-DRB1 as the top candidate gene in the MHC locus, 

known for its complex genetic organization and highly polymorphic nature (see Supplementary 

Figure 22 for Stage 1 results plot of region). Previous analyses in the ADGC (5,728 AD cases 

and 5,653 controls) has linked both HLA class I and class II haplotypes with AD risk104. In order 

to further investigate this locus in a much larger sample, we used a robust imputation method 

and fine-mapping association analysis of alleles and haplotypes of HLA class I (HLA-A, HLA-B, 

HLA-C) and class II (HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, HLA-DPB1) genes in 

14,776 cases and 23,047 controls from our datasets (Supplementary Table 27) (see Methods). 

We found risk effects of HLA-DQA1*01:02 (false discovery rate (FDR) P = 0.014), HLA-

DRB1*15:01 (FDR P = 0.083) and HLA-DQB1*06:02 (FDR P = 0.010) (Supplementary Table 

28). After conditioning on the sentinel variant in this region from the meta-analysis 

(rs78738018), association signals were lost for the three alleles suggesting that the signal 

observed at the variant level is due to the association of these three alleles. These alleles form 

the HLA-DQA1*01:02~HLA-DQB1*06:02~HLA-DRB1*15:01 (DR15) haplotype, which is also 
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associated with AD in our sample (FDR P = 0.013) (Supplementary Table 29). When 

considering only 2-loci haplotypes, HLA-DQB1*06:02~HLA-DRB1*15:01 (FDR P = 0.013), HLA-

DQA1*01:02~HLA-DRB1*15:01 (FDR P = 0.013), HLA-DQA1*01:02~HLA-DQB1*06:02 (FDR P 

= 0.013) also show association with AD. Taken together, these results suggest a central role of 

the HLA-DQA1*01:02~HLA-DQB1*06:02~HLA-DRB1*15:01 haplotype in AD risk. This 

haplotype was associated with risk of AD originally in a small study in the Tunisian population105, 

and more recently in a large ADGC analysis104. Intriguingly, this haplotype and its component 

alleles also associate with protection against diabetes106, a high risk for multiple sclerosis107,108, 

and risk or protective effects with many other immune-mediated diseases (Supplementary 

Table 30). Moreover, the associated diseases at these loci include a large number of traits 

queried from an HLA-specific Phewas109, including neurological diseases (i.e. Parkinson’s 

disease110,111) and diseases with risk factors for AD (i.e. hyperthyroidism112), pointing to potential 

shared and/or interacting mechanisms and co-morbidities, a common paradigm in the MHC 

locus113.  Two additional alleles, HLA-DQA1*03:01 and HLA-DQB1*03:02, belonging to another 

haplotype, show protective effect on AD, but their signal was lost after conditioning on HLA-

DQA1*01:02 and the HLA-DQA1*03:01~HLA-DQB1*03:02 haplotype is not associated with AD 

(FDR P = 0.651). 

As described above, several of our genome-wide loci have potentially interesting co-

morbid or pleiotropic associations with traits that may be relevant to pathology of AD. To 

investigate the extent of LOAD’s shared genetic architecture with other traits we performed LD-

score regression to estimate the genetic correlation between LOAD and 792 human diseases, 

traits, and behaviors13,114 (Supplementary Table 31). The common variant genetic architecture 

of LOAD was positively correlated with maternal family history of Alzheimer’s disease/dementia 

(rg = 0.81; FDR P = 2.79 x 10-7), similar to a recent GWAS using family history of AD as a 

proxy115 which found maternal genetic correlation with AD to be higher than paternal AD (rg = 

0.91 and 0.66 respectively). There is substantial overlap between these estimates as the 
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Marioni et al. analyses include the 2013 IGAP summary statistics and employed the same UK 

Biobank variable that we used for rg estimates with maternal history of dementia. While use of 

proxy AD cases introduces less sensitivity and specificity for true AD signals overall in 

comparison to clinically-diagnosed AD association analyses, the investigation did identify 17 of 

our 25 genome-wide loci including the ACE and ADAM10 loci, suggesting that familial proxy AD 

studies can identify AD relevant loci. We also find significant negative correlation between AD 

and multiple measures of educational attainment (i.e. college completion, rg = -0.24; years of 

schooling, rg range = -0.19 to -0.24; cognitive scores, rg’s = -0.24 and -0.25) (FDR P < 0.05), 

supporting the theory that a greater cognitive reserve could help protect against development of 

LOAD116. The extent to which socioeconomic (ses), environmental or cultural factors contribute 

to the correlation between educational attainment and risk for AD is unknown, but research has 

shown dementia risk to be associated with lower ses status, independent of education 

status117,118.  Furthermore, we also found negative correlations at P < 0.05 with multiple 

measures of cardiovascular health (i.e. family history of high blood pressure, family history of 

heart disease, vascular/heart problems diagnosis) and diabetes (i.e. fasting proinsulin, basal 

metabolic rate, fasting insulin main effect), supporting previous research that suggested use of 

blood pressure and diabetic medications may reduce risk of AD119. In fact, use of blood pressure 

medication does show negative genetic correlation with AD in our study (rg = -0.12; P = 0.035), 

though this result does not survive FDR correction. These and other top results from this 

analysis (i.e. body mass index, height; see Supplementary Table 31 for a full list of other 

nominally significant correlations) have been linked to AD previously114,119–126, either through 

suggestive or significant genetic or epidemiological associations (see Kuzma et al. 2018127 for a 

recent review), but the multiple measures here support and emphasize their genetic correlation 

with LOAD and highlight the possible genetic pleiotropy or co-morbidity of these traits with 

pathology of LOAD. 
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 In conclusion, our work identifies five new genome-wide associations for LOAD and 

shows that GWAS data combined with high-quality imputation panels can reveal rare disease 

risk variants (i.e. TREM2). The enrichment of rare-variants in pathways associated with AD 

indicates that additional rare-variants remain to be identified, and larger samples and better 

imputation panels will facilitate identifying these rare variants. While these rare-variants may not 

contribute substantially to the predictive value of genetic findings, it will add to the 

understanding of disease mechanisms and potential drug targets. Discovery of the risk genes at 

genome-wide loci remains challenging, but we demonstrate that converging evidence from 

existing and new analyses can prioritize risk genes. We also show that APP metabolism is not 

only associated with early-onset but also late-onset AD, suggesting that therapies developed by 

studying early-onset families could also be applicable to the more common late-onset form of 

the disease. Pathway analysis showing tau is involved in late-onset AD supports recent 

evidence that tau may play an early pathological role in AD128–130, and confirms that therapies 

targeting tangle formation/degradation could potentially affect late-onset AD. Finally, our fine-

mapping analyses of HLA and genetic correlation results point to LOAD’s shared genetic 

architecture with many immune-mediated and cognitive traits, and suggests that research and 

interventions that elucidate the mechanisms behind these relationships could also yield fruitful 

therapeutic strategies for LOAD. 
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Figure 1. Manhattan plot of meta-analysis of Stage 1, 2 and 3 results for genome-wide association with Alzheimer’s disease. The threshold for genome-wide 
significance (P < 5 x 10-8) is indicated by the red line, while the blue line represents the suggestive threshold (P < 1 x 10-5). Loci previously identified by the Lambert 
et al. 2013 IGAP GWAS are shown in green, and newly associated loci are shown in red. Loci are named for the closet gene to the sentinel variant for each locus. 
Diamonds represent variants with the smallest P values for each genome-wide locus. 

