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A B S T R A C T

Amblyomma sculptum is a tick affecting animal and human health across Argentina, Bolivia, Paraguay and Brazil.
Donkeys, Equus asinus, are known to be resistant to A. sculptum, suggesting that they can produce non-host tick
semiochemicals (allomones), as already demonstrated for some other vertebrate host/pest interactions, whereas
horses, Equus caballus, are considered as susceptible hosts. In this study, we tested the hypothesis that donkeys
produce natural repellents against A. sculptum, by collecting sebum from donkeys and horses, collecting the
odour from sebum extracts, and identifying donkey-specific volatile compounds by gas chromatography (GC)
and coupled GC-mass spectrometry (GC–MS). From the complex collected blends, five main compounds were
identified in both species. Hexanal, heptanal and (E)-2-decenal were found predominantly in donkey extracts,
whilst ethyl octanoate and ethyl decanoate were found predominantly in horse extracts. One compound, (E)-2-
octenal, was detected exclusively in donkey extracts. In Y-tube olfactometer bioassays 36 different A. sculptum
nymphs were tested for each extract, compound and concentration. The dry sebum extracts and the compounds
identified in both species induced neither attraction nor repellency. Only (E)-2-octenal, the donkey-specific
compound, displayed repellency, with more nymphs preferring the arm containing the solvent control when the
compound was presented in the test arm across four concentrations tested (p < 0.05, Chi-square test). A
combination of a tick attractant (ammonia) and (E)-2-octenal at 0.25M also resulted in preference for the
control arm (p < 0.05, Chi-square test). The use of semiochemicals (allomones) identified from less-preferred
hosts in tick management has been successful for repelling brown dog ticks, Rhipicephalus sanguineus sensu lato
from dog hosts. These results indicate that (E)-2-octenal could be used similarly to interfere in tick host location
and be developed for use in reducing A. sculptum numbers on animal and human hosts.

1. Introduction

The tick species complex Amblyomma cajennense (Fabricius, 1787)
(Ixodida: Ixodidae) (Nava et al., 2014) is distributed across the New
World, with a wide range of hosts including mammals, birds and rep-
tiles (Barros-Battesti et al., 2006). Amblyomma sculptum (Berlese, 1888),
that belongs to A. cajennense complex, is distributed across Argentina,
Bolivia, Paraguay and Brazil (Nava et al., 2014), and is considered the
most important vector of Rickettsia rickettsii (Rickettsiales:

Rickettsiaceae), the causative agent of Brazilian spotted fever (BSF) in
human beings. Individuals infected with this bacterium have a high
fatality rate that can reach up to 85% (Araujo et al., 2015). Horses and
capybaras are preferred hosts for A. sculptum and help maintain tick
populations in rural, grass plains and rainforest environments, where
those hosts are mainly found. Furthermore, capybaras are known to
sustain the BSF epidemiological chain (Labruna, 2009). Parasitism by
A. sculptum causes blood spoliation and skin damage on horses, redu-
cing their market value, and increases production costs with treatment
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to reduce injurious tick bites and consequently putative transmission of
tick-borne disease agents (Barros Battesti et al., 2006). The role of A.
sculptum as a vector of Theileria equi, the causative agent of equine
piroplasmosis, in horses remains controversial (Kerber et al., 2009;
Peckle et al., 2017; Ribeiro et al., 2011). For management of A. sculptum
populations, there are no reports to date of A. sculptum resistance
against acaricides. However due to its low host specificity, hetero-
xenous life cycle and wide distribution, it is difficult to manage this tick
(Cançado et al., 2017; Lopes et al., 1998; Vieira et al., 2004). The dis-
semination of vectors, and hence pathogens is rising due to climate
change, including increasing global temperature, mobility of animals
and goods, resulting in greater infection in human beings and animals.
Therefore, the development of new effective tools, via different modes
of action, to manage arthropod pests is a major challenge (Pickett et al.,
2010).

