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Abstract 

Genetic case-control association studies are often based upon clinically 

ascertained cases and population or convenience controls. It is known that some 

of the controls will contain cases, as they are usually not screened for the disease 

of interest. However, even clinically assessed cases and controls can be 

misassigned. For Alzheimer’s disease (AD) it is important to know the accuracy 

of the clinical assignment.  The predictive accuracy of Alzheimer’s disease risk by 

polygenic risk score analysis has been reported in both clinical and 

pathologically confirmed cohorts. The genetic risk prediction can provide 

additional insights to inform classification of subjects to case and control sets at 

a preclinical stage. In this study we take a mathematical approach and aim to 

assess the importance of a genetic component for the assignment of subjects to 

AD positive and negative groups, and provide an estimate of misassignment 

rates in AD case/control cohorts accounting for genetic prediction modelling 

results. The derived formulae provide a tool to estimate misassignment rates in 

any sample. This approach can also provide an estimate of the maximal and 

minimal misassignment rates and therefore could be useful for statistical power 

estimation at the study design stage. We illustrate this approach in two independent 

clinical cohorts and estimate misdiagnosis rate up to 36% in controls unscreened for 

the APOE genotype, and up to 29% when E3 homozygous subjects are used as 

controls in clinical studies. 
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Introduction 

Genetic case-control association studies are often based upon clinical assessment 

of cases and population or convenience controls. It is clearly the case that some 

of the controls can potentially contain patients in the early stage of disease, as 

they are not typically screened for the disease. It is assumed that the number of 

controls, who are actually cases, is relatively small and can be estimated by the 

prevalence of the disease in the population (e.g. ~3% lifetime prevalence of AD).  

Polygenic risk score (PRS) analysis enhances the predictability of the diagnosis 

of AD [Escott-Price et al. (2015)]. The largest contributors to AD risk analysis, 

the E4 allele (risk) and the E2 allele (protective) gave AUC of 0.68 (E4 alone) and 

0.69 (E4+E2) as compared to overall PRS AUC=0.75 in clinical cohorts [ibid].  In a 

recent PRS analysis, we showed that the area under the curve (AUC) in a 

pathologically confirmed case/control series was 0.84 [Escott-Price et al. 

(2017)]. In addition, in a case/control sample of pathologically confirmed 

individuals who carry neither the E4 or E2 allele (i.e. E3 homozygotes), the PRS 

gave AUC ~0.83 [95% CI: 0.80-0.86]) [Escott-Price et al. (2018)]. When this was 

tested in clinical series the AUC was reduced from 0.75 in the whole dataset to 

0.65 in E3 homozygotes [ibid]. This reduction in PRS in the clinical but not 

pathological series is indicative of a substantial misassignment rate in the 

former. 

A study at the National Institute on Aging Alzheimer Disease Centers [Beach et al. 

(2012)] had reported measures of agreement between stratified levels for the 

clinical and neuropathologic diagnosis of AD in a sample of 919 subjects, who 

were classified based on their clinical categorization as ‘‘probable AD,’’ ‘‘possible 

AD,’’ or ‘‘not AD.’’  The ‘‘not AD’’ group included non-AD dementias and subjects 

with no dementia were excluded. The highest sensitivity (87.3%) reported in 

[Beach et al. (2012)], was when the clinical diagnosis was defined as clinically 

probable or possible AD, and neuropathologic AD definition was defined as 

“frequent neuritic plaque density score” and Braak neurofibrillary tangle stage V 

or VI. In practice, most of the cases in clinical case/control samples are collected 

with “probable AD” diagnosis. For this combination of clinical and 

neuropathologic criteria, analysis of mismatched clinical and neuropathologic 



Genetic Analysis of Misdiagnosis of Alzheimer’s  

4 
 

diagnoses provides sensitivity of 76.6% [Beach et al. (2012)]. This means that 

when the clinical diagnosis was defined as probable AD and the neuropathologic 

diagnosis as frequent neuritic plaques with Braak stage V-VI, 23.4% of people 

did not have frequent neuritic plaque density, despite their positive clinical 

diagnoses. Furthermore, more than a third of APOE E4 non-carriers with clinical 

diagnosis of mild-to-moderate Alzheimer’s dementia, had minimal Alzheimer’s 

disease plaque accumulation in cerebral cortex [Monsell et al. (2015)]. 