 

 

 



 

 
 
Meta-analysis of genetic association with diagnosed Alzheimer's disease identifies novel risk loci and implicates Abeta, Tau, immunity and lipid processing - Tables 
 
Table 1. Summary of discovery stage 1, stage 2 and overall meta-analyses results for identified loci reaching genome-wide significance after stages 1 and 2. 

aVariants showing the best level of association after meta-analysis of stages 1 and 2.  
bBuild 37, assembly hg19.  
cBased on position of top SNP in reference to the refSeq assembly  
dAverage in the discovery sample.  
eCalculated with respect to the minor allele.  
fCochran’s Q test  
gPreviously the ZCWPW1 locus.  
hPreviously the CELF1 locus. 
 

      Stage 1 Discovery (n=63,926) Stage 2 (n=18,845) Overall Stage 1 + Stage 2 (n=82,771) 

Varianta Chr. Positionb Closest 
genec 

Major/ 
minor alleles MAFd OR (95% CI)e P OR (95% CI)e P OR (95% CI)e Meta P I2 (%), Pf 

Previous genome-wide significant loci still reaching significance  
rs4844610 1 207802552 CR1 C/A 0.187 1.16 (1.12-1.20) 8.2 x 10-16 1.20 (1.13-1.27) 3.8 x 10-10 1.17 (1.13-1.21) 3.6 x 10-24 0, 8 x 10-1 
rs6733839 2 127892810 BIN1 C/T 0.407 1.18 (1.15-1.22) 4.0 x 10-28 1.23 (1.18-1.29) 2.0 x 10-18 1.20 (1.17-1.23) 2.1 x 10-44 15, 2 x 10-1 

rs10933431 2 233981912 INPP5D C/G 0.223 0.90 (0.87-0.94) 2.6 x 10-7 0.92 (0.87-0.97) 3.2 x 10-3 0.91 (0.88-0.94) 3.4 x 10-9 0, 8 x 10-1 
rs9271058 6 32575406 HLA-DRB1 T/A 0.270 1.10 (1.06-1.14) 5.1 x 10-8 1.11 (1.06-1.17) 5.7 x 10-5 1.10 (1.07-1.13) 1.4 x 10-11 10, 3 x 10-1 

rs75932628 6 41129252 TREM2 C/T 0.008 2.01 (1.65-2.44) 2.9 x 10-12 2.50 (1.56-4.00) 1.5 x 10-4 2.08 (1.73-2.49) 2.7 x 10-15 0, 6 x 10-1 
rs9473117 6 47431284 CD2AP A/C 0.280 1.09 (1.05-1.12) 2.3 x 10-7 1.11 (1.05-1.16) 1.0 x 10-4 1.09 (1.06-1.12) 1.2 x 10-10 0, 6 x 10-1 

rs12539172 7 100091795 NYAP1g C/T 0.303 0.93 (0.91-0.96) 2.1 x 10-5 0.89 (0.84-0.93) 2.1 x 10-6 0.92 (0.90-0.95) 9.3 x 10-10 0, 8 x 10-1 
rs10808026 7 143099133 EPHA1 C/A 0.199 0.90 (0.87-0.94) 3.1 x 10-8 0.91 (0.86-0.96) 1.1 x 10-3 0.90 (0.88-0.93) 1.3 x 10-10 0, 5 x 10-1 
rs73223431 8 27219987 PTK2B C/T 0.367 1.10 (1.07-1.13) 8.3 x 10-10 1.11 (1.06-1.16) 1.5 x 10-5 1.10 (1.07-1.13) 6.3 x 10-14 0, 6 x 10-1 
rs9331896 8 27467686 CLU T/C 0.387 0.88 (0.85-0.91) 3.6 x 10-16 0.87 (0.83-0.91) 1.7 x 10-9 0.88 (0.85-0.90) 4.6 x 10-24 3, 4 x 10-1 
rs3740688 11 47380340 SPI1h T/G 0.448 0.91 (0.89-0.94) 9.7 x 10-11 0.93 (0.88-0.97) 1.2 x 10-3 0.92 (0.89-0.94) 5.4 x 10-13 4, 4 x 10-1 
rs7933202 11 59936926 MS4A2 A/C 0.391 0.89 (0.86-0.92) 2.2 x 10-15 0.90 (0.86-0.95) 1.6 x 10-5 0.89 (0.87-0.92) 1.9 x 10-19 27, 5 x 10-2 
rs3851179 11 85868640 PICALM C/T 0.356 0.89 (0.86-0.91) 5.8 x 10-16 0.85 (0.81-0.89) 6.1 x 10-11 0.88 (0.86-0.90) 6.0 x 10-25 0, 8 x 10-1 

rs11218343 11 121435587 SORL1 T/C 0.040 0.81 (0.76-0.88) 2.7 x 10-8 0.77 (0.68-0.87) 1.8 x 10-5 0.80 (0.75-0.85) 2.9 x 10-12 7, 3 x 10-1 
rs17125924 14 53391680 FERMT2 A/G 0.093 1.13 (1.08-1.19) 6.6 x 10-7 1.15 (1.06-1.25) 5.0 x 10-4 1.14 (1.09-1.18) 1.4 x 10-9 8, 3 x 10-1 
rs12881735 14 92932828 SLC24A4 T/C 0.221 0.92 (0.88-0.95) 4.9 x 10-7 0.92 (0.87-0.97) 4.3 x 10-3 0.92 (0.89-0.94) 7.4x 10-9 0, 6 x 10-1 
rs3752246 19 1056492 ABCA7 C/G 0.182 1.13 (1.09-1.18) 6.6 x 10-10 1.18 (1.11-1.25) 4.7 x 10-8 1.15 (1.11-1.18) 3.1 x 10-16 0, 5 x 10-1 
rs429358 19 45411941 APOE T/C 0.216 3.32 (3.20-3.45) 1.2 x 10-881 APOE region not carried forward to replication stage 

rs6024870 20 54997568 CASS4 G/A 0.088 0.88 (0.84-0.93) 1.1 x 10-6 0.90 (0.82-0.97) 9.0 x 10-3 0.88 (0.85-0.92) 3.5 x 10-8 0, 9 x 10-1 
New genome-wide significant loci reaching significance  

rs7920721 10 11720308 ECDH3 A/G 0.389 1.08 (1.05-1.11) 1.9 x 10-7 1.07 (1.02-1.12) 3.2 x 10-3 1.08 (1.05-1.11) 2.3 x 10-9 0,8 x 10-1 
rs138190086 17 61538148 ACE G/A 0.020 1.29 (1.15-1.44) 7.5 x 10-6 1.41 (1.18-1.69) 1.8 x 10-4 1.32 (1.20-1.45) 7.5 x 10-9 0, 9 x 10-1 