The critical role of volatile semiochemicals (naturally-occurring
behaviour modifying chemicals) in haematophagous arthropod ecology
has been well established in recent years (Logan and Birkett, 2007;
Pickett et al., 2010). Ticks use such cues to locate suitable hosts, shel-
ters and mates. Recently, it was reported for the first time that semi-
ochemicals play an important role in selection of suitable hosts by ticks
(Borges et al., 2015), with less-preferred beagle hosts producing volatile
cues 2-hexanone and benzaldehyde that act as a repellent allomone
against the brown dog tick, Rhipicephalus sanguineus sensu lato. Oliveira
Filho et al. (2017) demonstrated that a slow release formulation of
those compounds decreases R. sanguineus s. l. load on susceptible dogs
exposed in an artificially infested environment. For tsetse flies, Glossina
morsitans, cattle are the preferred hosts, and repellents produced by
non-hosts such as the waterbuck Kobus defassa have been shown to
reduce tsetse fly infestations on cattle. Using the non-host-produced
repellents, the incidence of trypanosomosis in cattle was reduced by
90% (Bett and Saini, 2015; Gikonyo et al., 2003; Saini et al., 2017). The
odour from the uropygial gland of ducks can repel the red poultry mite,
Dermanyssus gallinae (Pageat, 2005).

Donkeys, Equus asinus, are known to show characteristics of a non-
host to A. sculptum. For example, when compared to horses, E. caballus,
donkeys are less parasitized (Falce et al., 1983) and ticks that have fed
on them have impairment in their development, compared to ticks that
have fed on horses (Castagnolli et al., 2003). Sensitized donkeys
maintain a strong resistance to A. sculptum infestations when compared
to horses in the same conditions (Castagnolli et al., 2003). When
evaluating the cutaneous reaction of the ears of donkeys and horses
injected with A. sculptum extract, Szabó et al. (2004) observed less
hypersensitivity in donkeys than in horses, suggesting that donkeys are
more resistant to A. sculptum. In a study of serologic evidence for in-
fection by R. rickettsii, an indirect immunofluorescence assay of blood
samples of donkeys and horses detected antibodies reactive with R.
rickettsii only in horse sera. The authors affirm that this result could be
related to a higher resistance of donkeys against infestation by A.
sculptum (Horta et al., 2004). Our hypothesis is that donkeys, being a
non-host to A. sculptum, produce natural repellents against this tick
species. Given the importance of A. sculptum to human and animal
health, we proposed to test this hypothesis by identifying donkey-spe-
cific odours and conducting behavioural bioassays with identified
compounds, with the aim of providing new repellents for A. sculptum
management.

2. Materials and methods

The work was developed jointly by two institutions. The tick colony,
sebum extraction and olfactometer tests were done at “Laboratório de
Ecologia Química de Carrapatos”, “Escola de Veterinária e Zootecnia”,
“Universidade Federal de Goiás” (Goiânia, Goiás – Brazil).
Semiochemical collections and chemical analysis were undertaken at
Rothamsted Research, United Kingdom.

2.1. Ethical statement and animal care

The use of animals (rabbits, donkeys and horses) was approved by
the Committee on Ethical Animal Use of the Federal University of Goiás
(CEUA/UFG, protocol number 024/2014). A. sculptum engorged fe-
males were collected from naturally infested horses from the munici-
pality of Goiânia, Goiás, Brazil (16° 40′ 43″ S 49° 15′ 14″ W), to es-
tablish a colony that was maintained on naive rabbits (Oryctolagus
cuniculus) from four to six months and both sexes. The rabbits were
infested once with a tick stage, being maximum of 20 adults, or 100
nymphs or 700 larvae and after infestations were euthanized according
with CEUA recommendations. During the infestations the rabbits were
examined daily and none showed symptoms of damage due to tick
parasitism. Semiochemicals were collected from 10 adult horses (E.
caballus) and 10 donkeys (E. asinus) of mixed sex and aging between
one to four years. All horses and donkeys were kept to pasture with
water ad libitum being handled in accordance with the owner's handling
practices.