In this study we aim to estimate misassignment rate in controls based upon 

genetic prediction accuracy in clinical and neuropathology confirmed samples of 

AD cases and controls. This is necessitated by the frequently asked question 

“what proportion of controls are actually early cases”, when dealing with GWAS 

results?  In this analysis we seek to answer that question. We derive 

mathematical formulae to compare case/control classification by clinical 

diagnosis and true pathology status accounting for a hidden layer of genetic 

classification between diseased subjects and controls.  These formulae were used 

to illustrate the potential misassignment rates in clinical data samples, using the 

reported values of prediction (by PRS) accuracy in AD pathology confirmed 

samples of cases and controls [Escott-Price et al. (2017)].  

Methods 

Derivation of misassignment rate estimates in a clinical sample. 

Misassignment rate was calculated using derived analytical formulae based on 

sensitivity and specificity. We first constructed three 2x2 contingency tables 

(also known as confusion matrices in the prediction modelling field), describing: 

1) clinical AD diagnosis (case/control) vs PRS prediction (yes/no) in a clinical 

sample, 2) pathologically confirmed AD status (yes/no) vs PRS prediction 

(yes/no), and 3) pathologically confirmed AD status vs clinical diagnosis. The 

latter table was expressed in terms of prediction accuracy measures (sensitivity, 

specificity, positive predictive value (PPV) and negative predictive value (NPV)), 

estimated from clinical and pathologically confirmed samples (see Appendix 1). 

The numerical results that we provide in this paper are entirely derived from 

estimates made in previous publications. The estimates can be entirely 

populated using the clinical case/control numbers of the study. 
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Samples used for illustration of misassignment rates estimation 

We applied the derived formulae and estimated misassignment rates in two 

independent clinical cohorts. The first is the Genetic and Environmental Risk in 

Alzheimer's Disease (GERAD) consortium data [Harold et al. (2009)]. This is the 

first account where the prediction utility of AD PRS was reported. The best 

prediction accuracy using PRS was achieved when SNPs were pruned for linkage 

disequilibrium with parameters r2=0.1 and a window of 1000kb, and the most 

strongly associated AD SNPs with p-values≤0.5 were included in the individual 

PRS.  The other independent dataset was The Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) dataset. This is a publically available database 

(http://www.loni.ucla.edu/ADNI/) which started in 2004 and contains genetic, 

imaging and biomarker data for about 900 individuals between the age of 55 and 

90. Clinical diagnosis and genetic information were available for 770 individuals, 

who were either already diagnosed with AD (N=47) or had mild cognitive 

impairment (MCI) (N=459) or healthy controls (N=262) at baseline. We 

generated PRS for the ADNI participants in the same way as for GERAD data, 

using IGAP stage 1 [Lambert et al. (2013)] summary statistics to inform AD PRS.  

For prediction accuracy estimates in a pathologically confirmed sample, we used 

sensitivity/specificity/PPV/NPV estimates reported in [Escott-Price et al. 

(2017)] for a pathologically confirmed sample of 1,011 cases and 583 controls. 

This series was obtained from 21 National Alzheimer’s Coordinating Center 

(NACC) brain banks and from the Miami Brain Bank as previously described 

[Corneveaux et al., 2010; Myers et al., 2007; Petyuk et al., 2018; Webster et al., 

2009]. Our criteria for inclusion were as follows: self-defined ethnicity of 

European descent (in an attempt to control for the known allele frequency 

differences between ethnic groups), neuropathologically confirmed Alzheimer’s 

disease or no neuropathology present, and age of death greater than or equal to 

65. Neuropathological diagnosis was defined by board-certified 

neuropathologists according to the standard NACC protocols [Beekly et al., 

2004]. Samples derived from subjects with a clinical history of stroke, 

cerebrovascular disease, Lewy bodies, or comorbidity with any other known 

http://www.loni.ucla.edu/ADNI/
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neurological disease were excluded. Alzheimer’s disease or control 

neuropathology was confirmed by plaque and tangle assessment with 45% of the 

entire series undergoing Braak staging [Braak and Braak, 1995]. Samples were 

de-identified before receipt, and the study met human studies institutional 

review board and HIPPA regulations. This work is declared not human-subjects 

research and is IRB exempt under regulation 45 CFR 46. 

To estimate the misassignment rate in controls, the analytical formulae require 

us to fix the parameter of AD misdiagnosis rate in cases. Since most cases in 

clinical case/control samples are collected with clinically “probable AD” or 

“probable or possible AD” diagnosis, and in the pathology confirmed study 

[Escott-Price et al. (2017)] the neuropathologic criterion for cases was Braak 

stage V or VI, we used sensitivity of 76.6% and 87.3% for AD misdiagnosis rates 

as reported in [Beach et al. (2012)]. In addition, according to [Escott-Price et al. 

