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Abstract—It is a great challenge to differentiate Partial 
Discharge (PD) induced by different types of insulation defects in 
high voltage cables. Some types of PD signals have very similar 
characteristics and are specifically difficult to be differentiate, even 
for the most experienced specialists. To overcome the challenge, a 
Convolutional Neural Network (CNN) based deep learning 
methodology for PD pattern recognition is presented in this paper. 
Firstly, PD testing for five types of artificial defects in 
Ethylene-Propylene-Rubber (EPR) cables was carried out in the 
High Voltage (HV) laboratory to generate signals containing PD 
data. Secondly, 3500 sets of PD transient pulses were extracted and 
then 33 kinds of PD features were established. The third stage 
applies a CNN to the data: typical CNN architecture and the key 
factors which affect the CNN based pattern recognition accuracy, 
are described. Factors discussed include the number of the network 
layers, convolutional kernel size, activation function, and pooling 
method. The paper presents a flowchart of the CNN based PD 
pattern recognition method and an evaluation with 3500 sets of PD 
samples. Finally, the CNN based pattern recognition results are 
shown and the proposed method is compared with two more 
traditional analysis methods, i.e. Support Vector Machine (SVM) 
and Back Propagation Neural Network (BPNN). The results show 
that the proposed CNN method has higher pattern recognition 
accuracy than SVM and BPNN, and that the novel method is 
especially effective for PD type recognition in cases of signals of 
high similarity, which is applicable for industrial applications. 
 

Index Terms—Convolutional neural network, deep learning, 
high voltage cables, partial discharge, pattern recognition. 

I. INTRODUCTION 

ARTIAL Discharge (PD) monitoring plays an important role 
in evaluating the condition of cable insulation and in 

improving the reliability of power transmission and distribution 
systems [1-5]. On-line or off-line PD based condition 
monitoring and fault diagnosis have been increasingly reported 
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in industrial applications [6-7]. However, differentiating defect 
types through PD pattern recognition is one of the most difficult 
challenges and has restricted the large-scale industrial 
application of PD based condition monitoring. PD signals 
induced by insulation defects which show a high similarity in 
the PD pattern structure are especially difficult to distinguish 
[6-9]. 

To overcome the challenge of differentiating defect type, 
different pattern recognition methods have been applied to 
detect PD patterns. These methods include Decision Tree (DT), 
Back Propagation Neural Network (BPNN), Support Vector 
Machine (SVM), and Rough Set (RS) Theory [10-12]. SVM 
and BPNN have been most widely used due to their excellent 
and stable pattern recognition performance [10-12]. Hao et. al. 
[10] combined Wavelet Transform (WT) and SVM to identify 
PD signals from different sources. Tang et. al. [11] employed 
Particle Swarm Optimization (PSO) to optimize the parameters 
of SVM applied to distinguish PD signals from different 
sources in Gas Insulated Switchgear (GIS). Li et. al. [12] 
combined, two types of BPNN, with the input parameters of 
Phase Resolved Partial Discharge (PRPD) pattern and 
Time-Resolved Partial Discharge (TRPD) pattern to improve 
the pattern recognition accuracy of different types of PD signals 
from GIS. 

However, it has been recognized that the traditional machine 
learning methods, such as SVM and BPNN, have met 
bottlenecks in their development, which restrict further 
improvements in pattern recognition accuracy. In recent years, 
deep learning has been important in the development of 
Artificial Intelligence (AI) and pattern recognition systems 
[13-15]. Deep learning methods use deep neural networks 
employing multiple nonlinear layers. These have the ability to 
capture high dimensional nonlinearity and complex correlation 
which cannot be learned by traditional shallow neural network 
structures [16]. Deep learning methods are capable of 
self-learning and feature abstracting from massive datasets, 
which brings new perspectives and opportunities for PD pattern 
recognition. 

Common deep learning methods include Convolutional 
Neural Network (CNN), Stacked Denoising Auto-Encoders 
(SDAE), Recurrent Neural Network (RNN) and Deep Belief 
Network (DBN), etc: CNN is widely used [15]. CNN based 
deep learning algorithms have been successfully applied in 
many fields, such as speech recognition and image recognition, 
and are considered to be of increasing importance in the power 
industry [13-15]. In comparison to other deep learning methods, 
the complexity of CNN and the difficulty of training them are 
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greatly reduced through the parameters of sharing and local 
connection, which also reduce the risk of over-fitting [16]. 
According to [16], it is relatively easy to construct a network 
with deep architecture using CNN. 