2.2. Tick colony

Engorged females were placed in an acclimatized-chamber
(Eletrolab, São Paulo, Brazil) at 27 ± 1 °C, RH > 80%, no light cycle,
to obtain eggs. Egg masses obtained was kept in a plastic syringe with
the top cut and capped with a cotton wad within the chamber at the
same conditions mentioned above until the larval hatching was com-
pleted. Naïve rabbits with a chamber that was glued onto each animals
shaved back were used to feed larvae (Louly et al., 2009). Engorged
larvae were collected from the rabbits and maintained under the same
conditions as unfed larvae until nymphal ecdysis. Unfed nymphs (30 to
50 days after ecdysis) were used in the bioassays. Nymphs were chosen
because it is the stage associated with R. rickettsii transmission (Soares
et al., 2012). To maintain the colony some nymphs were fed on rabbits
and conditioned on the chamber until ecdysis as mentioned for larvae.
Adults were also fed on the rabbits to obtain engorged females, and,
whenever, necessary new engorged females were collected from natu-
rally infested horses.

2.3. Sebum collection and extraction

Samples of skin sebum were collected from donkeys and horses
using sterile cotton pads. Briefly, one side of a sterile medical cotton
pad (5.5 cm diameter × 0.5 cm) was sprayed with aqueous ethanol
(dissolved 1:2 in MilliQ water), then rubbed inside of a randomly
chosen ear of the animal ten times using the moistened side of the pad.
The pad containing the extract was placed into an empty glass vial
(5 mL). Dichloromethane (DCM, 3mL) was added to the vial and then
the vial was sonicated (Ultrasonic cell disrupter – Unique, São Paulo,
Brazil) for 10min. The DCM extract was transferred using a glass pip-
ette to a pre-weighed vial, and then evaporated to dryness under a
gentle stream of nitrogen gas (Air Liquid Brazil Ltd, São Paulo, Brazil).
The dried sample was sealed and stored at −20 °C until semiochemical
collection and subsequent olfactometer tests.

2.4. Semiochemical collection from sebum material and chemical analysis

Vials containing the dry sebum were enclosed in a glass vessel
(100mL). Air was pumped through an activated charcoal filter into the
vessel (1 L/min) and was then drawn (500 cc/min) into tubes con-
taining the adsorbent Porapak Q (50mg). After 24 h, volatiles collected
on the Porapak Q were eluted with 750 μl of redistilled diethyl ether
and concentrated at 100 μL under a gentle flow of nitrogen. The sam-
ples were then stored at −20 °C until analysis.

Three samples (1 μL) from each species (three separate animals per
species) were randomly selected and analysed on an Agilent 6890 A GC
(Agilent Technologies, Santa Clara, California, USA), equipped with a
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cool column injector, flame ionization detector (FID), and a DB-1 ca-
pillary GC column (50m×0.32mm i.d. DB-1 x 0.52 μm film thickness,
J & W Scientific). Hydrogen was the carrier gas. The oven temperature
was maintained at 30 °C for 0.1 min, then programmed to increase at
10 °Cmin−1 until 250 °C, and then held for 38min. For coupled GC–MS
analysis (Waters Autospec Ultima, Manchester, UK), a DB-1 capillary
GC column (50m×0.32mm i.d.× 0.52 μm film thickness), equipped
with a cool on-column injector was used. Ionization was accomplished
by electron impact at 70 eV, 250 °C. The oven temperature was main-
tained at 30 °C for five minutes and then programmed to increase at a
rate of 5 °Cmin−1 until 250 °C. The carrier gas was helium. Tentative
identifications were made by comparing mass spectra with mass spec-
tral databases, Kovats’ Index values and GC peak enhancement on two
GC columns of differing polarity (DB-1, DB-WAX), using authentic
samples of chemicals (see below).