Previous genome-wide significant loci not reaching significance  
rs190982 5 88223420 MEF2C A/G 0.390 0.95 (0.92-0.97) 2.8 x 10-4 0.93 (0.89-0.98) 2.7 x 10-3 0.94 (0.92-0.97) 2.8 x 10-6 0, 6 x 10-1 

rs4723711 7 37844263 NME8 A/T 0.356 0.95 (0.92-0.98) 2.7 x 10-4 0.91 (0.87-0.95) 1.0 x 10-4 0.94 (0.91-0.96) 2.8 x 10-7 0, 5 x 10-1 



 

Table 2. Summary of discovery Stage 1, Stage 2, Stage 3 (A and B), and overall meta-analyses results of potential novel loci. Novel loci were defined as loci not 
reported in Lambert et al. 2013 with 1) a Stage 1+2 Meta P < 5 x 10-7 (9 variants after excluding TREM2) (Stage 3A), or 2) a MAF < 0.05 and Stage 1 P < 1 x 10-5 or MAF 
≥ 0.05 and Stage 1 P < 5 x 10-6 for genome regions not covered on the Stage 2 custom array (Stage 3B). 

Stage 3A      Stage 1 + 2 (n=82,771) Stage 3A (n=11,666) Overall (n=94,437) 

SNPa Chr. Positionb Closest genec Major/Minor 
allele MAFe OR (95% CI)f P OR (95% CI)f P OR (95% CI)f Meta P 

rs4735340 8 95976251 NDUFAF6 T/A 0.476 0.94 (0.92-0.96) 3.4 x 10-7 0.92 (0.83-1.02) 9.7 x 10-2 0.94 (0.92-0.96) 9.2 x 10-8 
rs7920721g 10 11720308 ECHDC3 A/G 0.390 1.08 (1.05-1.11) 2.30 x 10-9 1.11 (1.04-1.18) 1.5 x 10-3 1.08 (1.06-1.11) 1.8 x 10-11 
rs7295246 12 43967677 ADAMTS20 T/G 0.413 1.07 (1.04-1.09) 2.7 x 10-7 1.02 (0.96-1.09) 4.5 x 10-1 1.06 (1.04-1.08) 3.9 x 10-7 

rs10467994 15 51008687 SPPL2A T/C 0.333 0.97 (0.87-1.08) 3.9 x 10-7 0.97 (0.87-1.08) 6.2 x 10-1 0.94 (0.92-0.96) 4.3 x 10-7 
rs593742 15 59045774 ADAM10 A/G 0.295 0.93 (0.91-0.96) 1.3 x 10-7 0.91 (0.85-0.98) 1.5 x 10-2 0.93 (0.91-0.95) 6.8 x 10-9 

rs7185636 16 19808163 IQCK T/C 0.180 0.92 (0.89-0.95) 8.4 x 10-8 0.94 (0.86-1.01) 1.1 x 10-1 0.92 (0.89-0.95) 2.4 x 10-8 
rs2632516 17 56409089 MIR142/TSPOAP1-AS1d G/C 0.440 0.94 (0.92-0.96) 2.3 x 10-7 0.91 (0.82-1.01) 7.5 x 10-2 0.94 (0.91-0.96) 5.3 x 10-8 

rs138190086 17 61538148 ACE G/A 0.020 1.32 (1.20-1.45) 7.45 x 10-9 1.17 (0.92-1.48) 2.1 x 10-1 1.30 (1.19-1.42) 5.3 x 10-9 
rs2830500 21 28156856 ADAMTS1 C/A 0.308 0.93 (0.91-0.96) 7.3 x 10-8 0.95 (0.88-1.02) 1.3 x 10-1 0.93 (0.91-0.96) 2.6 x 10-8 
Stage 3B      Stage 1 (n=63,926) Stage 3B (n=30,511)h Overall (n=94,437)h 

SNPa Chr. Positionb Closest genec Major/Minor 
allele MAFe OR (95% CI)f P OR (95% CI)f  P OR (95% CI)f Meta P 

rs71618613 5 29005985 SUCLG2P4 A/C 0.010 0.68 (0.57-0.80) 9.8 x 10-6 0.76 (0.63-0.93) 6.8 x 10-3 0.71 (0.63-0.81) 3.3 x 10-7 
rs35868327 5 52665230 FST T/A 0.013 0.69 (0.59-0.80) 7.8 x 10-7 0.58 (0.29-1.17) 0.126 0.68 (0.59-0.79) 2.6 x 10-7 

rs114812713 6 41034000 OARD1 G/C 0.030 1.35 (1.24-1.47) 4.5 x 10-12 1.23 (1.06-1.42) 7.2 x 10-3 1.32 (1.22-1.42) 2.1 x 10-13 
rs62039712 16 79355857 WWOX G/A 0.116 1.17 (1.10-1.23) 1.2 x 10-7 1.14 (0.96-1.36) 0.129 1.16 (1.10-1.23) 3.7 x 10-8 

aSNPs showing the best level of association after meta-analysis of stages 1, 2 and 3.  
bBuild 37, assembly hg19.  
cBased on position of top SNP in reference to the refSeq assembly. 
dVariant is annotated to both gene features. 
eAverage in the discovery sample. 
fCalculated with respect to the minor allele.  
gRecently identified as a LOAD locus in two separate 2017 studies 
hSample sizes for these loci are smaller (Overall n=89,769 for SUCLG2P4, 65,230 for LOC257396,FST, and 69,898 for WWOX) 
 

 



 

Table 3. Significant pathways (q-value≤0.05) from MAGMA pathway analysis for common SNV and rare SNV subsets.  