A CNN based deep learning methodology for PD pattern 
recognition of high voltage cables is presented in this paper and 
evaluated with 3500 sets of data. The data was generated using 
5 types of PD fault under laboratory conditions. The proposed 
method is compared with two traditional machine learning 
methods, SVM and BPNN. The results show that CNN based 
PD pattern recognition is more effective than SVM and BPNN 
and is especially effective at differentiating PD types where the 
patterns have high similarity. This method is applicable not 
only to PD pattern recognition in HV cables but also to analysis 
of signals from other HV apparatus, such as gas-insulated 
substations, transformers and generators. 

II. PD DATA GENERATION AND FEATURE 

EXTRACTION 

A. EPR Cable and Artificial Defects 

Five types of insulation defects found in EPR cables were 
simulated using a section of cable which has been in service. 
The artificial faults were stressed in a high voltage laboratory. 
The EPR cable comprises of an aluminum core, an inner 
semiconductor layer, an EPR layer, an outer semiconductor 
layer, a shielded copper strip, an aluminum armor layer and a 
polyvinyl chloride (PVC) sheath. A schematic of the EPR cable 
structure and a schematic of the defect structures are shown in 
Fig. 1. 

 
Defect type 1 simulates a void crossing from the PVC 

oversheath to the EPR insulation layer. The defect was created 
through the following procedure: a cylindrical cavity was 
generated by a precision 0.4 mm diameter Printed Circuit 
Board (PCB) drill, and a copper strip in contact with the outer 
semiconductor fixed on the circular hole to seal the defect. 

Defect type 2, simulating a protrusion on the outer conductor, 
was created by inserting a 0.4 mm diameter PCB drill into the 
cable. The drill remains in touch with the conductive parts. 

Defect type 3, simulating a floating protrusion on the outer 
conductor was created by inserting a PCB drill into the cable 
but ensuring that the conductive parts do not touch the drill. 

Defect type 4, simulating a cable having external damage, 
introduced a breach in the outer semiconductor of the cable. To 
replicate this fault type, an area 7mm×7mm was cut from the 
PVC sheath, the semiconductor layer and the shielding layer. 

Defect type 5 simulates PD from an end termination. It was 
generated by connecting a part of the outer copper sleeve of the 

cable to the system earth. 
Given the similarity of construction of defects type 2 and type 

3, PD signals generated by these defects might be a challenge to 
separate. 

B. Experimental Setup and PD Pulse Feature Extraction 

A commercial High Frequency Current Transformer (HFCT), 
having a bandwidth from 20 kHz to 20 MHz, as shown in Fig. 2, 
was used for PD signal extraction. 

The principle of the PD testing system, which is based on the 
IEC60270 system, is shown in Fig. 3. EPR cable samples of 
lengths 1-2 meters, with the artificial defects described in 
section 1.1, were connected to the high voltage supply for PD 
testing. The HFCT was placed around the earth strap of the 
EPR cable to capture PD signals. A wide-band amplifier was 
connected to the HFCT to adjust the signal from HFCT to the 
input limits of the data acquisition (DAQ) system, which in this 
case was a LeCroy 104 Xi oscilloscope. A voltage probe was 
connected to the high voltage source to acquire the 50 Hz phase 
reference for future PD pattern analysis. The DAQ rate of the 
oscilloscope was set to 100MS/s and the DAQ time length was 
set to 20ms (one power cycle of the 50Hz supply). 

 
Fig. 2.  HFCT frequency response. 

 
The test voltage was increased from 0 to PD Inception 

Voltage (PDIV), in steps of 1kV, up to the maximum test 
voltage. For defect types 1, 4 and 5, the maximum value was 
11kV, the rated voltage of the EPR cable. For defect types 2 and 
3, the maximum voltage was 13 kV and 12 kV respectively. 
Raw data was logged for each test. The number of sets of raw 
PD data for each test voltage of the five types of defects is 
shown in Table 1. 

From the raw data, PD transient pulses were extracted to 
generate PD data sets for five types of artificial defect. From the 
complete data 700 transient pulses were randomly selected 
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Fig. 1.  The cable structure and the artificial defects.  
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Fig. 3. Experimental setup for PD measurement. 
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from the data for each defect type for further analysis. This 
analysis relied upon feature extraction, as discussed in the 
following section. 