(2018)], among APOE E4 non-carriers with the clinical diagnosis of mild-to-

moderate AD, 37% had minimal neuritic plaques, and we used this value as an 

approximation of the misdiagnosis rate in the E3 homozygous cases.  

 

Results 

Estimation of misdiagnosis rates in a clinical sample 

Assume that in a sample of 𝑁𝑁 clinically screened subjects (𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐)  cases and 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑐𝑐)  

controls), 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑝𝑝) and 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑝𝑝)  are the numbers of true cases and controls, that will be 

pathology confirmed (we use superscripts “(c)” and “(p)” to distinguish between 

the numbers of clinically and pathology based classifications, respectively).  The 

range for the number of subjects who were clinically and neuropathologically 

confirmed as having AD are between max�0,𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑝𝑝) −  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑐𝑐) � and min�𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐) ,𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑝𝑝)�. 

This means that in the worst case scenario, all clinical cases are in fact unaffected 

(zero overlap), and in the best case scenario all clinical cases were given the 

correct diagnosis and will be confirmed neuropathologically. Similarly, the range 

for the number of controls who were also neuropathologically confirmed as “no 

AD” is between max�0,𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐) − 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑝𝑝) � and min�𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐) ,𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑝𝑝)�. In reality, the number 

will lie somewhere in this range. To calculate these numbers in real data, we use 
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values of prediction/classification accuracy reported in actual case/control 

studies. 

For a clinical sample the best PRS prediction accuracy (Area Under the Curve) 

was reported as AUC=0.75 with sensitivity and specificity 𝑆𝑆𝑆𝑆(𝑐𝑐) = 𝑆𝑆𝑆𝑆(𝑐𝑐) = 0.69 

[Escott-Price et al. (2015)]. The PRS prediction accuracy values in a 

pathologically confirmed sample of cases and controls were published in [Escott 

Price et al. (2017)] as 𝑆𝑆𝑆𝑆(𝑝𝑝) = 𝑆𝑆𝑆𝑆(𝑝𝑝) = 0.79, and 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) = 0.69. (The latter 

numbers however might be marginally overestimated, due to the 3% overlap of 

the discovery and test samples used in [Escott Price at al. (2017)].)  Using these 

prediction accuracy values, we construct the confusion matrices (tables A1 and 

A2 in Appendix 1) in the clinical sample [Escott-Price et al. (2015)] of the total of 

𝑁𝑁 = 4,603 (3,049 Alzheimer’s disease cases and 1,554 controls) individuals, as: 

 Table 1. 
Clinical diagnosis (GERAD) 
 

 Table 2. Pathologically 
confirmed status (derived 
estimates)  

G
en

et
ic

 te
st

  Yes No  Yes No 
Yes 𝑎𝑎 =2096 𝑏𝑏 =485 𝐴𝐴 =2285 𝐵𝐵 =359 
No 𝑐𝑐 =953 𝑑𝑑 =1069 𝐶𝐶 =607 𝐷𝐷 =1352 
Total 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑐𝑐)=3049 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐) =1554 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑝𝑝)=2892 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑝𝑝) =1711 

 

From these two tables we cannot simply imply that out of 3,049 clinical cases, 

2,892 cases will be pathologically confirmed, as some subjects, who are 

unaffected according to the clinical assessment, may actually have AD. Using 

sensitivity of 76.6% reported in [Beach et al. (2012)], we estimate the number of 

true cases (which were clinically diagnosed as AD and expected also be 

pathologically confirmed) 3,049*0.766 ≈2,336 (denoted as 𝑥𝑥 in Appendix). Then 

the number of controls which expected to be pathologically confirmed is 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐) −

𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑝𝑝) + 𝑥𝑥 =1,554 - 2,892 + 2,335 = 998 (denoted as 𝑦𝑦 in the equation (1) in 

Appendix). Finally, in this sample we obtain the misassignment rate (MAR) in 

controls MAR=557/1554=0.36 (see equation (2) in Appendix 1).  

For E3 homozygous subjects in the clinical cohort [Escott Price et al. (2015)], the 

genetic based prediction AUC was lower (AUC=0.65) with sensitivity and 
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specificity 𝑆𝑆𝑆𝑆(𝑐𝑐) = 𝑆𝑆𝑆𝑆(𝑐𝑐) = 0.60 (N cases=1,090 and N controls=947). The values 

of the genetic prediction accuracy measures in pathologically confirmed sample 

[Escott-Price et al. (2017)] were 𝑆𝑆𝑆𝑆(𝑝𝑝) = 𝑆𝑆𝑝𝑝(𝑝𝑝) = 0.745, and 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) = 0.768. 

