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Abstract 

The unipolar icehouse world of the mid-late Miocene is a poorly understood interval in the 

evolution of Cenozoic climate.  Widespread dissolution and poor preservation of carbonates 

in deep marine settings has resulted in large uncertainties in proxy-based climate 

reconstructions through the interval.  Furthermore, models struggle to simulate the 

decoupling of low atmospheric CO2 (~250-350ppm) forcing in a warmer than modern world.  

This thesis uses the Sunbird-1 core, a clay-dominated sedimentary sequence from offshore 

East Africa, to improve the constraints on the global climate state of the mid-late Miocene. 

 

Prior to ~12 Ma, the Sunbird-1 site lay in a region of high productivity, with restricted, surface 

waters and an elevated supply of detrital organic matter invigorating carbon remineralisation 

in the water column.  The redox environments associated with this high productivity setting 

resulted in the precipitation of diagenetic outer coatings on foraminifera, overprinting the 

primary Mg/Ca signal required for palaeotemperature reconstructions.  The influence of 

these coatings decreased up-section, as the site subsided and experienced more open ocean 

conditions. 

 

This thesis develops and optimises a series of ablation parameters on the new Laser Ablation 

(LA-) ICP-MS system at Cardiff University.  Employing medium to low fluences and repetition 

rates (3.5 Jcm-2 and 2.0 Hz) enables the collection of highly spatially resolved foraminiferal 

depth profiles suitable for assessing intra-test trace metal variability.  By implementing the 

optimised LA-ICP-MS system this thesis reconstructs absolute sea surface temperature (SST) 

from Sunbird-1, indicating that applying a careful microanalytical approach can reconstruct 
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palaeotemperatures from diagenetically altered foraminifera.  This record suggests that 

tropical sea surface temperature remained relatively stable at 27-29⁰C from 13.3-9.4 Ma, 

presenting the mid-late Miocene as a key interval of increasing latitudinal temperature 

gradients towards that of the modern day climate state.  

 

These improved absolute sea surface temperature estimates, and the planktic foraminifera 

δ18O record, suggest a 39-48 m sea level equivalent increase in global ice volume through this 

interval.  Furthermore, the planktic foraminiferal seawater δ18O record indicates that similar 

amplitude, short duration, fluctuations in global ice volume persisted through the mid-late 

Miocene.  This implies that the East Antarctic Ice Sheet behaved dynamically following its 

expansion to a dry, land-based ice sheet during the Mid Miocene Climate Transition.   
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1 Introduction 

1.1 Climate of the Cenozoic 

The Earth’s climate system has undergone a nonlinear transition through the Cenozoic from 

a greenhouse state to the modern day icehouse state.  This has been revealed by the 

compilation of oxygen isotope records recorded from benthic foraminifera across all ocean 

basins (Shackleton and Kennett, 1975, Miller et al., 1991, Zachos et al., 2001, Zachos et al., 

2008, Cramer et al., 2009) (Figure 1.1).  The benthic foraminiferal δ18O record reveals the 

development of deep ocean temperature and global ice volume, two environmental 

parameters that do not show a linear relationship. Deep ocean temperature has cooled 

gradually by ~12⁰C through the Cenozoic, controlled primarily by long term CO2 

concentrations (Cramer et al., 2011, Zhang et al., 2013).  This observed gradual cooling trend 

is punctuated by episodes of increased δ18OBF values, interpreted as stepwise transitions in 

the expansion of continental ice sheets, primarily over Antarctica (Lear et al., 2000, Zachos et 

al., 2001, Mudelsee et al., 2014).  

 

Continental ice sheets grew in large amplitude, short intervals through the Cenozoic 

indicating their dynamic response to climate thresholds, and the non-linearity that exists 

within the climate system (DeConto and Pollard, 2003, DeConto et al., 2008).  Cenozoic 

continental ice growth occurred in three main, geologically abrupt steps; the Eocene-

Oligocene Transition, the Mid Miocene Climate Transition, and the Pliocene-Pleistocene 

Transition (Shackleton and Kennett, 1975, Zachos et al., 2001, Cramer et al., 2011).  These 

three events are interpreted as the onset of Antarctic glaciation (Lear et al., 2000, Coxall et 

al., 2005), the expansion of the land based East Antarctic Ice Sheet (EAIS)  to its continental 
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margins (Flower and Kennett, 1994, Holbourn et al., 2005, Lewis et al., 2007), and the 

intensification of glaciation across the northern hemisphere ice sheets (Sosdian and 

Rosenthal, 2009).    

 

Strong hysteresis of the Antarctic Ice Sheet in ice sheet models arises from the strong positive 

feedbacks linked to its growth.  Therefore, elevated boundary conditions relative to those 

required for Antarctic Ice Sheet growth are required for an equal magnitude of retreat, 

making it inherently stable (Pollard and DeConto, 2005, Gasson et al., 2014).  Inclusion of new 

physical mechanisms for ice sheet retreat has demonstrated that ice loss from subglacial 

basins of East Antarctica equating to ~17m of sea level equivalent could be achieved on 

millenial year timescales (Pollard et al., 2015).  Applying the new physical mechanisms for ice 

sheet retreat of Pollard et al. (2015) to the early-mid Miocene (23-14 Ma), Antarctic Ice Sheet 

variability equivalent to a 30-36m change in sea level has been simulated (Gasson et al., 2016).  

Figure 1.1:  Global Cenozoic climate inferred from a deep-sea benthic foraminiferal oxygen isotope 

stack.  Figure adapted from Zachos et al. (2008). 
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Geochemical provenance studies suggest the EAIS behaved dynamically during the Pliocene 

(Cook et al., 2013).  Furthermore, direct geological evidence from the ANDRILL-2A drill core 

in the Western Ross Sea, also spanning the 23-14 Ma time interval, also suggests there was a 

highly variable and dynamic EAIS despite minimal atmospheric CO2 variability (Levy et al., 

2016).   

 

1.2 Climate of the mid-late Miocene 

1.2.1 The Miocene Climatic Optimum and Mid Miocene Climate Transition 

The Miocene Climatic Optimum, or MCO (~17 – 15 Ma), was an interval of global warmth and 

high amplitude climate variability (Foster et al., 2012, Greenop et al., 2014, Holbourn et al., 

2014).  The Miocene Climatic Optimum also had distinctive repeated perturbations of the 

global carbon cycle, observed as carbon maxima events, linked to the episodic drawdown of 

atmospheric CO2 (Woodruff and Savin, 1991, Flower and Kennett, 1995, Shevenell et al., 

2008), perturbations not observed following the Mid Miocene Climate Transition.  These 

carbon maxima events of the Monterey excursion are identifiable by their elevated seawater 

δ13C values recorded in foraminifera, resulting from the enhanced sequestration of organic 

carbon on continental shelves (Flower and Kennett, 1993, Holbourn et al., 2007).  The final 

recovery, identified by a ~0.8‰ negative δ13C excursion followed the expansion of the East 

Antarctic Ice Sheet, suggesting that global climate and the global carbon cycle were both 

dynamic and intrinsically linked through the mid-late Miocene (Holbourn et al., 2013).   

 

The Mid Miocene Climate Transition is the most notable climatic event of the Neogene, as 

seen by the increase in the global benthic foraminiferal δ18O compilation following the 
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Miocene Climatic Optimum (Zachos et al., 2008, Cramer et al., 2009) (Figure 1.1).  The mean 

increase from a globally distributed stack of 17 δ18OBF records was 0.88 ± 0.04 ‰ (Mudelsee 

et al., 2014).  This positive δ18O excursion is coeval with the Langhian-Serravalian boundary 

at 13.82 Ma (Hilgen et al., 2009).  Through this interval the planet underwent a deep-sea 

cooling of ~1 - 4⁰C out of the warm climate of the Miocene Climatic Optimum leading to the 

expansion of the Antarctic Ice Sheet to approximately modern day volumes (Miller et al., 

1991, Woodruff and Savin, 1991, Flower and Kennett, 1994, Holbourn et al., 2005, Lewis et 

al., 2007, Shevenell et al., 2008, Lear et al., 2010, Holbourn et al., 2013, Holbourn et al., 2014, 

Lear et al., 2015).  The ice volume increase was associated with a ~54-69m sea level fall, as 

determined from backstripping estimates from the Marion Plateau, a carbonate platform 

offshore North East Australia (John et al., 2004, John et al., 2011).  A change from an 

eccentricity (100kyr) paced climate system to one predominantly forced by obliquity (41kyr) 

at ~14.7 Ma reduced seasonality at high latitudes, producing favourable conditions for large 

ice growth at the poles (Holbourn et al., 2013, Holbourn et al., 2014).  When combined with 

enhanced drawdown of CO2 across the MMCT (Foster et al., 2012, Zhang et al., 2013, Sosdian 

et al., 2018) the climate system was primed for the expansion of the Antarctic Ice Sheet.   

 

1.2.2 Post MMCT climate 

Intervals through the Neogene, away from these distinct threshold events are vastly 

underrepresented by geochemical records.  This is particularly true for the interval directly 

following the MMCT, the mid-late Miocene (Lunt et al., 2008).  A lack of well-preserved, 

globally distributed successions has prevented the investigation into the evolution of global 

ice volume and ocean temperature during this interval.  There are no distinctive long term 
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trends in the current benthic foraminiferal δ18O compilation (Cramer et al., 2011, Zachos et 

al., 2008) or atmospheric CO2 reconstructions (Beerling and Royer, 2011, Zhang et al., 2013, 

Sosdian et al., 2018) for the mid-late Miocene.  Therefore, the interval has long been regarded 

as a relatively stable period of Cenozoic climate, devoid of any major shifts or transitions.  This 

is in contrast to the highly dynamic climate inferred for the preceding Miocene climatic 

optimum.   

 

The mid-late Miocene is an enigmatic interval for general circulation models (von der Heydt 

and Dijkstra, 2006, Knorr et al., 2011) which struggle to simulate the climate reconstructed by 

geochemical proxies.  The lower than modern day atmospheric CO2 (Foster et al., 2012, 

Sosdian et al., 2018) and temperatures warmer than the modern day (Pound et al., 2011, 

Rousselle et al., 2013) suggest that global temperature and atmospheric CO2 forcing were 

decoupled through the interval (Pagani et al., 1999a, Pagani et al., 1999b, LaRiviere et al., 

2012).  This is in stark contrast to the long-term Neogene trend through which low pH, and 

therefore high pCO2, derived from δ11B records of planktic foraminifera are associated with 

high SST derived from Mg/Ca records of planktic foraminifera and low continental ice volume 

derived from δ18O records of benthic foraminifera.  This is particularly noticeable for the 

interval between 11.6 and 5.3 Ma, through which changes in reconstructed pCO2 do not 

correspond to changes in benthic foraminiferal δ18O (Sosdian et al., 2018), reinforcing the 

notion of a decoupling of climate and CO2 through the late Miocene.   

 

A major, interhemispheric and interoceanic cooling of sea surface temperature (SST) through 

the mid-late Miocene has been recorded, averaging 6⁰C globally (Herbert et al., 2016).  These 
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authors therefore propose the mid-late Miocene as the key interval in the intensification of 

the latitudinal temperature gradient.  However, the tropical SST estimates may be recording 

cooler temperatures due to saturation of the alkenone proxy above 28⁰C (Müller et al., 1998) 

meaning better constrained tropical SST records are required to determine whether the mid-

late Miocene is an important interval of change in the global climate state.  The mid-late 

Miocene represents a key interval in terms of the transition out of the warm, dynamic climate 

state of the MCO into a more stable unipolar icehouse world.  These changes appear not to 

be associated with any permanent increase in continental ice volume based on data from the 

benthic foraminiferal stack, but are likely to have been part of a dynamic climate system with 

major ice sheet-ocean interactions.   

 

Deep marine sediments from the mid-late Miocene are characterised by their poor 

preservation of carbonate microfossils, including foraminifera.  The dramatic reduction in 

sediment carbonate content and preservation quality is termed the middle-late Miocene 

carbonate crash (Keller and Barron, 1987, Lyle et al., 1995, Farrell et al., 1995).  Although the 

primary cause of the carbonate crash is not fully understood, the primary mechanism is 

generally considered to be low fertility in the surface oceans reducing productivity, and hence 

the abundance of calcareous plankton (Jiang et al., 2007).  In turn this caused a reduction in 

carbonate supply to depth prompting a shoaling of the calcite compensation depth and 

carbonate dissolution (Jiang et al., 2007).  Other mechanisms for the carbonate crash have 

been proposed, for example basin wide dissolution of CaCO3 (Farrell et al., 1995, Lyle et al., 

1995, Lyle, 2003).  However, compilations of reconstructed CO2 do not support there being 

increased atmospheric CO2 through this interval (Foster et al., 2012, Zhang et al., 2013, Bolton 
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et al., 2016, Super et al., 2018).  Some authors have proposed that the carbonate crash is 

merely an artefact of increased terrigenous, non-carbonate sediments, in particular siliceous 

material (Keller and Barron, 1983, Diester‐Haass et al., 2004).  While these alternatives cannot 

be categorically ruled out, a decrease in the surface productivity due to reduced fertility is the 

most commonly suggested mechanism for the carbonate crash of the mid-late Miocene (Jiang 

et al., 2007). 

 

Through this interval between ~11 Ma and ~9 Ma (the Carbonate Crash (Lyle et al., 1995)) it 

has proved challenging to recover continuous marine sequences.  Consequently, 

reconstructions of ocean temperature, continental ice volume, atmospheric CO2, and ocean 

circulation based on geochemical proxies are poorly constrained as they typically rely on 

foraminifera recovered from deep marine sediment, with data resolution being compromised 

by poor recovery, hiatuses in sedimentation, and carbonate dissolution.   

 

Global seafloor dissolution of carbonate through the mid-late Miocene interval (Lyle et al., 

1995) means that relatively shallower settings dominated by hemipelagic clays have to be 

targeted for sampling, as opposed to the more typically used deep sea carbonate oozes, which 

are rich in foraminifera.  However, sites dominated by hemipelagic clay sedimentation better 

preserve the primary geochemical signal of foraminifera despite their lower foraminiferal 

abundance (Pearson et al., 2001, Sexton et al., 2006, Pearson and Burgess, 2008, Sexton and 

Wilson, 2009).   
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1.2.3 The extent and stability of continental ice during the mid-late Miocene 

Improving the constraints for projections of future climate requires a much improved 

understanding of how the EAIS behaves in a warmer world.  In particular, whether the large 

EAIS behaves in a dynamic or a stable manner in response to climate variability on short 

timescales is vital for constraining future sea-level rise (DeConto and Pollard, 2016).  Following 

the expansion of the land-based EAIS to its continental margins at ~13.8 Ma (Flower and 

Kennett, 1994, Holbourn et al., 2005, Lewis et al., 2007) a unipolar icehouse world dominated 

until, at least, the Pliocene and the onset of major Northern Hemisphere glaciation (Sosdian 

and Rosenthal, 2009, Bailey et al., 2013).  This makes the mid-late Miocene an ideal interval 

to study the stability of the EAIS in a warmer than modern world.  Accurate estimates of the 

extent and sensitivity of the EAIS in this warmer than modern world are nevertheless poorly 

constrained (Lear et al., 2015), often due to poor foraminiferal preservation in carbonate rich 

ODP sites which suffered from dissolution during the carbonate crash (11-9 Ma) (Lyle et al., 

1995).  In order to improve our understanding of the extent of global ice volume and EAIS 

stability in the unipolar icehouse world of the mid-late Miocene, improved proxy based 

reconstructions with reduced absolute uncertainties are required.   

 

1.3 Advantages and applications of laser-ablation ICP-MS 

Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) enables accurate 

quantitive measurements of solid substrates at high spatial resolution (~0.1µm) (Russo et al., 

2002).  This technique has been applied to determine the intra-test geochemical patterns in 

individual foraminifera (Wu and Hillaire-Marcel, 1995, Eggins et al., 2003, Hathorne et al., 

2003, Reichart et al., 2003, Eggins et al., 2004, Sadekov et al., 2008, Dueñas-Bohórquez et al., 
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2009, Sadekov et al., 2010, Raitzsch et al., 2011, Fehrenbacher et al., 2015).  A big advantage 

of this microanalytical approach over more traditional bulk geochemical methods is the ability 

to identify pristine calcite within diagenetically altered tests (Pena et al., 2005, Creech et al., 

2010, Hasenfratz et al., 2016).  This pristine calcite can be utilised to accurately reconstruct 

palaeoenvironmental parameters such as temperature (Creech et al., 2010, Hollis et al., 2012, 

Hines et al., 2017), pH (Thil et al., 2016), and oxygenation (Petersen et al., 2018).   

 

1.4 Aims of the study 

This thesis has the primary aim of improving the understanding of the global climate state 

through the mid-late Miocene (13.7 – 9.4 Ma).  Such an aim will involve applying the Mg/Ca 

temperature proxy to determine absolute estimates of bottom water and sea surface 

temperatures from Sunbird-1, a site in the equatorial Western Indian Ocean.  These absolute 

estimates of temperature will then be utilised to better constrain the extent and variability of 

the East Antarctic Ice Sheet in this unipolar icehouse world.  The shallow water depth and 

tectonic subsidence of the Sunbird-1 site adds an extra layer of complexity to the primary aim 

of this thesis.  Therefore, the influence of more localised controls will require isolating in order 

to interpret changes in the global climate state, in particular carbon cycling, ocean 

temperature, and continental ice volume.   

 

To achieve the primary aim of the thesis the following three hypotheses will be tested: 

1) Can one reconstruct palaeotemperatures using diagenetically altered foraminifera?  If 

this is possible, the Mg/Ca ratios of planktic and benthic foraminifera using a new LA-
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ICP-MS set up will reconstruct realistic and viable sea surface and bottom water 

temperatures respectively.  If not, these LA-ICP-MS Mg/Ca ratios will be influenced by 

post-depositional diagenetic alteration. 

 

2) Did tropical sea surface temperature remain stable during the Serravalian-Tortonian?  

If that is the case, the Mg/Ca ratios of planktic foraminifera throughout the record will 

remain stable. If not, these same ratios will demonstrate variability or trends. 

 

3) Do the geochemical variations in the Sunbird-1 well reflect a dynamic East Antarctic 

Ice Sheet through the Serravalian-Tortonian?  If that is the case, the seawater δ18O 

record, reconstructed by using foraminiferal Mg/Ca to account for the temperature 

component of the foraminiferal δ18O record, will demonstrate variability.  If not, the 

seawater δ18O record will remain stable.  

 

An additional aim of this thesis is to optimise the operating parameters on the new LA-ICP-

MS system installed at Cardiff University.  Optimising these operational parameters to collect 

accurate and precise data from homogenous glass standards, and then reproducible, accurate 

and precise measurements at the maximum possible spatial resolution through foraminiferal 

calcite, will allow the primary trace metal signal required for environmental interpretation to 

be isolated from any altered regions of the foraminiferal test.   
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2 Materials and methods 

2.1 Geological setting and lithostratigraphy 

2.1.1 Site location  

This thesis utilises cuttings recovered from the Sunbird-1 well drilled offshore Kenya by BG 

Group at a water depth of 723.3 m (04° 18' 13.268" S, 39° 58' 29.936" E) (Figure 2.1). 

 

The Sunbird-1 carbonate build-up is situated within the Tembo Trough, an extensional 

graben.  The extensional setting is part of the wider East African Rift System, which has had a 

general North-South trend since at least the Oligocene (Macgregor, 2015).  The rifted region 

between continental crust to the west and the oceanic crust of the Simba High to the east 

subsided continuously through the Miocene whilst deposition was taking place (Figure 2.2).  

Figure 2.1: Location of the Sunbird-1 well in the Western Indian Ocean, offshore Kenya, with a modern 

day water depth of 723.3 m.   

KENYA 
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The well penetrates through a carbonate platform and overlying pinnacle reef that built up 

through the early-middle Miocene (Aquitanian-Langhian), keeping pace with the subsiding 

basin.  

 

2.1.2 Middle Miocene change of depositional environment 

The stratigraphy of Sunbird-1 displays a rapid change of depositional facies in the Middle 

Miocene (Figure 2.3).  There is evidence for the subaerial exposure of the pinnacle reef.  This 

meteoric exposure has generated high, vuggy porosities and karstic weathering in the upper 

~100 m of the carbonate platform and overlying reef, not seen in the sediments below (Figure 

Figure 2.2: Gross depositional environment during the late Miocene.  Figure after (Beavington-Penney 

and Rowles, 2015).  
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2.3).  Pedogenic textures are also apparent in the pinnacle reef, a further evidence of subaerial 

exposure.   

 

Following this exposure event there is a pronounced change of facies as carbonate deposition 

ceases and is replaced by clays (Figure 2.3).  This abrupt change in facies marking the top of 

autochthonous carbonate is seen by the sharp decrease in limestone fraction (Figure 2.3a) 

and by a sharp increase in API values in the gamma ray log (Figure 2.3b).  At the base of the 

clays, between 1626-1609 metres below sea level (MBSL)), micro to cryptocrystalline muddy 

limestone fragments prevail, potentially an artefact of the prior autochthonous limestone 

sedimentation.  The abrupt lithological change from carbonates to clays at Sunbird-1 suggests 

that locally there was a rapid transgression.  This is despite the synchronous global regression 

coinciding with the Mid Miocene Climate Transition, an expansion of the Antarctic Ice Sheet 

to a more permanent state culminating at 13.8 Ma (Holbourn et al., 2014).  This paradox 

emphasises that deposition at Sunbird-1 took place in a complex setting, influenced by global 

environmental change and local tectonics.  It is vital that the potential impact of these 

competing influences are considered when interpreting the geochemical results from the site.   

 

This rapid meteoric exposure being synchronous with the expansion of the Antarctic Ice Sheet 

is likely not a coincidence; the global, ~60 metre, regression prompting the subaerial exposure 

of Sunbird-1.  This would date the abrupt facies change at 1626 metres below sea level at the 

Langhian-Serravallian stratigraphic boundary (~13.8 Ma).  As highlighted previously, local 

tectonic influence on the Sunbird-1 site could mean this is not the case, and the 

biostratigraphic zonations (Chapter 2.1.3) should be favoured.  
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Carbonate deposition never fully resumed; the Sunbird-1 platform and pinnacle reef being 

overlain by ~900m of clays as subsidence of the Tembo Trough accelerated.  This thesis uses 

the cuttings from these overlying clays.  The modern day water depth at Sunbird-1, within the 

subsiding Tembo Trough, of 723.3 m means that the deposition of the cuttings used in this 

thesis took place at much shallower water depths than a typical ODP or IODP site used for 

palaeoclimatic reconstruction.  However, quantifying the absolute palaeodepth through the 

Sunbird-1 cuttings is challenging.  Assuming a constant rate of subsidence from subaerial 

exposure (0 m water depth) at 13.8 Ma to 723.3 m water depth in the modern day would 

mean that the water depth during deposition of the Sunbird-1 cuttings utilised by this thesis 

was always shallower than 231 metres.  This is likely a simplified assumption, and a detailed 

analysis of depth sensitive benthic foraminifera, combined with the planktic foraminiferal to 

benthic foraminiferal ratio, could improve this palaeobathymetry assessment.  However, an 

assumption that the palaeodepth remained shallower than 300 m is likely valid, and 

sufficiently quantitive, for the goals of this thesis.  

 

Sunbird-1 also differs from more typical ODP and IODP sites used for palaeoclimate 

reconstructions in that siliceous microfossils such as diatoms and radiolarians are present.  

This interpretation of sediment deposition and accumulation in a high productivity setting 

could be further evidenced by redox sensitive trace metal (Chapter 3) and δ13C (Chapter 6) 

analyses on foraminifera.  



Cardiff University 15 | P a g e  Michael Nairn 

 

A 

Figure 2.3: Lithological (A) and gamma ray (B) logs through the interval in which deposition at 

Sunbird-1 changed from autochthonous carbonate (1624m-), to pinnacle reef (1609-1624m), to clays 

(-1609m).  The dashed horizontal line in (A) indicates the stratigraphic boundary separating the 

Langhian below, and the Serravallian above.  Inset images of vuggy porosity in the pinnacle reef 

(1630m), and large foraminifera-coral packstone in the carbonate platform (1711m).  Samples used in 

this thesis are from the 1626m cutting and above.  Figure after (Beavington-Penney and Rowles, 2015).   

 

B 

LANGHIAN 

SERRAVALLIAN 

Vuggy porosity of up to 30%, and 

pedogenic textures in the pinnacle 

reef.  Field of view is 18 mm.  

Large foraminifera-coral packstone 

in carbonate platform.  Field of view 

is 18 mm.  
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The clay-dominated nature of the sediment means that throughout Sunbird-1 the fraction of 

sediment >63µm is low compared to an average deep-water site, ranging from 4.2%-21.1% 

with a mean value of 11.5% (Figure 2.4).  This is most probably due to both the proximity of 

the site to the continent, resulting in a greater than expected input and deposition of 

terrestrial material.  The uppermost 2 samples (1353-1356m and 1356-1359m) were rejected 

from the coarse fraction dataset due to the presence of concrete, emplaced by the drilling 

process, artificially raising the % coarse fraction.  The highest percentage of coarse fraction is 

in the first ~500 kyr of the record following which it fluctuates between ~5% and ~15% with 

no apparent periodicity (Figure 2.4).  The higher % coarse fraction in the first ~500kyr of the 

record likely relates to the presence of limestone before the depositional environment 

becomes truly clay-dominated (Figure 2.3).  This limestone is most probably sourced from the 

underlying pinnacle reef and carbonate platform, although localised regions of 

autochthonous carbonate cannot be ruled out.  Between 11.8 Ma and 11.6 Ma there is a 

transient decrease in % coarse fraction.  A full summary of the coarse fraction data is included 

in Appendix 1.  To reduce the impact of diagenesis and alteration, foraminifera preserved in 

clay-rich sediments are preferentially used for analysis because they more likely preserve 

primary calcite; the impermeable nature of clays inhibiting diagenetic processes (Pearson et 

al., 2001, Sexton and Wilson, 2009).  Tests displaying the desired exceptional preservation 

appear glassy and translucent under reflected light, and SEM imaging shows retention of the 

foraminiferal original microstructure (Pearson and Burgess, 2008).  This style of preferential 

glassy preservation is rare to absent in published records from Miocene foraminifera.  
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2.1.3 Biostratigraphic age model 

Sunbird-1 recovery was continuous through the foraminifera bearing clay-rich sedimentary 

ooze from first returns at 1353 m until contact with the autochthonous carbonate at 1626 m 

(Figure 2.3).  Samples were collected as cuttings at 3 m intervals, the 91 samples spanning 

273 vertical metres of sediment at burial depths between 630 m and 903 metres below sea 

floor (mbsf).  Throughout the thesis samples are generally referenced as metres below sea 

level (mbsl), in keeping with the original sampling during recovery.  Micropalaeontological 

and calcareous nannoplankton assemblages for Sunbird-1 were analysed by Haydon Bailey 

and Liam Gallagher of Network Stratigraphic Consulting (Table 2.1).  These microfossil 

assemblages, and the planktic foraminifera zonations of Wade et al. (2011) and calcareous 

Figure 2.4: % Coarse Fraction (>63µm) in the Sunbird-1 record.  Solid line denotes a 5 point moving 

average.  
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nanofossil zonations of Backman et al. (2012), were used to develop a biostratigraphic age 

model.  Ages for reliable biostratigraphic datums were prescribed using these zonations and 

correlated with the Astronomical timescale of Lourens et al. (2004) included in Gradstein et 

al. (2004).  The lowest reliable bioevent is the last downhole occurrence of Globorotalia fohsi 

in the 1611-1614 m sample, giving this depth a biostratigraphic age of 13.41 Ma.  The highest 

bioevent is the first downhole occurrence of Catinaster calyculus in the 1368-1371 m sample, 

giving this depth a biostratigraphic age of 9.65 Ma.  The 246 m of core between these reliable 

bioevents spans 3.76 million years (myr), yielding an average sedimentation rate of 6.5 

cm/thousand years (kyr).  Therefore, each sample represents 46 kyr on average.   