Pathway 
N genes in 
pathway in 

dataset 

Common 
SNVs P* 

Common 
SNVs q-value 

Rare 
SNVs P* 

Rare SNVs 
q-value Pathway description 

GO:65005 20 1.45E-07* 9.53E-04 6.76E-02 8.42E-01 protein-lipid complex assembly 
GO:1902003 10 4.56E-07* 1.49E-03 4.94E-02 8.42E-01 regulation of beta-amyloid formation 

GO:32994 39 1.16E-06* 2.54E-03 1.78E-02 8.17E-01 protein-lipid complex 
GO:1902991 12 3.54E-06* 5.80E-03 5.66E-02 8.42E-01 regulation of amyloid precursor protein catabolic process 

GO:43691 17 5.55E-06* 6.75E-03 3.08E-02 8.17E-01 reverse cholesterol transport 
GO:71825 35 6.18E-06* 6.75E-03 1.27E-01 8.42E-01 protein-lipid complex subunit organization 
GO:34377 18 1.64E-05* 1.53E-02 1.82E-01 8.42E-01 plasma lipoprotein particle assembly 
GO:48156 10 3.19E-05* 2.61E-02 7.77E-01 8.54E-01 tau protein binding 
GO:2253 382 6.32E-05* 4.60E-02 2.09E-01 8.42E-01 activation of immune response 

*Significant after FDR-correction (q-value≤0.05) 

 

 

Table 4. Top results of pathway analysis of Aβ-beta centered biological network from Campion et al (see Supplementary Table 12 for full results). 

Category Subcategory N Genes Common SNVs P 
0kb 

Common SNVs P  
35kb-10kb 

Rare SNVs P 
0kb 

Rare SNVs P 
35kb-10kb 

Aβ -centered biological network (all genes) -- 331 2.27E-04* 1.54E-04* 8.26E-01 5.19E-01 
Clearance and degradation of Aβ -- 74 2.18E-04* 3.27E-03 3.13E-01 5.11E-01 
Clearance and degradation of Aβ Microglia 47 2.24E-04* 1.83E-02 2.49E-01 6.87E-01 

Aggregation of Aβ -- 35 7.09E-04* 9.93E-03 9.02E-02 1.68E-01 
Aggregation of Aβ Miscellaneous 21 1.08E-03* 3.38E-02 9.53E-02 1.90E-01 

APP processing and trafficking Clathrin/caveolin-dependent endocytosis 10 1.19E-03 1.15E-02 3.64E-01 1.84E-01 
Mediator of Aβ toxicity -- 51 3.82E-02 4.69E-02 5.89E-01 5.70E-01 
Mediator of Aβ toxicity Calcium homeostasis 6 6.90E-02 1.21E-01 3.96E-01 2.54E-01 
Mediator of Aβ toxicity Miscellaneous 3 7.61E-02 2.35E-02 9.79E-01 7.61E-01 

Clearance and degradation of Aβ Enzymatic degradation of Aβ 15 7.77E-02 2.63E-02 6.10E-01 2.95E-01 
Mediator of Aβ toxicity Tau toxicity 20 9.03E-02 3.48E-01 7.17E-01 6.85E-01 

Aggregation of Aβ Chaperone 9 1.52E-01 3.09E-01 1.98E-01 1.13E-02 
*Significant after Bonferroni correction for 33 pathway sets tested 

 



 

Table 5. Top prioritized genes of 400 genes located in genome-wide significant loci. The criteria include: 1) deleterious coding, loss-
of-function or splicing variant in gene, 2) significant gene-based test, 3) expression in a tissue relevant to AD (astrocytes, neurons, 
microglia/macrophages, oligodendrocytes), 4) HuMi microglial-enriched gene, 5) having an eQTL effect on the gene in any tissue, in 
AD relevant tissue, and/or a co-localized eQTL, 6) being involved in a biological pathway enriched in AD (from the current study), 7) 
expression correlated with BRAAK stage, and 8) differential expression in 1+ Alzheimer disease (AD) study. Novel genome-wide loci 
from the current study are listed first, followed by known genome-wide loci. Each category is assigned equal weight of 1, with the 
priority score equaling the sum of all categories. Colored fields indicate the gene meets the criteria. Genes with a priority score ≥ 4 are 
listed for each locus. If no gene reached a score of ≥ 5 in a locus, then the top ranked gene(s) is listed.  
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ADAM10 11 ADAM10 5
IQCK 12 IQCK 6
ACE 22 PSMC5 4

ADAMTS1 3 ADAMTS1 4
MAF 2

WWOX 2

CR1 7
CD55 6
YOD1 5

BIN1 9 BIN1 6
INPP5D 11 INPP5D 7

HLA-DRB1 7
PSMB8 7

C4A 6
GPSM3 6

HLA-DPA1 6
HLA-DQA1 6 `
HLA-DRA 6

HLA-DRB5 6
PSMB9 6

TREM2 21 TREM2 6
CD2AP 8 CD2AP 5

AGFG2 6
PILRA 6
EPHB4 5

C7orf43 5
GAL3ST4 5
ZKSCAN1 5

EPHA1 23 FAM131B 5
PTK2B 6 PTK2B 5

CLU 8 CLU 6
ECHDC3 8 ECHDC3 4

PSMC3 6
ACP2 5

C1QTNF4 5
CELF1 5

MTCH2 5
NDUFS3 5
NUP160 5

SPI1 5
MS4A6A 8
MS4A7 6

MS4A4A 5
EED 5

PICALM 5
SORL1 4 SORL1 5

FERMT2 9 STYX 5
SLC24A4 10 RIN3 7

ABCA7 7
HMHA1 6

CNN2 5
WDR18 5

CASS4 11 CASS4 5

Evidence Type Exonic Tissue 
Expression

eQTL

WWOX 3

12CR1

HLA-DRB1 Ϯ 46

NYAP1 53

SPI1 23

ϮGenes with rank 6 or above are shown only. An additional 4 genes in HLA-DRB1  have a priority rank of 5.

Clinical 
Expression

Novel genome-wide loci

Known genome-wide loci

ABCA7 50

MS4A2 24

PICALM 13
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Meta-analysis of genetic association with diagnosed Alzheimer's disease identifies novel 
risk loci and implicates Abeta, Tau, immunity and lipid processing - Methods 
  

Samples. All stage I meta-analysis samples are from four Consortia: the Alzheimer’s Disease 

Genetics Consortium (ADGC), the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) Consortium, the European Alzheimer’s Disease Initiative (EADI), and 

the Genetic and Environmental Risk in Alzheimer’s Disease (GERAD) Consortium.  Summary 

demographics of all 46 case-control studies from the four consortia are described in 

Supplementary Tables 1 and 2. Written informed consent was obtained from study participants 

or, for those with substantial cognitive impairment, from a caregiver, legal guardian or other proxy. 

Study protocols for all cohorts were reviewed and approved by the appropriate institutional review 

boards. Further details of all cohorts can be found in the Supplementary Note. 