2.5. Chemicals

Ethyl octanoate (98%, CAS 106-32-1), ethyl decanoate (98%, CAS
11-38-3), hexanal (98%, CAS 66-25-1), heptanal (95%, CAS 111-71-7),
(E)-2-octenal (95%, CAS 2548-87-0), (E)-2-decenal (95%, CAS 3913-
81-3) and dichloromethane (DCM) bi-distillate were purchased from
Sigma-Aldrich, Missouri, USA. Ammonium hydroxide (P.A., 53,480)
was purchased from Sigma-Aldrich, Seelze, Germany.

2.6. Estimation of the quantity of (E)-2-octenal produced by donkeys

As the primary chemical of interest, the concentration of (E)-2-oc-
tenal in the donkey sebum extracts was calculated using an external
standard approach. Primary stock standard solutions of (E)-2-octenal
(Aldrich Chemical Co. Ltd., Dorset, UK) at a concentration of 846 μg
mL−1 were prepared using DCM bi-distillate (Sigma-Aldrich Co., St.
Louis, Missouri, USA) as solvent. Stock solutions were diluted serially to
reach a concentration of 33.84 μg mL−1, which was used to produce
five different concentrations of (E)-2-octenal (25.380, 16.920, 8.460,
3.384, and 1.135 μg mL−1). Each final concentration was analysed in
triplicate. One μl of each solution was injected and analyzed by GC-FID
using the same method as detailed in the previous section. This method
was adopted to account for technical variation in the calibration pro-
cedure.

2.7. Olfactometer bioassay

Olfactometer assays were performed using methodology adapted
from Carr et al. (2013) and Borges et al. (2015). An acrylic Y-tube ol-
factometer was used (31 cm overall length; 13 cm for each arm, 18 cm
for the stem, and a removable cap). Each arm was connected to a ki-
tasato (odor jar) via a flexible polyvinyl chloride (PVC) hose (1/4× 3/
8× 1/16mm, Nalgene, São Paulo, Brazil). At the end of each kitasato,
a fluxometer (Parker-P3A, São Paulo, Brazil) with a charcoal filter was
attached and set at 0.1 L/min. The airflow was generated by a sprinkler
(Diapump / Fanem, São Paulo, Brazil) connected to the opening of the
olfactometer stem by a PVC hose. The vacuum was kept outside of the
test room to remove the gases. To verify if the Y-tube olfactometer
could be used successfully, hydrochloric acid and ammonium hydroxide
(1:1) was mixed to produce a white smoke and released in both arms of
the olfactometer confirming the odor plume. After that, the attraction
of nymphs to synthetic air containing 5% CO2 (White Martins) was
verified. To evaluate the compounds, one piece (1 x 4 cm) of filter paper
(Whatman qualitative, number 1, Maidstone, UK) was treated with
11 μL of test substance (odor, or synthetic substance) to compare
against the solvent. After treatment, the papers were dried under a fume
hood (Permution, E. J. Krieger e Cia, Paraná, Brazil) for one minute
before use in the bioassay. The paper was conditioned in the odor jar
and the nymphs were released individually. Every five minutes, the
arms were inverted and the olfactometer cleaned with ethanol (95%)

and new treated papers were used. For each odor, compound/con-
centration, 36 different unfed nymphs were used, testing each com-
pound and concentration in order. Each nymph was observed until an
arm was chosen. If the nymph did not choose any arm in two minutes, it
was tested one more time. If the nymph failed to choose one arm, it was
discarded and replaced by another nymph. The following experiments
were carried out: a) DCM (negative control) vs. blank, DCM vs. horse
(individual dry sebum extract) and DCM vs. donkey odour (dry sebum
extract) b) hexanal, heptanal, ethyl octanoate, ethyl decanoate, (E)-2-
decenal and (E)-2-octenal, tested individually across four concentra-
tions (1.0 M, 0.50M, 0.25M and 0.125M) vs. DCM c) (E)-2-octenal at
decreasing concentrations (at 0.0625M) until no behavioural effect was
observed vs. DCM d) ammonia, in the form of ammonium hydroxide
(0.25M) e) ammonia (0.25M) + (E)-2-octenal (0.125M) vs. DCM f)
ammonia (0.25M) + (E)-2-octenal (0.25M) vs. DCM. Ammonia is a
host related compound and has been shown to be attractive to A.
sculptum nymphs (Ferreira, 2017). For the tests with ammonium hy-
droxide and (E)-2-octenal together, two filter papers were used, with
11 μL of each substance in the same odour jar. To standardize the
odours used in dry sebum extracts, the lowest weight obtained in the
extractions was verified (0.017 g), and 200 μl of DCM distillate (being
the minimum volume needed for the olfactometer tests), was added.
This proportion was maintained for all the other dry sebum extracts.