 

The age-depth model was generated by linear interpolation between reliable biostratigraphic 

datums (Figure 2.5).  The assumptions built into this age model, such as the linear 

interpolation, could contribute uncertainties of up to several thousands of years.  However, 

it is the best possible age model in the absence of any magneto- or chrono-stratigraphy.   

 

These biostratigraphic data suggest there are three distinctive periods of deposition (Figure 

2.5).  From the lowermost bioevent (last downhole occurrence of Globorotalia fohsi) at 1611-

1614 m, to the last downhole occurrence of Discoaster kugleri at 1566-1569 m, the 

sedimentation rate is calculated at 2.9 cm/kyr.  From this point, up to the first downhole 

occurrence of Discoaster kugleri at 1518-1521 m, the sedimentation rate is calculated at 17.1 

cm/kyr, ~six times higher and being synchronous with the observed trough in % coarse 

fraction (Figure 2.4).   
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Above this, until the uppermost bioevent (first downhole occurrence of Catinaster calyculus) 

at 1368-1371 m the sedimentation rate is 7.8 cm/kyr, not vastly different to the average for 

the whole core (6.5 cm/kyr).  The lower accumulation rate of 2.9 cm/kyr prior to 11.8 Ma is 

surprising considering that the site of deposition would have been situated on the continental 

shelf where sedimentation rates are typically higher than on the continental slope.  This 

suggests that prior to 11.8 Ma the rate of accumulation may be influenced by erosional 

currents or winnowing on the continental shelf and the possibility of hiatuses in deposition 

must be considered.  This could explain the lower accumulation rate through this time 

interval, without having to invoke order of magnitude changes in sedimentation rate through 

the record of clays.  This possibility must be considered in terms of its potential impact on the 

depositional and oceanographic environment the foraminifera used in this thesis.  However, 

beyond the different accumulation rates of the sedimentary succession, there is no definitive 

evidence for hiatuses or erosional surfaces.   

 Biostratigraphic Event  
Sample Depth 

(MBSL) 
Calcareous 

nannoplankton 
Planktic foraminifera 

Biostratigraphic 
Age (Ma) 

1368-1371 Top C. calyculus  9.65 

1428-1431 Base D. hamatus  10.49 

1446-1449 Base C. coalitus  10.79 

1518-1521 Top D. kugleri  11.60 

1539-1542  LDO G. nepenthes 11.63 

1566-1569 Base D. kugleri  11.88 

1581-1584 Top C. praemacintyrei  12.57 

1599-1602  FDO Globorotalia robusta 13.13 

1613-1614  LDO G. fohsi 13.41 

Table 2.1:  Biostratigraphic events used to generate the age-depth model for Sunbird-1, where FDO = 

First Downhole Occurrence, and LDO = Last Downhole Occurrence.  The biostratigraphic datums of 

Wade et al., (2011) and Backman et al., (2012) are used, on the geomagnetic polarity timescale of 

(Gradstein et al., 2004).  Sample depths are given as metres below sea level (water depth =723 m).   
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Taking the average sampling density of ~46 kyr and applying the Nyquist frequency (=1/2 x 

sampling interval) suggests the highest frequency that can be resolved is ~92 kyr (Bendat and 

Figure 2.5: Age-depth model for Sunbird-1 using the biostratigraphic zonations of Wade et al. (2011) 

and Backman et al. (2012) on the geomagnetic polarity timescale of Gradstein et al. (2004) using linear 

interpolation between reliable biostratigraphic datums.  Burial depth in the sediment and the total 

depth below the sea surface are given (water depth =723m).  Micropalaeontological and calcareous 

nannoplankton assemblages for Sunbird-1 were analysed by Haydon Bailey and Liam Gallagher of 

Network Stratigraphic Consulting. 
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Piersol, 1971). With this considered, the record is sampled at too low a resolution to 

adequately resolve orbital signals without potentially incorporating an aliasing effect of any 

precessional or obliquital periodicity into longer term eccentricity cycles (Pisias and Mix, 1988, 

Weedon, 2003).  To interpret the shorter frequency orbital cycles sampling resolution would 

have to be increased 3-4 times.  Therefore, to avoid any potential aliasing of orbital cyclicity 

only longer-term climate cycles (>100kyr) are interpreted, but note that the high 

sedimentation of the site would allow for this if piston coring had been utilised.   

 

2.2 Geochemical proxies in foraminifera 

This thesis chiefly uses foraminifera, a group of ubiquitous, single celled eukaryotes 

precipitating calcite tests composed of chambers, which grow successively and episodically 

through their lifespan, typically weeks to months.  Almost all foraminifera are marine and can 

be either planktic or benthic.  Planktic foraminfera float in the upper water column at varying 

depths and benthic foraminifera reside at the sea water to sediment interface.  Some benthic 

foraminiferal species live in direct contact with bottom waters on top of the seafloor 

(epifaunal), whereas others inhabit the pore waters within the upper few centimetres of 

sediment (infaunal).   

 

A foraminifer’s calcium carbonate (CaCO3) test is formed from an internal calcification pool of 

modified ambient seawater. The chemical composition of fossil foraminiferal tests can be 

used to reconstruct ocean and climatic variability (e.g. temperature and salinity) through the 

Cenozoic and beyond, a carbonate archive of past ocean chemistry. All geochemical proxies, 

such as δ18O and Mg/Ca, have limitations and uncertainties inhibiting their use in isolation, 
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stressing the importance of utilising multiproxy approaches in palaeo-oceanographic studies.  

By adopting a multiproxy approach to reduce the degrees of freedom of a particular proxy it 

is possible to constrain the influence of the sought after palaeoenvironmental control, e.g. 

bottom water temperature and continental ice volume.  

 

2.2.1 Stable isotopes 

2.2.1.1  Oxygen isotopes 

Stable oxygen isotope ratios in biogenic calcite have been used as a proxy for changes in 

Cenozoic climate since the original work of Harold Urey and Samuel Epstein (Urey, 1947, Urey 

et al., 1951, Epstein et al., 1951, Epstein et al., 1953), who determined the natural 

fractionation of stable isotope systems.  Its use is based upon the fractionation between 16O 

and 18O during carbonate precipitation relative to an international reference standard 

(Equation 2.1).  For carbonate, the standard is the Vienna Pee Dee Belemnite (VPDB), and for 

water the standard is Standard Mean Ocean Water (SMOW).  Deviations from VPDB are 

customarily used with foraminiferal studies (Equation 2.1). 

 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐. 𝟏:    𝛅 𝐎 (‰)𝟏𝟖 =

(

 
 
[(

𝐎𝟏𝟖

𝐎𝟏𝟔
) 𝐬𝐚𝐦𝐩𝐥𝐞 − (

𝐎𝟏𝟖

𝐎𝟏𝟔
) 𝐬𝐭𝐚𝐧𝐝𝐚𝐫𝐝]

(
𝐎𝟏𝟖

𝐎𝟏𝟔
) 𝐬𝐭𝐚𝐧𝐝𝐚𝐫𝐝

)

 
 
𝐱 𝟏𝟎𝟎𝟎 

 

The δ18O of biogenic calcite varies inversely with the temperature at which it is precipitated 

from the water column, meaning it can be used as a palaeo-thermometer (Urey et al., 1951, 

Epstein et al., 1953, Emiliani, 1955).  This inverse relationship between δ18O and temperature 
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is ~0.23‰/⁰C (Kim and O'Neil, 1997, Bemis et al., 1998).  The thermodynamic expectation is 

that of a quadratic fit between δ18O and temperature, but the degree of curvature to the 

quadratic fit is extremely slight meaning linear fits are also applicable within calibrated ranges 

(Shackleton, 1974, Bemis et al., 1998, Lynch‐Stieglitz et al., 1999, Marchitto et al., 2014).   

 

The other primary control on the δ18O of biogenic calcite is the δ18O of the seawater (δ18OSW).  

Isotopically heavier 18O is preferentially condensed and removed as precipitation at low 

latitudes due to Rayleigh Fractionation, the separation of gases during distillation.  This 

distillation process causes precipitation to have isotopically lighter δ18O values at higher 

latitudes.  Consequently, the δ18O of precipitation which is stored in polar ice sheets is 

isotopically lighter (-30 to -50‰) than seawater (~0‰). Therefore δ18OSW can provide a record 

of global, continental ice volume due to preferential sequestration of 16O in polar ice sheets.  

The growth of continental ice sheets, such as East Antarctica and the Laurentide, equates to 

a ~0.011‰ increase in δ18OSW per metre fall in eustatic sea level during the cold Pleistocene 

world (Fairbanks, 1989).  Despite the common assumption of heavier δ18Oice on Antarctica 

during the warmer world of the Miocene, this calibration is very similar to the 0.0112‰ 

increase in δ18OSW determined using an isotope enabled model with high eccentricity, 500 

ppm CO2, and mid-Miocene topography (Gasson et al., 2016).  A correction must be made to 

the δ18OSW value due to it being measured on the SMOW scale, whereas δ18OCALCITE is 

measured with respect to VPDB.  This conversion factor is generally taken as -0.27‰ (Hut, 

1987).   
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Despite δ18O of biogenic calcite being predominantly controlled by temperature and δ18OSW, 

some secondary effects must be considered, as outlined below. δ18OSW has varied through 

geological time on hundred million year timescales due to chemical weathering and the 

alteration of seafloor basalts.  However, the impact of this on δ18OSW is likely negligible over 

the last 200 Myr (Veizer et al., 1997).  Salinity effects resulting from evaporation-precipitation 

differences in a water masses source locality can lead to regional variations in δ18OSW 

(LeGrande and Schmidt, 2006).  Deep-water masses have differing salinities, dependent upon 

their source.  For example North Atlantic Deep Water has a salinity of 34.9-35.0 PSU, whereas 

Antarctic Bottom Water has a salinity of 34.6-34.7 PSU.  If unaccounted for a δ18O difference 

could result in misinterpretation of a temperature or ice volume signal.  Carbonate ion 

concentration ([CO3
2-]) contributes a significant negative fractionation to the oxygen isotope 

ratio in planktic foraminifera (Spero et al., 1997).  This [CO3
2-] effect relates to pH, a -1.42‰ 

change in δ18O per unit pH increase (Zeebe, 2001).  This offset originates from photosynthetic 

symbionts altering the pH of the seawater in the foraminfera’s internal calcification pool.  

Thus, benthic foraminifera are unaffected as they reside below the photic zone, and are 

therefore asymbiotic.  Despite being asymbiotic, changes in ocean pH will affect the δ18O of 

benthic foraminifera in the same direction.  

 

Foraminifera, the carriers of the proxy signal, can calcify out of equilibrium with sea water 

due to vital effects during biogenic precipitation.  Differences in the δ18O palaeotemperature 

equations of benthic foraminifera from the Cibicidoides and Planulina genera are well within 

analytical error and, therefore, are commonly grouped together (Lynch‐Stieglitz et al., 1999, 

Marchitto et al., 2014).  Their temperature sensitivity agrees with that of inorganic calcite, 
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allowing the assumption that these genera of benthic foraminifera calcify in isotopic 

equilibrium with sea water (Marchitto et al., 2014).  Infaunal and epifaunal benthic 

foraminifera calcify in environments with different pH levels causing offsets between species 

living in the differing settings (Bemis et al., 1998).  Young individuals often display a slight 

negative offset interpreted as an ontogenetic effect by the incorporation of oxygen from 

metabolic CO2 (Filipsson et al., 2010).  These vital, microhabitat, and ontogenetic effects can 

be reduced by conducting single species analyses in downcore studies.   

 

Diagenetic overprinting of the primary calcite is a major caveat associated with foraminiferal 

δ18O (Schrag, 1999, Pearson et al., 2001).  This can occur via dissolution on the sea floor, and 

within the sediment, increasing the δ18OCALCITE, particularly in low pH waters.  Secondary 

calcite cements precipitated, either into or onto the outside of the test, from pore waters 

during early stage burial diagenesis can also obscure any primary signal by altering the oxygen 

isotopic ratios.  Diagenetic recrystallization is a particular caveat with planktic foraminiferal 

δ18O ratios from low latitude sites because it takes place in deep waters that are considerably 

cooler than the surface waters from which the primary calcite formed (Pearson, 2012, Edgar 

et al., 2013).  This increases planktic foraminiferal δ18O, reconstructing artificially cooler sea 

surface temperatures.  Diagenetic alteration of benthic foraminiferal δ18O is less of a problem 

due to the relative constancy of habitat.  Despite significant inter-site differences in 

recrystallization, negligible offsets in benthic foraminferal δ18O are observed (Edgar et al., 

2013).  Therefore, the benthic foraminifera preserved in deep-marine sedimentary oozes are 

regarded as robust recorders of primary δ18O.  To reduce the impact of diagenesis and 

alteration, foraminifera preserved in impermeable clay rich sediments, which inhibit any 
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diagenetic effects, are preferentially used for analysis because they more likely preserve 

primary calcite (Wilson and Opdyke, 1996, Pearson et al., 2001).  Tests displaying this desired 

exceptional preservation tend to appear glassy and translucent under reflected light and have 

retained their primary submicron texture (Pearson and Burgess, 2008).  Unfortunately, this 

idealised scenario is relatively rare, recrystallization of calcite tests at the sea floor being 

routine.   

 

2.2.1.2  Carbon isotopes 

As with δ18O the stable carbon isotope ratio (δ13C) of carbonates is measured relative to the 

VPDB standard (Equation 2.2).   

 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐. 𝟐:     𝛅 𝐂 (‰)𝟏𝟑 =

(

 
 
[(

𝐂𝟏𝟑

𝐂𝟏𝟐
) 𝐬𝐚𝐦𝐩𝐥𝐞 − (

𝐂𝟏𝟑

𝐂𝟏𝟐
) 𝐬𝐭𝐚𝐧𝐝𝐚𝐫𝐝]

(
𝐂𝟏𝟑

𝐂𝟏𝟐
) 𝐬𝐭𝐚𝐧𝐝𝐚𝐫𝐝

)

 
 
𝐱 𝟏𝟎𝟎𝟎 

 

The δ13C of biogenic calcite is predominantly determined by the δ13C of the total dissolved 

inorganic carbon (DIC) of the seawater it precipitates from.  Seawater δ13C (δ13Csw) varies with 

the global carbon cycle, because different reservoirs of carbon have different δ13C values.  The 

relative fluxes between seawater and these reservoirs drives changes in δ13Csw.  In particular, 

the preferential uptake of 12C during photosynthesis results in organic carbon (Corg) having 

isotopically lighter δ13C values.  Therefore, surface waters are characterised by isotopically 

heavier δ13C than deeper waters.  Enhanced global burial of organic carbon increases the δ13C 

of the whole ocean reservoir, reflected by isotopically heavier δ13C values in biogenic calcite 
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precipitated from seawater.  A key control on the local δ13Csw signature is the degree of 

organic matter (OM) oxidation in the upper water column.  In high primary productivity 

regions, the enhanced biological fixation of the preferentially lighter isotope of carbon 

increases the δ13C of local surface waters, whilst the associated enhanced remineralisation of 

sinking organic matter lowers the δ13C of deeper waters.   

 

Secondary factors have an influence on the δ13C of biogenic calcite.  A number of these are 

due to foraminifera calcifying from an internal pool within which they biologically mediate 

pH, which in turn influences DIC, [CO3
2-], and δ13C levels (Spero et al., 1997, Zeebe, 1999, 

Evans et al., 2016, Gray et al., 2018).  These secondary factors require consideration when 

interpreting changes in the local and global carbon cycle from foraminiferal δ13C.   

 

2.2.2 Trace element/calcium ratios  

2.2.2.1  Mg/Ca 

The substitution of Mg2+ ions into the calcite lattice in place of Ca2+ ions is endothermic, 

forming the thermodynamic principle for the use of Mg/Ca ratios in calcite as a 

palaeotemperature proxy.  The partition coefficient of Mg2+ into inorganic calcite has a strong 

positive correlation with temperature, increasing exponentially by 3.1 ± 0.4% per ⁰C (Katz, 

1973, Oomori et al., 1987, Burton and Walter, 1991). Initial culture studies of planktic 

foraminifera (Nürnberg, 1996, Nürnberg et al., 1996, Lea et al., 1999) and core top studies of 

benthic and planktic foraminifera (Rosenthal et al., 1997, Elderfield and Ganssen, 2000, Lear 

et al., 2002) support this temperature control on Mg/Ca ratios of biologically precipitated 

foraminiferal calcite. However, this initial work showed the incorporation of Mg into 



Cardiff University 28 | P a g e  Michael Nairn 

foraminiferal calcite to be ~3 times more sensitive to temperature, showing relatively 

consistent sensitivities of ~9-10% per ⁰C.  This higher sensitivity suggests that there is an 

additional temperature effect on Mg uptake into foraminiferal tests resulting from 

biologically mediated processes.  This “vital effect” on Mg incorporation into foraminifera is 

likely due to fractionation within an internal calcification pool (Elderfield et al., 1996, Bentov 

and Erez, 2006), but the exact process remains up for debate, necessitating the need for 

species-specific calibrations.  Having said this, one recent calibration study suggests that 

planktic foraminiferal Mg/Ca-temperature sensitivity is closer to 6% per ˚C (Gray et al., 2018).  

These authors reconcile this sensitivity with previous calibrations through the temperature 

effect on the dissociation of water, i.e. temperature influences foraminiferal Mg/Ca both 

directly and indirectly via the pH effect.  In the absence of high resolution pH records through 

the Sunbird-1 interval, the approach of Evans et al. (2016) to calculate Mg/Ca 

palaeotemperatures is followed (Chapter 5.3).   

 

Whereas temperature calibrations from planktic foraminifera exhibit very good cross species 

agreement of ~9% per ⁰C (Elderfield and Ganssen, 2000, Anand et al., 2003), there are 

significant differences between benthic foraminiferal species (Lear et al., 2002, Elderfield et 

al., 2006); Uvigerina spp. displaying much lower (~6% per ⁰C) temperature sensitivity (Lear et 

al., 2002, Elderfield et al., 2006, Bryan and Marchitto, 2008).  Despite these poorly understood 

biological (vital) effects, temperature remains the overriding control on foraminiferal Mg/Ca 

ratios, and studies using individual species are considered relatively robust recorders of 

relative changes in temperature.   
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The use of benthic foraminiferal Mg/Ca as an independent palaeotemperature proxy can 

solve the “Urey Dilemma” by providing simultaneous records of bottom water temperature 

and δ18Osw controlled primarily by global continental ice volume (Lear et al., 2000, Billups and 

Schrag, 2002, Lear et al., 2015).   

 

The influence of several secondary effects on Mg incorporation into foraminiferal calcite have 

been described. These include, but may not be limited to, changes in the carbonate saturation 

state (Δ[CO3
2-]) (Russell et al., 2004, Elderfield et al., 2006, Rosenthal et al., 2006, Evans et al., 

2016, Gray et al., 2018), salinity (Kısakürek et al., 2008, Hönisch et al., 2013, Gray et al., 2018), 

and seawater Mg/Ca (Mg/Casw) (Hasiuk and Lohmann, 2010, Evans and Müller, 2012).  The 

potential influence of these secondary effects are considered, and accounted for, when 

transforming foraminiferal Mg/Ca ratios to absolute temperature estimates in Chapter 5.3.  

However, the shallow (723m in the modern) water depth of Sunbird-1 minimizes any effect 

of dissolution on planktic foraminiferal Mg/Ca (Tripati et al., 2003), and Δ[CO3
2-] effect on 

benthic foraminiferal Mg/Ca (Elderfield et al., 2006).  The 1-Myr residence time of Ca in 

seawater limits the use of trace element/calcium ratios to relative changes unless the 

seawater ratio can be reconstructed over longer intervals, for example Mg/Casw when 

deducing absolute palaeotemperatures 

 

Further alteration of the primary, temperature controlled, foraminiferal Mg/Ca ratio can take 

place post-depositionally (Edgar et al., 2015). Elevated pressures and temperatures in thick 

sedimentary sequences can cause recrystallization via neomorphic dissolution-precipitation 

processes.  This can alter the primary foraminiferal calcite, elevating Mg/Ca ratios towards 
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those of inorganic calcite (Katz, 1973, Nurnberg et al., 1996, Pearson et al., 2001).  Despite 

the higher partition coefficient of Mg into inorganic calcite when compared to foraminiferal 

calcite, Mg/Ca ratios are not affected to the same degree as δ18O by recrystalliastion.  This is 

likely due to recrystallization taking place in a relatively closed system (Elderfield et al., 1996, 

Bentov and Erez, 2006, Edgar et al., 2015).  Conversely, dissolution lowers the Mg/Ca ratio 

because high Mg calcite preferentially dissolves (McCorkle et al., 1995, Brown and Elderfield, 

1996, Rosenthal and Lohmann, 2002).  Diagenetic overgrowths and contaminant phases, such 

as authigenic carbonates, oxide coatings and oxy-hydroxides, can artificially alter the primary 

foraminiferal Mg/Ca ratio (Pena et al., 2005, Hasenfratz et al., 2016).  Ideally, studies should 

target foraminifera devoid of any post-depositional alteration.   

 

2.2.2.2  Benthic foraminiferal Sr/Ca 

The Sr/Ca ratio of  the aragonitic benthic foraminifera Hoeglundina elegans can be used to 

estimate bottom water temperatures (Rosenthal et al., 2006, Lear et al., 2008, Lo Giudice 

Cappelli et al., 2015).  This is due to the Sr2+ cation having a better fit into the aragonitic lattice 

than Mg2+.  The Sr/Ca ratios for  H. elegans show no covariance with the aragonite saturation 

state (Δ[CO3
2-]aragonite) when it is above ~15 µmol kg-1 (Rosenthal et al., 2006).  However, the 

influence of Δ[CO3
2-]aragonite complicates BWT reconstructions in waters undersaturated with 

respect to aragonite.   

 

2.2.2.3  Benthic foraminiferal B/Ca 

Empirical core top studies show a positive, linear relationship between B/Ca ratios in benthic 

foraminifera and bottom water carbonate saturation state (Δ[CO3
2-]).  This correlation has 
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been proven to be robust at high Δ[CO3
2-] and across a wide range of ocean basins, water 

depths, and bottom water temperatures (Yu and Elderfield, 2007, Yu et al., 2010, Brown et 

al., 2011, Rae et al., 2011).   

 

The B/Ca ratio in benthic foraminifera appears to be insensitive to any dissolution effect (Yu 

and Elderfield, 2007, Brown et al., 2011, Rae et al., 2011), and the long (15-20Myr) residence 

time of boron in seawater (Spivack and Edmond, 1987, Lemarchand et al., 2000, Lemarchand 

et al., 2002) means that if seawater B/Ca (B/CaSW) can be constrained.  Any variations in 

benthic foraminiferal B/Ca can therefore be attributed to changes in Δ[CO3
2-] obtained during 

biological precipitation.   

 

There are very large interspecies differences in benthic foraminiferal B/Ca ratios.  Of 

particular importance is that infaunal species (e.g. Uvigerina spp. and Oridorsalis umbonatus) 

display lower sensitivity to, and absolute values of, Δ[CO3
2-] than epifaunal species (e.g. C. 

wuellerstorfi and C. mundulus) (Yu and Elderfield, 2007, Rae et al., 2011, Brown et al., 2011, 

Mawbey, 2012).  Infaunal foraminifera calcify from sedimentary pore waters as opposed to 

the oceanic bottom waters so are largely insensitive to deep water Δ[CO3
2-], the effect of pore 

water buffering dampening any correlation (Brown et al., 2011).  This notion is reinforced by 

the very low correlation between B/Ca and bottom water Δ[CO3
2-] in Uvigerina spp. (R2=0.58 

(Yu and Elderfield, 2007)) and Oridorsalis umbonatus (R2=0.31 (Brown et al., 2011)). 
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2.3 Sample collection and processing 

The Sunbird-1 well was drilled between January and March 2014 by BG Kenya, with the 

primary aim of sampling the mid-late Miocene carbonate platform and overlying pinnacle reef 

(Figure 2.3).  Through the overlying clay-dominated sediment cuttings were collected at a 3 

m sampling resolution, bagged, and stored for analysis.   

 

Approximately 100 g of each sample was weighed and washed through a 63 µm sieve using 

18.2 MΩ DI water to isolate the coarse fraction for foraminiferal analyses.  The <63 µm size 

fraction was allowed to settle and dry before being archived.  The >63 µm fraction was dried 

overnight in a 40 ⁰C oven, and weighed to determine the % coarse fraction.  This coarse 

fraction was then dry-sieved and individual foraminiferal species were picked from the 250-

355 µm size fraction under a binocular microscope.   

 

2.4 Stable isotope analysis 

Picked foraminifera were crushed between two glass plates ensuring all chambers were 

opened.  Any infill was removed as best as possible using a fine paintbrush under a binocular 

microscope.  Fine clays and other detrital material on the outer surface of the test were 

removed by rinsing three times in 18.2 MΩ DI water, ultrasonicating for 5-10 seconds in 

methanol, and finally rinsing a further time in 18.2 MΩ DI water.  Any remaining detrital 

particles were removed using a fine paintbrush under a binocular microscope.  Once dried, 

samples were transferred into glass vials and analysed on a ThermoFinnigan MAT252 with 

online sample preparation using an automated Kiel III carbonate device.  Results are reported 
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relative to PDB, and long‐term uncertainty based on repeat analysis of NBS‐19 is ±0.04 ‰ for 

δ13C and ±0.08 ‰ for δ18O (n=469, 2 standard deviations) and on repeat analysis of BCT63 is 

±0.04 ‰ for δ13C and ±0.07 ‰ for δ18O (n=310, 2 standard deviations).   

 

2.5 Trace element analysis via solution ICP-MS 

As with the preparation of samples for stable isotope analysis, picked foraminifera were 

crushed between two glass plates ensuring all chambers were opened, and any infill was 

removed as best as possible using a fine paintbrush under a binocular microscope.  The 

samples were subsequently ultrasonicated in water and methanol to remove clays and 

oxidized with 3% H2O2 to remove organic matter.  Any remaining detrital particles were 

removed using a fine paintbrush under a binocular microscope. Fragments were cleaned to 

remove clays, metal oxides, and organic matter following the standard protocol (Boyle and 

Keigwin, 1985, Barker et al., 2003) (Appendix 2).  Due to the clay rich nature of the sediment 

the clay removal procedure was conducted twice.   

 

Samples were dissolved in 120 µl of trace metal pure 0.065 M HNO3 and centrifuged to assist 

removal of any remaining contaminant particles. This solution was then split into two aliquots 

of 10 µl and 100 µl respectively to measure calcium concentrations and trace metal ratios.  

The 10 µl aliquot for measuring calcium concentrations was diluted with trace metal pure 

0.5M HNO3 to a final volume of 200 µl and the calcium concentrations of each sample were 

determined.  This enabled standards with the same calcium concentrations as the samples to 

be made up to reduce matrix effects during trace element analysis (Lear et al., 2002, Lear et 

al., 2010).  The 100 µl aliquot for trace metal analysis was diluted with trace metal pure 0.5M 
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HNO3 to a final volume of 350 µl.  Samples were analysed at Cardiff University on a Thermo 

Element XR magnetic sector field HR ICP‐MS against the standards with matched calcium 

concentration.   

 

Samples with a boron intensity signal less than five times greater than the analytical blank 

were discarded.  Isotope counts were blank corrected by subtracting the previous blank in the 

sequence, and blank corrected trace metal/calcium ratios (TM/Ca) were calculated.  Together 

with the TM/Ca ratios of interest (B/Ca, Mg/Ca, and Sr/Ca, U/Ca), several other ratios (Al/Ca, 

Mn/Ca, and Fe/Ca) were analysed to screen for potential contaminant phases, in spite of the 

cleaning steps described above.   