Pre-imputation genotype chip quality control. Standard quality control (QC) was performed 

on all datasets individually, including exclusion of individuals with low call rate, individuals with a 

high degree of relatedness and variants with low call rate. Individuals with non-European ancestry 

according to principal components (PCs) analysis of ancestry informative markers were excluded 

from the further analysis. 

Imputation and pre-analysis quality control. Following genotype chip QC, each dataset was 

phased and imputed with data to the 1000 Genomes Project (phase 1 integrated release 3, March 

2012)1 using SHAPEIT/IMPUTE22,3 or MaCH/Minimac4,5 software (Supplementary Table 3). All 

reference population haplotypes were used for the imputation as this method improves accuracy 

of imputation for low-frequency variants6. Common variants (MAF ≥ 0.01%) with an r2 or an 

information measure < 0.40 from MaCH and IMPUTE2 were excluded from further analyses. Rare 

variants (MAF < 0.01%) with a ‘global’ weighted imputation quality score of < 0.70 were also 

excluded from analyses. This score was calculated by weighting each variants MACH/IMPUTE2 

imputation quality score by study sample size and combining these weighted scores for use as a 

post-analysis filter. We also required the presence of each variant in 30% of AD cases and 30% 

of controls across all datasets. 

Stage 1 Association Analysis and Meta-analysis. The Stage 1 discovery meta-analysis was 

followed by Stage 2, and Stage 3 (A and B) replication analyses. Stage 2 was data from a custom 

array with 11,632 assays selected as variants with P < 10-3 from our 2013 work7. Genotypes were 

determined for 8,362 cases and 10,483 controls (Supplementary Table 4).  Stage 3A was 
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conducted for variants selected as novel loci from meta-analyses of Stages 1 and 2 with P < 5 x 

10-7 (9 variants) and variants that were previously significant (P < 5 x 10-8) that were not genome-

wide significant after Stages 1 and 2 (2 variants) (4,930 cases and 6,736 controls) 

(Supplementary Table 5). Stage 3B, which combined samples from Stage 2 and 3A, analysis 

was conducted for variants with MAF < 0.05 and P < 1 x 10-5 or variants with MAF ≥ 0.05 and P 

< 5 x 10-6 from genome regions not covered on the Stage 2 custom array (13,292 cases and 

17,219 controls) (Supplementary Table 7). For Stages 1, 2, and 3, samples did not overlap.  

Stage 1 single variant-based association analysis was conducted on genotype dosages 

modeling for an additive genotype model and adjusting for age (defined as age-at-onset for cases 

and age-at-last exam for controls), sex and population substructure using PCs8.  The score test 

was implemented on all case-control datasets. This test was shown to be optimal for meta-

analysis of rare variants due to its balance between power and control of type 1 error9. Family 

datasets were tested using the R package GWAF10, with generalized estimating equations (GEE) 

implemented for common variants (MAF ≥ 0.01), and a general linear mixed effects model 

(GLMM) implemented for rare variants (MAF < 0.01), per internal data showing behavior of test 

statistics for GEE was fine for common variants but inflated for rare variants, while GLMM 

controlled this rare variant inflation. Variants with regression coefficient |β| > 5 or P value equal to 

0 or 1 were excluded from further analysis.  

Within-study results for Stage 1 were meta-analyzed in METAL11 using an inverse-

variance based model with genomic control. The meta-analysis was split into two separate 

analyses based on the study sample size, with all studies being included in the analysis of 

common variants (MAF ≥ 0.01), and only studies with a total sample size of 400 or greater being 

included in the rare variant (MAF < 0.01) analysis. We also conducted a second meta-analysis in 

METAL using a sample-size weighted meta-analysis model. Results of this model were compared 

to the inverse-variance weighted meta-analysis, and results that differed by more than 3 logs on 

both P-values were removed from further analysis. Regression coefficients for rare variants can 

at times be unstable12, and this step attempted to control for these problematic variants by using 

a second method of meta-analysis that may be less sensitive to certain properties of rare variant 

analysis. In total, 11 variants were removed through this comparison, and most results showed 

very little difference in P-values between the two methods. An additional 106 variants with high 

heterogeneity between studies (defined as I2 > 75) were removed. Figures for association signals 

were generated with LocusZoom software13. Genome-wide summary statistics are available from 

The National Institute on Aging Genetics of Alzheimer’s Disease (NIAGADS) website 
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(https://www.niagads.org/). These analyses were conducted by two independent consortia 

(ADGC and EADI) and then cross-validated.  

Stage 1 summary statistics quality control and analysis. Genomic inflation was calculated for 

lambda in the GenABEL package14. In addition, we performed linkage-disequilibrium score 

(LDSC) regression via LD Hub v1.9.015,16 to calculate the LD-score-regression intercept and 

derive a heritability estimate for the inverse-variance weighted meta-analysis summary statistics. 

The APOE region (Chr19:45,116,911-46,318,605) was removed to calculate the intercept. 

Removal of the APOE region reduced the heritability estimate slightly from 0.071 (s.e. = 0.011) 

to 0.0637 (s.e. = 0.009). 

 LDSC was also employed via the LD-Hub web server to obtain genetic correlation 

estimates (rg)17 between LOAD and a wide range of other disorders, diseases, and human traits, 

including 518 UK BioBank traits18. UK BioBank is a large long-term study begun in 2006 in the 

United Kingdom (UK) which is investigating the contributions of genetic predisposition and 

environmental exposure (i.e. nutrition, lifestyle, medications) to the development of disease. 

Approximately 500,000 volunteers aged 40 to 69 have been enrolled in the study, with the stated 

goal of following their health indicators and exposures for 30 years or more after enrollment. While 

volunteers in the study are generally healthier than the overall UK population19, it’s large size and 

comprehensive data collection make the study an invaluable resource for researchers looking to 

interrogate the combined effect of genetics and environmental factors on disease. Prior to 

analyses in LD-Hub we removed all SNPs with extremely large effect sizes including the MHC 

(Chr6:26,000,000-34,000,000) and APOE region (Chr19:45,116,911-46,318,60) as outliers can 

overly influence the regression analyses. A total of 1,180,989 variants were used in the correlation 

analyses. Statistical significance of the genetic correlations was estimated using a 5% Benjamini-

Hochberg false discovery rate (FDR)-corrected P-values. 

GCTA20 COJO was used to conduct conditional analysis of the Stage 1 summary statistics 

and using 28,730 unrelated individuals from the ADGC as a reference panel for calculation of 

linkage disequilibrium (LD). Methods for how the ADGC reference dataset was created are 

described elsewhere21,22. LDLink23 was used to assess LD, using all 5 CEU populations as the 

reference for calculations. 