Clinical AD misdiagnosis rates in non-carriers of the apolipoprotein E4 allele are 

higher for subjects who are unscreened for E4 alleles. Using 37% as the 

approximation to AD misdiagnosis rate for E3 homozygous individuals [Monsell 

et al. (2015)], gives the misassignment rate in controls of about 29% clinical 

samples [Escott-Price et al. (2015)].  That is, about 29% of persons assigned as 

controls in the clinical series at the age of these series (late 70s), are in the early 

stages of disease. 

In an attempt to replicate our result in an independent sample we used the ADNI 

data. The ADNI cohort is older than GERAD; the mean age in the GERAD sample 

was 73.8 [SD=8.6] and 71.4 [SD=11.1], and the mean age in the ADNI sample at 

the last point of assessment was 78.4 [SD=7.1] and 78.9 [SD=7.6], in cases and 

controls respectively. Similarly to Tables 1 and 2, Tables 3 and 4 present the 

results for ADNI data. In this dataset we estimated the PRS for each individual as 

described in [Escott-Price et al. (2015)] and calculated 𝑆𝑆𝑆𝑆(𝑐𝑐) = 𝑆𝑆𝑆𝑆(𝑐𝑐) = 0.678, 

PPV=0.621, NPV=0.731, AUC=0.747).  The values of the genetic prediction 

accuracy measures in pathologically confirmed sample [Escott-Price et al. 

(2017)] were 𝑆𝑆𝑆𝑆(𝑝𝑝) = 𝑆𝑆𝑆𝑆(𝑝𝑝) = 0.79, and 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) = 0.686. To estimate the 

misassignment rate in controls with our analytical approach, we used sensitivity 

value 87.3%, which corresponds to the oldest group of people (83.2 years) with 

“clinically probable or possible” AD in the [Beach et al. (2012)] paper. Our 

analytical approach gives the misassignment rate in controls of 44.6%. The R 

code detailing these analyses is presented in Appendix 2. 

 Table 3. 
Clinical diagnosis (ADNI) 
 

 Table 4. Pathologically 
confirmed status (derived 
estimates)  

Ge
ne

tic
 te

st
 

 Yes No  Yes No 

Yes 𝑎𝑎 =118 𝑏𝑏 = 72 𝐴𝐴 = 199 𝐵𝐵 = 31 

No 𝑐𝑐 =56 𝑑𝑑 =152 𝐶𝐶 =53 𝐷𝐷 =116 
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Total 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐) =174 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑐𝑐) =224 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑝𝑝)=252 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑝𝑝) =147 

 

In these data we have also attempted to directly calculate misassignment rates in 

controls. There were 262 controls available at baseline assessment. On average 

within 4.7 years, 15 people have progressed to AD, 47 people have developed 

mild cognitive impairment (MCI), and 200 individuals did not change their 

diagnosis. This suggests the current misassignment rate is in between 5.7-21.7%. 

The mean age of the progressors was 75.2 [4.0], and for those who did not 

progress the average age was 74.1 [SD=5.7] years at the baseline of assessment. 

However, since AD is age dependent, it is expected that more controls will 

progress to AD when they reach age 85+. The incidence rate of AD increases 

almost exponentially with increasing age until 85 years of age. It is still debated 

whether the incidence will further increase at more advanced ages or will reach 

a plateau at a certain age [Qiu et al., 2009]. Since there were only 5 individuals of 

age 85+ in the ADNI data at the baseline, we were unable to estimate incidence 

rates directly. Here we used incident rates estimates (~55 persons per 1000-

years at age 85+) reported by [Qiu et al., 2009]. Thus we can expect an additional 

55% of the sample to develop AD after 10 years, which is slightly above of the 

analytical estimate (44.6%). 

 

Discussion 

It has been reported that Alzheimer’s disease misclassification rates range 

between 14%-37% depending on the exact clinical and neuropathologic criteria 

used and whether the individuals were screened for APOE E4 alleles [Beach et al. 

(2012), Monsell et al. (2015)]. In addition, recent clinical trials show that 20% of 

all patients (and more than 33% of those who were non-carriers of the 

apolipoprotein E4 allele) with mild-to-moderate Alzheimer’s dementia did not 

show an elevation in amyloid on positron emission tomography (PET) imaging 

[Salloway et al. (2014), Doody et al. (2014)]. 