 

Two independent consistency standards (CS1 and CS2) with Mg/Ca ratios of 1.24 mmol/mol 

and 7.15 mmol/mol were respectively analysed at the beginning and end of every run to 

assess the analytical precision and long-term reproducibility.  Analytical precision (2 standard 

deviation of the measure value/reported value) for Mg/Ca analyses throughout the study is 

±1.39 % for CS1 and ±2.39 % for CS2, respectively.  External reproducibility (%RSD) over the 

whole time period of this study is ±0.70 % and ±0.64 % respectively.   

 

2.6 Trace element analysis via laser ablation ICP-MS 

Laser ablation ICP-MS (LA-ICP-MS) is a microanalytical technique that allows the in situ 

geochemical analysis of individual foraminifera making it extremely useful in palaeo-

oceanographic studies (Eggins et al., 2003, Hathorne et al., 2003, Reichart et al., 2003, Evans 
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et al., 2015a).  The facilitation of highly spatially resolved analyses by LA-ICP-MS means that 

information about any influence of post-depositional diagenetic alteration on the 

foraminiferal geochemistry can be assessed (Hathorne et al., 2003, Pena et al., 2005, Creech 

et al., 2010, Hasenfratz et al., 2016).  In December 2016, a new ArF excimer (193nm) LA- 

system with dual-volume laser-ablation cell (RESOlution S-155, Australian Scientific 

Instruments) was installed in the Cardiff University CELTIC laboratory.  This was coupled to 

the Thermo Element XR magnetic sector field HR ICP‐MS for LA-ICP-MS analyses.  Chapter 4 

provides a detailed optimisation and development of the system for the acquisition of 

geochemical depth profiles through foraminifera, which is then subsequently applied in 

Chapter 5.   

 

National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 612 

was used as the consistency standard throughout, and was calibrated for long term external 

accuracy and precision (reproducibility) using NIST SRM 610, the external standard.  Both 

accuracy (Measured Value/Reported Value) and precision (2 x Standard Deviation of the 

Measured Values/ Reported Value) are given relative to reported values taken from the 

GeoRem database (http://georem.mpch-mainz.gwdg.de/) in January 2018 (Table 2.2). 

Calcium (43Ca) is used as the internal standard throughout, assuming Ca is homogenous and 

well characterised in both glass standards.  This assumption is likely valid due to it being a 

major constituent of both NIST 610 and NIST 612.  NIST 610-calibrated NIST 612 precision is 

3.7% (n=90)).  This is very low considering both glasses have been shown to contain significant 

Mg heterogeneity, 6.7% and 7.5% for NIST 610 and NIST 612 respectively (Jochum et al., 

2011).  The accuracy of the NIST 610-calibrated NIST 612 data is comparatively poor, which is 

http://georem.mpch-mainz.gwdg.de/
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surprising considering the excellent long term calibrated precision.  The Mg/Ca ratio of 

measured NIST 612 when calibrated to NIST 610 ranges from 7.8% to 15.8% below the 

reported value, with a mean offset of 12.0% (n=90) below the reported value.  A similar offset 

has been observed over a much longer period of data collection (Evans and Müller, 2018).  

The NIST 610-calibrated data presented here supports the determination of Evans and Müller 

(2018) that the Mg values for both NIST 610 and NIST 612 require reassessment.   

  NIST 610 NIST 612 

Mg/Ca (mmol/mol) 8.75 ± 0.37 1.32 ± 0.54 

Al/Ca (mmol/mol) 188.3 ± 2.74 187.8 ± 2.63 

Mn/Ca (mmol/mol) 3.98 ± 0.02 0.33 ± 0.11 

Sr/Ca (mmol/mol) 2.90 ± 0.07 0.42 ± 0.01 

 

Improved accuracy and precision of Mg/Ca data may have been possible if reference materials 

with more homogenous Mg compositions had been used, in particular GOR128-G (Evans et 

al., 2015b).  Unfortunately, the MPI-DING suite of glass reference materials only became 

available to the CELTIC Laboratory after this study.  It is recommended that future analyses 

use MPI-DING reference glasses as a calibration standard for Mg/Ca data, instead of using 

NIST 610 or NIST 612.   

 

Data processing was performed using the SILLS software (Guillong et al., 2008) following the 

established protocols of Longerich et al. (1996).  

 

Table 2.2:  Reported values (converted to mmol/mol) from the GeoRem database 

(http://georem.mpch-mainz.gwdg.de/) in January 2018 used in this study.  Uncertainty is derived 

from the 95% confidence interval for each isotope. Values are corrected to NIST 610 in this thesis. 

 

http://georem.mpch-mainz.gwdg.de/
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3 Changing redox conditions at Sunbird-1 and its influence on 

benthic foraminiferal Mg/Ca 

3.1 Introduction 

The trace metal composition of benthic foraminifera has been used to reconstruct changes in 

many different environmental parameters through time (e.g. temperature (Mg/Ca) 

(Nürnberg et al., 1996, Lear et al., 2000, Sosdian and Rosenthal, 2009), carbonate saturation 

state (B/Ca) (Yu and Elderfield, 2007, Babila, 2014, Henehan et al., 2015), and redox 

conditions (U/Ca, Mn/Ca, Fe/Ca) (Boiteau et al., 2012, Koho et al., 2015, Chen et al., 2017, 

Petersen et al., 2018)). Changing sedimentary redox conditions are of particular interest as 

they can be influenced by changes in overlying primary productivity or bottom water oxygen 

content, and can hence offer a window into the ocean carbon cycle (Jaccard et al., 2009, Chen 

et al., 2017). These redox-sensitive proxies are based on the extent and composition of 

coatings that can form on foraminiferal tests in the sediment during early diagenesis. In many 

cases the Mg/Ca foraminiferal cleaning technique successfully removes such coatings (Barker 

et al., 2003). In some cases, however, the extent of the coatings is too severe to be completely 

removed by the cleaning process. In these cases, the presence of the coatings also acts as a 

warning flag, because the coatings may contain other elements (e.g., magnesium) that can 

bias downcore Mg/Ca and hence palaeotemperature records (Hasenfratz et al., 2016). 

Another common contaminant of foraminiferal Mg/Ca records is detrital silicates (clays), 

which can either be lodged inside test pores or physically bound up in such diagenetic coatings 

(Lea et al., 2005). Therefore, aluminium, manganese, iron, and uranium are commonly used 

as indicators for foraminiferal contamination.  They are suggestive of the presence of non-
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calcite bound phases such as detrital silicates, oxyhydroxides, ferro-manganese or oxide 

coatings, and secondary carbonates.   

 

Detrital silicates, in particular clays, are characterised by elevated (>100 µmol/mol) and 

covarying Al/Ca and Fe/Ca ratios (Barker et al., 2003, Lea et al., 2005).  When foraminiferal 

Mn/Ca exceeds 100 µmol/mol (Boyle, 1983), its role as a potential contaminant must be 

assessed (Barker et al., 2003).  Phases rich in manganese are commonly Mn carbonates, Mn-

Fe-oxides, and Mn-Fe-oxyhydroxides, all of which can contain magnesium from a secondary 

source (Boyle, 1983, Boyle and Keigwin, 1985, Pena et al., 2005, Pena et al., 2008, Hasenfratz 

et al., 2016).  If these trace metal/calcium ratios are elevated in concert with high Mg/Ca 

values, the possibilty of a diagenetic contribution to the Mg/Ca record, obscuring the primary 

palaeotemperature signal, has to be considered.  Removal of any contaminant signal from the 

foraminiferal Mg/Ca must be achieved to successfully reconstruct bottom water 

temperature.   

 

Here, a suite of trace metal records from three benthic foraminiferal species from Sunbird-1 

is presented.  that documents an unusually large decrease in the concentrations of redox 

sensitive metals in the late Miocene. While this implies a significant change in local redox 

conditions, it also implies that the corresponding downcore Mg/Ca records should not be 

interpreted solely in terms of bottom water temperature. The effectiveness of a potential 

new approach to correct for the diagenetic overprinting of the Mg/Ca is explored.  Finally, the 

records are used to identify which trace metal proxies are more robust to this form of 
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diagenetic alteration, and an alternative approach for generating Mg/Ca-palaeotemperatures 

at this site is proposed. 

 

Summary of Scientific Experiments: 

 This chapter presents trace metal data from three species’ of benthic foraminifera, 

Cibicidoides wuellerstorfi, Uvigerina peregrina, and Hoeglundina elegans, from the 

Sunbird-1 well, analysed via solution based ICP-MS after a thorough chemical cleaning 

protocol.  

 Both palaeotemperature proxies (Mg/Ca for the two calcite species and Sr/Ca for the 

aragonitic H. elegans) record values far greater than the expected range of bottom 

water termperatures.  

 The Mg/Ca records demonstrate downcore point-to-point correlation with redox-

sensitive trace metal proxies, Mn/Ca, U/Ca, and Fe/Ca, indicating that Mg/Ca is not 

recording a primary temperature signal, but is influenced by post-depositional 

contamination within the upper sediment. 

 Attempts were made to identify and correct for the Mg-rich contaminant phase by 

using paired calcite-aragonite results, in particular by applying the Mg/Fe ratio of the 

aragonitic H. elegans.   
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3.2 Materials and methods 

3.2.1 Species selection  

Three species of benthic foraminifera were analysed, the calcitic Cibicidoides wuellerstorfi and 

Uvigerina peregrina, and the aragonitic Hoeglundina elegans, from up to 30 sample depths in 

the Sunbird-1 core.  In some samples benthic foraminifera were very sparse, or even absent, 

so analyses were not possible in nine samples of C. wuellerstorfi, six samples of U. peregrina, 

and three samples of H. elegans (Appendix 3).  This is likely due to the shallow water depth 

(<300 m) of Sunbird-1, in which benthic foraminifera, in particular C. wuellerstorfi, can be 

extremely rare or even absent (Lutze and Thiel, 1989).   

 

The two calcite species were selected due to their differing life habitats, allowing for the 

assessment of any microhabitat effect on trace metal uptake. Variations exist in the chemistry 

of bottom waters and the upper few centimetres of pore waters, imparting a microhabitat 

effect on trace element incorporation (Tachikawa and Elderfield, 2002). Despite being only a 

few centimetres apart or less, these microhabitats may have very different carbonate 

chemistry, playing a pivotal role on foraminiferal Mg/Ca ratios widely used 

palaeotemperature proxy on a wide range of timescales through the Cenozoic (Rosenthal et 

al., 1997, Lear et al., 2000, Sosdian and Rosenthal, 2009, Elderfield et al., 2010, Lear et al., 

2010, Mawbey and Lear, 2013).   

 

C. wuellerstorfi lives in epifaunal environments (Lutze and Thiel, 1989), precipitating its test 

from the bottom water, and has been extensively used for Mg/Ca determined bottom water 

temperature reconstructions (Lear et al., 2002, Elderfield et al., 2006, Hillaire-Marcel and de 
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Vernal, 2007).  However, carbonate saturation state (Δ[CO3
2-]) impacts upon the Mg/Ca of 

benthic foraminifera, potentially obscuring any bottom water signal in waters with low 

carbonate saturation state (Chapter 2.2.2.1) (Rosenthal et al., 2006, Yu and Elderfield, 2008).  

This is especially noticeable with calibrations at cold bottom water temperatures <4⁰C where 

there is often a strong decrease in Δ[CO3
2-] in the modern oceans (Martin et al., 2002, Healey 

et al., 2008).  Infaunal species, such as U. peregrina, are potentially less susceptible to the 

influence of changing bottom water Δ[CO3
2-]; a result of the pore waters they precipitate from 

being buffered against changes in carbonate saturation state, Δ[CO3
2-] tending to zero in the 

top ~10 cm of the sediment column (Martin and Sayles, 1996, Zeebe, 2007).  This buffering of 

Δ[CO3
2-] in pore waters means the effect of Δ[CO3

2-] in infaunal species of foraminifera should 

be more constant.  Consequently, infaunal species calcifying from these pore waters might 

provide a more reliable record of bottom water temperature (Elderfield et al., 2010, Mawbey 

and Lear, 2013).  It should be noted however that the influence of pore water buffering may 

not be constant (Mawbey and Lear, 2013), and infaunal foraminiferal Mg/Ca is not necessarily 

devoid of any influence by bottom water Δ[CO3
2-] variation (Weldeab et al., 2016).   

 

Unlike foraminifera that secrete calcitic tests, the aragonitic Hoeglundina elegans shows no 

consistent relationship between Mg/Ca and bottom water temperature, with sensitivities 

ranging from 3%-16% per 1 ⁰C change (Rosenthal et al., 2006, Bryan and Marchitto, 2008, Ní 

Fhlaithearta et al., 2010, Lo Giudice Cappelli et al., 2015).  Because of its aragonitic mineralogy 

H. elegans more readily accepts Sr2+ into its test in place of Ca2+, aragonite having a partition 

coefficient (KSrarag) ten times that of calcite (Katz et al., 1972). Consequently, calibrations 

between bottom water temperature and core top H. elegans Sr/Ca have proven more 
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successful (Rosenthal et al., 2006, Lo Giudice Cappelli et al., 2015).  Furthermore, H. elegans 

might be very useful for sites where contamination by high-Mg coatings may potentially cause 

problems with the analysis of calcitic foraminiferal tests.   

 

3.2.2 Trace metal analysis 

Up to 15 individuals of each species of benthic foraminifera were picked from the 250–355 

µm size fraction.  In some instances sample mass was sacrificed in favour of ensuring that only 

foraminifera displaying well preserved tests were selected (Figure 3.1).  Samples were 

crushed between two glass plates ensuring all chambers were opened and chemically cleaned 

following a published protocol that included clay removal, oxidising and reducing steps (Boyle 

and Keigwin, 1985, Barker et al., 2003) (Appendix 2).  Each sample was analysed for trace 

element/calcium ratios via solution ICP-MS (Chapter 2.5).   
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Figure 3.1:  Light microscope (A-D) and SEM (E-H) images of well-preserved benthic foraminifera (C. 

wuellerstorfi (A-B, E-F) and H. elegans (C-D, G-H)) used for trace metal analysis from the 1368-1371m 

sample depth of Sunbird-1.   
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3.3 Results 

3.3.1 Cibicidoides wuellerstorfi and Uvigerina peregrina Mg/Ca  

Measured C. wuellerstorfi Mg/Ca ranges from 2.82 ± 0.04 mmol/mol to 17.83 ± 0.71 

mmol/mol, and measured U. peregrina Mg/Ca ranges from 2.03 ± 0.03 mmol/mol to 22.00 ± 

0.14 mmol/mol (2 SD, where SD is the analytical uncertainty) (Figure 3.2a).  The Mg/Ca ratios 

exceed the range observed in commonly applied bottom water temperature calibrations for 

C. wuellerstorfi (Lear et al., 2002, Lo Giudice Cappelli et al., 2015) and U. peregrina (Elderfield 

et al., 2010).  Application of these Mg/Ca records would result in unrealistically high 

reconstructed bottom water temperatures (up to 24.8˚C and 69.1⁰C for C. wuellerstorfi and 

U. peregrina respectively assuming modern seawater Mg/Ca). The high Mg/Ca values, and 

lack of the normal interspecies offset between C. wuellerstorfi and U. peregrina, strongly 

suggest the addition of magnesium from a secondary, post-depositional source in the early 

part of the record. 

 

3.3.2 Hoeglundina elegans Sr/Ca  

H. elegans Sr/Ca ranges from 2.75 ± 0.02 mmol/mol to 4.74 ± 0.10 mmol/mol (2 SD) (Figure 

3.2b). This means that all 27 values exceed the maximum value (2.72 mmol/mol) from the 

modern temperature calibration (Rosenthal et al., 2006).  Despite our poor understanding of 

seawater Sr/Ca through the Cenozoic (Lear et al., 2003, Sosdian et al., 2012), applying the 

Rosenthal et al. (2006) core top calibration using only oversaturated waters of the Indonesian 

Seaway, as used by Lear et al. (2008), these Sr/Ca records would result in high reconstructed 

bottom water temperatures (up to 23˚C) assuming modern seawater Sr/Ca (De Villiers, 1999).  
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Figure 3.2: Downcore Mg/Ca (A), Sr/Ca (B), Mn/Ca (C), Fe/Ca (D), U/Ca (E), and Al/Ca (F), records for 

C. wuellerstorfi (blue squares, n=21), U. peregrina (red diamonds, n=24), and H. elegans (yellow circles, 

n=27) in the Sunbird-1 core.   
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Figure 3.3:  Downcore C. wuellerstorfi (blue squares, n=21), U. peregrina (red diamonds, n=24), and H. 

elegans (yellow circles, n=27) B/Ca (µmol/mol) records from Sunbird-1.   
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3.3.3 Downcore records of contaminant indicators 

The extremely high Mg/Ca values in both C. wuellerstorfi (n=21) and U. peregrina (n=24), and 

the elevated Sr/Ca values in H. elegans (n=27) are associated with correspondingly high 

Mn/Ca (Figure 3.2c), Fe/Ca (Figure 3.2d), U/Ca (Figure 3.2e), and Al/Ca (Figure 3.2f) ratios 

(Appendix 4). The Mn/Ca and Fe/Ca ratios are in excess of the accepted thresholds for 

contaminant free trace metal ratios, 100 µmol/mol for Mn/Ca (Boyle, 1983) and Fe/Ca (Barker 

et al., 2003).  This is particularly the case for Fe/Ca, measured values varying from 625 to 

12000 µmol/mol for C. wuellerstorfi, from 255 to 16400 µmol/mol for U. peregrina, and from 

41 to 22000 µmol/mol for H. elegans.  Measured C. wuellerstorfi Mn/Ca values vary between 

85.0 and 1010 µmol/mol, between 15.5 and 662 µmol/mol for U. peregrina, and between 1.0 

and 816 µmol/mol for H. elegans.  C. wuellerstorfi U/Ca values vary between 10.2 and 586 

nmol/mol, U. peregrina U/Ca values vary between 2.70 and 1267 nmol/mol, and H. elegans 

U/Ca values vary between 67.5 and 1192 nmol/mol. These foraminiferal U/Ca ratios for 

Sunbird-1 are considerably higher than typical U/Ca ratios of primary foraminiferal calcite, 

which range from ~3-23 nmol/mol (Russell et al., 2004, Raitzsch et al., 2011, Chen et al., 2017).  

However, downcore foraminiferal U/Ca ratios of 300-700 nmol/mol have been reported 

(Boiteau et al., 2012, Gottschalk et al., 2016).  The Al/Ca values are very similar for all three 

species, measured C. wuellerstorfi values ranging from 8.90 to 390 µmol/mol, measured U. 

peregrina values range from 3.36 to 363 µmol/mol, and measured H. elegans values range 

from 4.26 to 365 µmol/mol.   
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3.3.4 Downcore B/Ca 

Unlike with the Mg/Ca and Sr/Ca ratios, B/Ca ratios from all three calcite species are atypically 

neither high nor do they show any downcore correlation with Mg/Ca, Mn/Ca, Fe/Ca, U/Ca, or 

Al/Ca (Figure 3.3).  Furthermore, the general decreasing trend in the redox sensitive trace 

metal/calcium records for all three species going up core (Figure 3.2) is reversed for B/Ca, 

values increasing higher up the core (Figure 3.3). 

 

Cibicidoides wuellerstorfi B/Ca values range from 128 µmol/mol to 235 µmol/mol.  This range 

is in agreement with previously published core top values from the same species (130-

225µmol/mol (Yu and Elderfield, 2007), and 130-230µmol/mol (Rae et al., 2011)).  Uvigerina 

peregrina B/Ca values range from 15.8 µmol/mol to 36.2 µmol/mol.  These values are 

considerably lower than for the epifaunal Cibicidoides wuellerstorfi, a trend which is 

consistent with core top studies on the same species’ (Rae et al., 2011).  This trend is also 

seen in other infaunal species such as Oridorsalis umbonatus (Brown et al., 2011).  The 

aragonitic species Hoeglundina elegans B/Ca values range from 16.1 µmol/mol to 105 

µmol/mol.  This is a greater range than observed in core top studies (~30-60 µmol/mol (Yu 

and Elderfield, 2007), and 40-70 µmol/mol (Rae et al., 2011)), although only two samples 

show significant departures from the range (Figure 3.3).   
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3.4 Discussion 

3.4.1 Redox changes at Sunbird-1 

With the exceptions of B/Ca and Al/Ca, Sunbird-1 C. wuellerstorfi, U. peregrina, and H. elegans 

trace metal/calcium ratios decrease up through the Sunbird-1 record (Figure 3.2).  These 

include large decreases in the concentrations of redox sensitive trace metals (Mn/Ca, Fe/Ca, 

and U/Ca), implying significant changes in local redox conditions during the late Miocene at 

Sunbird-1.   

 

Elevated concentrations of redox sensitive trace metals in the deepest part of the record 

suggest the early diagenetic alteration of the foraminiferal tests within the sediment column.  

This is likely to be Mn-, Fe-, and U-rich coatings precipitated onto the outside of the tests as 

a result of changing redox conditions in the sediment porewaters.  Under sufficient reducing 

conditions, manganese and iron are released from manganese (Mn4+) and iron (Fe4+) 

oxyhydroxides and reduced to free aqueous Mn2+ and Fe2+ (Froelich et al., 1979).  This process 

also leads to the reduction of uranium from uranyl (U6+) carbonate complexes to insoluble U4+ 

which can form authigenic coatings on sediment particles (Cochran et al., 1986).  Hence Mn2+ 

and Fe2+ can diffuse through pore waters in the upper sediment, becoming oxidised when 

oxic conditions are re-established, precipitating as Mn-, and Fe-rich diagenetic coatings on 

sediments and other phases, such as foraminifera.  It is therefore common to see inverse 

relationships between Mn/Ca and U/Ca in downcore records (e.g., (Boiteau et al., 2012)). In 

Sunbird-1 Mn/Ca and U/Ca both decrease up-core, although the pattern of change is not 

identical.  The coarse, three metre, sampling resolution results in each sample incorporating 

precipitates formed in both reduced (U-rich) and oxic (Mn-Fe-rich) pore waters.  A higher 



Cardiff University 51 | P a g e  Michael Nairn 

resolution record could potentially sample these different pore water environments, and 

therefore display inverse relationships between Mn/Ca and U/Ca.  

 

There are several factors that can affect the authigenic precipitation of redox sensitive metals, 

with the most important in typical ocean sediment cores being organic matter flux, dissolved 

oxygen content of the bottom waters, and sedimentation rate (Anderson, 1982, 

Klinkhammer, 1980).  Increasing organic matter flux and decreasing bottom water [O2] lead 

to more reducing pore waters, which would be expected to increase the precipitation of 

authigenic uranium. Furthermore, more reducing conditions tends to dissolve Mn 

precipitates, although the dissolved Mn may diffuse into a shallower oxic zone to form new 

authigenic precipitates in shallower horizons. Reduced sedimentation rates provide a 

mechanism for increased authigenic precipitation in both reducing and oxic conditions, 

providing a potentially simple explanation for the decrease in both U/Ca and Mn/Ca up-

section in Sunbird-1.  

 

The early part of the Sunbird-1 record had much slower rates of sedimentation than the rest 

of the core (Figure 3.5).  The sedimentation rate was ~2.9 cm/kyr prior to 11.8 Ma, i.e. much 

lower than the mean for the rest of the core (~9 cm/kyr).  This would have supported the 

precipitation of diagenetic overgrowths in both reduced and oxic diagenetic zones (Figure 

3.4), causing the concentrations of all redox sensitive trace metals to be substantially higher 

before 11.8 Ma because Mn-Fe-rich overgrowths, such as Mn-oxides and Mn-carbonates, 
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slowly precipitate onto a hard substrate (Mangini et al., 1987).  However, the concentrations 

of the redox sensitive trace metals decrease gradually over several million years, whereas the 

change in sedimentation rate appears to have occurred relatively abruptly around 11.8 Ma 

(Figure 3.5). While the lower sedimentation rates in the older part of the core would have 

favoured enhanced authigenic precipitation of U, Mn and Fe, it was not the only factor 

controlling the unusual pattern of redox sensitive metals observed in the Sunbird-1 core. 

 

Early sedimentation at Sunbird-1 took place in shallow waters, inferred to be less than 300 

metres, following subaerial exposure at the MMCT.  At this time the site would have been 

proximal to the continent, located in a shelf environment (Figure 2.2).  Furthermore, the ~60 

m global sea level fall associated with the expansion of the Antarctic Ice Sheet across the 

Figure 3.4:  Early stage degradation of organic matter in the upper sediment column, and the associated 

pore water chemistry.  Depths are approximate.  Figure from Schulz and Zabel (2006).  
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MMCT (~14 Ma) would have exposed continental shelves near Sunbird-1.  Combined with 

localised mid-late Miocene uplift in the region, this would have increased the gradients of 

rivers in the Lamu basin which supply the site (Mbede, 1987, Nyagah, 1995, Mbede and 

Dualeh, 1997), resulting in an enhanced continental weathering flux from a vast, 

predominantly granitic, cratonic source area to the site of Sunbird-1.  This would have 

supplied significant quantities of fluvial derived oxyhydroxides such as goethite together with 

detrital organic matter, in particular clays, via the Lamu River. Meanwhile, the substantial 

input of nutrients and organic matter to the Sunbird-1 site could have shoaled the oxic zone 

within the sediment due to available oxygen being rapidly used up via anaerobic respiration 

Figure 3.5:  Age-depth model for Sunbird-1 using the biostratigraphic datums of Wade et al. (2011) and 

Backman et al. (2012) on the geomagnetic polarity timescale of Gradstein et al. (2004) using linear 

interpolation between reliable biostratigraphic datums.  Plotted alongside are the downcore C. 

wuellerstorfi (blue squares, n=21), U. peregrina (red diamonds, n=24), and H. elegans (yellow circles, 

n=27) Fe/Ca (µmol/mol) records from Sunbird-1.   
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of photosynthetic algae within the overlying euphotic zone.  The degradation of organic 

matter can cause oxygen depletion within a few centimetres or less of the sediment-water 

interface, making these porewaters suboxic and favourable for authigenic uranium 

precipitation (Pedersen and Price, 1982, Reimers, 1987, Schulz and Zabel, 2006).  

Microorganisms consequently mineralise organic matter using other electron acceptors, 

progressively nitrate, manganese, iron, and sulfate (Froelich et al., 1979, Schulz and Zabel, 

2006) (Figure 3.4).  This is corroborated by the absence of C. wuellerstorfi in the samples prior 

to 13.04 Ma, potentially suggesting the oxygen concentrations in the bottom waters may have 

been too low for this species.   

 

The dominant clay lithology at Sunbird-1 supports a high Fe-Mn-oxyhydroxide input 

associated with organic matter flux from the continent.  The reduction of these Fe-Mn-

oxyhydroxides due to the suboxic conditions arising from the high productivity regime’ and 

degradation of organic matter, would have released the redox sensitive trace metals into the 

sediment porewaters.  These redox sensitive trace metals would then have been re-

precipitated as Fe-Mn-oxide foraminiferal coatings when oxic conditions were re-

encountered within the sediment porewaters, causing the observed elevated ratios. 

 

The unusual pattern of redox sensitive metals in the Sunbird-1 core likely reflects a 

combination of several different factors, but with a common underlying cause – the tectonic 

subsidence of the basin.  This tectonic subsidence of the basin would have resulted in the site 

of deposition, of Sunbird-1 continuously changing.  As well as increased water depth, Sunbird-

1 would have received less sedimentary input from the continent as the site subsided.  
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Furthermore, as the site of deposition subsided out of the surface waters, there would likely 

have been an increased influence of deeper water masses, replacing the dominance of coastal 

waters.  The potential influence of these factors, primarily controlled by basin subsidence, on 

the trace metal geochemistry of the bottom waters and upper sediment must be considered.  