Stage 2 and 3 genotyping, quality control, and analysis. Datasets for Stage 2 analysis were 

obtained from previous genotyping from Lambert et al. 20137 using Illumina iSelect technology. 

The I-select chip has a total of 11,632 single nucleotide variants passing quality control available 

https://www.niagads.org/
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for analysis. 1,633 variants were located in the 24 genome-wide loci (defined by the LD-blocks of 

the sentinel variants; excluding the APOE region), with an average of 68 variants per locus. The 

most well covered loci were the HLA-DQB1 locus (763 variants), M24A2 locus (202 variants), and 

PICALM locus (156 variants); the least covered loci were the MAF locus (0 variant), ADAMTS1 

locus (4 variants), and the INPP5D locus (5 variants). Eleven variants from Stage 3A were 

genotyped using Taqman technology. Stage 3B included 23 variants included as part of 

Sequenom MassArray iPLEX panels and 10 additional variants genotyped using Taqman 

technology. 

 Per sample quality checks for genetic sex and relatedness were performed in PLINK. 

Individuals not matching their reported sex or showing a high degree of relatedness (IBD value of 

0.98 or greater) were removed from the analysis. A panel of ancestry-informative markers (AIMs), 

was used to perform PCA analysis with SMARTPCA from EIGENSOFT 4.2 software24, and 

individuals with non-European ancestry were excluded. Variant quality control was also performed 

separately in each country including removal of variants missing in more than 10% of individuals, 

having a Hardy-Weinberg P value in controls lower than 1 x 10-6, or a P value for missingness 

between cases and controls lower than 1 x 10-6. Please see Lambert et al. for a more detailed 

description of the QC procedures followed in Stage 2 analysis. After quality control, 18,845 

individuals (8,362 cases and 10,483 controls) were available for the stage 2 analysis. The same 

quality control measures were applied to data for the Stage 3B variants attained from follow-up 

genotyping. 

Selection of variants for Stage 3B follow-up genotyping. In order to prioritize variants for 

genotyping in Stage 3B, we first selected all MAF < 0.05 variants with P < 1 x 10-5 or MAF ≥ 0.05 

variants with P < 5 x 10-6 in novel loci not covered in the iSelect genotyping from Stage 2 of 

Lambert et al.7 A total of 180 variants were considered for follow up due to meeting the P-value 

criteria and not being in an IGAP 2013 locus. 88 of these variants were in a region covered in the 

replication genotyping chip from 2013 and thus were removed from further consideration. 33 loci 

remained after their removal, with 19 loci having only one prioritized variant, which we selected 

for genotyping. Remaining variants in 14 regions with multiple prioritized variants were then 

annotated with GWAVA25 and CADD26 scores (using ANNOVAR27), Ensembl Variant Effect 

Predictor (VEP) Consequences (using Ensembl VEP28), GWAS4D29, RegulomeDB30, and 

FANTOM531 (using NIAGADS GenomicsDB) in order to rank their functional potential. A CADD 

score > 10, GWAVA score > 0.5, FATHHM > 0.5, RegulomeDB score < 5 and GWAS4D top p-

value score were considered ‘functional’ in the ranking. The top ranked variant for functional 
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potential for each locus with multiple variants was selected for further genotyping and analysis. 

Removal of 59 variants in regions with multiple variants left 33 total variants for follow-up 

genotyping.  

Stage 2 and 3 analyses. Per study analysis for Stage 2 and Stage 3 followed the same analysis 

procedures described for Stage 1, except covariate adjustments per cohort, where all analyses 

were adjusted on sex and age apart from the Italian, Swedish, and Gr@ACE cohorts, which were 

also adjusted for PCs. Within-study results for were meta-analyzed in METAL11 using an inverse-

variance based model. 

Characterization of gene(s) and non-coding features in associated loci. We determined the 

basepair (bp) boundaries of the search space for potential gene(s) and non-coding features in 

each of the 24 associated loci (excluding APOE) using the ‘proxy search’ mechanism in LDLink23. 

LDLink uses 1000 genomes genotypes to calculate LD for a selected population; in our case all 

five European population were selected (CEU, TSI, FIN, GBR, and IBS). The boundaries for all 

variants in LD (r2 ≥ 0.5) with the top associated variant from the stage 2 meta-analysis for each 

region  ±500kb of the ends of the LD blocks (as expression quantitative trait loci (eQTL) controlled 

genes are typically less than 500kb from their controlling variant32) were input into the UCSC 

genome browser’s ‘Table Browser’ for RefSeq33 and GENCODEv2434 genes at each associated 

locus. The average size of the LD blocks was 123kb. 

Identification of potentially causal coding or splicing variants. To identify deleterious coding 

or splicing variants that may represent causal variants for our genome-wide loci we first used 

SNIPA35 to identify variants in high LD (defined as r2>0.7) with the sentinel variants of the 24 

genome-wide loci (excluding APOE) (N=1,073). The sentinel variants were defined as the variant 

with the lowest P in each genome-wide locus. We then used Ensembl VEP36 for annotation of the 

set of sentinel variants and their proxies. We used BLOSUM6237, SIFT38, Polyphen-239, CADD26, 

Condel40, MPC41, and Eigen42 to predict the pathogenicity of protein-altering exonic variants and 

MaxEntScan to predict the splicing potential of variants. Splicing variants with high splicing 

potential according to MaxEntScan43 and protein coding variants predicted to be deleterious by 

two or more programs were considered to be potentially causal variants for a locus. It should be 

noted that while we do include rare variants from imputation in our analyses, we may be missing 

many rare causal variants in this study.  

Identification of genes with rare-variant burden via gene-based testing. We used the 

summary statistics results of a large whole-exome sequencing (WES) study of LOAD, the 
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Alzheimer’s Disease Sequencing Project (ADSP) case-control study (N = 5,740 LOAD cases and 

5,096 cognitively normal controls of NHW ancestry) to identify genes within our genome-wide loci 

that may be contribute to the association signal through rare deleterious coding, splicing or loss-

of-function (LOF) variants. The individuals in the ADSP study largely overlap with individuals in 

the ADGC and CHARGE cohorts included in our Stage 1 meta-analysis. All 445 protein coding 

genes within our LD defined genome-wide loci were annotated with the gene-based results from 

this study. Complete details of the analysis can be found in Bis et al. 201844. Briefly, SKAT-O 

gene-based testing was implemented with seqMeta45 using multiple models of adjustment (model 

0: PC and sequencing center adjusted; model 1: age, sex, PC and sequencing center adjusted; 

model 2: age, sex, PC, APOE and sequencing center adjusted). Only rare (MAF < 0.05), predicted 

functional and LOF variants were included in the analyses which employed Ensembl VEP 

consequence categories (high and moderate) and CADD annotation for filtering of variants for 

inclusion in the SKAT-O analyses. Four annotation models were considered: 1) only rare variants 

with “HIGH” (splicing or LOF variants) or “MODERATE” (inframe insertions/deletions, missense 

variants, and predicted protein altering variants) VEP consequences, 2) only rare variants with 

“HIGH” VEP consequences, 3) only rare variants with CADD Phred scores > 15 (the median value 

for all possible canonical splice site changes and non-synonymous variants), and 4) only rare 

variants with CADD Phred scores > 20. The CADD “Phred-scaled” score is obtained from a 

ranking of all ~8.6 billion variants from the GRCh37/hg19 reference in terms of magnitude and 

then transforming these ranks to Phred scores, allowing for example a cutoff of the top 0.1% 

predicted deleterious variants, which is equivalent to our CADD Phred > 20 cutoff. We corrected 

the results of these models for the 455 genome-wide loci gene list results using a 1% FDR P as 

a cutoff for significance. 