TABLE I 
PD TEST VOLTAGE AND NUMBER OF DATA SETS FOR EACH DEFECT TYPE 

Defect 

type 

5  

kV 

6 

kV 

7 

kV 

8 

kV 

9 

kV 

10 

kV 

11 

kV 

12 

kV 

13 

kV 
Sum 

Type 1 50 50 50 50 50 50 50 0 0 350 

Type 2 0 50 50 50 54 50 54 53 52 409 

Type 3 0 51 50 50 26 50 52 61 0 340 

Type 4 0 0 50 50 51 52 51 0 0 254 

Type 5 0 0 10 10 10 10 10 0 0 50 

C. Feature Extraction 

Based on the 3500 samples of PD transient pulses, feature 
extraction was carried out in which important parameters of the 
signals were acquired. The PD pulse signals were considered in 
terms of the following 17 parameters: pulse width [17], rise 
time [17], fall time [17], peak voltage, pulse polarity, mean 
voltage, root mean square (RMS) voltage, standard deviation of 
peak pulse voltage, skewness of peak pulse voltage, kurtosis of 
peak pulse voltage, voltage crest factor (peak magnitude over 
RMS), voltage form factor (RMS over average value), main 
frequency of transient pulse, phase angle, equivalent time 
length (T) [17], equivalent bandwidth (W) [17] and discharge 
magnitude in picocoulombs. 

In addition to the 17 PD features described above, Wavelet 
Transform (WT) analysis was applied to the transient pulses 
[10]. The input signals were decomposed into five layers and 16 
wavelet features were established for the wavelet transform. 
Finally, 33 types of PD features were constructed and were 
applied as the input parameters of the pattern recognition 
methods, BPNN, SVM, and CNN. 

The principle of decomposition of PD to extract features of 
transient PD pulses is shown in Fig. 4. 

 
In Fig. 4, the original transient PD pulses were decomposed into 

5 layers based on a db5 mother wavelet. The wavelet features of 
the signals were constructed according to the wavelet coefficients. 
Ai represents the approximate composition of each layer. x 
represents the original signal. di represents the detail component of 
each layer. 

16 wavelet features are named as Ed1~ Ed5, Ea1~ Ea5, ED1~ 
ED5 and EA5 respectively.  

Edi represents the detailed energy of layer i, the formula for 
which is shown in equation (1). 

2( )i iEd d t dt                                      (1) 

Eai represents the global energy of layer i, the formula for which 
is shown in equation (2). 

2 ( )i iEa A t dt                                      (2) 

EDi represents the ratio of detail energy of layer i and the energy 
of the original signal, the formula for which is shown in equation 
(3). 

2

2

( )

( )

i

i

d t dt
ED

x t dt
 


                                    (3) 

EA5 represents the ratio of global energy of the fifth layer and the 
energy of original signal x, the formula for which is shown in 
equation (4). 

2
5

5 2

( )

( )

A t dt
EA

x t dt
 


                                    (4) 

D. Initial Analysis 

An initial comparison of the data from the five fault types was 
carried out. Fig. 5 shows one set of PD raw data, with a time length 
of 20 ms, for each defect type, and one typical fast-transient PD 
pulse within said data plotted on a shorter time-base to allow 
additional detail of the PD signals to be seen. Phase-Resolved PD 
Patterns were constructed using two different PD parameters, 
namely discharge magnitude and equivalent time length. The 
patterns generated for each of the parameters is shown in Fig. 6.  
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Fig. 5.  One set of PD raw data and one typical PD transient pulse for five types 
of cable defects. 

From Fig. 6, the following conclusions can be drawn: Firstly, PD 
type 2, in red, and PD type 3, in blue, are very similar, as the two 
PRPD patterns of these faults overlap. This confirms the comment 
in section II.A. Secondly, PD type 4 and PD type 5 show 
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Fig. 4.  PD feature construction of transient PD pulses based on the wavelet 
transform. 
  



TPWRD-01323-2018.R1 4

differences to PD types 1, 2 and 3. For example, in Fig. 5(a), the 
PRPD of discharge magnitude, data points for type 4 and 5 have a 
lower degree of overlap with PD types 1, 2 and 3. 

From Fig. 5 and Fig. 6 it can be seen that the 3500 sets of 
samples from 5 fault types were ideal data for pattern recognition 
method evaluation, as 3 types of PD signal had high 
mutual-similarity but could be distinguished from the other defect 
types. 

Additional analysis would be required to separate the fault types. 
The Convolutional Neural Network method was selected, as 
outlined in the following section. 

  PD Type 1 PD Type 2   PD Type 3 PD Type 4  PD  Type 5

(b) Time (ms)

(a) Time (ms)Time (ms)

 
Fig. 6.  PRPD of two parameters of five types of PD signals: (a) PD magnitude, 
(b) equivalent time length of PD. 