2.8. Statistical analysis

The calibration assay of (E)-2-octenal was determined by linear
regression analysis with the chromatographic areas (mAU) obtained
from the GC (Fig S1, Supplementary Information) being the response
variable, y, and the corresponding concentrations injected to secure
those areas, of (E)-2-octenal (μgmL−1), being the explanatory variable,
x. Using the range of concentration of the compound, the linear re-
gression model was y = c + bx, where c is the intercept and b is the
slope of the fitted line. The strength of the relationship was judged in
terms of the proportion of variation explained, R2, and the significance
(p < 0.05) of the F-test from the analysis of variance (ANOVA) ac-
companying the regression (Table S1, Supplementary Information).
Evidence of any curvature was assessed by adding a quadratic term in
concentration into the linear model and testing the improvement in fit
(F-test). The model was fitted using ordinary least squares, which
provides estimates of the parameters c and b along with standard errors.
The linear formulae obtained from this analysis were used to determine
the concentration of each compound in each sample, by substituting in
the values of areas, y, for the samples, to calculate the corresponding
concentrations, x. The limit of detection (LOD) and the limit of quan-
tification (LOQ) were determined in accordance with the linear re-
gression, and are expressed as: LOD=3.3×SE(c)/b and LOQ=10×SE
(c)/b where: SE(c) is the standard error of the intercept and b is the
slope of the regression line. For count data from the olfactometer as-
says, as each set of 36 ticks was done sequentially for concentrations
per test compound, the Chi-square test on one degree of freedom (df)
with Yates’ correction (Yates, 1934) was performed, taking the sig-
nificance level of p < 0.05.

3. Results

3.1. GC and GC–MS analysis

Gas chromatography (GC) analysis of volatile organic compound
(VOC) extracts collected from horse and donkey sebum by air en-
trainment revealed the presence of a large number of compounds
(Fig. 1). Comparison of extracts between horses and donkeys revealed
the presence of four compounds in higher amounts in donkey extracts
than in horse extracts, which were tentatively identified by coupled GC-
mass spectrometry (GC–MS) and confirmed by GC peak enhancement as
hexanal, heptanal, (E)-2-decenal and (E)-2-octenal. Minor quantities of
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the first three compounds were found in horse VOCs, but for the latter
compound, none was detected. Furthermore, two compounds, ethyl
decanoate and ethyl octanoate, were mostly present in horse extracts.
The concentration of (E)-2-octenal in the sebum from donkeys was
0.946 μg mL−1 (SE 0.090) in donkey 1, 4.940 (SE 0.076) μg ml−1 in
donkey 2 and 1.920 (SE 0.086) μg mL−1 in donkey 3. The mean con-
centration of (E)-2-octenal was therefore 2.602 μg mL−1 (SE 1.202). In
terms of per unit quantity of dry sebum extract, the concentration of
(E)-2-octenal was 5.390 (SE 0.512) μg mg−1 in donkey 1, 21.514 (SE
0.331) μg mg−1 in donkey 2 and 10.290 (SE 0.376) μg mg−1 in donkey
3. The average across the donkeys was 12.398 μg mg−1 (SE 4.772). The
LOD and the LOQ were found to be 0.935 (SE 0.005) and 0.308 (SE
0.002) μg mL−1 respectively. The LOQ was smaller than the first point
of the calibration curve (< 1.135 ng mL−1) indicating that, assuming
linearity, smaller quantities than the smallest calibrated could be esti-
mated from corresponding chromatographic areas, although for robust
estimates from the regression analysis it would still be advisable to
remain within the limits of the calibration.