 

In this model, the sedimentary input of detrital Fe-Mn oxyhydroxides and organic matter both 

decreased gradually through time, whilst sedimentation rates increased abruptly around 11.8 

Ma. Therefore, it is likely that sediment redox conditions and sedimentation rates both 

evolved through the Miocene at this site. It is not possible to determine whether the 

authigenic uranium and Fe-Mn oxyhydroxides were forming simultaneously, but this model 

allows for a concomitant decrease in both of their concentrations up through the core.  

 

The decrease in redox sensitive trace metal concentration through the depositional record 

likely resulted from the subsidence of the site away from the surface waters characterised by 

high fluxes of detrital organic matter and productivity.  Consequently, the supernatant 

bottom waters, and upper pore waters could have become more oxic; the pore waters in the 

upper few centimetres of the sediment column would have been less enriched in free 

aqueous Mn2+ and Fe2+, which are released under reducing conditions.  From ~11.5 Ma to the 

end of the record there is no further decrease in the Mn/Ca, Fe/Ca, and U/Ca ratios (Figure 

3.2 c, d, e), despite the likely continued tectonic subsidence of the basin.  It is possible that a 

threshold in terms of changing redox conditions has been crossed, the environmental 

conditions of the site no longer promoting the formation of diagenetic coatings with elevated 

concentrations of these redox state sensitive trace metals.   
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3.4.2 Characterisation of the contaminant phase 

Mg-Mn-rich carbonate overgrowths are a common source of contamination to foraminifera 

(Boyle, 1983, Pena et al., 2005, Pena et al., 2008, Hasenfratz et al., 2016).  However, the 

elevated and co-varying Fe/Ca ratios and clay rich sediment at Sunbird-1 make this unlikely, 

because carbonate overgrowths tend to form in coarse grained, carbonate rich sediments 

(Pedersen and Price, 1982), and have low Fe/Mn ratios (Hasenfratz et al., 2016).  The 

combined presence of Fe- and Mn-rich phases suggests the potential presence of oxides 

(Calvert and Pedersen, 1996).   

 

Mg/Mn ratios in Sunbird-1, as given by the gradient of the cross plots, are 8.3 mol/mol in C. 

wuellerstorfi, 19.7 mol/mol in U. peregrina, and 15.3 mol/mol in H. elegans.  The Mg/Mn ratio 

for H. elegans is likely the most realistic ratio for the contaminant coating, as there will be a 

temperature signal influencing the Mg/Ca ratios of the two calcite species.  Average Mg/Mn 

ratios in Mn nodules and Mn encrustations (common forms of Mn-Fe-oxides) across a wide 

range of ocean basins is 0.17 – 0.32 mol/mol (De Lange et al., 1992, Baturin, 2012).  The 

Mg/Mn ratios measured in the benthic foraminifera from Sunbird-1 are orders of magnitude 

different to the natural ranges for Mn-Fe-oxides, suggesting either that the contaminant is a 

different phase, or perhaps more likely that an unknown portion of the measured Mg/Ca 

decrease reflects an original temperature signal that is coincident with, but not caused by, 

the decrease in authigenic coatings.  However, it is important to note that the application of 

the reductive cleaning process on these samples will have removed the vast majority of the 

diagenetic coatings meaning that the Mg/Mn ratios of the cleaned benthic foraminifera are 

not representative of the original coatings.  Therefore, the disconnect between Mg/Mn ratios 
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in foraminifera from Sunbird-1 and the values typical of Mn-oxides does not restrict the 

interpretation of the foraminiferal tests having Mn-Fe-oxide coatings formed under changing 

redox conditions.   

 

3.4.3 Potential influence of detrital silicates at Sunbird-1 

The influence of detrital silicates, in particular clays, would be expected to be a major issue at 

Sunbird-1 due to the clay rich, low carbonate content of the sediment.  Aluminium in 

foraminiferal tests is unambiguously considered an indicator for the presence of detrital 

silicate grains (Emiliani, 1955, Barker et al., 2003, Lea et al., 2005).  Several samples of all three 

species exhibit Al/Ca ratios in excess of 100 µmol/mol.  This is the concentration below which 

Al incorporation is interpreted as having a negligible influence on Mg/Ca and Sr/Ca ratios.  

Therefore, a possible influence on trace metal/calcium ratios due to the incorporation of 

silicate grains into the shell digests requires investigation.  Furthermore, there is covariance 

between C. wuellerstorfi and U. peregrina Mg/Ca and Al/Ca (Figure 3.6 d and h).  

 

A key observation is that the C. wuellerstorfi and U. peregrina Mg/Ca and Al/Ca records show 

negligible point-to-point tracking downcore (Figure 3.7).  Similarly, with the exception of the 

concomitant peak in all trace metal/calcium ratios at 11.83 Ma, Sr/Ca shows no downcore 

correlation with Al/Ca in H. elegans (Figure 3.8 e).  This lack of downcore correlation with 

Mg/Ca or Sr/Ca, and the absence of a distinctive decrease through the record as with the 

redox sensitive trace metals suggests detrital silicates are not the primary cause of the signals 

in the trace metal/calcium records.  Maximum Al/Ca values for all three species are extremely 

similar, ranging from 363-390 µmol/mol.  This suggests that incorporation of Al is not  
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Figure 3.6:  Trace metal covariance plots from Sunbird-1 for C. wuellerstorfi (n=21) (A-D) and U. 

peregrina (n=24) (E-H).  Mg/Ca v Mn/Ca (red circles), Mg/Ca v Fe/Ca (orange diamonds), Mg/Ca v U/Ca 

(green hexagons), and Mg/Ca v Al/Ca (yellow triangles).  R2 correlations for all plots are given.   
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Figure 3.7:  Downcore (A) C. wuellerstorfi (n=21) and (B) U. peregrina (n=24) Mg/Ca (mmol/mol) and 

Al/Ca (µmol/mol) records from Sunbird-1.   
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Figure 3.8:  Downcore (A-E) and covariance (F-J) relationships between the H. elegans Sr/Ca 

(mmol/mol) record from Sunbird-1 and the H. elegans (A, F) Mg/Ca (mmol/mol), (B, G) Mn/Ca 

(µmol/mol), (C, H) Fe/Ca (µmol/mol), (D, I) U/Ca (nmol/mol), and (E, J) Al/Ca (µmol/mol) records.   
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Figure 3.9:  Relationship between H. elegans Mg/Ca (blue squares) and Mn/Ca (red circles), Fe/Ca 

(orange diamonds), U/Ca (green hexagons), and Al/Ca (yellow triangles) in Sunbird-1 as downcore 

records (A-D) and covariance plots (E-H).  Note that all equations in (E) to (H) are given in mmol/mol, 

and for all plots n=27. 
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dependent upon the carbonate phase, or the microhabitat, of the foraminiferal species.  

However, these maximum Al/Ca values are not from the same sample (Figure 3.2 f). 

 

This lack of Mg/Ca and Al/Ca association is further evidenced by the weak covariance between 

the H. elegans ratios (R2=0.31) (Figure 3.9 h).  Conversely, there is striking covariance and 

downcore point-to-point correlation between Mg/Ca, Mn/Ca, Fe/Ca, and U/Ca in the 

aragonitic H. elegans (Figure 3.9 a-c), and cross-plots between these trace metal ratios 

suggest there is significant covariance between them (R2>0.80) (Figure 3.9 e-g).   The intercept 

of the H. elegans Al/Ca v. Mg/Ca crossplot suggests samples absent of Al would have an 

Mg/Ca ratio of 2.53 mmol/mol, a value substantially higher than the “Al-free” Mg/Ca ratios 

determined from the other covariance plots (1.04 mmol/mol to 1.43 mmol/mol).  

Additionally, the six samples showing the highest H. elegans Mg/Ca ratios cover a wide range 

Figure 3.10:  Relationship between H. elegans Fe/Ca and Al/Ca in Sunbird-1 (n=27).  The low R2 value 

of 0.19 indicates a lack of correlation between Fe/Ca and Al/Ca values in H. elegans from Sunbird-1.  
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of Al/Ca ratios (Figure 3.9 h), further implying that Al/Ca is notthe primary driver of increased 

Mg/Ca ratios at Sunbird-1.  Of particular importance is the 11.26 Ma sample, which has the 

highest Al/Ca value in the H. elegans record but the Mg/Ca ratio for this sample is not 

substantially elevated relative to the nearby samples.  Furthermore, there exists minimal 

covariance between H. elegans Fe/Ca and Al/Ca (R2 = 0.19) (Figure 3.10).  Covariance between 

Fe/Ca and Al/Ca is typical of silicate contamination (Barker et al., 2003, Lea et al., 2005).  With 

this all considered it is concluded that detrital silicate particles are not the primary driver of 

the elevated C. wuellerstorfi and U. peregrina Mg/Ca ratios nor the H. elegans Sr/Ca ratios, 

although due to occasional Al/Ca ratios exceeding 100 µmol/mol their influence cannot be 

ruled out for individual samples.   

 

3.4.4 Assessing the impact of authigenic coatings on foraminiferal Mg/Ca and Sr/Ca records 

Post-depositional alteration of primary foraminiferal calcite, and therefore their trace metal 

geochemistry, can have multiple causes: a) detrital silicate grains (Emiliani, 1955, Barker et 

al., 2003, Lea et al., 2005), b) oxyhydroxides (Boyle, 1983, Palmer, 1985), c) secondary 

carbonates (Boyle, 1983, Pena et al., 2005, Hasenfratz et al., 2016), and d) oxide coatings 

(Hasenfratz et al., 2016).  These diagenetic phases have distinctive trace metal signatures 

which, if determined, can provide information about the post-depositional sedimentary 

environment and redox conditions.   

 

Benthic foraminiferal trace metal/calcium ratios indicative of changing, post depositional 

sediment redox conditions (Mn/Ca, Fe/Ca, and U/Ca) are elevated throughout the Sunbird-1 

record, in particular in the deepest interval. In isolation, the elevated contaminant/calcium 
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values are not necessarily restrictive to the application of Mg/Ca values for reconstructing 

bottom water temperature.  If the elevated contaminant/calcium value show no relationship 

with Mg/Ca, then it is generally considered safe to assume that any incorporation of trace 

metals used as contaminant indicators are not influencing the Mg/Ca values (Lear et al., 

2015).  Additionally, authigenic Mn-carbonates have a Mg/Mn ratio of  0.13 ± 0.13 mol/mol 

(Peacor et al., 1987) meaning only a minor proportion (<0.1 mmol/mol) of the measured 

foraminiferal Mg/Ca could originate from this contaminant coating (Schmidt et al., 2006).  

However, at Sunbird-1 the elevated Mg/Ca ratios demonstrate point-to-point correlation and 

downcore tracking with Mn/Ca, Fe/Ca, and U/Ca ratios for both C. wuellerstorfi and U. 

peregrina (Figure 3.11 - 3.13).  This strongly suggests an association between Mg/Ca and 

sedimentary redox conditions, which would lead to overestimations of reconstructed bottom 

water temperature.  In addition, the Mg/Ca ratios of the epifaunal C. wuellerstorfi and 

infaunal U. peregrina show significant covariance with Mn/Ca, Fe/Ca, and U/Ca (R2>0.50) 

(Figure 3.6 a, b, c, e, f, g).  For both calcitic species this covariance is greatest between Mg/Ca 

and Fe/Ca.  The clear downcore point-to-point correlation and significant covariance prevents 

the interpretation of either downcore Mg/Ca record solely in terms of bottom water 

temperatures.   

 

The observed downcore point-to-point correlation and covariance between H. elegans Sr/Ca 

and trace metal ratios indicative of contamination (Mn/Ca, Fe/Ca, and U/Ca) suggests that 

the elevated H. elegans Sr/Ca values may also be compromised in terms of being used for 

temperature reconstruction (Figure 3.8). The downcore increase and range in absolute H. 

elegans Mg/Ca, Mn/Ca, Fe/Ca, and U/Ca values are similar to the respective trends and 
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absolute ranges observed for C. wuellerstorfi and U. peregrina (Figure 3.2 a, c, d, e).  This 

suggests these trace metal/calcium ratios have a common primary control, which is 

independent of foraminiferal species.  However, in contrast to the downcore Mg/Ca records 

from the two species of calcite foraminifera the H. elegans Sr/Ca is relatively stable, on a 

point-to-point basis.  The main departure from this stability is the Sr/Ca peak at 11.82 Ma, 

which is associated with peaks in all the other trace metal/calcium records (Figure 3.8).  This 

suggests that Sr/Ca ratios are less influenced by contaminant oxide coatings, and that in 

regions with changing sedimentary redox conditions H. elegans Sr/Ca ratios may be a more 

resilient palaeotemperature proxy than the more commonly applied Mg/Ca ratio of calcitic 

foraminifera.   

 

In summary, the proposed mechanism for the decrease in redox sensitive trace metal 

concentration through the Sunbird-1 record is subsidence away from the euphotic zone with 

high detrital organic matter input, coupled with increasing sedimentation rates and 

decreasing input of fluvially derived detrital oxyhydroxides. As well as influencing pore water 

redox conditions, this subsidence would have also decreased bottom water temperatures; 

these two environmental conditions likely varying in tandem. Without an independent 

quantitative proxy for redox conditions it is therefore extremely challenging to deconvolve 

the temperature versus contaminant contributions to the foraminiferal Mg/Ca records.  



Cardiff University 66 | P a g e  Michael Nairn 

 

0

2

4

6

8

10

12

14

0

200

400

600

800

1000

1200

9 10 11 12 13 14

Mg/Ca

Mn/Ca

M
n

/C
a
 (µ

m
o

l/m
o

l)

M
g

/C
a
 (

m
m

o
l/
m

o
l)

C. wuellerstorfiA

0

5

10

15

20

25

0

100

200

300

400

500

600

700

9 10 11 12 13 14

Mg/Ca

Mn/Ca

M
g

/C
a
 (

m
m

o
l/
m

o
l)

M
n

/C
a
 (µ

m
o

l/m
o

l)

U. peregrinaB

Age (Ma)

Figure 3.11:  Downcore C. wuellerstorfi (n=21) and U. peregrina (n=24) Mg/Ca (mmol/mol) and Mn/Ca 

(µmol/mol) records from Sunbird-1.  All records demonstrate an overall decreasing trend, and point-

to-point correlation between Mg/Ca and Mn/Ca is apparent in both species.   
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Figure 3.12:  Downcore C. wuellerstorfi (n=21) and U. peregrina (n=24) Mg/Ca (mmol/mol) and Fe/Ca 

(µmol/mol) records from Sunbird-1.  All records demonstrate an overall decreasing trend, and point-

to-point correlation between Mg/Ca and Fe/Ca is apparent in both species.   
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Figure 3.13:  Downcore C. wuellerstorfi (n=21) and U. peregrina (n=24) Mg/Ca (mmol/mol) and U/Ca 

(nmol/mol) records from Sunbird-1.  All records demonstrate an overall decreasing trend, and point-

to-point correlation between Mg/Ca and U/Ca is apparent in both species.   
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3.4.5 A potential novel way to correct for contaminant coatings  

The application of foraminiferal Mg/Ca ratios to reconstruct palaeotemperature requires the 

complete removal of magnesium in secondary contaminant phases, leaving only the 

magnesium bound in primary calcite to record the true palaeotemperature signal. Despite 

employing a thorough chemical cleaning protocol, which was enhanced by performing the 

clay removal step twice and picking out visible detrital material, excess non-calcite bound Mg 

appears to be present in benthic foraminiferal samples from Sunbird-1.  Therefore, the 

possibility of obtaining more representative Mg/Ca values for the primary shell by employing 

a correction factor to remove the contaminant component of the Mg/Ca signal was explored. 

Previous work shows that whenever Mn- or Fe-rich contaminant coatings are prevalent paired 

measurements of the same sample, with and without the reductive step, allows the 

determination of the Mg/Mn or Mg/Fe of the contaminant phase (Barker et al., 2003, Lea et 

al., 2005).  This technique has proved successful in correcting for the influence of either 

carbonate or oxide coatings on foraminiferal Mg/Ca ratios (Pena et al., 2005, Pena et al., 2008, 

Hasenfratz et al., 2016).  Applying a more generic correction for the incorporation of 

magnesium into secondary phases bypasses this assumption that the contaminant phase is 

diagenetic oxide or carbonate (Equation 3.1 where X is the relevant contaminant trace metal).   

 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑. 𝟏:    
𝐌𝐠

𝐂𝐚 𝐂𝐎𝐑𝐑𝐄𝐂𝐓𝐄𝐃
= 
𝐌𝐠

𝐂𝐚
− (

𝐗

𝐂𝐚
 𝐱 
𝐌𝐠

𝐗
) 

 

To determine the Mg/Mn, Mg/Fe, and Mg/U ratios of the contaminant phase, the paired 

calcitic-aragonitic trace metal ratios were utilised.  Because H. elegans precipitates an 
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aragonitic test, temperature has a negligible control on the Mg/Ca ratio (Rosenthal et al., 

2006, Lo Giudice Cappelli et al., 2015).  Consequently, all Mg is assumed to be contained in 

the contaminant phase, none being incorporated into the orthorhombic aragonite lattice (a 

useful over-simplification).  Therefore, the Mg/Mn, Mg/Fe, and Mg/U ratios of H. elegans are 

inferred as reflecting solely a contaminant signal, uncompromised by any primary 

temperature-controlled Mg/Ca incorporation.  Incorporating these ratios with equation 3.1 

corrects the downcore C. wuellerstorfi and U. peregrina Mg/Ca ratios for the presence of an 

Mg-rich contaminant phase (Figure 3.14).   

 

Applying the correction factors produces a visual lowering of the downcore Mg/Ca records 

for both calcite species (Figure 3.14).  The significance of the lowering was tested by using a 

two-sample paired t-test for means (RStudio, 2015).  For all six scenarios the contaminant-

corrected Mg/Ca data is significantly (P « 0.001, degrees of freedom ≥ 20) lower than the 

original Mg/Ca data (Table 3.1).  Therefore, the use of Mg/X correction factor significantly 

changes the Mg/Ca data in all scenarios.   

 

 

  Mn-corrected Fe-corrected U-corrected 

C. wuellerstorfi (n=21) 4.94 mmol/mol 3.33 mmol/mol 2.52 mmol/mol 

U. peregrina (n=24) 4.64 mmol/mol 4.17 mmol/mol 4.11 mmol/mol 

Table 3.1:  Mean lowering of the Mg/Ca value when applying the contaminant correction factor.  Use of 

a two sample paired t-test (RStudio, 2015) shows the corrected Mg/Ca data is significantly lower than 

the original Mg/Ca data for all 6 scenarios (P « 0.001, degrees of freedom ≥ 20).   
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Despite the significant lowering the application of the H. elegans Mg/X molar ratios does not 

satisfactorily correct for the contaminant phase.  For all six scenarios, the contaminant 

corrected record shows downcore point-to-point correlation with the original Mg/Ca record 
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Figure 3.14:  Contaminant corrected downcore C. wuellerstorfi (n=21) (A-C) and U. peregrina (n=24) (D-

F) Mg/Ca (mmol/mol) records from Sunbird-1.  Corrected Mg/Ca is calculated using Equation 3.1 and 

using the H. elegans Mg/X molar ratio, where X is Mn (A, D), Fe (B, E), or U (C, F).  In all cases the 

contaminant correction lowers the Mg/Ca record, however, the corrected records show downcore 

point-to-point correlation with the original, contaminated Mg/Ca record. 
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(Figure 3.14).  This suggests the influence of contamination on the Mg/Ca records has not 

been fully accounted for.  Furthermore, three of the six scenarios have corrected Mg/Ca 

values less than zero, which cannot be correct.  The unrealistic nature of the Fe-corrected 

Mg/Ca records are most surprising because of the clear peak-to-peak correlation in the depth 

domain between H. elegans Mg/Ca and Fe/Ca (Figure 3.9 b), and the extremely strong 

covariance (R2 = 0.97) between them (Figure 3.9 f).  In addition, the slope of the Mg/Fe linear 

fit is constant, indicating there is a consistent molar ratio over the full range of H. elegans 

Mg/Ca and Fe/Ca ratios. This suggests a uniform composition of contaminant through the 

core, independent upon Fe abundance.   

 

A possible reason for this technique not successfully correcting for the contaminant coating 

is the application of a full chemical cleaning protocol.  This included both the oxidative and 

reductive cleaning steps, which will have removed some of the contaminant coatings, but 

evidently not in their entirety.  Pertinently, the reductive cleaning step would have reduced 

the Mg/Ca ratio of the primary test due to preferential dissolution of Mg2+ in the calcite lattice 

(Yu et al., 2007). Another factor could be the presence of more than contaminant phase with 

different compositions,e.g. one formed during reducing porewater conditions and another 

formed in oxic porewater conditions. This novel approach of using trace metal/calcium ratios 

from paired aragonitic and calcitic foraminifera to correct for contaminant coatings looks very 

promising, as shown by the relationship between Mg/Ca and  Mn/Ca (R2 = 0.80), Fe/Ca (R2 = 

0.97), and U/Ca (R2 = 0.84).  For future studies to successfully implement this approach, they 

should only include the clay removal cleaning step.  Unfortunately, the low abundances of 

benthic foraminifera in the sediment meant this experiment could not be repeated.   
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The failure of H. elegans Mg/Mn, Mg/Fe, or Mg/U ratios to satisfactorily correct for the Mg-

rich contaminant phase in C. wuellerstorfi or U. peregrina means an alternative approach 

must be considered for determining the primary foraminiferal Mg/Ca ratio for 

palaeothermometry.  The best way to allow for the interpretation of trace metal data with 

confidence is by adopting a microanalytical approach, as this allows for each sample to be 

individually assessed for a range of potential contaminants.  This advantage is pertinent at 

Sunbird-1 as there is no consistent offset due to a single contaminant phase.   

 

3.4.6 An assessment of the impact of the coatings on other trace metal records 

The observed impact of contamination by redox sensitive trace metals on the Mg/Ca and 

Sr/Ca ratios does not noticeably influence the B/Ca ratios.  Whereas the redox sensitive trace 

metal concentrations decrease upwards in the core (Figure 3.2), the B/Ca ratios for all three 

species increase (Figure 3.3).  This strongly suggests that B/Ca is not incorporated into the 

contaminant coating, and the observed trend of increasing values up through the record is 

likely primary.   



The dampened increase in U. peregrina B/Ca relative to C. wuellerstorfi is likely due to infaunal 

species being less sensitive to bottom water Δ[CO3
2-].  Infaunal species of foraminifera calcify 

in contact with pore waters, which may be buffered against major changes in Δ[CO3
2-]  (Zeebe, 

2007, Mawbey and Lear, 2013, Elmore et al., 2015), as opposed to the supernatant bottom 

water from which epifaunal species calcify from.  This dampened signal is maintained despite 



Cardiff University 74 | P a g e  Michael Nairn 

the large changes in sedimentary redox conditions at the site to support the interpretation 

that B/Ca is unaffected by these changes.   

 

3.5 Conclusions 

Downcore Mn/Ca, Fe/Ca, and U/Ca from three species of benthic foraminifera indicate 

considerable changes in the sedimentary redox conditions at Sunbird-1 through the mid-late 

Miocene. These redox sensitive trace metal records demonstrate significant precipitation of 

authigenic uranium and Mn-Fe-oxides, during early stage diagenesis at the site.  High fluxes 

of detrital organic matter from the proximal continent reduced oxygen concentrations in the 

pore waters, whilst rivers may have provided a major source for detrital Fe-Mn 

oxyhydroxides.  Under these reducing conditions, U was precipitated and Mn2+, Fe2+ were 

released into the sedimentary porewaters where they precipitated onto the hard substrates 

of foraminiferal tests once they diffused into oxic regions.  The concentrations of redox 

sensitive trace metals decreases through the record, a trend that can be explained by the 

tectonic subsidence of the basin.  As the site subsided away from the surface waters, there 

was a reduction in the input of detrital organic matter and nutrients to the site of deposition.  

 

Despite the application of a consistent and thorough cleaning protocol commonly used to 

remove possible contaminant phases, the Mg/Ca records from both epifaunal (C. 

wuellerstorfi) and infaunal (U. peregrina) benthic foraminifera at Sunbird-1 show a strong 

point to point downcore association with the redox sensitive trace metal ratios.  This strongly 

suggests that the signals recorded in the foraminiferal trace metal records reflect post-

depositional diagenesis.  It follows that the primary geochemical signal of the foraminiferal 
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tests has been overprinted to some extent by the redox changes within the sediment column 

during early stage diagenesis.  This alteration of the primary signal, by the precipitation of 

oxide contaminant coatings prevents the robust reconstruction of bottom water 

temperatures at Sunbird-1.  Without an independent proxy for redox conditions, a quantitive 

estimate of the contaminant coatings’ contribution to the foraminiferal Mg/Ca records 

cannot be determined.  This would allow for the contribution of temperature to be isolated. 

 

Clays dominate the sediment recovered from the Sunbird-1 well.  This promotes the 

possibility that detrital silicates could be a primary cause of the foraminiferal Mg/Ca signals 

through the record.  However, the foraminiferal Al/Ca records suggest this is not the case.  

The foraminiferal Al/Ca records do not display the decreasing trend through the record, so 

distinctive in the Mg/Ca, Sr/Ca, and redox-sensitive trace metal records, and also 

demonstrate negligible point-to-point tracking with the Mg/Ca records from the same 

species.  Furthermore, there is a lack of correlation between H. elegans Al/Ca and Fe/Ca 

ratios, a feature typical of silicate contamination. 

 

Using paired aragonitic-calcitic trace metal/calcium measurements to correct for the 

contaminant coatings has been attempted.  This novel approach assumes that all Mg 

incorporated into the aragonitic H. elegans lattice is bound in the contaminant phase.  

However, this still results in the C. wuellerstorfi and U. peregrina Mg/Ca values being 

unrealistically high, likely due at least in part to the incorporation of the reductive and 

oxidative chemical cleaning steps.  This paired aragonitic-calcitic approach showed potential, 
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but any future application of this technique should omit the reductive and oxidative cleaning 

steps.   

 

Despite the distinctive downcore association between Mg/Ca, Sr/Ca, and the redox sensitive 

trace metals, it is noteworthy that the B/Ca records from all three species do not show any 

similar association.  Furthermore, the B/Ca values are within the range of measured values 

from core-tops for each species.  This strongly suggests that foraminiferal B/Ca ratios are 

unaffected by contaminant coatings which form due to changing sedimentary redox 

conditions, independent of microhabitat or carbonate phase.   

 

To successfully identify the primary calcite phase from the contaminant phase, a high spatial 

resolution Laser Ablation (LA) ICP-MS study is required.  Identifying the Mg/Ca ratios of the 

primary calcite using this microanalytical technique could provide a more robust 

quantification of absolute bottom water and sea surface temperatures from the site of 

Sunbird-1.   
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4 Optimising LA-ICP-MS ablation parameters to assess the 

impact of identifying the primary test of Mn-rich foraminifera on 

Mg/Ca palaeothermometry 

4.1 Introduction 

Sunbird-1 is a well located offshore Kenya (04° 18' 13.268" S, 39° 58' 29.936" E, 723 m water 

depth, Western Indian Ocean) dominated by clays reflecting high sedimentation rates 

(Chapter 2.1).  The site provides a unique opportunity to reconstruct tropical sea surface and 

bottom water temperature from the mid-late Miocene using unrecrystallised foraminifera.  