III. CONVOLUTIONAL NEURAL NETWORK 

CNN evolved from the structure of the biological vision 
system, which has the ability to take specific features and figure 
out patterns in visual images [15, 18]. In the 1960s, Hubel et al. 
discovered that visual information transmitted from the retina 
to the brain was processed by stimulating respective fields with 
multiple levels [18]. In 1980, Fukushima first proposed 
Neocognitron [18], which is a self-organizing multilayer neural 
network. In 1998, LeCun et al. [19] proposed the first type of 
convolutional neural network, LeNet-5, by utilizing a 
gradient-based back propagation algorithm for supervised 
training. In 2012, Krizhevsky et al. won the image 
classification competition, ImageNet Large Scale Visual 
Recognition and Challenge, with AlexNet [20-21]. CNN is 
widely applied in image recognition and speech recognition 
because of the excellent feature learning ability. 

A. Typical Architecture of CNN 

The typical structure of CNN is shown in Fig. 7. As shown in the 
lower layer labels, the CNN structure is comprised of one or more 
alternately connected convolutional layers, pooling layers and a 
fully connected layer for classification. In general, the input to a 
CNN is a 1 or 2 dimensional (1 or 2D) data matrix. 

The convolutional layer is utilized directly to extract features 
from the 1D or 2D matrixes and map the extracted features to form 
new feature maps. The structure in which multiple convolutional 
layers are distributed with pooling layers allows the ability to 
reduce the size of feature maps and gradually set up features with a 
high degree of spatial and uniform structure. The fully connected 
layer is applied to estimate the PD pattern, based on the extracted 
features sequentially conveyed by multiple convolutional and 
pooling layers. In most cases, CNN based pattern recognition 
systems are trained by a gradient descent algorithm [18]. 
Fundamentally, CNN is a mathematical model which processes 
raw input through data transformation and dimensionality 
reduction with multiple levels to a new feature representation field 
[18]. 

...

Features

Convolution Pooling Convolution Pooling
Fully-

connected

Feature 
maps

Feature 
maps

Feature 
maps

Feature 
maps

PD type 

Fig. 7.  The structure of CNN. 

There are multiple key factors which affect the pattern 
recognition accuracy of CNN, including the number of network 
layers, the size of the convolutional kernel, the type of activation 
function and the pooling method, as discussed in the following 
section. 

B. The Number of Network Layers 

CNNs have a special structure in which the network nodes of 
the adjacent two layers are locally connected. In addition, CNN 
systems use shared parameters of connection weights in the same 
convolutional layers or pooling layers [18-20]. These 
characteristics greatly decrease the number of parameters, reduce 
the complexity of network training and the risk of over fitting 
[18-20]. Therefore, CNN has major advantages in constructing 
deep architecture neural networks and provides superior feature 
learning capability [19]. 

As the number of network layers increases, the feature 
abstraction and capabilities of CNN increase gradually but the 
number of parameters required for training also increases and the 
need for sample data volume rises accordingly, which will raise 
the risk of over fitting for small sample data [21-22]. However, 
there is no theoretical framework on how to determine the number 
of network layers [18-20]. Hence, for the successful application of 
CNN based pattern recognition, different numbers of network 
layers should be evaluated with the training data. The network 
with the highest pattern recognition accuracy should be chosen as 
the ideal CNN architecture. 

C. The Size of Convolutional Kernel 

The main block of the CNN convolutional layer has a series of 
convolutional kernels. During the forward propagation process, 
each convolutional kernel convolves with the input feature 
structure from the earlier layer to produce convolved feature maps. 
The convolved data is then subjected to a nonlinear activation 
function to get the output feature maps of the layer. 
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An example of 2D convolution is shown in Fig. 8. A 2×2 
convolutional kernel convolves with the 3×3 input feature diagram 
to produce an output feature block with 4 units arranged in 2×2 
grid. The convolutional kernel can be regarded as a feature 
detector then all the units in a feature map detect the same pattern 
but at different locations in the input feature layout. 

The size of the convolutional kernel affects the performance of 
feature detecting directly. Moreover, the material complexity of 
each convolutional operation in the CNN model is theoretically 
linear with the side length of the convolutional kernel. If the size of 
convolutional kernel is too small, then the CNN model is 
susceptible to information loss in the process of feature learning, 
which will negatively affect the pattern recognition performance. 
If the size of the convolutional kernel is too big, the computational 
cost rapidly increases [19]. 

a b c

e f g

i j k

m n

p q

Input
Kernel am+bn

+ep+fq
bm+cn
+fp+gq

em+fn
+ip+jq

fm+gn
+jp+kq

Convolution 

Output after convolution

Feature map  
Fig. 8.  Sample of convolution: a 2×2 kernel convolves with a 3×3 input feature 
map to produce a 2×2 feature map. 