Conducting an actual autopsy based study on unaffected individuals, aiming to 

identify AD cases among them, is difficult to justify unless it is a part of a large 
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population screening study. Here we use the genetic prediction findings to 

mathematically estimate the misassignment in controls. Our earlier results show 

that the prediction accuracy of PRS in the pathologically confirmed sample of E3 

homozygotes carriers is high and equivalent to the prediction accuracy in the 

samples of the whole dataset [Escott Price et al. (2017) and under review], 

indicating that APOE is an independent risk factor for the disease. Therefore, we 

argue that it is not sufficient just to screen for APOE to classify subjects, for 

example, in AD clinical trials. 

In this study we derive analytical formulae to estimate misassignment rates in 

clinical studies. These formulae are based upon sensitivity, specificity, PPV and 

NPV estimated from clinical and pathologically confirmed studies. However, the 

PPV and NPV estimates must be adjusted according to the case/control ratio of 

the clinical study for which misassignment rates are being estimated (unless the 

ratios are equal), and here we show how to calculate sample prevalence adjusted 

PPV and NPV. To demonstrate how these equations can be used in practice, we 

calculate misalignment rates in two independent clinical cohorts. Our headline 

figures are of course dependent on the quantities reported in previous studies. 

However, the approach is generalisable to other studies, and the misassignment 

rates can be easily recalculated. 

Our results show that the misassignment rates in controls in clinical case-control 

studies is likely to be high (~30%). It would be expected to see an increased 

number of actual controls among E3 homozygous subjects as those individuals 

do not carry the strongest AD predictor.  Indeed, the negative predictive value, or 

the percentage of correctly predicted controls, in the pathology confirmed 

sample is higher than in clinical cohort (NPV=0.77 and 0.57 in pathology 

confirmed and clinical samples, respectively). However, the misdiagnosis rate of 

cases in E3 homozygotes is high (37%), which implies reduced but still relatively 

high rates of misassignments, as compared to the sample not screened for APOE 

(29% vs 36%, respectively). 

In the ADNI data, there were 262 controls available, of them 15 progressed to 

AD, 47 developed MCI and 200 did not. This suggests a misassignment rate 

between 8.0-23.7%, however, as AD is age dependent, it is expected that more 
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controls will progress to AD when they reach age 85+ (prevalence of AD is 18% 

and 33% in 70-85 and 85+, respectively). Projecting the latter prevalence to this 

data, the misassignment rate expected is about 40%, which is similar to our 

estimates. 

These levels of misassignment rates in both cases and controls reduce not only 

the power of statistical analyses in case/control series but also the PRS 

prediction accuracy in clinical samples.  In biomarker studies of Alzheimer’s 

disease, they suggest that no biomarker will be able to give clean separations 

between those diagnosed with disease and those designated as controls since 

considerable proportions of both categories will be misclassified.  As CSF and 

blood biomarkers of disease are assessed in clinical series, this inevitable 

misclassification, with ~30% of both cases and ~30% of controls being 

categorised in the wrong group. 
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Appendix 1. 

Assume that in a sample of 𝑁𝑁 total subjects, the proportion of clinical cases is 

known (𝑓𝑓). Then the numbers of “clinical cases” and “clinical controls” are 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐) =

𝑓𝑓𝑓𝑓 and 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐) = (1 − 𝑓𝑓)𝑁𝑁, respectively. We further assume that a genetic test, e.g. 

PRS, divides the subjects into two groups called “predicted clinical cases” and 

“predicted clinical controls” with sensitivity 𝑆𝑆𝑆𝑆(𝑐𝑐) and specificity 𝑆𝑆𝑆𝑆(𝑐𝑐). Then all 

entries of the “clinical” classification table (Table A1) can explicitly be calculated.  

Table A1. Classification table comparing genetic test outcome with clinical 
diagnosis.  
 Clinical diagnosis  

G
en

et
ic

 te
st

 

 Yes No Total 

Yes 𝑎𝑎 = 𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆(𝑐𝑐) 𝑏𝑏 = 𝑁𝑁(1 − 𝑓𝑓)�1 − 𝑆𝑆𝑆𝑆(𝑐𝑐)� 𝑎𝑎 + 𝑏𝑏 

No 𝑐𝑐 = 𝑁𝑁𝑁𝑁(1 − 𝑆𝑆𝑆𝑆(𝑐𝑐)) 𝑑𝑑 = 𝑁𝑁(1 − 𝑓𝑓)𝑆𝑆𝑆𝑆(𝑐𝑐) 𝑐𝑐 + 𝑑𝑑 

Total 𝑎𝑎 + 𝑐𝑐 = 𝑁𝑁𝑁𝑁=𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐)  𝑏𝑏 + 𝑑𝑑 = 𝑁𝑁(1 − 𝑓𝑓)=𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑐𝑐)  𝑁𝑁 