Regulatory variant and eQTL analysis. To identify potential functional risk variants and genes 

at each associated locus we first annotated a list of prioritized variants from the 24 associated loci 

(excluding APOE) (N=1,873). This variant list combined variant in LD with the sentinel variants 

(r2 ≥ 0.5) using INFERNO46 LD-expansion (N=1,339) and variants with suggestive significance 

(P < 10-5) and LD (r2 ≥ 0.5) with the sentinel variants for the 24 associated loci (excluding APOE) 

(N=1,421 variants). We then identified variants with regulatory potential in this set of variants 

using four programs that incorporate various annotations to identify likely regulatory variants: 

RegulomeDB30, HaploReg v4.147,48, GWAS4D29, and the Ensembl Regulatory Build49. We used 

the ChromHMM (Core 15-state model) as “source epigenomes” for the HaploReg analyses. We 

used immune (Monocytes-CD14+, GM12878 lymphoblastoid, HSMM myoblast) and brain (NH-A 

astroctyes) for the Ensembl Regulatory Build analyses. We then used the list of 1,873 prioritized 
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variants to search for genes functionally linked via eQTLs in LOAD relevant tissues including 

various brain tissue types and blood tissue types, including all immune-related cell types, most 

specifically myeloid cells (macrophages and monocytes) and B-lymphoid cells, cell types 

implicated in LOAD and neurodegeneration by a number of recent studies50–53. While their 

specificity may be lower for identifying AD risk eQTLs, we included whole blood cell studies in our 

AD relevant tissue class due to their high correlation of eQTLs with AD relevant tissues (70% with 

brain54; 51-70% for monocytes and lymphoblastoid cell lines (LCL) respectively55) and their large 

sample sizes which allow for increased discovery power. The eQTL databases and studies 

searched included: BRAINEAC56 (12 brain regions), GTEx v7 (48 tissues)57, BIOSQTL58, 

CommonMind Consortium (dorsolateral prefrontal cortex)59, and xQTLServer60 (all via FUMA61);  

the NESDA NTR Conditional eQTL Catalog (whole blood)62; and Fairfax et al. 2012 (monocytes 

and B Cells)63, Gibbs et al. 2010 (frontal cortex, pons)64, Lappalainen et al. 2013 (LCL)65, 

Montgomery et al. 2010 (LCL)66, MuTHer (Adipose, LCL, skin)67, and Zeller et al. 2010 

(monocytes)68 (all via exSNP69). An additional eQTL overlap search was conducted with 

INFERNO46, where 44 GTEx v6 tissues were searched, with prioritization on the INFERNO tissue 

classes of brain and blood (see Supplementary Table 13 for sample sizes of each 
database/study).  

Formal co-localization testing of our summary Stage 1 results was also conducted using 

1) COLOC70 via INFERNO, and 2) Summary Mendelian Randomization (SMR)-Heidi analysis71. 

The approximate bayes factor (ABF), which was used to assess significance in the INFERNO 

COLOC analysis, is a summary measure that provides an alternative to the P-value for the 

identification of associations as significant. SMR)-Heidi analysis, which employs a heterogeneity 

test (HEIDI test) to distinguish pleiotropy or causality (a single genetic variant affecting both gene 

expression and the trait) from linkage (two distinct genetic variants in LD, one affecting gene 

expression and one affecting trait), was also employed for co-localization analysis. Genes located  

less than 1Mb of the GWAS sentinel variants that pass a 5% Benjamini-Hochberg FDR-corrected 

p-SMR significance threshold and a p-HEIDI > 0.05 threshold were considered significant. The 

Westra eQTL72 summary data and Consortium for the Architecture of Gene Expression (CAGE) 

eQTL summary data was used for analysis. These datasets, conducted in whole blood, are the 

largest eQTL studies conducted to date (Westra: discovery phase N = 5,311, replication phase N 

= 2,775; CAGE: N = 2,765), and while there is some overlap in samples between the two datasets, 

CAGE provides finer coverage. Recent studies have shown significant overlap (50-70%) between 

brain and blood eQTL’s54. The ADGC reference panel dataset referenced above for GCTA COJO 

analysis was used for LD calculations. 
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Human brain gene expression analyses. We also evaluated gene expression of all candidate 

genes in the associated loci, defined as all genes within ±500kb of the sentinel variant LD regions 

(r2 ≥ 0.5) (see Supplementary Table 8 for a complete list of genes searched), using differential 

AD gene expression results from AlzBase73, brain tissue expression from the Brain-RNAseq 

Database (http://www.brainrnaseq.org/74,75), and the HuMi_Aged gene set76, a set of genes 

preferentially expressed in aged human brain by microglia. This set of genes was established 

through RNAseq expression analysis of aged human microglial cells from 10 post-mortem brains, 

and is enriched for AD genes (P = 4.1 x 10-5)76. AlzBase includes transcription data from brain 

and blood from aging, non-dementia, mild cognitive impairment, early stage AD and late stage 

AD. Please see ALZBase (http://alz.big.ac.cn/alzBase/Document) for a complete list of studies 

included in the search. Correlation values for the BRAAK stage expression were taken from the 

Zhang et al. 201377 study of 1,647 post-mortem brain tissues from LOAD patients and 

nondemented subjects.  

Pathway Analysis. Pathway analyses were performed with MAGMA78, which performs SNP-wise 

gene analysis of summary statistics with correction for LD between variants and genes to test 

whether sets of genes are jointly associated with a phenotype (i.e. LOAD), compared to other 

genes across the genome. Adaptive permutation was used to produce an empirical p-value and 

a FDR-corrected q-value. Gene-sets used in the analyses were from GO79,80, KEGG81,82, 

REACTOME83,84, BIOCARTA, and MGI85 pathways. Analyses were restricted to gene sets 

containing between 10 and 500 genes, a total of 10,861 sets. Variants were restricted to common 

variants (MAF≥0.01) and rare variants (MAF<0.01) only for each analysis, and separate analyses 

for each model included and excluded the APOE region (Chr19:45,116,911-46,318,605). 