3.2. Olfactometer assays

Preliminary assays with CO2 showed that the equipment was ade-
quate to proceed with the experiments, as 72% of nymphs were at-
tracted to this compound (χ²= 6.25, 1 df; p= 0.01241933). In Y-tube
olfactometer assays with A. sculptum nymphs, there was no significant
response to the solvent control. There was no preference for the arm
containing the odour of dry sebum extract, collected from either don-
keys or horses, compared to the arm containing the control (data not
shown). Furthermore, there was no preference for either donkey odour
or horse odour when presented in a dual-choice experiment (data not
shown). When hexanal, heptanal, (E)-2-decenal and (E)-2-octenal were
tested vs. a solvent control, ticks responded only to (E)-2-octenal.
Significantly more nymphs preferred the control at a concentration of
1.0 M (χ ²= 8.028, 1 df; p= 0.005), 0.50M (χ ²= 12.25, 1 df;

p < 0.001), 0.25M (χ ²= 10.028, 1 df; p= 0.002) and 0.125M (χ
²= 8.028, 1 df; p= 0.005) (Fig. 2). When tested at a concentration of
0.0625M, no repellency was observed (χ ²= 0.694, 1 df; p= 0.405). In
tests with the host-derived attractant ammonia (Fig. 3), addition of (E)-
2-octenal removed preference of nymphs to the arm containing the
attractant, and an increase in (E)-2-octenal concentration to 0.25M
resulted in nymphs preferring the control arm.

4. Discussion

In this study, we report the first identification of an allomone from a
non-host species, in which donkeys are known to be more resistant to A.
sculptum parasitism than horses. Our results reinforce the hypothesis
that vertebrate non-hosts, closely related to host taxa, may produce
allomones against ticks, as demonstrated by other authors with ticks,
flies and red mites and their respective non-hosts (Bett et al., 2015;
Borges et al., 2015; Gikonyo, et al., 2003; Louly, et al. 2010; Oliveira
Filho et al., 2017; Pageat, 2005; Saini et al., 2017).

When the dry sebum extracts of horses were tested in behavioural
assays, nymphs were not attracted to extracts. It is important to em-
phasize that it is not always possible to reproduce in vitro what is found
in nature and vice versa, because odour plumes, chemical compounds
and their concentrations may differ in the laboratory from that found in
the field (Reisenman et al., 2016). Other compounds present in the
breath of potential hosts such as 1-octen-3-ol, acetone, nitric oxide and
carbon dioxide (CO2) are important host location cues for ticks
(McMahon and Guerin, 2002). The five compounds found in both host
species, ie. hexanal, heptanal, (E)-2-decenal, ethyl octanoate and ethyl
decanoate neither attracted nor repelled A. sculptum nymphs at any
tested concentration. Hexanal and heptanal were already reported in
the odours of rabbits, ruminants (bovine, giraffe and goat) and sea
birds, as well as human sweat (Douglas et al., 2004; Jaleta et al., 2016;
Meijerink et al., 2000; Osterkamp et al., 1999; Steullet and Guerin,
1994; Wood and Weldon, 2002). (E)-2-Decenal, ethyl octanoate and

Fig. 1. Typical gas chromatograph analysis from donkey (A, B, C) and horse (D, E, F) chemical extractions using protocol described in Materials and Methods. Arrows
show the peak corresponding to (E)-2-octenal which is found almost exclusively in donkeys.
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ethyl decanoate are largely found in meat and dairy products (Condurso
et al., 2008; Liu et al., 2004; NCBI, 2017a) and in human sweat
(Meijerink et al., 2000). To the best of our knowledge there are no
reports of altered tick behaviour to any of these compounds, and no
electrophysiological response were reported when A. sculptum olfactory
sensilla were exposed to heptanal (Soares and Borges, 2012). Further
work is needed to confirm whether combinations of these compounds
are required for a behavioural response in ticks, similar to that observed
by Osterkamp et al. (1999), who showed that a combination of host
odours was necessary to promote questing behaviour of R. microplus
and Ixodes ricinus.