 
Table A2 is the classification table for pathologically confirmed cases and 

controls in the same hypothetical sample of 𝑁𝑁 subjects, where A, B, C and D 

values are the number of true positive, false positive, false negative and true 

negative predictions by genetic information, respectively.  These values are 

unknown, however, the prediction accuracy estimates which compare 

pathologically confirmed disease status with genetic prediction, can be obtained 

from published studies (e.g. for AD, [Escott-Price et al. (2017)]). Let 𝑆𝑆𝑆𝑆(𝑝𝑝), 𝑆𝑆𝑆𝑆(𝑝𝑝), 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑝𝑝) and 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) (sensitivity, specificity, positive and negative predictive 

values, respectively) be known.  

Note that in this calculation we use PPV and NPV values derived directly from 

the clinical samples, and these values therefore are dependent on the 

case/control ratio. For example  for Table A1, 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑎𝑎
𝑎𝑎+ 𝑏𝑏

, therefore 𝑃𝑃𝑃𝑃𝑃𝑃 =

𝑓𝑓𝑆𝑆𝑆𝑆(𝑐𝑐)

𝑓𝑓𝑆𝑆𝑆𝑆(𝑐𝑐)+ (1−𝑓𝑓)�1−𝑆𝑆𝑆𝑆(𝑐𝑐)�
, where f is the proportion of clinical cases in the sample 

(similar, 𝑁𝑁𝑁𝑁𝑁𝑁 = (1−𝑓𝑓)𝑆𝑆𝑆𝑆(𝑐𝑐)

𝑓𝑓(1−𝑆𝑆𝑆𝑆(𝑐𝑐))+ (1−𝑓𝑓)𝑆𝑆𝑆𝑆(𝑐𝑐) ). If the known PPV and NPV values are 

prevalence-adjusted (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃), then before others can use this approach to make 
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similar predictions from their own clinical studies, the PPV and NPV need to be 

adjusted accounting for the case/control ratio for their particular clinical study. 

The prevalence-adjusted 𝑃𝑃𝑃𝑃𝑃𝑃������ and  𝑁𝑁𝑁𝑁𝑁𝑁������ values are derived using Bayes' theorem: 

𝑃𝑃𝑃𝑃𝑃𝑃������ = 𝑆𝑆𝑆𝑆(𝑐𝑐)𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑆𝑆𝑆𝑆(𝑐𝑐)𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+�1−𝑆𝑆𝑆𝑆(𝑐𝑐)�(1−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)

  and  𝑁𝑁𝑁𝑁𝑁𝑁������ = 𝑆𝑆𝑆𝑆(𝑐𝑐)(1−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)
(1−𝑆𝑆𝑆𝑆(𝑐𝑐))𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑆𝑆𝑆𝑆(𝑐𝑐)(1−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)

. Then PPV 

and NPV can be expressed in terms of sensitivity, specificity, prevalence and the 

propotrtion of cases in the sample  ratio as 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃������𝑓𝑓(1−𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟)
(1−𝑓𝑓)𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑃𝑃𝑃𝑃𝑃𝑃������(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑓𝑓)

 and 

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁������(1−𝑓𝑓)𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑓𝑓(1−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)−𝑁𝑁𝑁𝑁𝑁𝑁������(𝑓𝑓−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)

. 

 

Table A2. Classification table comparing genetic test outcome with true 
pathologically confirmed status. 

 Pathologically confirmed status  

G
en

et
ic

 te
st

 

 Yes No Total 
Yes 𝐴𝐴 𝐵𝐵 𝐴𝐴 + 𝐵𝐵 

No 𝐶𝐶 𝐷𝐷 𝐶𝐶 + 𝐷𝐷 

Total 𝐴𝐴 + 𝐶𝐶 = 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑝𝑝) 𝐵𝐵 + 𝐷𝐷 = 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑝𝑝)  𝑁𝑁 

 