Benthic foraminifera from Sunbird-1 have been analysed by solution based ICP-MS (Chapter 

3).  However, despite the glassy appearance of benthic foraminifera from Sunbird-1 under a 

reflecting light microscope and scanning electron microscope imagery revealing no obvious 

diagenetic coatings, the Mg/Ca records of both epifaunal and infaunal species show a 

downcore association with their respective Mn/Ca records (Figure 4.1).  This association 

suggests diagenetic incorporation of an Mg-Mn-rich phase, inhibiting the ability of these 

glassy foraminifera to provide robust and reliable Mg/Ca temperatures. 

 

By generating geochemical depth profiles through foraminiferal tests with a suitably high 

spatial resolution it is possible to distinguish the primary foraminiferal test from the Mg-Mn-

rich contaminant phase (Creech et al., 2010), and then use the unaltered primary Mg/Ca ratio 

to infer the calcification temperature (Pena et al., 2005, Hasenfratz et al., 2016).   
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Figure 4.1: Solution based ICP-MS results from Sunbird-1.  Downcore records of Mg/Ca (blue squares) 

and Mn/Ca (red circles) for (A) C. wuellerstorfi (n=21) and (B) U. peregrina (n=24), with insets of cross-

plots between Mg/Ca and Mn/Ca for C. wuellerstorfi (R2=0.53) and U. peregrina (R2=0.50).   
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Direct sampling of solid phase material via Laser Ablation (LA-) allows for geochemical 

analyses through individual foraminiferal tests at the sub-micron scale when coupled to an 

inductively-coupled-plasma mass spectrometer (ICP-MS) (Wu and Hillaire-Marcel, 1995, 

Eggins et al., 2003, Reichart et al., 2003, Eggins et al., 2004, Evans et al., 2015a, Evans et al., 

2015b, Fehrenbacher et al., 2015, Vetter et al., 2017, Petersen et al., 2018).  A key advantage 

of analysing the trace element composition of foraminifera using LA-ICP-MS over the more 

traditional solution based ICP-MS is the ability to recognise the diagenetically altered portions 

of the tests, allowing identification of the primary calcite (Creech et al., 2010).  The elemental 

composition of this primary calcite can provide uncompromised information about 

palaeotemperature (Eggins et al., 2003, Pena et al., 2005, de Nooijer et al., 2017) and other 

palaeo-environmental conditions such as pH (Thil et al., 2016) and oxygenation (Koho et al., 

2015, Petersen et al., 2018).   

 

This study is the first application of the RESOlution S-155 ArF 193nm excimer laser ablation 

system (Australian Scientific Instruments), when coupled to the Thermo Element XR magnetic 

sector field HR ICP-MS at Cardiff University.  The objective of this study was to optimise the 

ablation parameters to collect accurate and precise data from homogenous glass standards, 

and then reproducible, accurate and precise measurements at the maximum possible spatial 

resolution through foraminiferal calcite.  Optimal operating parameters for the glass standard 

and foraminiferal calcite had to be determined separately because they have a different 

matrix (Dueñas-Bohórquez et al., 2009).  This was achieved by conducting extensive, 

systematic analyses at a range of fluences and repetition rates to determine the optimal 

combination of settings.  Fluence is a measure of laser energy density (Jcm-2), and repetition 
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rate is the number of laser pulses per second (Hz).  It follows that increasing these parameters 

increases the quantity of ablated material, and hence signal intensity, but reduces the 

achievable spatial resolution.   

 

By determining optimal operating parameters, the LA-ICP-MS method has a spatial resolution 

that allows the primary trace metal signal to be isolated from regions of the test containing a 

Mg-Mn-rich diagenetic phase. This allows the primary calcite Mg/Ca to be used to calculate 

palaeotemperatures. Additionally, it has been possible to characterise the Mg/Mn molar 

ratios of the contaminant phase present in the test and assess its potential impact on Mg/Ca 

derived palaeotemperature estimates from traditional solution analysis.   

 

Summary of Scientific Experiments 

 This chapter reports the first analyses using the newly installed laser ablation 

ICP-MS system in the School of Earth and Ocean Sciences at Cardiff University. 

 The geochemical signal of the NIST 610 glass standard was measured across a 

range of fluences and repetition rates.  Therefore the combination of these 

parameters that produces the most stable and intense signal, required for 

standardisation of geochemical analyses, could be determined. 

 Test wall transects through a single Orbulina universa chamber were measured 

across a range of fluences and repetition rates.  This enabled the 

determination of which combination of these parameters produces the most 

stable, intense, and reproducible signal.   
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 The quantity of ablation profiles required to get a consistent Mg/Ca value for 

a sample was determined, for both the benthic foraminifera C. wuellerstorfi, 

and the planktic foraminifera D. altispira.  Multiple profiles from multiple 

specimens is required, due to the intra- and inter-specimen heterogeneity of 

foraminifera.  A consistent Mg/Ca value for a sample is required for the 

determination of trends in Mg/Ca, and therefore temperature, through a 

record.  

 

4.2 Laser ablation instrumentation and method development 

4.2.1 General laboratory setup 

Geochemical analyses were performed using an ArF excimer (193nm) LA- system with dual-

volume laser-ablation cell (RESOlution S-155, Australian Scientific Instruments) (Figure 4.2), 

installed in the Cardiff University CELTIC laboratory in December 2016, and my study is the 

Figure 4.2: (A) RESOlution ArF 193nm excimer laser ablation unit.  (B) Schematic cross section adapted 

from Müller et al. (2009) of the Laurin dual volume S-155 laser ablation cell. 

B A 
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first application of the system.  The dual-volume cell improves signal stability and uniformity, 

enabling a very short washout time.  The performance and specification of the RESOlution LA- 

system with a smaller M-50 dual volume ablation cell has been previously described in detail 

(Müller et al., 2009).  In the CELTIC laboratory this is coupled to a Thermo Element XR 

magnetic sector field HR ICP-MS. The extended range provided by the Faraday detector 

enables laser ablation work.  Ablated sample aerosol passes through a ‘squid’ en route to the 

ICP-MS. The squid is a device which splits the aerosol into 10 differing length tubes smoothing 

the gas signal when they recombine (Eggins et al., 1998).  This smoothing removes any 

spectral skew, as demonstrated by previous studies (Müller et al., 2009, Fehrenbacher et al., 

2015).   

 

Daily tuning of the system was required, as with all mass spectrometers.  Daily tuning was 

performed on the NIST SRM 612 glass standard to ensure the sensitivity and stability of the 

system remained consistently high.  The goal of the daily tuning procedure on the NIST SRM 

612 is to ensure the signal intensity and stability of samples and standards during analysis are 

high enough, but oxide ratios are kept below an acceptable threshold.  It is important to 

ensure U+/Th+ is consistently ~1, and that ThO+/Th+ remains below 0.4%.  This was achieved 

by systematic tuning of the torch power and position, before optimising the flow of Ar (carrier, 

coolant, and auxiliary) to the ICP-MS.  Further improvement of the signal stability was 

achieved by adjusting the flow rate of He and N2 into the laser ablation cell.  The typical 

operating parameters determined by this tuning are summarised in Table 4.1.   
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The isotopes analysed were 25Mg, 26Mg, 43Ca, 48Ca, 55Mn, 87Sr, and 88Sr, each isotope having a 

constant dwell time of 50 milliseconds (ms), including the time devoted for sequential peak 

hopping.  The total sweep time was therefore 350 ms allowing for 200 sweeps per peak at 

each repetition rate, through the 70-second method time.  No spectral interference was 

expected on the analysed isotopes, and therefore the magnetic sector field ICP-MS was 

operated in low-resolution (LR) mode to maximise sensitivity.  Analysing isotopes of iron with 

a magnetic sector field ICP-MS has to be done in medium-resolution (MR) because of spectral 

interference with argon in the sample gas.  This applies to the interference of 40Ar16O with 

56Fe (May and Wiedmeyer, 1998) and 40Ar16O1H with 57Fe (Evans and Müller, 2018b).  Because 

the acquisition of isotopes in MR follows the acquisition of isotopes in LR, it would not be 

possible to directly compare measurements of either 56Fe or 57Fe to the other isotopes, as 

they would be from spatially discrete regions of the foraminiferal test.  Therefore, Fe is not 

analysed. 

 

Established protocols for data reduction of time-resolved depth profiles were followed 

(Longerich et al., 1996).  First, background count rates were subtracted from each data point 

to calculate the gas blank corrected element counts for both the NIST 610 reference standard 

and the foraminifera.  Spikes, determined as values outside two standard deviations (95%) of 

the mean of the measurements preceding and following the proposed spike, were identified 

and removed.  All ablation profiles were then normalised to an internal standard, 43Ca.  

Foraminiferal trace metal/Ca concentrations were calculated using the assumption of 40 wt% 

for CaCO3.  These background corrected ratios were then converted to mmol/mol by 
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normalising to the known trace metal element concentrations of the NIST SRM 610 glass 

standard (Mg/Ca = 8.75 ± 0.37 mmol/mol) (Jochum et al., 2011).   

 

All foraminiferal depth profiles were drift corrected by bracketing with NIST SRM 610 

analyses.  Due to the short timeframe of the analyses in this study, and this being the first 

study in the new Cardiff University CELTIC laboratory using this LA-ICPMS setup, it is not 

ICP-MS: Thermo Element XR 

RF Power 1300 Watts 

Torch Position (X, Y, Z) 2.5, -0.2, -4.2 mm 

Argon Carrier Flow (optimised daily) ~0.90 l/min 

Argon Coolant Flow 14 l/min 

Argon Auxiliary Flow 0.80 l/min 

Sweep Time 350 ms 

Cones Ni 

 

Laser Ablation System: RESOlution S-155 

Helium Flow 350 ml/min 

N2 Flow 4 ml/min 

Spot Size 64 µm 

Scan Speed 3 µm s-1 

Fluence (varying) 3.0-5.0 Jcm-2 

Repetition Rate (varying) 1.0-8.0 Hz 

ThO+/Th+ <0.4% 

U+/Th+ ~1 

Table 4.1:  Typical LA-ICP-MS operating parameters for NIST SRM 610 and 612 glass standards. 
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possible to calculate long-term precision.  However, an assessment of five years’ worth of LA-

ICPMS data, analysed on the same laser ablation system, indicates that blank corrected and 

calibrated measurements demonstrate no long term bias or drift (Evans and Müller, 2018b).   

 

4.2.2 Methodology to determine optimal operating parameters for the analysis of the NIST 

610 glass standard  

In this study NIST Standard Reference Material 610 glass is used as the external standard for 

calibrating the Sunbird-1 foraminiferal analyses because it is more homogenous than NIST 

612 for Mg (Evans and Müller, 2018b).  However, the lower elemental concentrations of the 

NIST Standard Reference Material 612 (1.32 ± 0.54 mmol/mol) would make it better matrix 

matched to foraminiferal calcite than the NIST 610 used here (Pearce et al., 1997, Jochum et 

al., 2011). 

 

The optimal operating parameters for the NIST 610 glass standard in the Cardiff University 

CELTIC Laboratory were explored using a suite of experiments encompassing a range of 

fluences (Jcm-2) and repetition rates (Hz).  The NIST 610 standard reference material was 

analysed from linear ablation paths, minimising any elemental fractionation with increasing 

crater depth (Eggins et al., 1998).  Five ablation paths with five different energy densities (3.0, 

3.5, 4.0, 4.5, and 5.0 Jcm-2) were run, all using the same operating parameters (Table 4.1) with 

varying repetition rates (1.0-8.0 Hz).  For each repetition rate 24.5 seconds of background and 

70 seconds of ablation data were collected.  Data collection for each ablation path therefore 

totalled 756 seconds, with a total of 140 seconds of delay.  The optimal operating parameters 
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will be the combination of fluence and repetition rate that produces an intense and stable 

signal, without over-compromising spatial resolution, over the 70 seconds of ablation. 

 

4.2.3 Methodology to determine optimal operating parameters for the analysis of 

foraminiferal tests  

Different operating parameters are required for ablating foraminiferal calcite than for the 

glass standard because it has a different matrix.  Whereas the NIST 610 standard is a 

homogenous glass, foraminiferal tests comprise heterogeneous, biologically precipitated 

calcite. 

 

A single test of the planktic species Orbulina universa from the 1551-1554 m sample depth in 

Sunbird-1, with a biostratigraphic age of 11.74 Ma, was chosen to investigate optimal ablation 

parameters for foraminiferal analysis (Figure 4.3a).  Orbulina universa was used because it 

has a large and all-encompassing spherical final chamber (Le Calvez, 1936, Caron et al., 1987, 

Lea et al., 1995,), allowing for the maximum quantity of profiles on the same chamber of the 

same test to investigate reproducibility (Figure 4.3b).  The test was picked from the >355 µm 

sediment size fraction, again to maximise the number of possible depth profiles per test.  

Orbulina universa inhabit the euphotic zone, <100 m water depth, their algal symbionts 

requiring light to photosynthesise (Be et al., 1973, Spero and Parker, 1985, Hemleben et al., 

2012).  Therefore, they precipitate their primary tests from seawater in the surface mixed 

layer, and their Mg/Ca ratios record sea surface temperature.   
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Fine clays and other detrital material on the outer surface of the test were removed by rinsing 

three times in 18.2 MΩ DI water, ultrasonicating for 5-10 seconds in methanol, and finally 

rinsing a further time in 18.2 MΩ DI water.  The aggressive oxidative and reductive cleaning 

protocols commonly applied in the preparation of foraminifera for trace metal analysis were 

not included as this study was designed to distinguish between pristine test calcite and 

authigenic diagenetic coatings.  Furthermore, these cleaning protocols were unsuccessful in 

removing the elevated Mg and Mn of a contaminant phase prior to solution based ICPMS 

from this site (Figure 4.1 and Chapter 3), and offer negligible benefit compared to that 

achieved by ultrasonication in 18.2 MΩ DI water and methanol (Vetter et al., 2013).   

 

Following the removal of any adhered clays the test was mounted onto a glass slide using 

double sided carbon tape and was allowed to dry before being mounted into the sample cell 

(Evans et al., 2015a, Fehrenbacher et al., 2015).  As with the optimisation of the NIST SRM 

610 glass standard a suite of experiments was conducted with different combinations of 

energy densities (3.0 and 3.5 Jcm-2) and repetition rates (2.0, 2.5, and 3.5 Hz) regularly 

Figure 4.3: (A) SEM image of Orbulina universa from the 1551-1554 m depth sample in Sunbird-1, and 

(B) schematic cross section of Orbulina universa showing its all-encompassing spherical final chamber 

(red) and inner juvenile chambers (black).  

A B 
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employed for ablating test wall transects through foraminifera (Table 4.2) (Creech et al., 2010, 

Evans et al., 2015a, Evans et al., 2015b, Holland et al., 2017).  Using operational parameters 

for the external standard that are different to that of the foraminiferal test does not affect 

the accuracy of the analyte, Mg/Ca values of the foraminiferal tests being statistically identical 

(Dueñas-Bohórquez et al., 2009).  In order to analyse intrashell variability in foraminifera it is 

necessary to maximise spatial resolution of depth profiles.  Ideally data can be collected at 

the sub-micron scale by using a combination of low fluence and repetition rates so that each 

pulse only ablates a very thin, ~0.1 µm, layer of calcite, but enough to generate a high enough 

signal intensity.  All depth profiles used a 50 µm spot size to maximise spatial resolution and 

the number of profiles that could be obtained from the individual test, to investigate 

analytical reproducibility.  All foraminiferal depth profiles were run on the same day to 

mitigate any day to day fluctuation in stability.  The NIST 610 glass standard was ablated using 

the relevant optimised parameters (Chapter 4.3.2) to monitor and correct for its drift through 

the day.  Despite being a synthetic glass, there is no evidence for any problems associated 

with matrix matching when using NIST 610 to calibrate carbonate samples (Czas et al., 2012, 

Evans and Müller, 2018b).   
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ICPMS: Thermo Element XR 

RF Power 1300 Watts 

Torch Position (X, Y, Z) 2.5, -0.2, -4.5 mm 

Argon Carrier Flow (optimised daily) ~0.90 l/min 

Argon Coolant Flow 14 l/min 

Argon Auxiliary Flow 0.80 l/min 

Sweep Time 350 ms 

Cones Ni 

 

Laser Ablation System: RESOlution S-155 

Helium Flow 350 ml/min 

N2 Flow 4 ml/min 

Spot Size 50 µm 

Scan Speed 3 µms-1 

Fluence (varying) 3.0 and 3.5 Jcm-2 

Repetition Rate (varying) 2.0, 2.5, and 3.5 Hz 

ThO+/Th+ <0.4% 

U+/Th+ ~1 

 

4.2.4 Determination of the number of profiles required for a representative sample Mg/Ca: 

Geochemical heterogeneity exists both within an individual foraminiferal test and between 

foraminiferal tests from the same sample (Eggins et al., 2004, Sadekov et al., 2005, Sadekov 

et al., 2008, Fehrenbacher and Martin, 2014).  To acquire a consistent Mg/Ca ratio for 

temperature reconstructions the approximate total number of profiles that are required to 

Table 4.2: Operating parameters of LA-ICP-MS for Orbulina universa analyses. 
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produce a homogenous Mg/Ca ratio for a sample, which can be deemed representative, is 

determined.  This was conducted on individuals of C. wuellerstorfi and D. altispira, the benthic 

and planktic foraminiferal species used for the bottom water and sea surface temperature 

reconstructions in Chapter 5.  A total of 10 test wall transects were conducted through each 

individual specimen to nullify the intra-specimen heterogeneity, and this was done for 10 

specimens of each species from the 1551-1554 m sample to nullify any inter-specimen 

heterogeneity.  This will allow determination of the number of profiles required to acquire a 

Mg/Ca value that is representative for the sample. 

 

4.3 Results 

4.3.1 Signal acquisition 

Signal pick up is practically instantaneous, occurring within 1 second of ablation commencing 

(Figure 4.4).  It is imperative that the intensities returned to background values before each 

step increase in repetition rate.  This was achieved by activating the external trigger system 

so that data collection on the magnetic sector field ICP-MS resumed after a 20 second delay 

post ablation, during which the laser was turned off, allowing the intensities to return to 

background levels.  Across the full range of fluences and repetition rates this 20 second delay 

was comfortably sufficient for a full washout to occur, with 43Ca returning to background 

counts before the resumption of data collection (Figure 4.4).  Previous work using the same 

LA- and sample cell system showed signal washout over five orders of magnitude occurred 

within 9 seconds, and signal pick up over 5 orders of magnitude occurred within 2 seconds 

(Müller et al., 2009).  My study demonstrates that the CELTIC laboratory instrumentation has 
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similarly rapid and thorough pick up and washout, confirming that the 20 second delay is 

appropriate.   
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Figure 4.4: (A) 43Ca intensity (counts) from an example ablation path in NIST SRM 610 glass standard 

using the operational parameters summarised in Table 4.1, a fluence of 4.5 Jcm-2, and a repetition rate 

of 4.0 Hz.  (B) and (C) demonstrate the short (<1 second) pick-up and washout time from background 

to peak counts, and then back to background again. 
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It is vital to avoid a combination of repetition rate and sweep time that will cause harmonic 

oscillations in the data (Müller et al., 2009).  This spectral skew is observed when the 

repetition rate is 3.0 Hz (1 pulse every 333 ms), the sweep time of 350 ms used here having a 

similar temporal beat, compared to when the repetition rate is 4.0 Hz (Figure 4.5).  These 

observed oscillations could otherwise be erroneously interpreted as primary intrashell 

heterogeneity in foraminiferal depth profiles.  

 

Figure 4.5: (A) Noticeable harmonic oscillation in 43Ca counts when the repetition rate is 3.0 Hz and the 

sweep time is 350 ms.  (B) The 4.0 Hz segment of the ablation path with no harmonic oscillation, for 

comparison.  (C) and (D) show the same effect for 25Mg.  All data are from the 4.0 Jcm-2 experiment on 

NIST SRM 610.   
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4.3.2 Optimal operating parameters for NIST 610 glass standard 

Signal intensity increases at higher repetition rates, the greater number of pulses per second 

ablating more material.  This supplies a higher quantity of analyte gas to the mass 

spectrometer, increasing intensities.  However, higher repetition rates ablate through the test 

wall quicker, reducing the spatial resolution of the profiles.  Therefore, a compromise 

regarding signal intensity will have to be accepted to increase spatial resolution within the 

test.  The relative standard deviations (%RSD) were measured for the 70 seconds of ablation 

at each combination of fluence and repetition rate to quantify the stability of the signal.  This 

signal smoothness could be further improved by increasing the dwell time at each mass of 

interest.  However, this would also reduce the spatial resolution of the profiles through the 

foraminiferal test walls, potentially negating any high frequency natural intrashell variability.  

During the day of analysis my gas blank corrected NIST 610 ratios show a high level of stability, 

<3.5% RSD for Mg/Ca, <3% RSD for Mn/Ca, and <2% RSD for 43Ca/48Ca (Table 4.3, Figure 4.6).   

 

 Mg/Ca 43Ca/48Ca Mn/Ca 

%RSD 3.24 1.74 2.93 

When the repetition rate is set to 1.0 Hz the intensity ratio on the mass spectrometer is 

extremely unstable, irrespective of the fluence, 30.3-32.2% RSD for Mg/Ca and 44.8-48.4% 

RSD for Mn/Ca.  The RSDs decrease considerably when repetition rate is increased to 4.0 Hz, 

2.5-4.1% RSD for Mg/Ca and 1.8-3.1% RSD for Mn/Ca but show minimal improvement at 

Table 4.3: RSDs (%) of the intensity ratios for Mg/Ca, 43Ca/48Ca, and Mn/Ca in the NIST 610 standard 

from 16th June 2017, the day of the optimisation of foraminiferal calcite operating parameters 

experiments. 
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Figure 4.6: Drift in measurements (n=24) of the gas blank corrected NIST SRM 610 glass standard for 

(A) Mn/Ca, (B) 43Ca/48Ca, and (C) Mg/Ca through the course of the day on which the optimisation of 

foraminiferal calcite operating parameters experiments took place.   
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higher repetition rates (Figure 4.7, Table 4.4).  When repetition rate is increased to 8.0 Hz the 

RSDs are lower than at 4.0 Hz, 1.3-2.2% RSD for Mg/Ca and 1.1-1.6% RSD for Mn/Ca.  

However, the quantity of ablated material required to achieve this slightly smoother signal is 

twice as high, and could potentially overload the ICP-MS, in particular for 43Ca.  The RSDs for 

Mg/Ca are <<5% at 4.0 Hz, which is an acceptable value to not require more material to be 

ablated (Figure 4.7d).  These observations are consistent across all fluences used in this study, 

indicating that signal stability in the NIST SRM 610 glass standard is primarily controlled by 

repetition rate when fluence is in the range of 3.0-5.0 Jcm-2.   

 

Despite this dominance of repetition rate on the signal stability the fluence does have an 

effect, at the preferred repetition rate of 4.0 Hz the RSDs for both Mg/Ca and Mn/Ca are ~1% 

lower at 4.0 and 4.5 Jcm-2 than at the other fluences tested (Figure 4.8, Table 4.4).  With these 

experiments showing no significant difference between 4.0 and 4.5 Jcm-2  the higher fluence 

of 4.5 Jcm-2 is used, because the reported range of fluence used on NIST 610 in the literature 

is 4.5-5.0 Jcm-2 (Fehrenbacher et al., 2015, Keul et al., 2017, van Dijk et al., 2017).  Therefore, 

the optimal ablation parameters for measuring NIST 610 in the Cardiff University CELTIC 

Laboratory are a fluence of 4.5 Jcm-2 and a repetition rate of 4.0 Hz.  
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Mg/Ca (%RSD) Repetition Rate (Hz) 
Fl

u
en

ce
 (

Jc
m

-2
) 

 1 2 3 4 5 6 7 8 
 

3.0 31.4 17.2 6.3 3.7 4 3.6 2.6 2.1 
 

3.5 30.3 16.3 6.8 4.1 3.8 3.2 2.4 2.1 
 

4.0 32.2 16.3 6.0 2.5 2.3 1.9 1.7 1.3 
 

4.5 31.5 16.7 5.7 2.6 2.3 1.9 1.7 1.3 
 

5.0 31.4 16.6 6.6 3.8 3.5 2.6 2.2 2.1 
 

 

 

 

 

 

Mn/Ca (%RSD) Repetition Rate (Hz) 

Fl
u

en
ce

 (
Jc

m
-2

) 

  1 2 3 4 5 6 7 8 

3.0 44.8 13.5 5.2 3.1 3.2 2.7 1.9 1.6 

3.5 48.4 13.6 5.0 3 2.9 2.4 1.7 1.4 

4.0 47.8 13.4 4.7 1.8 1.7 1.7 1.3 1.1 

4.5 46.6 13.8 4.4 1.9 1.8 2.1 1.5 1.1 

5.0 46.9 13.7 5.2 3.0 2.4 1.8 1.4 1.4 

Table 4.4: Relative Standard Deviations (% RSDs) for Mg/Ca, and Mn/Ca measured in NIST SRM 610 

for all tested combinations of fluence and repetition rate. 
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Figure 4.7:  The effect of repetition rate on signal 

stability and sensitivity at a fluence of 3.0 Jcm-2 (A) 

to 5.0 Jcm-2 (E).  

Top panel:  Signal stability (%RSD) of Mg/Ca and 

Mn/Ca as a function of repetition rate. 

Middle panel: Raw intensities of 25Mg across a 

range of repetition rates. 

Bottom panel: Raw intensities of 43Ca across a 

range of repetition rates. 
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4.3.3 Optimal operating parameters for foraminiferal calcite 

Reproducibility was used as an important criterion to determine the optimal fluence and 

repetition rate.  For each combination of fluence and repetition rate three repeat transects 

through the test wall were obtained to assess analytical reproducibility.  It is worth noting 

that no two transects will be true replicates because of the natural intrashell variability that 

persists through foraminifera.  To minimise the impact of this unavoidable natural variability 

the repeat test wall transects were analysed as proximal as possible to each other, all on the 

same outer chamber of O. universa.  

Figure 4.8: Signal stability (%RSD) for Mg/Ca (blue squares) and Mn/Ca (red circles) measured in NIST 

610 at fluences ranging from 3.0 Jcm-2 to 5.0 Jcm-2 with a constant repetition rate of 4.0 Hz.  The yellow 

bar shows the preferred fluences.  Data are shown in Table 4.4.   
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The first step in assessing the reproducibility for each combination of ablation parameters 

was simply to overlay the three Mg/Ca depth profiles (Figure 4.9).  Because of the natural 

variability present in each profile a four point moving average is shown.  Profiles are cut off 

at 80 seconds, beyond which all 18 show a high degree of scatter and would therefore be 

excluded from environmental interpretation.  This may result either from the ablation 

breaking through the test wall, or from fractionation within a deep ablation pit (Eggins et al., 

1998).  The presence of elevated Mg/Ca in the outermost region of the test wall, as signified 

by the grey regions in Figure 4.9 and presumed to be a diagenetic coating, provides an added 

feature for the profiles to reproduce.  This simple approach suggests that the two 

combinations that provide the most similar depth profiles are those with a fluence of 3.0 Jcm-

2 and repetition rate of 2.5 Hz (Figure 4.9b), and a fluence of 3.5 Jcm-2 and repetition rate of 

2.0 Hz (Figure 4.9d).  Signal counts were high enough to deem it unnecessary to experiment 

with higher fluences higher than 3.5 Jcm-2 and repetition rates higher than 3.5 Hz as this would 

only reduce the spatial resolution of the depth profiles.  Note that this would not be the case 

for analysis of isotopes with lower abundances, such as 238U.  In light of the temporal beating 

previously observed at 3.0 Hz (Figure 4.5) no profiles were run with this repetition rate.   
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 Figure 4.9: Mg/Ca variability through three repeat test wall transects for 6 combinations of ablation settings.  All transects are through the single O. universa 

specimen from the 1551-1554 m depth sample in Sunbird-1.  Solid lines are 4 point moving averages.  Profiles are cut off at 80 seconds, beyond which all 18 

show a high degree of scatter and would therefore be excluded from environmental interpretation.  
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In order to verify this conclusion a number of statistical measures were considered.  Regions 

of the test which are Mg-Mn-rich are interpreted as a diagenetic coating and would be 

removed from further environmental consideration and palaeotemperature estimates.  