D. Nonlinear Activation Function 

An activation function is used to introduce nonlinearities to the 
CNN, which plays an important role in determining the pattern 
recognition performance. Typical nonlinear activation functions 
contain hyperbolic tangent function (tanh), sigmoid, and rectified 
linear unit (relu) [21]. 

Google Brain proposed a new type of self-gated activation 
function, “swish”, which has an upper bound but no lower bound, 
accompanied with smooth and non-monotonic characteristics [21]. 
[21] pointed out that deep learning models with swish activation 
functions have better performance than the widely used relu 
activation function and that better results would be achieved by 
deep neural networks using swish if slightly smaller learning rates 
were adopted compared with neural networks with relu [21]. 

As the saturation property of sigmoid functions have the 
challenges of gradient disappearance and high computational cost, 
it is difficult to effectively train the limits of deep neural networks 
with sigmoids [18-21]. The tanh function has a similar saturation 
characteristic to sigmoids, giving rise to similar pattern recognition 
accuracy issues. In comparison to sigmoid and tanh, the linear and 
unsaturated characteristics of the relu function is favorable for 
making neural networks converge rapidly. However, some of the 
weights of nodes of the neural networks with relu may not be 
upgraded during training, i.e. a “dead zone” occurs. The absence 
of an upper bound and the smooth and non-monotonic 
characteristics are the advantages of the swish function over other 
existing activation functions. 

E. Pooling Method 

As the original input feature block has a large number of features, 
the computational cost may become excessive if all the features 
from one convolutional layer are directly adopted. The pooling 

operation system is applied to collect semantically similar features 
in the pooling window within a feature structure into one feature. 
This helps to reduce the size of feature layout and achieve the 
goals of data dimensionality reduction [18-21]. 

There is some difference in the effectiveness of CNNs with 
different pooling approaches on various data sets. Currently, max 
pooling and average pooling are the two mainstream pooling 
methods [18-21]. 

For the convolved feature, the max pooling method selects the 
feature with the largest value within the pooling window to form 
the output feature. An example of the max pooling method is 
shown in Fig. 9. A 2×2 pooling window gets input from a 
convolved feature diagram and takes the feature with the greatest 
value in each window to generate a pooled feature. Max pooling 
discards non-maximal features which may result in information 
loss. 

7 3 2 7

5 6 7 8

3 2 1 0

1 2 3 4

7 8

3 4

Convolved feature Pooled feature

Pooling

 
Fig. 9.  An example of max pooling: convolved features are divided into four 
2×2 regions, and take the maximum of each region to obtain the pooled 
features. 

The average pooling method takes the average of the input 
features within the pooling window. Average pooling selects the 
average value of the features in the pooling window but this 
discrimination of data may also result in information loss. 

The Rank based Average Pooling (RAP) method effectively 
handles the problem of the loss of useful information caused by 
average pooling and max pooling by weighted averaging of 
features in the pooling window [23]. RAP combines the 
advantages of max pooling and average pooling and therefore has 
better performance as it retains the discriminatory features lost in 
average pooling and the non-maximal features absolutely 
discarded in max pooling [23]. 

IV. CNN BASED PD PATTERN RECOGNITION 

PROCESS 

The flowchart of the CNN based PD pattern recognition 
method for high voltage cables is shown in Fig. 10. 

The following steps explain the presented method in detail: 
Step 1: Five types of artificial insulation defects in EPR cable 

were tested in the laboratory and the experimental data from PD 
testing was collected. 

Step 2: The experimental data was pre-processed and PD 
pulses were extracted. 

Step 3: 33 kinds of PD features were constructed and 
normalized and the features were used as the input to the CNN.  

Step 4: The PD feature data set, containing 3500 sets of PD 
transient pulses, was established and divided into a training set 
and a testing set. The ratio of the number of training sets to 
testing sets was 17:3. 

Step 5: The CNN architecture was designed and initialization 
of the CNN was performed. The gradient descent method was 
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used on the training set to decrease the error rate between the 
predicted output and the actual output to train the CNN model. 
The ideal choice of the parameters, including the number of 
network layers, the convolutional kernel size, the activation 
function and the pooling methods, were determined. 