The sensitivity, specificity and negative predictive values are defined as 

𝑆𝑆𝑆𝑆(𝑝𝑝) = 𝐴𝐴
𝐴𝐴+𝐶𝐶

,  𝑆𝑆𝑆𝑆(𝑝𝑝) = 𝐷𝐷
𝐵𝐵+𝐷𝐷

, 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) = 𝐷𝐷
𝐶𝐶+𝐷𝐷

. Together with the expression for the 

total number of subjects, 𝑁𝑁 = 𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶 + 𝐷𝐷, the entries of the Table A2 can be 

calculated as   

𝐴𝐴 = 𝐷𝐷 𝛽𝛽
γ
, 𝐵𝐵 = 𝛼𝛼𝛼𝛼, 𝐶𝐶 = 𝛽𝛽𝛽𝛽,  𝐷𝐷 = 𝑁𝑁

1+𝛼𝛼+𝛽𝛽+𝛽𝛽γ
 , 

where  𝛼𝛼 = 1−𝑆𝑆𝑆𝑆(𝑝𝑝)

𝑆𝑆𝑆𝑆(𝑝𝑝) ,  𝛽𝛽 = 1−𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝)

𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) , and γ = 1−𝑆𝑆𝑆𝑆(𝑝𝑝)

𝑆𝑆𝑆𝑆(𝑝𝑝) .  

Finally, to identify how many controls are likely to be pre-cases in the clinical 

sample and vice versa, we construct Table A3, which compares clinical diagnosis 

with pathologically confirmed status. In Table A3, 𝑥𝑥 is the number of subjects 

whose clinical diagnosis is correct (i.e. will be pathologically confirmed as having 

AD), and 𝑦𝑦 is the number of healthy controls who will die without AD.  
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Table A3. Classification table comparing clinical diagnosis with true 
pathology status. 
 Pathologically confirmed status  

C
lin

ic
al

 d
ia

gn
os

is
 

 Yes No Total 

Yes 𝑥𝑥 𝑎𝑎 + 𝑐𝑐 − 𝑥𝑥 
 
𝑎𝑎 + 𝑐𝑐 = 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑐𝑐)  

No 
     𝑏𝑏 + 𝑑𝑑 − 𝑦𝑦  

= 
𝐴𝐴 + 𝐶𝐶 − 𝑥𝑥 

𝑦𝑦 
 
𝑏𝑏 + 𝑑𝑑 = 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑐𝑐)  

Total 𝐴𝐴 + 𝐶𝐶 = 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑝𝑝) 𝐵𝐵 + 𝐷𝐷 = 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑝𝑝)  𝑁𝑁 

 
The numbers of correctly assessed controls are 

y = 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐) − 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑝𝑝) + 𝑥𝑥 ,                                       (1) 

and the misassignment rate (MAR) in controls is 

𝑀𝑀𝑀𝑀𝑀𝑀 = �𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑝𝑝) − 𝑥𝑥� /𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑐𝑐)  .                                     (2) 

Note for both equations (1) and (2), the number of true positive cases, 𝑥𝑥, needs 

to be defined.  

Since all entries of this table represent the number of people and thus are 

positive, the range of values for 𝑥𝑥 is between max�0,𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑝𝑝) −  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑐𝑐) �  and 

min�𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐) ,𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑝𝑝)� , and the range of values for 𝑦𝑦 is between max�0,𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐) − 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑝𝑝) �  

and  min�𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐) ,𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑝𝑝)� .  

When the misdiagnosis rate in cases is at its maximum (i.e. value of 𝑥𝑥=0 or 

𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑝𝑝) −  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑐𝑐)  , if the number of pathologically confirmed cases is greater than the 

number of clinically assessed controls), then the misassignment rate in controls 

is also at its maximum: either  𝑦𝑦 = 0, i.e. all controls (after a pathology check) 

have initially been incorrectly diagnosed as cases, or 𝑦𝑦 = 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐) − 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑝𝑝), i.e. all 

pathologically confirmed cases were considered as controls in the clinical 

sample. The best case scenario is when 𝑥𝑥 is at its maximum, i.e. all clinical 

diagnoses of cases were correct. Then 𝑦𝑦 is at its maximum too, i.e. all controls in 

the clinical sample were pathology confirmed as clear of AD, or all subjects 

confirmed as “clear” were correctly assigned to the control group. 
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Table A4 demonstrates these two scenarios for a real sample of 4,603 subjects 

(3,049 cases and 1,554 controls, according to clinical assessment) [Escott-Price 

et al. (2015)]. The proportion of cases is 𝑓𝑓 = 0.66. In this sample the best AUC 

(Area Under the Curve) was reported as 0.75, the sensitivity and specificity 

𝑆𝑆𝑆𝑆(𝑐𝑐) = 𝑆𝑆𝑆𝑆(𝑐𝑐) = 0.69 [Escott-Price et al. (2015)]. Prediction accuracy estimates 

which compare pathologically confirmed disease status with genetic prediction 

are  𝑆𝑆𝑆𝑆(𝑝𝑝) = 𝑆𝑆𝑆𝑆(𝑝𝑝) = 0.79, and 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) = 0.69 [Escott-Price et al. (2017)]. Tables 