Therefore, for all of these statistical measures these regions of the test, the greyed out regions 

in Figure 4.9, are excluded.  Inclusion of the Mg-Mn-rich regions of the test for these statistical 

measures could produce misleading results for application to future analyses, where these 

regions will be excluded.    

 

First, the range in median values for the three profiles at each combination of ablation 

parameters were compared to assess their similarity (Table 4.5).  The reason for using the 

median instead of the mean is to remove any skew and bias originating from inclusion of any 

flier data points.  Fliers of high Mg/Ca values are prevalent (Figure 4.10), even within the 

interval determined to be primary test, and consequently mean Mg/Ca is greater than the 

median Mg/Ca for 17 out of 18 profiles, and for all six combined measures (Table 4.5).  The 

smallest difference between the highest and lowest median of the three repeat depth profiles 

relative to the median of all the measurements combined was 4.9%, achieved when a fluence 

of 3.0 Jcm-2 and a repetition rate of 2.5 Hz was used, one of my preferred ablation settings 

from simple visual inspection.  This supports my initial interpretation that a fluence of 3.0 Jcm-

2 and a repetition rate of 2.5 Hz as being one of the two combinations that produces the most 

alike depth profiles.  Comparatively, the other five combinations of fluence and repetition 

rate produce much larger differences, their median Mg/Ca values varying by between 8.5% 

and 15.7%.  Median Mg/Ca values with the 3.5 Jcm-2 and 2.0 Hz parameters, the other 

preferred combination from simple visual inspection, have a difference of 8.7%.   
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Figure 4.10:  Box plots and histograms for Mg/Ca through the repeat test wall transects of O. universa 

at 3.0 Jcm-2 and 2.5 Hz (A-D), and 3.5 Jcm-2 and 2.0 Hz (E-H).  Data do not include regions of the test 

determined to be influenced by an Mg-Mn-rich contaminant phase.  
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  3.0 Jcm-2 2.0 Hz 

 

Profile 3 (n=86) Profile 4 (n=130) Profile 5 (n=146) Combined (n=362) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mean 14.0 120 15.0 95 15.7 401 14.6 176 

Median 13.5 119 14.5 92 15.2 379 14.4 118 

Range 8.1 71 10.8 75 11.1 224 9.9 417 

Standard Deviation 2.7 21 3.2 23 3.7 76 3.3 150 

RSD (%) 19.3% 17.8% 21.6% 24.2% 23.6% 19.1% 22.4% 85.0% 
         

 3.0 Jcm-2 2.5 Hz  

 

Profile 6 (n=116) Profile 7 (n=109) Profile 8 (n=124) Combined (n=349) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mean 13.9 460 14.2 102 14.2 100 14.1 220 

Median 13.3 380 13.8 81 13.1 84 13.3 104 

Range 6.7 444 6.1 180 7.5 116 9.2 599 

Standard Deviation 3.3 165 2.7 70 5.7 105 4.5 210 

RSD (%) 23.8% 35.9% 19.0% 69.1% 40.4% 105.5% 31.9% 95.1% 
         

 3.0 Jcm-2 3.5 Hz  

 

Profile 9 (n=97) Profile 10 (n=114) Profile 11 (n=118) Combined (n=329) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mean 14.0 62 12.1 93 12.7 76 12.9 77 

Median 13.5 61 11.5 87 12.6 76 12.6 77 

Range 6.4 90 6.7 71 5.3 59 7.0 92 

Standard Deviation 3.9 39 2.5 24 2.1 20 3.0 31 

RSD (%) 27.9% 62.6% 20.2% 26.3% 16.3% 26.7% 23.0% 40.4% 
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  3.5 Jcm-2 2.0 Hz 

 

Profile 12 (n=100) Profile 13 (n=114) Profile 14 (n=118) Combined (n=332) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mean 14.5 117 13.4 101 14.0 102 14.0 107 

Median 13.7 112 12.6 96 13.2 101 13.4 104 

Range 7.9 83 11.3 73 9.8 60 10.8 73 

Standard Deviation 4.2 33 3.5 21 4.3 18 4.0 27 

RSD (%) 28.6% 28.5% 26.5% 21.2% 30.6% 17.2% 29.0% 25.6% 
         

 3.5 Jcm-2 2.5 Hz  

 

Profile 15 (n=110) Profile 16 (n=119) Profile 17 (n=120) Combined (n=349) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mean 13.6 134 12.7 106 14.0 112 13.4 117 

Median 13.4 127 12.5 103 13.7 111 13.3 111 

Range 7.6 115 6.3 53 4.9 44 6.6 84 

Standard Deviation 2.2 34 2.1 16 1.5 13 2.0 26 

RSD (%) 16.5% 25.6% 16.3% 15.1% 10.6% 11.3% 15.0% 21.9% 
         

 3.5 Jcm-2 3.5 Hz  

 

Profile 18 (n=95) Profile 19 (n=120) Profile 20 (n=87) Combined (n=302) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mg/Ca 
(mmol/mol) 

Mn/Ca 
(µmol/mol) 

Mean 11.6 100 12.7 114 12.8 98 12.4 104 

Median 11.4 97 12.4 111 13.0 96 12.1 102 

Range 3.0 30 3.5 49 4.0 25 4.2 43 

Standard Deviation 2.1 19 1.4 16 1.2 9 1.7 17 

RSD (%) 18.0% 18.6% 10.9% 14.1% 9.6% 9.3% 13.6% 16.4% 

Table 4.5: Statistical summary of Mg/Ca (mmol/mol) and Mn/Ca (µmol/mol) for each of the three repeat test wall transects through O. universa at each 

combination of fluence and repetition rate.  The two right hand columns document the combined statistics for each combination.  The statistics were calculated 

only incorporating the region of the test wall transects determined to be free of contamination, i.e. without the greyed out intervals in Figure 4.9.   
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To assess reproducibility in a more statistically robust fashion, the variance between the three 

depth profiles for each combination of fluence and repetition rate was evaluated.  Shapiro-

Wilk Normality tests on the 18 profiles indicate that only Profile 8 (3.0 Jcm-2, 2.5 Hz) and 

Profile 20 (3.5 Jcm-2, 3.5 Hz) can be regarded as normally distributed populations (p>0.05).  

This non-parametric distribution of Mg/Ca values for each profile, as also seen in Figure 4.10, 

makes the Kruskal-Wallis test more robust than the standard ANOVA test for assessing the 

reproducibility between the three depth profiles for each combination of fluence and 

repetition rate.  Furthermore, the maximum standard deviation in Mg/Ca at 3.0 Jcm-2, 2.5 Hz 

(5.7 mmol/mol) is more than twice that of the minimum standard deviation (2.7 mmol/mol) 

at that combination of ablation settings, breaking another assumption of the ANOVA test.  

Unlike ANOVA, the Kruskal-Wallis test does not require the residuals to be normally 

distributed, or for the maximum standard deviation to be less than twice the minimum as it 

tests for differences between medians.  By conducting a Kruskal-Wallis test the null 

hypothesis (p<0.005) that there is no difference between the median Mg/Ca values of each 

profile was unable to be rejected for two of the ablation settings tested (3.0 Jcm-2, 2.5 Hz, and 

3.5 Jcm-2, 2.0 Hz) (Table 4.6, highlighted).   

 

Furthermore, the null hypothesis (p<0.05) that the three profiles using both of these 

respective ablation settings are from populations with identical distributions was also unable 

to be rejected by use of the Mann-Whitney-Wilcoxon test (Table 4.7, highlighted).  These are 

also the two combinations for which the difference between the medians of the three depth 

profiles were lowest, lending further support to the initial conclusion. 
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  3.0 Jcm-2 3.5 Jcm-2 

  2.0 Hz 2.5 Hz 3.5 Hz 2.0 Hz 2.5 Hz 3.5 Hz 

Chi-Square (H) 11.64 1.16 136.7 1.37 25.4 80.8 

Degrees of Freedom 2 2 2 2 2 2 

p-value 0.003 0.560 2.11E-30 0.504 3.11E-06 2.79E-18 

 

    Profiles W value p-value 

3.0 Jcm-2 2.0 Hz 3 v 4 4664 0.040 

   3 v 5 4613 0.001 

   4 v 5 8472 0.124 

 2.5 Hz 6 v 7  6867 0.265 

   6 v 8 7202 0.986 

   7 v 8 6369 0.449 

 3.5 Hz 9 v 10 8412 6.96E-11 

   9 v 11 5444 0.227 

    10 v 11 3119 9.96E-14 

3.5 Jcm-2 2.0 Hz 12 v 13 6072 0.411 

   12 v 14 5778 0.794 

   13 v 14 6150 0.260 

 2.5 Hz 15 v 16 8015 0.003 

   15 v 17 5640 0.057 

   16 v 17 4455 5.08E-07 

 3.5 Hz 18 v 19 2168 6.39E-15 

   18 v 20 1390 1.13E-14 

   19 v 20 4552 0.117 

 

Table 4.6: Table of results of the non-parametric Kruskal-Wallis test, for each combination of fluence 

and repetition rate.  The null hypothesis that there is no difference between the medians of the three 

depth profiles can be rejected when H>10.597 (p<0.005).  For the 3.0 Jcm-2 and 2.5 Hz, and 3.5 Jcm-2 

and 2.0 Hz combinations, highlighted in yellow, this null hypothesis cannot be rejected.  

Table 4.7:  Table of results for the non-parametric Mann-Whitney-Wilcoxon test for each combination 

of fluence and repetition rate.  For all of the profile comparisons using ablation setting combinations of 

3.0 Jcm-2 and 2.5 Hz, and 3.5 Jcm-2 and 2.0 Hz, highlighted in orange, the null hypothesis that the profiles 

are from identical populations cannot be rejected (p<0.05). 
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Therefore, the most reproducible Mg/Ca profiles are obtained with either a combination of 

3.0 Jcm-2 and 2.5 Hz, or a combination of 3.5 Jcm-2 and 2.0 Hz.  However, the 3.0 Jcm-2 and 2.5 

Hz combination fails to demonstrate the full extent of the elevated Mg/Ca in the outer 

coating, as captured by other combinations (Figure 4.9).  There is also the possibility of 

interaction between a repetition rate of 2.5 Hz and a sweep time of 350ms potentially leading 

to temporal beating, which can be seen to a minor extent (Figure 4.9b).  For these reasons 

the analytical method which uses a fluence of 3.5 Jcm-2 and a repetition rate of 2.0 Hz is 

preferred.   

 

4.3.4 Acquiring a consistent foraminiferal Mg/Ca ratio 

There is notable spread in the measurements of Mg/Ca in C. wuellerstorfi (n=67) and D. 

altispira (n=72) from the 1551-1554m sample (Figure 4.11).  The Mg/Ca value of single depth 

profiles in C. wuellerstorfi ranges from 1.62 mmol/mol to 3.14 mmol/mol, and from 2.67 

mmol/mol to 5.23 mmol/mol in D. altispira (Appendix 5).  This natural heterogeneity, both 

intra-specimen and inter-specimen, renders it challenging to acquire a reliable mean Mg/Ca 

for the sample, a value required for interpretation of any down record trends.   
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Figure 4.11:  Histograms of measured Mg/Ca ratios (mmol/mol) in C. wuellerstorfi (n=67) and D. 

altispira (n=72) from the 1551-1554m sample.   
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The mean Mg/Ca value from all measurements of C. wuellerstorfi is 2.48 ± 0.09 mmol/mol.  

The mean Mg/Ca value after 5 specimens, a total of 31 profiles, is well within 2 standard error 

of this value, Mg/Ca = 2.52 ± 0.14 mmol/mol, where errors are ±2 SE of all the Mg/Ca 

measurements from that sample (Table 4.8, Figure 4.12a).  Further measurements have 

minimal influence on the mean sample Mg/Ca and its standard error (Figure 4.12a, c).  This 

suggests that a total of ~31 measurements from approximately five specimens is required to 

get a consistent Mg/Ca value for C. wuellerstorfi.  The extremely low standard error after only 

one specimen of C. wuellerstorfi is an artefact of there being only two depth profiles that 

passed the screening for contaminants, and these having Mg/Ca ratios of 2.57 and 2.58 

mmol/mol.   

C. wuellerstorfi D. altispira 

Number 

of Spots 

Sample Mean 

Mg/Ca 

(mmol/mol) 

Sample 2 SE 

(mmol/mol) 

Number 

of Spots 

Sample Mean 

Mg/Ca 

(mmol/mol) 

Sample 2 SE 

(mmol/mol) 

2 2.57 0.00 4 3.25 0.45 

4 2.46 0.20 12 3.69 0.24 

12 2.80 0.17 20 3.58 0.19 

21 2.64 0.16 28 3.41 0.18 

31 2.52 0.14 34 3.42 0.22 

38 2.48 0.12 41 3.44 0.19 

45 2.52 0.11 46 3.41 0.17 

54 2.53 0.09 55 3.46 0.15 

59 2.55 0.09 63 3.63 0.15 

67 2.48 0.09 72 3.57 0.14 

Table 4.8:  One example of the evolution of the mean Mg/Ca ratio and 2 SE with increased number of 

profiles in C. wuellerstorfi and D. altispira from the 1551-1554m sample.   
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The mean Mg/Ca value from all measurements of D. altispira is 3.63 ± 0.14 mmol/mol.  

However, this mean Mg/Ca value is elevated by specimen 9, which has a much higher Mg/Ca 

ratio (4.33 mmol/mol) than any of the nine other specimens.  Prior to this specimen the mean 

Mg/Ca value for D. altispira from the 1551-1554m sample is 3.46 ± 0.15 mmol/mol from a 

total of 55 measurements across eight specimens (Table 2).  The mean Mg/Ca value after four 

specimens, a total of 28 profiles, is 3.41 ± 0.18 mmol/mol showing that an approximate 

doubling of the number of measurements from 28 to 55, and the number of specimens from 

four to eight, has a negligible effect on the mean Mg/Ca value or the standard error of the 

sample (Table 4.8, Figure 4.12b, d).  This suggests that a total of ~28 measurements from 

approximately four specimens is required to get a consistent Mg/Ca value for D. altispira, 

similar to the 31 measurements from approximately five specimens required for a consistent 

C. wuellerstorfi Mg/Ca measurement.   

 

Of the 100 depth profiles measured in both species approximately one third (n=33 and n=28) 

were excluded during screening for elevated Al/Ca and Mn/Ca indicative of diagenetic 

contamination.  To account for samples from the downcore record where a higher quantity 

of profiles will be excluded due to contamination, where possible the required number of 

measurements per sample was increased to 36, six depth profiles per specimen and six 

specimens per sample.  This result is in line with other LA-ICP-MS studies (Rathmann et al., 

2004, Sadekov et al., 2008).  
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Figure 4.12: Example of the evolution of mean sample Mg/Ca with increasing specimens up to n=10 of 

(A) C. wuellerstorfi (squares), and (B) D. altispira (circles).  Error bars are 2 SE of the sample mean, 

which the evolution of with increasing specimens is shown in C and D.  Data is from Table 4.8. 
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4.4 Discussion 

4.4.1 Determining the cause of Mg/Ca-Mn/Ca correlation in downcore records  

The presence of concomitantly elevated Mg/Ca and Mn/Ca trace metal ratios in foraminifera 

from Sunbird-1 raises the possibility that the Mg/Ca ratios have been compromised by 

diagenetic processes, despite their glassy appearance (Figure 4.1 and Chapter 3). There are 

three potential causes for downcore correlations between foraminiferal Mg/Ca and Mn/Ca.  

The first is that the whole test is recrystallized and diagenetically altered by an Mg-Mn-rich 

phase throughout, fully overprinting the primary signal required for Mg/Ca 

palaeothermometry, as observed in Oligocene-Miocene foraminifera at ODP Site 1406 in the 

NW Atlantic Ocean (Richard Smith personal communication, 2017).  The second possibility is 

that the elevated Mg/Ca in the test is not associated with the elevated Mn/Ca within the test, 

and the correlation observed in downcore records is a consequence of Mg/Ca and Mn/Ca 

independently reflecting changing environmental conditions.  The third possible scenario is 

that the pristine primary test is coated by a Mg-Mn-rich diagenetic phase, with varying levels 

of contamination in downcore records (Hasenfratz et al., 2016). 

 

Using the optimised LA-ICP-MS set-up, the intra-test variability in Mg/Ca and Mn/Ca can be 

compared.  This allows me to determine which of the three potential causes outlined above 

is the primary cause for the downcore correlation between foraminiferal Mg/Ca and Mn/Ca 

at Sunbird-1.  There are strong intra-test similarities between the Mg/Ca and Mn/Ca profiles 

(Figure 4.13).  The most noticeable similarity is the presence of extremely elevated Mg/Ca 

and Mn/Ca values at the test exterior.  This is interpreted as contamination by a Mg-Mn-rich 

diagenetic coating, likely Mn-oxyhydroxides or Mn-rich carbonates (Boyle, 1983, Barker et al., 
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2003, Pena et al., 2008, Hasenfratz et al., 2016).  This provides convincing evidence that the 

presence of a Mg-Mn-rich contaminant phase on the exterior of the test is the dominant 

cause of the unrealistically high Mg/Ca values from solution based ICPMS analysis.  Although 

unnecessary for the three depth profiles shown here because of the elevated Mn/Ca values, 

the presence of lower 43Ca/48Ca values could also be used as an indication of contamination 

by a non-primary calcite phase (Figure 4.13).  It is this contaminant coating precipitated on 

the outer test surface with concomitantly elevated Mg/Ca and Mn/Ca ratios, that result in the 

elevated Mg/Ca ratios from solution based ICP-MS analyses (Chapter 3).   

 

As well as the prominent Mg-Mn-rich contaminant coating, all profiles show elevated Mg/Ca 

and Mn/Ca ratios at the end of the depth profiles, beyond 70 seconds, albeit not to the same 

extent as the contaminant coating.  Unlike the consistency at the test exterior, the raw data 

show significant spread about the smoothed average, most apparent in Profile 12, and the 

strong correspondence between the Mg/Ca and Mn/Ca trends as seen at the outermost 

surface is not repeated (Figure 4.13).  This region of elevated Mg/Ca and Mn/Ca is most likely 

a result of downhole fractionation, or more likely the laser beam having broken through the 

test wall (Eggins et al., 1998).  However, this may represent a thin layer of contaminant at the 

inner test wall, as reported by previous studies (Eggins et al., 2003, Pena et al., 2005, 

Hasenfratz et al., 2016).  If this is a contaminant phase it is only prevalent in small pockets at 

the inner test wall, as opposed to as a consistent and ubiquitous surface.  The drop off in 43Ca 

intensity further into the depth profile (Figure 4.14) suggests that the elevated Mg/Ca values 

result from ablation breaking through the test wall, as opposed to a highly heterogeneous 

inner contaminant phase.   
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Figure 4.13:  43Ca/48Ca, Mn/Ca, and Mg/Ca results from the three repeat test wall transects at 3.5 Jcm-2 and 2.0 Hz from the 1551-1554m sample of Sunbird-1, 

with a biostratigraphic age of 11.74 Ma.  Solid lines are smoothed averages across 4 data points.  Grey bars highlight the region of the profile interpreted as a 

diagenetically formed contaminant coating on the test exterior, and yellow bars highlight the region of the profile interpreted as primary test.  
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In the test interior, away from the contaminant coating and prior to ablation breaking through 

the test wall, the Mg/Ca profiles remain flat at ~13-14 mmol/mol.  Critically in this region of 

the test where the Mg/Ca profiles are flat Mn/Ca ratios are also at their lowest, <200 

µmol/mol, and the foraminiferal calcite is therefore suggested to be free of significant Mn-

rich contamination (Figure 4.15). This is consistent with the glassy appearance and retention 

of biogenic calcite seen under SEM imaging (Figure 3.1), as opposed to wholesale 

recrystallisation of the test. The combination of stable Mg/Ca values and low Mn/Ca values 

suggests this region of the test may be used for Mg/Ca palaeothermometry. This is further 

supported by the lack of correlation between Mg/Ca and Mn/Ca in this interior region of the 

test (Figure 4.16a). The absence of any correlation between Mg/Ca and Mn/Ca in the primary 

shell likely results from the lack of any major trends or variance in the Mn/Ca ratios through 

this region of the test because it does not contain the Mg-Mn rich contaminant phase.  Mg/Ca 
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Figure 4.14:  Gas blank corrected 43Ca intensity decrease when the laser beam breaks through the test 

wall.  Data from the three repeat profiles through O. universa using the preferred ablation parameters.  
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within the test interior primarily reflects the temperature control on Mg uptake into the 

calcite lattice.   
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Figure 4.15: Crossplot of Mg/Ca versus Mn/Ca for the three repeat test wall transects through the test 

of Orbulina universa from the 1551-1554m depth sample in Sunbird-1 using the preferred ablation 

parameters of 3.5 Jcm-2 and 2.0 Hz.  Filled red squares are the primary calcite test (n=332), and open 

grey squares are regions of the test determined to be a contaminant phase (n=445).   
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4.4.2 Characterising the contaminant phase 

By combining the data from the three test wall transects using the preferred ablation 

parameters through the single O. universa test, the relationship between Mg/Ca and Mn/Ca 

of the contaminant coating, the primary test, and the combination of both has been 

characterised (Table 4.9).  It is worth noting that the contaminant coating is a combination of 

a diagenetically precipitated coating and the primary foraminiferal calcite, coated calcite.  The 

lack of apparent coatings under SEM imaging (Figure 2.1) and high calcium concentrations in 

the test wall transects strongly suggests this to be the case.  When isolated from the 

diagenetically altered coated calcite at the outer region of the test the primary test has a 

mean Mg/Ca value of 14.0 ± 0.38 mmol/mol.  This is considerably lower than when the coated 

calcite, which has a mean Mg/Ca value of 23.0 mmol/mol ± 1.72, is incorporated (Table 4.9). 

This strongly suggests that the primary test and contaminant coating are formed from 

different phases.  The 1.24 mmol/mol lowering of Mg/Ca by identifying the primary test, 

isolating it from any contaminant influence of the coated calcite phase on the outer test has 

the potential to have a major impact on temperature estimates.   

 

The mean Mn/Ca of the primary test, 108 ± 3 µmol/mol, is also considerably lower than it is 

for the Mg-Mn-rich contaminant coated calcite phase, 235 ± 28 µmol/mol, and is similar to 

the proposed threshold for Mn-overgrowths having a negligible influence on Mg/Ca values 

(Boyle, 1983).  When Mg/Ca and Mn/Ca values are concomitantly high in the coated calcite 

region of the test, as denoted by the greyed out regions of Figure 4.13, there is a weak 

correlation between Mg/Ca and Mn/Ca (R2=0.34) (Figure 4.16b).  This covariance of Mg/Ca 

and Mn/Ca does not propagate into the primary calcite test (R2=0.04) (Figure 4.16b).   
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Because the contaminant coating is likely formed of a combination of diagenetic coating and 

primary calcite, termed coated calcite, it is not possible to determine the Mg/Mn ratio of this 

phase of the test by simply using a ratio of the Mg/Ca and Mn/Ca values (Table 4.9).  If there 

was an independent estimate of the percentage contribution of contaminant material to the 

coated calcite then this would be possible.  Instead, the gradient of the slope between Mn/Ca 

and Mg/Ca values of the coated calcite is used (Figure 4.17).  Furthermore, the intercept 

(Mn/Ca = 0) provides an approximation of the “Mn-free” value, which in theory is the pristine 

calcite.  It was ensured that all data points interpreted as coated calcite had high 

concentrations of 43Ca [43Ca], and that the elevated Mg/Ca and Mn/Ca ratios are not an 

artefact of low [Ca], as interpreted for the end of the depth profile when the laser beam has 

broken through the test wall.  Only including the three test wall transects which use the 

optimised ablation parameters of 3.5 Jcm-2 and 2.0 Hz produces a similar Mg/Mn ratio for the 

coated calcite phase than when all 18 test wall transects using the six different combinations 

of fluence and repetition rate (Figure 4.17).   

 

 Mg/Ca (mmol/mol) Mn/Ca (µmol/mol) 

Coated Calcite (n=74) 23.0 ± 1.72 235 ± 28 

Primary Test (n=332) 14.0 ± 0.38 108 ± 3 

Coating and Test (n=406) 15.3 ± 0.48 126 ± 6 

Coating Effect 1.24 17.6 

Table 4.9: Mean Mg/Ca (mmol/mol) and Mn/Ca (µmol/mol) ratios from a combination of the three 

depth profiles using the preferred ablation settings of 3.5 Jcm-2 and 2.0 Hz for the contaminant coating, 

primary test, as well as both combined.  Error estimates are ± 2 SE.   
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Figure 4.16: Crossplots of Mg/Ca versus Mn/Ca for the phases identified as (A) the primary test 

(n=332), and (B) the contaminant coating (n=74), for the repeat test wall transects through the single 

test of Orbulina universa from the 1551-1554m sample in Sunbird-1, using the optimised ablation 

parameters of 3.5 Jcm-2 and 2.0 Hz.  R2 values for each transect, and for all three combined, are given.  

Note the different scales on the x axes.   
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Adopting this approach gives Mg/Mn ratios in the contaminant coated calcite of 35.9 mol/mol 

when using the test wall transects with ablation parameters of 3.5 Jcm-2 and 2.0 Hz (n=3), and 

29.0 mol/mol when using all the test wall transects through the single O. universa specimen, 

independent of ablation parameters (n=18) (Figure 4.17).  That these values are close 

approximations to each other supports them being robust, and the coated calcite likely has 

an Mg/Mn molar ratio of ~30 mol/mol.  This approach suggests a “Mn-free” Mg/Ca value of 

14.5 mmol/mol from the three repeat test wall transects using the optimised ablation 
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Figure 4.17: Crossplot of Mg/Ca versus Mn/Ca for the phase identified as coated calcite.  Data from only 

the three test wall transects using the preferred ablation parameters of 3.5 Jcm-2 and 2.0 Hz (blue 

squares, n=74) and from all 18 test wall transects (red circles, n=380) through the single test of Orbulina 

universa from the 1551-1554m sample in Sunbird-1 are given.  The linear fits through both datasets 

have a similar Mg/Mn ratio, 35.9 mol/mol and 29.0 mol/mol respectively.  The intercept with the y axis 

(Mn/Ca = 0) approximates the Mg/Ca ratio of contaminant free calcite.   
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parameters, a “Mn-free” Mg/Ca value very close to the mean Mg/Ca of the primary test from 

the same three test wall transects (14.0 ± 0.38).   

 

Furthermore, the Mg/Mn ratio of the coated calcite enables the characterisation of the 

contaminant phase.  Average Mg/Mn ratios in natural Ca-Mn-Mg carbonates is 0.13 ± 0.13 

mol/mol (Peacor et al., 1987).  Additionally Mn-rich carbonates are typically low in Fe (Calvert 

and Pedersen, 1996, Peacor et al., 1987), whereas solution ICP-MS analysis show foraminifera 

from Sunbird-1 to have high Fe/Ca ratios (Chapter 3).  The 30 mol/mol Mg/Mn ratio of the 

coated calcite contaminant phase supports the previous interpretation that the source of the 

Mg-Mn-rich contaminant coating influencing this sample being manganese carbonates, 

commonly the mineral kutnahorite, is highly unlikely (Hasenfratz et al., 2016, Pena et al., 

2005).  Mg/Mn ratios in Mn nodules and Mn encrustations (common forms of Mn-oxides) 

across a wide range of ocean basins is 0.17 – 0.32 mol/mol (Baturin, 2012, De Lange et al., 

1992).  Additionally, and in contrast to Mn-rich carbonates, high concentrations of iron are 

common in Mn-oxides.  This corroborates the previous determination that the contaminant 

phase causing elevated Mg/Ca ratios is likely Mn-Fe-rich oxides precipitated during changing 

redox conditions onto the outer surface of the tests (Chapter 3).  Unfortunately, due to the 

interferences described in Chapter 4.2.1 (May and Wiedmeyer, 1998, Evans and Müller, 

2018a), quantitative Fe/Ca analysis by LA-ICP-MS was not possible. 