Step 6: The performance of the CNN based PD pattern 
recognition method was evaluated on the testing set. 
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Training and 
parameters 

optimizing of 
CNN

Selection of 
the number 
of network 

layers

Selection of 
the size of 

convolutional 
kernel

Selection of 
the type of 
activation 
function

The 
optimization 

of 
parameters

The design and 
initialization of CNN

Selection of 
the pooling 

method

Data preprocessing 
and PD pulse 

extraction

PD feature extraction 
and normalization 

Training data set

Testing data set

CNN based PD pattern 
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The results of PD 
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Fig. 10.  Flowchart of PD Pattern Recognition based on CNN. 

V. RESULTS AND EVALUATION 

In this section, the PD pattern recognition results of CNN for 
high voltage cables were evaluated, in terms of number of 
network layers, the convolutional kernel size, the activation 
function and the pooling method. Furthermore, the proposed 
approach was compared with the traditional methods, i.e. 
BPNN and SVM. 

The computer configuration was as follows: the operating 
system is Windows 7, the CPU is Intel i5-4200M and the 
memory size is 12 GB. 

The optimal selection of number of network layers, 
convolutional kernel size, activation function and pooling 
method, is obtained by separate experiments. The optimization 
of one parameter was carried out by keeping other parameters 
constant, and preliminary testing was launched to narrow the 
search range. 

A. Results of PD Pattern Recognition of CNN with Different 
Number of Network Layers 

The performance of CNN with different number of network 
layers was tested. The structure of each CNN had similar 
characteristics, i.e. the same number of convolutional and 
pooling layers and a single fully connected layer, for 
classification. In addition, the RAP pooling method, the swish 
activation function and convolutional kernel size of 1×4 were 
adopted. The first CNN had 3 layers (1 convolutional layer, 1 
pooling layer and 1 fully connected layer), the second had 5 
layers (2 convolutional, 2 pooling and 1 fully connected layer), 
up to the final CNN of 17 layers (8 convolutional, 8 pooling and 

1 fully connected layer): results are shown in Fig. 11. 
As the number of network layers increases, the ability of 

CNN to fit the reference data will increase, but the risk of 
over-fitting also increases, especially when the sample data is 
small. As there are 3,500 samples in the data set, which is a 
relatively small number, the optimal number of network layers 
should be relatively small. As shown in Fig. 11, among the 8 
models generated, the 7-layer CNN has the highest overall PD 
pattern recognition accuracy and the highest pattern recognition 
accuracy for every type of defect. 
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Fig. 11.  Comparison of recognition error of CNN with different number of 
layers. 

B. Results of PD Pattern Recognition of CNN with Different 
Convolutional Kernel Sizes 

This section shows that CNN with 2-dimensional 
convolutional kernels, of size n×n, have difficulty with 
conducting network training and have non-ideal performance 
owing to a significant increase in the number of network 
parameters compared to CNN with 1-dimensional 
convolutional kernels of size 1×n. Hence, the PD pattern 
recognition results of CNNs with convolutional kernel sizes of 
1×1 to 1×8 are presented. Based on the previous section, the 
number of network layers was set to 7 and the other parameter 
settings are the same as those shown in section V.A. Test results 
are shown in Fig. 12. 
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Fig. 12.  Comparison of recognition error of CNN with different convolution 
kernel sizes. 

The size of the convolutional kernel is of significant 
importance to the PD pattern recognition performance of CNN. 
A small convolutional kernel size will restrict the feature 
abstracting and expressing capabilities of CNN, while a big 
convolution kernel size will cause redundant computation.  
From Fig. 12, it can be seen that the PD pattern recognition 
accuracy of CNN with a convolutional kernel size of 1×1, 1×4 
and 1×8 is 82.10%, 92.57% and 92.57%, respectively. 
Furthermore, the training time of CNN with a convolutional 
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kernel size of 1×1, 1×4 and 1×8 was 352s, 384s and 426s, 
respectively. As the size of the convolutional kernel was 
increased from 1×1 to 1×8, the PD pattern recognition accuracy 
of CNN increases at first and then plateaus. However, the 
training time has an approximately linear increase. From this, a 
CNN with convolutional kernel size of 1×4 has the highest 
pattern recognition accuracy and moderate computational cost, 
which means the best comprehensive pattern recognition 
performance. The results validate the analysis of the effect of 
convolutional kernel size on the pattern recognition 
performance of CNN in section III.C. 