A1 and A2 then look as follows: 

 Clinical diagnosis 
(Table A1) 

 Pathologically confirmed status 
(Table A2) 

G
en

et
ic

 te
st

  Yes No  Yes No 
Yes 𝑎𝑎 =

𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆(𝑐𝑐)=2096 𝑏𝑏 =485 𝐴𝐴 =2285 𝐵𝐵 =359 

No 𝑐𝑐 =953 𝑑𝑑 =1069 𝐶𝐶 =607 𝐷𝐷 =1352 
Total 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑐𝑐)=3049 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐) =1554 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑝𝑝)=2892 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑝𝑝) =1711 

 

From these two tables we cannot simply imply that out of 3,049 clinical cases, 

2,892 cases were pathologically confirmed, as some subjects, which are 

unaffected according to the clinical assessment, may actually be pathologically 

confirmed AD cases. 

When 𝑥𝑥 (Table A3), is at its minimum, i.e. the misdiagnosis rate in cases is at 

maximum, then 𝑦𝑦 = 0, i.e. all pathologically confirmed controls have been 

incorrectly clinically diagnosed as cases. In our real example min(𝑥𝑥) =1,338, 

which corresponds to the worst case scenario, the highest possible misdiagnosis 

rates 56% and 100% in cases and controls, respectively (see left section of Table 

A4).  

The best case scenario is when 𝑥𝑥 is at its maximum (right section of Table A4). In 

our example max(𝑥𝑥) =2,892. Then the misdiagnosis rate in cases is only 5%, and 

all subjects, clinically seen as controls, were pathologically confirmed as controls 

(misdiagnosis rate in controls is 0%).   
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Table A4. Hypothetical best and worst scenarios of misclassification of 
clinical and neuropathologic diagnoses of AD. 
 Pathologically confirmed status 

 
 

 

 
Worst scenario  Best scenario  

Total 

C
lin

ic
al

 d
ia

gn
os

is
 

Yes No  Yes No  

Yes 1338 1711  2892 157 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐)=3049 

No 1554 0  0 1554 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑐𝑐) =1554 

Total 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑝𝑝)=2892 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑝𝑝) =1711 
 
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

(𝑝𝑝)=2892 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐
(𝑝𝑝) =1711 N = 4603 

 
Appendix 2. Illustration of misassignment rates estimation in ADNI data 
with R script. 

 
#TABLE A1 
Ncas<-174 
Ncon<-224 
N<-Ncas+Ncon 
 
mat<-matrix(c(118,56,72,152), ncol=2) 
Sens<-mat[1,1]/sum(mat[,1]); Sens 
Spec<-mat[2,2]/sum(mat[,2]); Spec 
PPV<-mat[1,1]/sum(mat[1,]); PPV 
NPV<-mat[2,2]/sum(mat[2,]); NPV 
sum(mat) 
 
alpha<-(1-Spec)/Spec 
beta <-(1-NPV )/NPV 
gamma<-(1-Sens)/Sens 
 
d<-N/(1+alpha+beta+beta/gamma) 
a<-d*beta/gamma 
b<-d*alpha 
c<-d*beta 
clinical<-matrix(c(a,c,b,d), ncol=2) 
clinical<-round(clinical) 
 
#TABLE A2 
Sens<-0.79 
Spec<-0.79 
PPV<-0.867 
NPV<-0.686 
 
alpha<-(1-Spec)/Spec 
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beta <-(1-NPV)/NPV 
gamma<-(1-Sens)/Sens 
 
D<-N/(1+alpha+beta+beta/gamma) 
A<-D*beta/gamma 
B<-D*alpha 
C<-D*beta 
path.conf<-matrix(c(A,C,B,D), ncol=2) 
path.conf<-round(path.conf) 
 
clinical 
path.conf 
 
 
#TABLE A3 
f<-0.873 #sensitivity of 87.3% as reported in [Beach et al 2012] 
t3<-matrix(0, ncol=2, nrow=2) 
x<-round(f*(a+c)) 
t3[1,1]<-x 
t3[1,2]<-a+c-x 
t3[2,1]<-A+C-x 
t3[2,2]<-x-A-C+b+d  
t3<-abs(round(t3)); t3 
 
#cases misdiag rate: 
t3[1,2]/(t3[1,1]+t3[1,2]) 
#controls misdiag rate: 
t3[2,1]/(t3[2,1]+t3[2,2]) 
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