 

4.4.3 Potential impact on palaeotemperature reconstruction 

Solution based ICP-MS benthic foraminiferal records from the Sunbird-1 site display 

unrealistically high Mg/Ca ratios inhibiting their use for palaeotemperature reconstructions 
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(Figure 4.1 and Chapter 3).  Detailed, sub-micron scale chemical depth profiling through test 

walls using Laser-Ablation ICP-MS has shown the likely cause of this to be Mg-Mn-rich 

contaminant coating (Figure 4.10).  These coatings would likely have formed post burial in the 

upper sediment column and the overall test geochemistry is therefore not a true reflection of 

the ambient seawater conditions.  The LA-ICP-MS transects reveal that beyond this Mg-Mn-

rich contaminant coating, Mg/Ca is stable, Mn/Ca is low (108 ± 3 µmol/mol), and the two are 

uncorrelated (Figure 4.16a, Table 4.9).  This region of the test wall transects is interpreted to 

be primary, unaltered, test calcite, and therefore suitable for Mg/Ca palaeothermometery.  It 

is therefore possible to quantify how much the contaminant coating biases Mg/Ca 

palaeotemperature estimates to higher values.  The region of the depth profiles beyond the 

primary test, which may be heterogeneous contamination, or more likely is a result of 

downhole fractionation during ablation, or a matrix effect as ablation breaks through the test 

wall, is discounted. 

Orbulina universa used in this study is not an ideal species to use for Mg/Ca 

palaeotemperature reconstructions.  This is because there are few temperature calibrations, 

 Temperature (⁰C) 

(Lea et al., 1999) 

Temperature (⁰C) 

(Russell et al., 2004)) 

Contaminant Coating (n=74) 33.3 ± 0.9 34.3 ± 0.8 

Primary Test (n=461) 27.5 ± 0.3 29.2 ± 0.3 

Coating and Test (n=535) 28.4 ± 0.4 30.1 ± 0.3 

Coating Effect 1.0 0.9 

Table 4.10: Palaeotemperature estimates (°C) using the preferred temperature calibrations for O. 

universa (Lea et al., 1999, Russell et al., 2004).  Estimates for the contaminant coating, primary test, and 

a combination of both are provided with errors (± 2 SE).   
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and those available are poorly constrained (Lea et al., 1999, Russell et al., 2004).  Here the 

available calibrations are applied to demonstrate the potential benefit of LA-ICP-MS for 

determining palaeotemperatures from foraminifera containing Mg-Mn-rich contaminant 

phases.   

 

Using these calibrations temperature estimates for the primary test are ~1°C lower than when 

the contaminant coating is included, independent of temperature calibration (Table 4.10, 

Figure 4.18).  This suggests that the impact of identifying the primary test from any Mg-Mn-

rich contaminant phase is greater than the analytical uncertainty (± 0.3⁰C).  If the elevated 

Mg/Ca and Mn/Ca at the end of the profile was interpreted as a heterogeneous contaminant 

phase at the inner test wall and not a result of downhole fractionation, then the estimated 
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Figure 4.18:  Temperature estimates for the regions of the profiles which were identified as the primary 

test (solid line), the primary test and contaminant coating (long dashed line), and the contaminant 

coating (short dashed line) using the preferred calibration for O. universa of Lea et al. (1999).   
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temperature would be ~2°C higher than for the isolated primary test (Mg/Ca=16.6 

mmol/mol).  Considering the observed 1.24 mmol/mol increase in Mg/Ca when the primary 

test is not isolated from the contaminant coating this would exert a much larger bias on the 

estimated temperature of planktic foraminifera with lower average Mg/Ca ratios.  

Furthermore, the expectation would be that the influence would be even greater for benthic 

foraminifera, such as Cibicidoides wuellerstorfi, one of the two calcite species which was 

initially analysed via solution based ICP-MS.  This is investigated following the reconstruction 

of BWT via LA-ICP-MS measurements on C. wuellerstorfi in Chapter 5.5.3.1.   

 

4.5 Conclusions 

This study optimises the ArF 193nm excimer RESOlution laser ablation system (Australian 

Scientific Instruments) when coupled to an Element HR-ICPMS (Thermo).  Analyses using a 

repetition rate of 3.0 Hz (1 pulse every 333 ms) demonstrate temporal beating due to 

interaction with the 350 ms ICP-MS sweep time.  This temporal beating could be interpreted 

as intra-test variability, and therefore this repetition rate is not used in foraminiferal analyses.  

The optimal ablation parameters for producing an intense and stable signal for the NIST 610 

glass standard are determined to be a fluence of 4.5 Jcm-2 and repetition rate of 4.0 Hz.  These 

parameters are applied throughout the rest of the thesis, NIST 610 being used as the external 

standard when analysing foraminifera from Sunbird-1.   

 

The most reproducible Mg/Ca test wall transects through foraminiferal calcite were analysed 

using a fluence of 3.5 Jcm-2 and repetition rate of 2.0 Hz.  These optimised ablation 

parameters facilitate the acquisition of reproducible test wall transects through foraminiferal 
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calcite at a high enough spatial resolution to distinguish different phases of the test.  This 

enables the identification of primary calcite in Mn-rich foraminifera, suitable for Mg/Ca 

palaeothermometry.  To acquire a mean sample Mg/Ca for C. wuellerstorfi or D. altispira, 

essential for downcore temperature reconstructions, it is determined that 28-31 test wall 

transects from 4-5 specimens are required.  This quantification of will be applied for the 

downcore palaeotemperature reconstructions in Chapter 5.  Future studies are advised to 

conduct similar testing to determine the number of measurements required for a mean 

sample Mg/Ca to be representative, as this will likely be site dependent.  

 

The primary calcite of an Orbulina universa test has been identified (Mg/Ca=14.0 ± 0.38 

mmol/mol and Mn/Ca= 108 ± 3 µmol/mol).  The careful LA-ICP-MS analysis isolate the primary 

calcite from an Mg-Mn-rich outer contaminant phase consisting of an unknown combination 

of coating and calcite (Mg/Ca=23.0 ± 1.72 mmol/mol and Mn/Ca= 235 ± 28 µmol/mol), and 

from when ablation has broken through the test wall.  The contaminant coating biases the 

Mg/Ca ratio by 1.24 mmol/mol, equivalent to increasing sea surface temperature by 

approximately 1⁰C.  This influence is greater than the analytical uncertainty through the 

primary test (± 0.3⁰C).  Applying the observed Mg-Mn-rich contaminant coating to benthic 

foraminifera, which have lower primary Mg/Ca values, would have a much greater bias.   

 

This study successfully sets up the first method for analysing intra-test trace metal variability 

of foraminifera using the new LA-ICP-MS system in the Cardiff University CELTIC Laboratory.  

This has allowed identification of the primary foraminiferal test required for Mg/Ca 
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palaeothermometry, and characterisation of the contaminant phase, which biased solution 

ICP-MS analyses to higher temperatures.    
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5 Sea surface and bottom water temperature at Sunbird-1 using 

Mg/Ca thermometry of primary foraminiferal calcite identified 

with laser ablation ICP-MS 

5.1  Introduction 

The mid-late Miocene is an important interval in the evolution of global climate through the 

Cenozoic.  It is characterised by lower than modern day atmospheric CO2 (Foster et al., 2012, 

Sosdian et al., 2018), but temperatures were likely warmer than the modern day (Rousselle 

et al., 2013, Pound et al., 2011).  This suggests that global temperature and atmospheric CO2 

forcing were decoupled through the interval (LaRiviere et al., 2012), a characteristic general 

circulation models struggle to simulate (Knorr et al., 2011).   

 

Despite the significance of this climate interval, the evolution of global SST during the late 

Miocene is poorly constrained due to a lack of reconstructions (Lunt et al., 2008).  Current 

proxy based reconstructions are restricted to estimates based on the unsaturated alkenone 

proxy (Huang et al., 2007, LaRiviere et al., 2012, Seki et al., 2012a, Zhang et al., 2014, Rousselle 

et al., 2013, Herbert et al., 2016) which suggests stable tropical SSTs of 28-29⁰C through the 

mid-late Miocene (Herbert et al., 2016).  However, these reconstructions may be 

underestimating late Miocene temperatures in the tropical surface waters of the Western 

Indian Ocean.  This is because the Uk37 alkenone proxy becomes saturated above 28⁰C and 

cannot be used to calculate warmer temperatures (Müller et al., 1998).   
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Consequently, the use of a different proxy that is able to reconstruct warmer temperatures, 

such as the planktic foraminiferal Mg/Ca utilised by this study, can clarify whether tropical 

SST remained relatively stable at ~28⁰C during the interval between 13.7 Ma and 9.5Ma.  This 

would support the mid-late Miocene as being a key interval for the development of the 

latitudinal temperature gradient of the modern-day ocean.   

 

The equatorial Indian Ocean locality of Sunbird-1 means it is well-positioned for this purpose.  

However, foraminifera from Sunbird-1 analysed by traditional solution based ICP-MS have 

elevated trace element over calcium ratios as a result of diagenetic alteration, inhibiting their 

potential for estimating past temperatures using the Mg/Ca palaeothermometer (Chapter 3).  

Therefore, a laser ablation ICP-MS analytical technique in the Cardiff University CELTIC 

laboratory has been developed and implemented (Chapter 4).  This technique produces highly 

spatially resolved geochemical depth profiles through individual foraminiferal tests from 

which the primary calcite Mg/Ca signal can be identified (Creech et al., 2010, Hollis et al., 

2015, Hines et al., 2017).  This primary Mg/Ca signal is then used to calculate sea surface and 

bottom water temperatures from Sunbird-1 and placed in context of global sea surface 

temperature compilations.   

 

Summary of Scientific Experiments 

 This chapter applies the optimised ablation parameters determined in Chapter 4 to 

reconstruct bottom water and sea surface temperature at Sunbird-1. 

 Temperatures were reconstructed by applying Mg/Ca palaeothermometery to 

foraminifera, bottom water temperature from the benthic species Cibicidoides 
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wuellerstorfi, and sea surface temperature from the planktic species 

Dentogloboquadrina altispira.   

 Up to thirty-six laser ablation ICP-MS profiles, from up to six individuals, were analysed 

for each sample.  In addition to Mg/Ca, Mn/Ca and Al/Ca were also analysed, as 

indicators for contamination. 

 Each LA-ICP-MS depth profiles was individually inspected to identify the primary test.  

This was determined to be the region where Al/Ca and Mn/Ca are at their lowest, and 

Mg/Ca is stable. Further screening for contamination was applied after data 

processing, to fully remove any influence of the Mg-rich contaminant phase. 

 

5.2 Methods 

5.2.1 Sample selection and preparation 

Up to six specimens of D. altispira and C. wuellerstorfi were selected from 44 depth intervals 

through the Sunbird-1 core for LA-ICP-MS Mg/Ca and Mn/Ca analysis (Chapter 4.3.4).  

However, fewer tests were available in eight samples of D. altispira, and in 20 samples of C. 

wuellerstorfi (Appendix 6).  Foraminiferal sample preparation included the removal of fine 

clays and other detrital material on the outer surface of the test using DI water and methanol, 

but did not include the more aggressive oxidative and reductive steps (Boyle, 1983, Barker et 

al., 2003), as these offer negligible benefit compared to that achieved by ultrasonication in 

18.2 MΩ DI water and methanol for laser ablation analysis (Vetter et al., 2013) (Chapter 4).  

The cleaned tests were mounted onto glass slides using double sided carbon tape and were 

allowed to dry before being mounted into the sample cell (Evans et al., 2015, Fehrenbacher 

et al., 2015).   
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5.2.2 LA-ICP-MS analysis 

Analyses were performed using an ArF excimer (193nm) LA- system with dual-volume laser-

ablation cell (RESOlution S-155, Australian Scientific Instruments) coupled to a Thermo 

Element XR magnetic sector field HR ICP-MS.  The optimised ablation parameters and 

analytical settings determined for the Cardiff University CELTIC laboratory determined in 

Chapter 4 were used for this study, with two additions.  The first attempts to remove the Mg-

Mn-rich contaminant coating observed in Chapter 4 by including pre-ablation prior to 

analysis.  This was done by applying three pulses to remove the outer ~0.5µm of the test 

surface, providing a simple but effective cleaning procedure.  Secondly, 27Al was added to the 

analysed isotopes, elevated Al/Ca ratios being an indicator for contamination by silicates.  

Where possible three laser spots were analysed on each of the penultimate (f-1) and previous 

(f-2) chambers, however, this was not always possible meaning older chambers were 

frequently used to ensure 6 laser spots per specimen were analysed.  

 

NIST SRM 610 was measured after each specimen (every six laser spots) and NIST SRM 612 

was acquired at the beginning and end of every sequence (Figure 5.1). The reference values 

for elemental concentrations in both silicate glass standards are taken from the GEOREM 

website (http://georem.mpch-mainz.gwdg.de/sample_query_pref.asp), updating from 

Jochum et al. (2011) (Table 2.2).  NIST SRM 612 was calibrated for long term external 

reproducibility using NIST SRM 610.  Over the duration of the study NIST 610-calibrated NIST 

612 had a precision (2 SD) of 3.7% relative to the reported value.  As discussed in Chapter 2.6, 

a more thorough assessment of accuracy cannot be made at present, as a well-characterised 

http://georem.mpch-mainz.gwdg.de/sample_query_pref.asp
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calcite reference material, matrix matched to typical foraminiferal calcite, is not available 

(Evans et al., 2015, Fehrenbacher et al., 2015, Evans and Müller, 2018).   

 

5.2.3 Data processing and screening 

Each individual laser ablation profile was carefully inspected and processed using the SILLS 

data reduction software package (Guillong et al., 2008) following the established protocol 

Figure 5.1:  Typical LA-ICP-MS sequence composed of six depth profiles through 6 specimens, with the 

NIST 610 standard ablated after each specimen to enable me to calculate a linear drift correction.  NIST 

612 was analysed at the beginning and end of each sequence. 
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outlined in Longerich et al. (1996).  First, a background signal of ~15 seconds, from data 

acquired during the period in which the laser was turned off prior to ablation, was selected 

for each profile.  Following this the integration interval for the profile was selected based 

upon the following criteria:   

 Stable raw 43Ca counts, indicating ablation of calcite, 

 Stable Mg/Ca signal, indicating a consistent primary calcite phase, 

 Flat Mn/Ca and Al/Ca signals, avoiding any peaks which are likely intervals of 

contamination. 

 

The ratios mode feature in SILLS was regularly used in addition to the raw isotopic counts to 

allow an appropriate integration interval to be selected, because defining Mg/Ca, Mn/Ca, and 

Al/Ca is imperative for the objective of the study.  An example of a typical laser ablation depth 

profile, with background and sample signals selected is shown below (Figure 5.2).  Typically, 

intervals with elevated Mn and Al in concert with elevated Mg are interpreted as being 

contaminant phases, and are commonly found on the inner and outer test surface (Barker et 

al., 2003, Pena et al., 2005, de Nooijer et al., 2014, Koho et al., 2015, Hasenfratz et al., 2016).  

The carbon tape used to mount the foraminifera to the glass slide is greatly enriched in Al, 

providing a distinctive signal.   

 

Spikes were identified using the built in software in SILLS (Guillong et al., 2008).  This follows 

the method of Grubbs (1969) which calculates a suggested value ((mean value – suspected 

spike value)/ standard deviation of all samples), assuming the data is normally distributed, 

and compares this to a tabled value at a specified significance level, set to 5%.  Identified 
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spikes were then inspected by myself and, if appropriate, were replaced by the suggested 

value, the mean of the measurements preceding and following the spike.  Approximately 4 

spikes, across all 8 isotopes combined, were removed per test wall transect.  

 

Individual depth profiles were corrected by first subtracting the mean background signal.  The 

repeated analysis of the NIST 610 standard reference material was used to linearly correct for 

any instrumental drift.  For each sample the quality of the standard measurements was 

assessed in the calibration window (Figure 5.3), which allows for easy identification of any 

problems with the linear drift correction.  A linear drift was applied because the standard 

measurements were equally distributed through the 36 depth profiles comprising each 

sample, which was always continuous without breaks between measurements (Figure 5.1).  

Analytical uncertainty is accounted for during this data processing step.  Typically this 

uncertainty is small, <2% (2SE), because of the good counting statistics and stable data 

acquisition during ablation. 

 

The limit of detection (LOD) of each isotope per spot was also calculated in SILLS, using the 

method of Longerich et al. (1996) where the LOD is the background signal + 3.3 x standard 

deviation on the background signal.  Values that failed to meet this limit were removed by 

the software.  Despite the high 55Mn gas blank due to the interference with 40Ar15N, almost 

every profile exceeded the LOD for Mn/Ca measurements, an indication of the low standard 

deviation of the background signal.   
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Figure 5.2:  Representative LA-ICP-MS Mg, Al, and Mn profiles demonstrating the selection of background (grey panel) and sample (blue panel) signals, shown in 

raw isotopic counts (A), and ratios mode (B) where the isotopes of interest are relative to 43Ca, the internal standard.  In both figures the x axis is analysis time 

(seconds), and the y axis is the raw intensity of the isotopes (A) or ratios (B) on a log scale.  The sample interval is selected to avoid the elevated Mg/Ca, Mn/Ca, 

and Al/Ca at the outer surface of the test.   

B A 
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Further screening for contamination was conducted after data processing in the SILLS 

software.  The ablation profiles were normalised to 43Ca as the internal standard and 

elemental concentrations (TM/Ca) were calculated, assuming 40% wt for CaCO3.  This use of 

43Ca as an internal standard corrects for any differences in the relative yield of ablation 

between samples.  If the assumed 40% wt is incorrect, this has no bearing on the TM/Ca ratios 

(e.g. Mg/Ca), only leading to possible errors in the absolute trace metal (e.g. Mg) content of 

the test (Rathmann et al., 2004).  These ratios were then converted to mmol/mol or 

µmol/mol, the typical units used in palaeoceanographic studies.  At this point integrated 

depth profiles which display Mn/Ca >> 100 µmol/mol were excluded, as these suggest 

potential contamination by Mn-Fe-oxides (Chapter 3).  Furthermore, integrated depth 

Figure 5.3:  Example of the calibration window in SILLS (Guillong et al., 2008), from which the quality 

of the standard measurements is assessed.  (A) Relative sensitivity of the chosen isotope (e.g. 25Mg) 

versus that of the internal standard, 43Ca.  (B) Drift in sensitivity of these isotopes through the run.  The 

percentage drift in sensitivity of all the analysed isotopes relative to 43Ca as a list (C) and plot (D).  
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profiles with Al/Ca > 100 µmol/mol with Mg/Ca ratios substantially higher than profiles 

through the same test with Al/Ca < 100 µmol/mol were also excluded.   

 

5.2.4 Calculating mean Mg/Ca values and propagation of uncertainty 

It is necessary to calculate a representative Mg/Ca value for the time interval encompassed 

by each sample so that long term trends in bottom water and sea surface temperature at the 

site of Sunbird-1 can be interpreted.  Natural intra- and inter-test Mg/Ca variability within and 

between individual foraminifera, as revealed by microanalytical studies (Eggins et al., 2003, 

Eggins et al., 2004, Sadekov et al., 2005, Sadekov et al., 2008b), results in significant 

dispersion, as much as two to four fold (Sadekov et al., 2008b, Spero et al., 2015, Holland et 

al., 2017), about commonly applied palaeothermometry calibrations (Elderfield and Ganssen, 

2000, Anand et al., 2003, Elderfield et al., 2006).  The homogenisation of several specimens, 

as with bulk solution ICP-MS foraminiferal analysis, is therefore required to calculate a 

representative Mg/Ca for a sample, unobscured by intra- and inter-test variability, which can 

be used to reconstruct temperature (Chapter 4.3.4).   

 

Each profile which passed the screening for contamination was given equal weighting, 

independent of the size of the integration window, to calculate the mean Mg/Ca ratio for 

each specimen.  Errors on the single specimen Mg/Ca ratios (intra-specimen) are ±2 Standard 

Error of the Mean (±2 SE) of all the measurements from that specimen, up to 6 depth profiles.   
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For the calculation of a mean sample Mg/Ca ratio, again each profile (up to a possible 36) was 

given equal weighting.  This avoids the potential for a specimen where only 1 profile passed 

the screening for contamination having the same contribution to the mean Mg/Ca of the 

sample than a specimen where all 6 profiles passed the screening for contamination, 

potentially skewing the mean Mg/Ca ratio for the sample.  Errors on the mean Mg/Ca ratios 

are ±2 SE of all the measurements from that sample, up to 36 profiles, and is termed the 

sample uncertainty.   

 

5.3 Converting raw Mg/Ca ratios to estimates of seawater temperature 

Measurements of foraminifera from core-tops, sediment traps, and plankton tows have 

provided empirical calibrations between Mg/Ca and seawater temperature.  This informs us 

that the influence of calcification temperature on the Mg/Ca ratio of foraminiferal calcite can 

be explained by an exponential curve of general form Mg/Ca = BexpAT where the pre-

exponential constant (B) and exponential constant (A) are species specific (Nürnberg et al., 

1996, Rosenthal et al., 1997, Lear et al., 2002, Anand et al., 2003).  In order to convert raw 

Mg/Ca ratios to absolute temperatures, several secondary controls on Mg/Ca must be 

considered, and then accounted for where necessary.  These controls may impact Mg/Ca 

derived temperature reconstructions on both Quaternary (Gray et al., 2018), and Cenozoic 

(Lear et al., 2015, Evans et al., 2018) timescales.   
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5.3.1 Accounting for the influence of the carbonate system on Mg/Ca: 

Foraminiferal Mg/Ca is influenced by changes in the carbonate system (Russell et al., 2004, 

Elderfield et al., 2006, Yu and Elderfield, 2008, Evans et al., 2016c, Gray et al., 2018).  This 

influence is different in benthic and planktic foraminiferal species and will therefore be 

discussed separately.   

 

5.3.1.1  Benthic foraminifera 

The incorporation of Mg2+ into the calcite tests of benthic foraminifera is discriminated 

against in bottom waters with carbonate ion saturation state (Δ[CO3
2-]) below a certain 

threshold, artificially lowering BWT estimates (Elderfield et al., 2006, Rosenthal et al., 2006).  

Therefore, infaunal foraminifera are preferred for BWT studies because the porewaters they 

calcify from are buffered against variations in Δ[CO3
2-] (Elderfield et al., 2010, Mawbey and 

Lear, 2013), although this is not always the case (Lear et al., 2015).  Despite C. wuellerstorfi 

being epifaunal, the shallow water depth Sunbird-1 means that Δ[CO3
2-] is likely above the 

proposed threshold at which it has a significant effect of Mg/Ca (Elderfield et al., 2006).   

 

5.3.1.2  Planktic foraminifera 

The Mg/Ca ratio in planktic foraminifera increases with decreased pH and/or Δ[CO3
2-].  

However, the ultimate driver of this effect is not certain, so recent results which interpret pH, 

as opposed to Δ[CO3
2-] or DIC, as the parameter which controls the carbonate system’s 

influence on Mg/Ca are followed (Evans et al., 2016c, Gray et al., 2018).  Furthermore, unlike 

with Δ[CO3
2-], it is possible to reconstruct pH through the Neogene using boron isotopes in 



Cardiff University 139 | P a g e  Michael Nairn 

foraminifera (Foster et al., 2012, Henehan et al., 2013, Foster and Rae, 2015, Sosdian et al., 

2018).  The only published boron isotope pH record that spans the entire interval of Sunbird-

1 is that of Sosdian et al. (2018), and this reconstructs values within error of Foster et al. 

(2012) when the two records overlap.  To the best of my knowledge there are no other 

published pH records through the interval.  Both records reconstruct ocean pH between 7.90 

and 8.15 through the interval, which is similar to the modern day value of ~8.1 pH units (Key 

et al., 2015, Lauvset et al., 2016).  Two scenarios to account for the influence of pH on the 

Mg/Ca temperature reconstructions are adopted.  The first scenario uses a constant pH value 

of 8.1 ± 0.1 pH units throughout the time interval of Sunbird-1, based on the reconstructions 

of (Foster et al., 2012).  The second scenario uses recently published work utilising the boron 

isotopic composition of planktic foraminifera to reconstruct similar values of pH through this 

interval following the MMCT (Sosdian et al., 2018) (Figure 5.4).  These authors use three 

δ11BSW scenarios (Lemarchand et al., 2002, Raitzsch and Hönisch, 2013, Greenop et al., 2017), 

and their own temperature constraint on the equilibrium constant (K*
B).  Mean pH is taken to 

be the average of the 50% value from the three δ11BSW scenarios, and the uncertainty 

envelope is maximum and minimum pH at the 17% and 83% confidence interval, independent 

of the δ11BSW scenario (~± 0.06 pH units).  Linear interpolation between these pH values allows 

me to calculate a mean pH value and associated uncertainty envelope for each Sunbird-1 

sample.  The higher resolution of this record reveals some variability in pH through the 

interval.  This second scenario with varying pH to recalculate temperature, again using 

Equation 5.1, removing any unaccounted for influence of changing pH on the Mg/Ca derived 

temperature estimates is used.  Measured planktic foraminiferal Mg/Ca values are corrected 

for using the equation of Evans et al. (2016c) (Equation 5.1).   
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𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟓. 𝟏:   𝐌𝐠 𝐂𝐚𝐂𝐎𝐑𝐑𝐄𝐂𝐓𝐄𝐃  =  
𝐌𝐠 𝐂𝐚𝐌𝐄𝐀𝐒𝐔𝐑𝐄𝐃⁄

𝟎. 𝟔𝟔
𝟏 + 𝐞𝐱𝐩 (𝟔. 𝟗(𝐩𝐇 − 𝟖. 𝟎))

+ 𝟎. 𝟕𝟔
⁄  

 

 

5.3.2 Accounting for changes in seawater Mg/Ca 

Fluxes of Mg2+ and Ca2+ into and out of the oceans means seawater Mg/Ca (Mg/CaSW) 

experiences secular variation.  This variability must be considered when determining absolute 

sea surface and bottom water temperatures on Cenozoic timescales.  Reconstructions based 

Figure 5.4:  Surface ocean pH determined using δ11B measurements on planktic foraminifera from a 

global distribution of open ocean sites (Sosdian et al., 2018).  Three δ11BSW scenarios are used (Greenop 

et al., 2017, Lemarchand et al., 2002, Raitzsch and Hönisch, 2013).  Uncertainty envelopes denote the 

maximum and minimum pH at the 17% and 83% confidence interval, independent of the δ11BSW 

scenario. 
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on large benthic foraminifera (Evans et al., 2018), calcite veins (Coggon et al., 2010), fluid 

inclusions (Horita et al., 2002), and echinoderms (Dickson, 2002) have constrained this 

variability through the Cenozoic (Figure 5.5).  Mg/CaSW reconstructions derived from corals 

show extremely large errors, in particular since the Miocene, and have therefore been 

omitted (Gothmann et al., 2015).  Modern day Mg/CaSW is well constrained at ~5.2 mol/mol 

(Broecker et al., 1982, Dickson, 2002, Horita et al., 2002, Kisakürek et al., 2008), and the 

Eocene-Oligocene demonstrates relatively stable values of 2-2.5 mol/mol (Coggon et al., 

2010, Evans et al., 2018).  However, only one data point exists from the Miocene, through 

which Mg/CaSW more than doubles from ~2.2 mol/mol in the late Oligocene (Coggon et al., 

2010) to 5.2 mol/mol in the modern ocean (Broecker et al., 1982).  Therefore the method of 

Lear et al. (2015) is followed by fitting the fourth-order polynomial curve fit through the 

compiled seawater Mg/Ca (Mg/CaSW) proxy records (Figure 5.5).  The thin lines represent a 

±0.5 mol/mol uncertainty window used in the following temperature calculations, this error 

envelope incorporating the majority of the spread in the proxy data.  This produces the 

following association between Mg/CaSW and age (Equation 5.2, R2=0.90) which has been used 

to approximate Mg/CaSW for each sample at the time of calcification.   