C. Results of PD Pattern Recognition of CNN with Different 
Activation Functions 

The type of activation function applied strongly affects the 
effectiveness of CNN pattern recognition [21]. In this paper, the 
pattern recognition performance of CNNs with four activation 
functions, namely tanh, sigmoid, relu and swish, was compared, 
using a convolutional kernel size of 1×4 but retaining the other 
parameters as outlined in section V.B. The results are shown in 
Fig. 13. 

From Fig. 13, the swish function has a higher pattern 
recognition accuracy than CNNs with the other three activation 
functions. 
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Fig. 13.  Comparison of recognition accuracy of CNN using 4 activation 
functions. 

D. Results of PD Pattern Recognition of CNN Using Different 
Pooling Methods 

In this section, the PD pattern recognition performance of 
CNNs with three pooling methods – average pooling, max 
pooling and RAP – are compared. The activation function 
adopted is swish, other parameters are the same as those in 
section V.C. The results are shown in Fig. 14. 
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Fig. 14.  Comparison of recognition error of CNN using 3 pooling methods. 

From Fig. 14, CNN with RAP has the highest PD pattern 
recognition accuracy for every type of PD fault type. As 

discussed, RAP has the ability to merge the advantages of 
average pooling and max pooling, resulting in CNN with RAP 
having the best PD pattern recognition performance. The 
overall pattern recognition accuracy of CNN with RAP is 
92.57%, which is 0.57% and 0.76% better than CNNs adopting 
max pooling and average pooling, respectively. 

E. Pattern Recognition Results and Visualization of CNN 

Based on the foregoing analysis, the final adopted 
architecture of CNN contains 3 convolutional layers, 3 pooling 
layers and 1 fully connected layer for classification. The other 
parameter configurations of CNN in this work are RAP pooling, 
swish activation function and convolutional kernel size of 1×4. 
The confusion matrix for PD pattern recognition of CNN is 
shown in Fig. 15. 

As can be seen in Fig. 15, high error rates exist for defect 
types with high similarity, namely PD type 2 and type 3. The 
degree of confusion among the PD pattern recognition results 
of defect types 2 and 3 are: 21 of the 105 samples of defect type 
3 are misidentified as type 2; 12 of the 105 samples of defect 
type 2 were misidentified as type 3. The result verifies the 
analysis of PRPD in section 1.3 and is the main reason for the 
need to improve overall PD pattern recognition accuracy. 
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Fig. 15.  PD pattern classification confusion matrix. 

In order to illustrate the feature abstracting and expressing 
capabilities of CNN, the t-SNE algorithm was applied to map 
the original PD features and the output of each convolutional 
layer of CNN to a two-dimensional plane for visualization [24]. 
The results are shown in Fig. 16. The t-SNE algorithm is a 
non-linear dimensionality reduction technique: further 
information on t-SNE can be found in [24]. 

In Fig. 16 it can be observed that data points for each defect 
type are grouped together in the original feature space. As 
expected, the degree of overlap for points corresponding to 
defect types 2 and 3 are particularly large. 

The visualization results of each convolutional layer output in 
CNN are also shown in Fig. 16. From this it can be clearly 
observed that as the number of convolutional layers increases, 
the samples matching to the five defect types become 
systematically more separated. After being processed by the 
first convolutional layer, the clusters of five fault types have a 
greater degree of separation than those in the original feature 
space: the discrimination of types 1, 4 and 5 is relatively large. 
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After being processed by the second convolutional layer, the 
relative separation of the five types of defect is greater than 
those in the previous convolutional layer. After being handled 
by the third convolutional layer, the sample point clusters are 
more concentrated and differentiable from each other. The 
contribution of each convolutional layer of CNN to distinguish 
the complementary samples of the five types of defect is 
visually indicated in Fig. 16, representing the principle of the 
layer-wise optimization of the deep neural network. 
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Fig. 16.  2D visualization of the original feature space and the convolutional 
layer output. 

F. Comparison with the Traditional Pattern Recognition 
Methods 

To express the advantages of PD pattern recognition based on 
the CNN method, PD pattern recognition by BPNN and SVM 
was also studied. Comparative results are shown in Table 2. 