When tested in behavioural assays with A. sculptum nymphs, the
donkey-specific compound (E)-2-octenal was repellent at four con-
centrations tested and interfered with the attractiveness of ammonia, a
known volatile host compound. In our previous work, the allomones 2-

hexanone and benzaldehyde produced by beagle dogs were repellent
against the tick R. sanguineus s. l. only at the highest concentration
tested (7.8%) (Borges et al., 2015). In this study, the donkey-produced
allomone, (E)-2-octenal, was repellent at a much lower concentration
(0.125M=1.25%). These results suggest that allomones from donkeys
have a higher efficacy than dog allomones or a greater sensitivity of A.
sculptum nymphs to this compound. The tick R. sanguineus s. l. can be
found on several mammal hosts, but has a predilection to parasitize
dogs (Dantas-Torres, 2010), whereas A. sculptum has a wider specificity
range, being found on mammals, reptiles and birds (Barros-Battesti
et al., 2006). Allomones against ticks are produced by unsuitable hosts
in which tick feeding can lead to impaired tick development (Louly
et al., 2009, 2010; Weldon, 2010, 2013). Considering that horses and
donkeys can be generally found on the same environment, it is im-
portant for A. sculptum to use a reliable cue to avoid parasitism on non-

Fig. 2. Response of Amblyomma sculptum nymphs (n=36) in Y-tube olfactometer assays to five compounds isolated from horses and donkeys and (E)-2-octenal
tested at four different concentrations 1.0M (A), 0.50M (B), 0.25 M (C) and 0.125M (D). *Significant effect of the chemical using a Chi-square test (p < 0.05) on 1 °
of freedom. Full results from the olfactometer assays, detailing counts of nymphs, Chi-squared statistics and p-values are given in Table S2 (Supplementary
Information).

Fig. 3. Responses of Amblyomma sculptum nymphs (n=36) to
an attractant, ammonium hydroxide (AH), and to a mixture of
an attractant and a repellent (E)-2-octenal in Y-tube olfact-
ometer assays. *Significant effect of the chemical using a Chi-
square test (p < 0.05) on 1 ° of freedom. Full results from the
olfactometer assays, detailing counts of nymphs, Chi-squared
statistics and p-values are given in Table S3 and S4
(Supplementary Information).
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host donkeys and so avoid reduced development (Castagnolli et al.,
2003).

(E)-2-Octenal can be found in volatiles from different species such
as cows and goats (Jaleta et al., 2016) and in edible fungi, Tuber spp.
(Pezizales: Tuberaceae) (Splivallo et al., 2007), but the role of this
compound in these organisms is unclear. It is also noteworthy that this
compound is the major chemical component of the alarm pheromone
for stink bugs and bed bugs, repelling predators and dispersing con-
specific individuals (Marques et al., 2007; Noge et al., 2012; Pareja
et al., 2007). Similar repellent activity for such insects and ticks can be
explained by a conserved evolutionary process from a common ancestor
or a co-evolutionary gain (Moore et al., 2006).

From the work described here, (E)-2-octenal has the potential to be
used as a repellent for reducing A. sculptum populations on animal and
human hosts, as has been demonstrated for R. sanguineus on dog hosts
by Oliveira Filho et al. (2017) using benzaldehyde and 2-hexanone. For
the latter, a slow release formulation of the allomone caused a reduced
load of R. sanguineus s. l. on dogs exposed to an artificially infested tick
environment. Thus, slow release formulations of (E)-2-octenal could be
produced and used on capybaras, horses, and even on humans as the
compound is considered harmless and used as a flavoring ingredient for
cherries, dairy products, nuts and meat (NCBI, 2017b). Besides, redu-
cing A. sculptum tick load of capybaras could also reduce prevalence of
BSF, as capybaras are the main amplifier for R. rickettsii (Labruna,
2009). Our results therefore justify further research for the commercial
development of the compound as a new technology for A. sculptum
control.
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