Analyses were also performed after removal of all genome-wide significant genes. Primary 

analyses used a 35-kb upstream/10-kb downstream window around each gene in order to 

potential regulatory variants for each gene, while secondary analyses was run using a 0-kb 

window86. To test for significant correlation between common and rare variant gene results we 

performed a gene property analysis in MAGMA, regressing the gene-wide association statistics 

from rare variants on the corresponding statistics from common variants, correcting for LD 

between variants and genes using the ADGC reference panel. The Aβ-centered network pathway 

analysis used a curated list of Aβ processing related genes from Campion et al.87 Thirty-two Aβ–

related gene sets and all 335 genes combined (see Campion et al.87 for details) were run in 

MAGMA pathway analysis on both common (MAF ≥ 0.01) and rare (MAF < 0.01) variant summary 

results. The combined dataset of 28,730 unrelated individuals from the ADGC referenced in the 

GCTA COJO analysis were used as a reference set for LD calculations in these analyses.  

http://www.brainrnaseq.org/
http://alz.big.ac.cn/alzBase/Document
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Validation of prioritization method. Evaluation of the prioritization of the risk genes in genome-

wide loci was done using STRING88, and Jensen Diseases89, Jensen Tissues90, dbGAP gene sets 

and the ARCHS491 resource via the EnrichR92 tool. We evaluated both the 400 genes set list and 

a list of 53 genes with priority score ≥ 5 (adding in APOE to both lists as the top gene in the APOE 

locus) using the standard settings for both STRING and EnrichR. We use q-value, which is the 

adjusted p-value using the Benjamini-Hochberg FDR method with a 5% cutoff for correction for 

multiple hypotheses testing. We also performed ‘differentially expressed gene (DEG)’ sets analysis 

via FUMA61. These analyses were performed in order to assess whether our 53 prioritized genes are 

significantly differentially expressed in certain GTEx v757 (30 general tissues and 53 specific tissues) 

or BrainSpan tissues (11 tissue developmental periods with distinct DEG sets ranging from early 

prenatal to middle adulthood)93. FUMA defines DEG sets by calculating a two-sided t-test per tissue 

versus all remaining tissue types or developmental periods. Genes with a Bonferonni corrected p-

value < 0.05 and absolute log fold change ≥ 0.58) are considered DEGs. Input genes were tested 

against each of the DEG sets using the hypergeometric test. Significant enrichment is defined by 

Bonferonni corrected P-value ≤ 0.05. 

HLA region analysis. Non-familial datasets from ADGC, EADI and GERAD consortiums were 

used for HLA analysis. After quality control on the imputation quality, a total of 14,776 cases and 

23,047 controls were available for analysis (Supplementary Table 27). Within ADGC, GenADA, 

ROSMAP, TARC1, TGEN2, and a subset of UMCWRMSSM datasets were not imputed as 

Affymetrix genotyping arrays are not supported by the imputation software. 

Imputation of HLA alleles. Two-fields resolution HLA alleles were imputed using the R package 

HIBAG v1.494 and the non-Hispanic White (NHW)-specific training set. This software uses specific 

combinations of variants to predict HLA alleles. Alleles with an imputation posterior probability 

lower than 0.5 were considered as undetermined as recommended by the developers of the 

imputation package. HLA-A, HLA-B, HLA-C class I genes and HLA-DPB1, HLA-DQA1, HLA-

DQB1, HLA-DRB1 class II genes were imputed. Individuals with more than two undetermined 

HLA alleles were excluded.  

Statistical analysis. All analyses were performed in R95. Associations of HLA alleles with disease 

were tested using logistic regressions, adjusting for age, sex and PCs as specified above for the 

SNP association analysis. Only HLA alleles with a frequency higher than 1% were analyzed. 

Haplotype estimations and association analyses with disease were performed using ‘haplo.glm’ 

function from the haplo.stats R package96 with age, sex and PCs as covariates. Analysis was 

performed on 2-loci and 3-loci haplotypes of HLA-DQA1, HLA-DQB1 and HLA-DRB1 genes. 
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Haplotypes with a frequency below 1% were excluded from the analysis. Considering the high LD 

in the MHC region, only haplotypes predicted with a posterior probabilities higher than 0.2 were 

considered for analysis. Meta-analysis p-values were computed using an inverse variance based 

model as implemented in METAL software11. For haplotypes analysis, only individuals with no 

undetermined HLA alleles and only datasets with more than 100 cases or controls were included. 

Adjustments on HLA significant variants and HLA alleles were performed by introducing the 

variant or alleles as covariates in the regression models. Adjusted p-values were computed using 

the FDR method and the R ‘p.adjust’ function, and applied to the meta-analysis p-values. FDR 

threshold was set to 10%. 

Data Availability 

Stage 1 data (individual level) for the GERAD cohort can be accessed by applying directly to 

Cardiff University. Stage 1 ADGC data are deposited in a NIAGADS- and NIA/NIH-sanctioned 

qualified-access data repository. Stage 1 CHARGE data are accessible by applying to dbGaP 

for all US cohorts and to Erasmus University for Rotterdam data. AGES primary data are not 

available owing to Icelandic laws. Genome-wide summary statistics for the Stage 1 discovery 

are available from The National Institute on Aging Genetics of Alzheimer’s Disease (NIAGADS) 

website (https://www.niagads.org/). Stage 2 and stage 3 primary data are available upon 

request.  

 

URLs: 

Brain RNA-seq Database: http://www.brainrnaseq.org/ 

Enrichr: http://amp.pharm.mssm.edu/Enrichr/ 

exSNP: http://www.exsnp.org/ 

NESDA eQTL catalog: https://eqtl.onderzoek.io/index.php?page=info 

FUMA: http://fuma.ctglab.nl/ 

HLA-PheWas Catalog: https://phewascatalog.org/hla 

INFERNO: http://inferno.lisanwanglab.org/index.php 

LD-Hub: http://ldsc.broadinstitute.org/ldhub/ 

STRING: https://string-db.org/ 

https://www.niagads.org/
http://www.brainrnaseq.org/
http://amp.pharm.mssm.edu/Enrichr/
http://www.exsnp.org/
https://eqtl.onderzoek.io/index.php?page=info
http://fuma.ctglab.nl/
https://phewascatalog.org/hla
http://inferno.lisanwanglab.org/index.php
http://ldsc.broadinstitute.org/ldhub/
https://string-db.org/
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