TABLE II 
COMPARISON OF PD PATTERN RECOGNITION ACCURACY RATES OF DIFFERENT 

ANALYSIS METHODS  

Defect 

type 
Type 1 Type 2 Type 3 Type 4 Type 5 Accuracy 

Training 

Time 

CNN 98.08% 80.87% 85.42% 99.06% 100.00% 92.57% 384.0s 

BPNN 90.99% 70.87% 69.31% 99.05% 99.05% 86.10% 6.3s 

SVM 92.59% 75.00% 72.82% 99.05% 99.05% 87.81% 403.3s 

From Table 2, overall PD pattern recognition accuracy rate of 
CNN is 92.57%, which was the highest among the three 
methods. The overall accuracy of SVM is 87.81% and that of 
BPNN was 86.10%, BPNN was lowest among of the 
approaches. Compared to BPNN and SVM, overall pattern 
recognition accuracy of CNN was increased by 6.47% and 
4.76%, respectively. Furthermore, the pattern recognition 
accuracy of CNN for every type of defect was the highest 
among all methods. The degree of distinction of defect types 1, 
4, and 5 is relatively high, making it easier to differentiate the 
three defect types. PD pattern recognition accuracy rates of 
CNN for fault types 1, 4 and 5 are 98.08%, 99.06%, and 
100.00%, respectively. As discussed, defect types 2 and 3 have 
high similarity. CNN has a PD pattern recognition accuracy for 
defect type 2 of 80.87%, which was 10.00% and 5.87% better 
than BPNN and SVM. The accuracy of CNN for defect type 3 

is 85.42%, which was 16.11% and 12.60%, better than BPNN 
and SVM respectively. 

One disadvantage of CNN is that the method takes more 
training time than BPNN. The training time of CNN is 384.0 
seconds and the training time of BPNN is 6.3 seconds. The 
training time of SVM is 403.3 seconds, which is close with 
CNN. The testing time for different methods, CNN, BPNN and 
SVM, is less than 1 second. 

VI. CONCLUSIONS AND DISCUSSIONS 

A convolutional neural network based deep learning 
methods for PD pattern recognition of different types of 
insulation defects in HV cables has been presented. The 
proposed technique was compared with traditional SVM and 
BPNN methods. The conclusions drawn were as follows: 
 The CNN based PD pattern recognition method 

proposed is proven to be effective, evaluated with 3500 
sets of PD samples obtained experimentally. The overall 
pattern recognition accuracy of PD signals from five 
types of defect is 92.57%, an increase of 6.47% and 4.76% 
respectively compared with BPNN and SVM. 

 The proposed CNN based PD pattern recognition is also 
effective for defect types with high similarity (For 
example, type 2 and type 3 PD). The PD pattern 
recognition accuracy of CNN for defect type 2 was 
10.00% and 5.87% better than BPNN and SVM 
respectively. The accuracy of CNN for defect type 3 was 
16.11% and 12.60% better than BPNN and SVM 
respectively. 

 As outlined in the paper, the structure of the CNN – the 
number of network layers, the convolutional kernel size, 
the activation function and the pooling method applied – 
affects the accuracy of the CNN based PD pattern 
recognition method. 

 As the number of network layers increases, the ability of 
CNN to correct the reference data increases. Based on 
the dataset used in this work, a 7-layer CNN has the 
highest overall PD pattern recognition accuracy and the 
highest accuracy for each type of defect. 

 The size of the convolutional kernel has significant impact 
on the CNN based PD pattern recognition accuracy. For 
this dataset a convolutional kernel size of 1×4 is shown to 
be most accurate and to have moderate computational cost. 

 Based on the dataset, the overall pattern recognition 
accuracy for the five types of PD signals based on CNN 
with swish was better by 3.43%, 2.56% and 0.95%, 
compared with CNNs with tanh, sigmoid, and relu, 
respectively. 

 The overall accuracy rate for PD pattern recognition based 
on CNN with RAP was better by 0.57% and 0.76%, 
compared with CNNs with max pooling and average 
pooling systems respectively. 

All studies in the paper were based on laboratory simulated 
artificial defects because for most on-line PD monitoring 
systems used in on-site PD testing, it is difficult to correlate PD 
signals with corresponding cable defect types without 
subsequent detailed forensic investigation of the defect 
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topology after the insulation system has been removed from 
service. In cases where the defect develops into a fault, 
mechanical degradation will, in many situations, preclude such 
analysis. Whether the pattern recognition methods trained on 
artificial defects could be applied to actual defects will require 
further analysis of online monitoring data. 

The proposed CNN based PD pattern recognition shows 
remarkable improvement for PD type 2 and type 3, but the 
pattern recognition accuracies are still not too high, 88.57% for 
PD type 2 and 78.10% for PD type 3. This was due to PD type 2 
and type 3 being topologically similar. Further research, such as 
new PD feature construction or new pattern recognition 
methods, will continue to be researched to further improve 
pattern recognition accuracy. 
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