 

Equation 5.2: Mg/CaSW = 5.13 – (0.177 x Age) + (0.00361 x Age2) – 

(2.95x10 -5 x Age3) + (8.08x10 -8 x Age4) 
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Applying the power law relationship (Equation 5.3), where H is a power law function used to 

describe the non-linear variation of Mg/CaCALCITE with Mg/CaSW (Hasiuk and Lohmann, 2010, 

Cramer et al., 2011, Evans and Müller, 2012), to the general form of the Mg/Ca palaeo-

thermometer (Mg/Ca = BexpAT) negates the assumption that the temperature sensitivity 

remains constant, independent of changing Mg/CaSW through the Cenozoic.  

 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟓. 𝟑:   𝐌𝐠 𝐂𝐚⁄ = (
𝐁

𝐌𝐠 𝐂𝐚⁄
𝐒𝐖

𝐭=𝟎𝐇
)𝐱 𝐌𝐠 𝐂𝐚⁄

𝐒𝐖

𝐭=𝐭𝐇
𝐞𝐱𝐩𝐀𝐓 
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Figure 5.5:  The evolution of Seawater Mg/Ca (Mg/Casw) through the Cenozoic from records of large 

benthic foraminifera (LBF) (Evans et al., 2018) (yellow circles), calcite veins (Coggon et al., 2010) (blue 

squares), fluid inclusions (Horita et al., 2002) (red triangles), and echinoderms (Dickson, 2002) (purple 

diamonds).  Fourth order polynomial fit (thick black line) through the compiled data.  The thin lines 

represent a ±0.5 mol/mol uncertainty window used in the following temperature calculations. 
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Several authors have attempted to determine values of H for different species by rearranging 

Equation 5.3, using independently determined values for temperature, Mg/CaSW, and A for 

the specific species (Evans and Müller, 2012, Lear et al., 2015, Hines et al., 2017).  

Temperature is determined independently using δ18O measurements of foraminiferal calcite 

and assuming a δ18OSW for the ice-free world of the early Eocene which is commonly taken to 

be -0.89 ± 0.02‰ (VSMOW) (Cramer et al., 2011).  Following this methodology, and using the 

calibrations of Lear et al. (2002) and Anand et al. (2003), H values of 0.31 and 0.20 have been 

calculated for Cibicdoides spp and a mixed planktic foraminiferal assemblage respectively 

(Hines et al., 2017).  However, these authors uses a Mg/CaSW value of 1.6 mol/mol for the 

early Eocene (Evans and Müller, 2012) whereas the polynomial curve fit through the proxy 

records produces a Mg/CaSW value of 2.1 mol/mol for the same interval (Figure 5.5) due to 

the inclusion of new proxy data from the Eocene (Evans et al., 2018).  Using the same 

methodology and replacing Mg/CaSW = 1.6 mol/mol with Mg/CaSW = 2.1 mol/mol calculates 

an H value of 0.40 for Cibicidoides spp and an H value of 0.26 for planktic foraminiferal species.   

 

This correction for changing Mg/CaSW, where modern day Mg/Casw = 5.2 mol/mol, is 

incorporated into the Mg/Ca temperature calibrations for Cibicidoides spp. (Lear et al., 2002) 

(Equation 5.4) and a compilation of planktic foraminifera (Anand et al., 2003) (Equation 5.5) 

to calculate bottom water temperature (BWT) and sea surface temperature (SST) 

respectively.  Note that Mg/Ca in Equation 5.5 is Mg/CaCORRECTED from Equation 5.1.  D. 

altispira is an extinct species, and therefore initially the compilation of nine modern planktic 

foraminifera which make up the calibration of Anand et al. (2003) is applied, as this minimises 
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any species-specific effects.  The regressions for both calibrations have residual errors, which 

are accounted for in the calculation of the absolute temperature uncertainty envelopes.   

 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟓. 𝟒:    𝑪. 𝒘𝒖𝒆𝒍𝒍𝒆𝒓𝒔𝒕𝒐𝒓𝒇𝒊 𝐌𝐠 𝐂𝐚⁄ = (
𝟎. 𝟖𝟔𝟕 ± 𝟎. 𝟎𝟒𝟗

𝟓. 𝟐𝟎.𝟒𝟎
) 𝐱 𝐌𝐠/𝐂𝐚𝐬𝐰

𝟎.𝟒𝟎 𝐞𝐱𝐩(𝟎.𝟏𝟎𝟗±𝟎.𝟎𝟎𝟕 𝐱 𝐁𝐖𝐓) 

 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟓. 𝟓:    𝑫. 𝒂𝒍𝒕𝒊𝒔𝒑𝒊𝒓𝒂 𝐌𝐠 𝑪𝒂⁄ = (
𝟎. 𝟑𝟖 ± 𝟎. 𝟎𝟐

𝟓. 𝟐𝟎.𝟐𝟔
) 𝐱 𝐌𝐠/𝐂𝐚𝐬𝐰

𝟎.𝟐𝟔 𝐞𝐱𝐩(𝟎.𝟎𝟗𝟎±𝟎.𝟎𝟎𝟑 𝐱 𝐒𝐒𝐓) 

 

The calibration of Lear et al. (2002) is from a compilation of three common species of 

Cibicidoides.  Therefore a calibration specific to C. wuellerstorfi is used as an alternative 

(Equation 5.6) (Lo Giudice Cappelli et al., 2015).  This has slightly higher pre-exponential and 

exponential coefficients, but both are well within error of the coefficients of the Cibicidoides 

spp. calibration (Lear et al., 2002).   

 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟓. 𝟔:   𝑪.𝒘𝒖𝒆𝒍𝒍𝒆𝒓𝒔𝒕𝒐𝒓𝒇𝒊 𝐌𝐠 𝐂𝐚⁄ = (
𝟎. 𝟗𝟏 ± 𝟎. 𝟏𝟎

5.20.40
) 𝐱 𝐌𝐠/𝐂𝐚

𝐬𝐰
𝟎.𝟒𝟎 𝐞𝐱𝐩(𝟎.𝟏𝟐𝟎±𝟎.𝟎𝟏 𝐱 𝐁𝐖𝐓) 

 

As an alternative SST calibration the preferred equation of (Evans et al., 2016b) is used to 

account for the influence of changing Mg/CaSW when estimating SST.  These authors 

determined that the best fit to culture-derived calibration lines is when both the pre-

exponential (B) and exponential (A) coefficients vary quadratically with Mg/CaSW (Equation 

5.7 and 5.8).   
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Equation 5.7: B = (0.019 x Mg/CaSW
2) – (0.16 x Mg/CaSW) + 0.804 

Equation 5.8: A = (-0.0029 x Mg/CaSW
2) + (0.032 x Mg/CaSW) 

These equations are substituted into A and B of the general exponential calibration, Mg/Ca = 

BexpAT.  Although this equation is specific to Globigerinoides ruber, this species inhabits a 

shallow water depth of 0-50m (Schiebel and Hemleben, 2017) similar to the inferred habitat 

depth D. altispira (Aze et al., 2011).  Furthermore, G. ruber is included in the multi-species 

compilation SST calibration regularly used for extinct species, such as D. altispira (Anand et 

al., 2003). 

 

5.3.3 Accounting for changes in salinity 

Salinity can exert a secondary effect on foraminiferal Mg/Ca, sensitivity measurements from 

culture and core-top studies show this to be ~3-5% per practical salinity unit (psu) (Kisakürek 

et al., 2008, Hönisch et al., 2013, Gray et al., 2018).  In the absence of a robust, independent 

salinity proxy and the relatively minor effect of salinity on foraminiferal Mg/Ca this potential 

secondary control is not empirically accounted for.  Sunbird-1 was located in a coastal setting 

and likely experienced a highly variable hydrological cycle due to changes in the position of 

the ITCZ making it susceptible to changes in salinity.  Therefore, an error of ± 0.5⁰C is 

incorporated into the final sea surface temperature estimates, equivalent to an assumed 

salinity variability of ~± 1 PSU.  
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5.3.4 Quantifying uncertainties of reconstructed temperatures  

The uncertainties (± 2SE) associated with the conversion from Mg/Ca to temperature 

incorporates the uncertainty in the pH correction, the uncertainty on the Mg/CaSW record, 

the uncertainty on the temperature calibration coefficients, and a potential uncertainty due 

to varying salinity.  The uncertainties associated with pH and salinity are only applied to the 

planktic foraminiferal Mg/Ca record.  This is termed the calibration uncertainty and is 

independent from both the analytical uncertainty described in Chapter 5.2.3, and sample 

uncertainty described in Chapter 5.2.4.  Therefore, to determine the absolute temperature 

cumulative ±2SE uncertainty envelope all of these errors are summed.  The calibration 

uncertainty only influences the estimates of absolute temperature and is therefore not 

included in the assessment of relative temperature trends (Chapter 5.5.2 and 5.5.3).   

 

5.4 Results 

5.4.1 Effect of screening for contamination 

The use of LA-ICP-MS to generate simultaneous, highly spatially resolved depth profiles of 

Mg/Ca, Al/Ca, Mn/Ca, and others, through foraminiferal tests provides the opportunity to 

assess their intra-specimen preservation (Creech et al., 2010, Evans et al., 2015).  This has 

allowed me to discount any regions of the test determined to be influenced by diagenetic 

features from the interval of data integration, and therefore exclude them from the primary 

environmental interpretation (Creech et al., 2010, Hines et al., 2017).   
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To demonstrate the influence of selecting an interval of data integration the 1473-1476m C. 

wuellerstorfi sample was processed using the full profile from each analysis.  This is, in effect, 

the geochemical ratios that would result from bulk analysis having omitted the thorough 

chemical cleaning process.  Selection of a suitable interval for data integration reduces the 

mean Mg/Ca of the 35 profiles from 5.30 mmol/mol to 4.28 mmol/mol, mean Mn/Ca from 

140 µmol/mol to 110 µmol/mol, and mean Al/Ca from 5060 µmol/mol to 1330 µmol/mol 

(Table 5.2).  Selecting an interval for data integration has a non-uniform impact on the Mg/Ca 

ratio of individual profiles, some specimens showing no influence of using this technique, 

indicating that contamination varies between specimens from the same sample (Figure 5.6).   
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Figure 5.6:  Mg/Ca ratios of all C. wuellerstorfi profiles from the 1473-1476m sample in Sunbird-1.  Grey 

squares represent full geochemical profiles, and red squares represent the selected integration 

intervals of the profiles.  Solid black lines indicate the difference between the two ratios, and dashed 

blue lines distinguish between the six specimens analysed.   



Cardiff University 148 | P a g e  Michael Nairn 

Despite selecting integration intervals which seem to be free from contamination many depth 

profiles still demonstrate elevated Mg/Ca in tandem with Mn/Ca values >150 µmol/mol, the 

proposed threshold above which contamination with respect to Mg/Ca may be an issue.  

Therefore, all profiles with Mn/Ca values greater than 150 µmol/mol were rejected from any 

environmental interpretation (Figure 5.7b).  Elevated Al/Ca ratios are present, but some 

profiles with Al/Ca >> 100 µmol/mol are often associated with Mg/Ca values which are the 

same, or lower, than profiles whose Al/Ca < 100 µmol/mol (Figure 5.7a).  This prevents the 

use of a threshold Al/Ca value above which samples should be discarded (Barker et al., 2003, 

Hollis et al., 2015).  Therefore, profiles with Al/Ca>>100 µmol/mol and concomitantly high 

Mg/Ca values were also discarded using visual inspection and personal discretion.  

 

Applying this further screening to the 1473-1476m C. wuellerstorfi example discards nine 

profiles, reducing the mean Mg/Ca from 4.28 mmol/mol to 2.96 mmol/mol, mean Mn/Ca 

from 110 µmol/mol to 30 µmol/mol and mean Al/Ca from 1330 µmol/mol to 670 µmol/mol 

(Table 5.2).  This demonstrates the influence of the extra, stringent screening applied post 

data processing.  These criteria were applied to all depth profiles, those that fail the post data 

processing screening being discarded from any further paleotemperature interpretation. 

  
Mean Mg/Ca 

(mmol/mol) 

Mean Mn/Ca 

(µmol/mol) 

Mean Al/Ca 

(µmol/mol) 

Full Profile (n=35) 5.30 140 5060 

All Profiles (n=35) 4.28 110 1330 

Used Profiles (n=26) 2.96 30 670 

Rejected Profiles (n=9) 8.06 330 3250 

Table 5.2:  Mean C. wuellerstorfi Mg/Ca, Mn/Ca, and Al/Ca from the 1473-1476m sample, which has a 

biostratigraphic age of 11.09Ma.  Mean values for all profiles (n=35), used profiles (n=26), and rejected 

profiles (n=9) are given.  The mean values for the full profiles, with no selection of the data integration 

interval are also given.   
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Figure 5.7:  Crossplots between Mg/Ca and Al/Ca (A), and Mg/Ca and Mn/Ca (B) from measured 

profiles of C. wuellerstorfi from the 1473-1476m sample in Sunbird-1.  Open squares represent rejected 

profiles (n=9), and closed squares represent used profiles (n=26).   
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Over the record as a whole 2649 analyses of foraminiferal tests from 44 samples in the 

Sunbird-1 core were undertaken, with 1560 analyses passing data screening for contaminant 

phases and therefore being used for palaeotemperature reconstruction.  This consisted of 

767 out of 1118 C. wuellerstorfi analyses (~68%) and 793 out of 1531 D. altispira analyses 

(~52%) (Table 5.3).   

 

The rejected C. wuellerstorfi profiles are concentrated at either end of the record, many 

samples prior to 12.5 Ma and post 10.8 Ma having minimal or no profiles, which pass all the 

data screening criteria (Figure 5.8a).  The D. altispira record also has very few profiles, which 

pass data screening at the start of the record, and has a trough in used profiles between 11.2 

Ma and 10.8 Ma (Figure 5.8b).  The full screening of samples with elevated Mn/Ca and/or 

Al/Ca ratios, post data processing, substantially reduces the mean Mg/Ca ratios of each record 

(Table 5.3).  C. wuellerstorfi mean Mg/Ca is 2.87 mmol/mol, whereas without incorporating 

this further screening for contamination post data processing it would be 4.04 mmol/mol.  D. 

altispira mean Mg/Ca is 4.14 mmol/mol, whereas without incorporating this further screening 

for contamination post data processing it would be 6.53 mmol/mol.  The mean Mg/Ca ratios 

of the rejected profiles are considerably higher, 6.57 mmol/mol and 9.16 mmol/mol 

respectively, as are the mean Mn/Ca and Al/Ca of the rejected profiles (Table 5.3).   
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Figure 5.8:  Number of profiles of (A) C. wuellerstorfi and (B) D. altispira that passed contaminant 

screening. 
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C. wuellerstorfi 

  
Mean Mg/Ca 

(mmol/mol) 

Mean Mn/Ca 

(µmol/mol) 

Mean Al/Ca 

(µmol/mol) 

All Profiles (n=1118) 4.04 140 2400 

Used Profiles (n=767) 2.87 80 410 

Rejected Profiles (n=351) 6.57 280 6690 

D. altispira 

  
Mean Mg/Ca 
(mmol/mol) 

Mean Mn/Ca 
(µmol/mol) 

Mean Al/Ca 

(µmol/mol) 

All Profiles (n=1531) 6.53 150 3460 

Used Profiles (n=793) 4.14 100 0200 

Rejected Profiles (n=738) 9.16 200 7040 

 

5.4.2 Influence of identifying the primary test on temperature reconstructions  

Selecting a suitable interval for data integration reduces estimated BWT for the 1473-1476m 

(11.09 Ma) sample from 17.7⁰C to 15.7⁰C, and further screening of profiles with Mn/Ca > 150 

µmol/mol alongside elevated Mg/Ca reduces BWT for this sample to 12.4⁰C.  Similarly, data 

processing reduces mean BWT of the Sunbird-1 record from 15.5⁰C to 12.4⁰C, and mean SST 

from 33.3⁰C to 27.3⁰C.   

 

It is suggested that future laser ablation analyses on foraminifera whose Mg/Ca ratios are 

influenced by contamination analyse twice as many depth profiles per sample than what has 

been determined to be required in order to obtain a mean Mg/Ca value that is representative 

Table 5.3:  Mean Mg/Ca, Mn/Ca, and Al/Ca C. wuellerstorfi and D. altispira in Sunbird-1.  Mean values 

for all profiles, used profiles,  and rejected profiles are given.   
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for the sample.  This would result in a robust, reliable, and representative mean Mg/Ca being 

obtained for the sample even if half of the depth profiles do not pass contaminant screening.  

Unfortunately, this was not possible at Sunbird-1 due to the low foraminiferal abundance, 

less than six individual specimens being available in multiple samples.   

 

5.4.3 Intra- and Inter-specimen variability in Mg/Ca 

Variability in Mg/Ca ratios are reported from both within and between tests from the same 

sample depth.  This intra- and inter-test Mg/Ca variability has a range of causes, including 

diurnal banding, vertical migration, and changes in calcification temperature on daily to 

seasonal timescales (Eggins et al., 2003, Eggins et al., 2004, Sadekov et al., 2005, Sadekov et 

al., 2008b, Hollis et al., 2012, Koutavas and Joanides, 2012, Fehrenbacher et al., 2015, Spero 

et al., 2015, Holland et al., 2017).  By analysing multiple depth profiles through multiple 

specimens for each sample means that an assessment of both intra- and inter-test variability 

can be made.  The 1551-1554 m sample has a greater foraminiferal abundance than the 

majority of the core (Chapter 4.3.4).  Therefore, this sample is used as an example of the 

relative extent of these two sources of variability in both C. wuellerstorfi and D. altispira due 

to the greater number of measurements available.  

 

The ten specimens of C. wuellerstorfi from the 1551-1554 m sample have a range of intra-

specimen variability between 0.56 mmol/mol and 1.15 mmol/mol, with an average of 0.89 

mmol/mol (Table 5.4, Figure 5.9a).  This is substantially lower than for D. altispira from the 

same sample, in which intra-specimen variability ranges from 1.29 mmol/mol to 2.56 

mmol/mol, with an average of 1.67 mmol/mol (Table 5.4, Figure 5.9b).  This equates to an 
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intra-specimen variability of 1.2 to 1.7 fold for C. wuellerstorfi, and 1.5 to 2 fold for D. altispira.  

To my knowledge this has not previously been assessed in either species but is at the lower 

end of the two to four fold variability reported in cultured O. universa (Eggins et al., 2004, 

Spero et al., 2015, Holland et al., 2017).  Although not specifically assessed in this study, as 

the primary goal was to determine mean Mg/Ca ratios for each sample to interpret downcore 

trends, future studies should investigate whether this intra-specimen variability is 

predominantly within or between different chambers.  .   

 

The inter-specimen variability is also considerably lower in C. wuellerstorfi, 1.03 mmol/mol, 

than it is in D. altispira, 1.38 mmol/mol.  These results suggest that intra- and inter-specimen 

Mg/Ca variability is greater in D. altispira than it is in C. wuellerstorfi in the 1551-1554 m 

sample.  Interestingly, for this sample, intra-specimen variability is greater than inter-

specimen variability for D. altispira whereas the opposite is the case for C. wuellerstorfi.  This 

points towards differing controls on the sample variability of the benthic and planktic 

foraminiferal species.  One possibility is that photosymbionts regulate Mg uptake in D. 

altispira.  However, D. altispira is an extinct species, and there is no evidence that it was 

symbiotic.   

 

For C. wuellerstorfi the mean intra-specimen variability (2SE) across the 10 specimens is 0.15 

mmol/mol, and the inter-specimen variability (2SE) between the 10 specimens is 0.18 

mmol/mol (Figure 5.9a). For D. altispira the mean intra-specimen variability (2SE) across the 

10 specimens is 0.29 mmol/mol, and the inter-specimen variability (2SE) between the 10 

specimens is 0.26 mmol/mol (Figure 5.9b and Table 5.5).   
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  C. wuellerstorfi D. altispira 

Mean Profile Mg/Ca (mmol/mol) 2.48 3.63 

Maximum Profile Mg/Ca (mmol/mol) 3.14 5.23 

Minimum Profile Mg/Ca (mmol/mol) 1.62 2.66 

Mean Intra-specimen 2SE (mmol/mol) 0.15 0.29 

    

Maximum Specimen Mg/Ca (mmol/mol) 2.97 4.33 

Minimum Specimen Mg/Ca (mmol/mol) 1.94 2.96 

Inter-specimen 2SE (mmol/mol) 0.18 0.26 

 

The sample uncertainty (±2 SE) on the mean Mg/Ca value for the 1551-1554 m sample is ±0.09 

mmol/mol for C. wuellerstorfi and ±0.14 mmol/mol for D. altispira.  Acquiring multiple LA-ICP-

MS profiles through several specimens from the same sample reveals there to be substantially 

greater variability than this in the individual Mg/Ca ratios, as demonstrated by the scatter 

around the horizontal grey panel representative of the sample uncertainty (Figure 5.9).  This 

scatter results from variability between the Mg/Ca ratios of depth profiles through the same 

foraminiferal test, intra-specimen variability, and between the mean Mg/Ca ratios of 

individual specimens from the same sample, inter-sample variability.  The large number of 

depth profiles used to determine the mean Mg/Ca of the sample, n=67 and n=72 for C. 

wuellerstorfi and D. altispira respectively, homogenises the intra- and inter-specimen 

variability to estimate a mean sample Mg/Ca for the sample, used for the interpretation of 

long-term climatic trends (Chapter 5.4.4). 

Table 5.4:  Summary of intra- and inter-specimen variability in Mg/Ca (mmol/mol) for C. wuellerstorfi 

and D. altispira in the 1551-1554 m Sunbird-1 sample. 
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Figure 5.9: Mg/Ca of C. wuellerstorfi (A, squares) and D. altispira (B, circles) from the 1551-1554 m 

Sunbird-1 sample.  Open symbols denote individual measurements, and filled symbols denote mean 

Mg/Ca values for each specimen.  Horizontal black lines are the means of all depth profiles from the 

sample, and the grey bars the ±2 SE sample uncertainty.   
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5.4.4 Sample mean Mg/Ca ratios 

The interpretation of temperature trends in downcore records requires the mean Mg/Ca ratio 

determined for a sample to be representative.  For this to be the case the mean Mg/Ca of the 

sample must be unbiased by the natural intra- and inter-test variability observed in 

foraminiferal calcite.   

 

Sample mean Mg/Ca for C. wuellerstorfi ranges from 2.19 to 3.60 mmol/mol, with an average 

value of 2.85 ± 0.22 mmol/mol, and errors (±2SE) range from 0.09 to 0.53 mmol/mol (Table 

5.5 and Figure 5.10a).  Sample mean Mg/Ca for D. altispira ranges from 3.03 to 5.07 

mmol/mol, with an average value of 4.18 ± 0.40 mmol/mol, and errors (±2SE) range from 0.10 

to 1.04 mmol/mol (Table 5.5 and Figure 5.10b).  However, this assumes that the mean Mg/Ca 

value for each sample is representative, irrespective of the number of depth profiles and 

specimens averaged.   

  C. wuellerstorfi D. altispira 

  
Full dataset 

(n=34) 

Representative 

Samples (n=15) 

Full dataset 

(n=43) 

Representative 

Samples (n=14) 

Spots Ablated 1118 598 1531 562 

Spots Used 767 446 793 450 

Mean (mmol/mol) 2.85 ± 0.22 2.85 ± 0.19 4.18 ± 0.40 3.81 ± 0.26 

Maximum (mmol/mol) 3.60 3.21 5.07 4.42 

Minimum (mmol/mol) 2.19 2.44 3.03 3.08 

Maximum 2SE (mmol/mol) 0.53 0.29 1.04 0.40 

Minimum 2SE (mmol/mol) 0.09 0.09 0.10 0.14 

Table 5.5:  Number of spots ablated, spots that passed contaminant screening, and Mg/Ca (mmol/mol) 

distribution statistics and 2 standard errors for C. wuellerstorfi and D. altispira.  Values for the full 

dataset and for the representative samples, those that satisfy the requirements determined in Chapter 

4.3.4, are given.   
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For the mean Mg/Ca value of a sample to be considered representative of mean conditions 

approximately 28 depth profiles from a minimum of five specimens is required (Chapter 

4.3.4).  Following data screening, and the exclusion of any depth profiles which have elevated 

Mg/Ca concomitantly with Mn/Ca > 150 µmol/mol or Al/Ca >> 100 µmol/mol, several samples 

have fewer depth profiles from fewer specimens than are required for a representative mean 

Mg/Ca value (Chapter 4.3.4), which is necessary for interpreting temperature trends through 

the record.  If overlooked there is the potential to interpret spurious trends in Mg/Ca, and for 

any genuine long-term temperature trends to be masked by large uncertainties (Figure 5.11).   

 

Of the 45 samples analysed only 14 samples of D. altispira and 15 samples of C. wuellerstorfi 

satisfy the requirements for them being representative.  The representative sample means 

for C. wuellerstorfi Mg/Ca range from 2.44 mmol/mol to 3.21 mmol/mol, with an average 

value of 2.85 ± 0.19 mmol/mol, and errors (±2SE) range from 0.09 mmol/mol to 0.29 

mmol/mol (Table 5.5 and Figure 5.11).  Representative sample means for D. altispira Mg/Ca 

range from 3.08 mmol/mol to 4.42 mmol/mol, with an average value of 3.81 ± 0.26 

mmol/mol, and errors (±2SE) range from 0.14 mmol/mol to 0.40 mmol/mol (Table 5.5 and 

Figure 5.11).  It is notable that the range in Mg/Ca values is substantially reduced when only 

representative samples are considered while the record average is not significantly changed.  

This suggests that the more extreme values from samples not considered representative are 
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Figure 5.10:  Average Mg/Ca (mmol/mol) for all tests (small grey symbols) and all samples (large black 

symbols) of (A) C. wuellerstorfi (squares), and (B) D. altispira (circles).   
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likely not representative means for the sample, and should not be considered as such.  This 

supports the argument of only incorporating representative samples, because the reduction 

in natural variability of the downcore record is likely due to the intra- and inter-test variability 

not being homogenised out in these samples.  Additionally, that the mean Mg/Ca value for 

each record is the same, or within error, when the full dataset is considered suggests that the 

unrepresentative samples are sometimes warmer and sometimes colder than what a 

representative sample would be.  Therefore, these samples deemed to be unrepresentative, 

due to the large number of profiles not passing the screening for contaminants, are not 

influenced by the Mg-rich contaminant coating.  If they were the average Mg/Ca of the record 
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Figure 5.11: Mean C. wuellerstorfi (black squares) and D. altispira (blue circles) Mg/Ca ratios 

(mmol/mol) for samples considered representative of mean Mg/Ca laser ablation analyses (filled 

symbols) and samples also reflecting natural inter-test Mg/Ca variability (open symbols) samples.   
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would be significantly reduced by excluding them.  However, that that it is within error means 

that samples with only a few profiles determined to be contaminant free still contain useful 

information.   

 

Discarding samples that do not satisfy the requirements for numbers of specimen and depth 

profiles substantially shortens the two records.  This is particularly the case with C. 

wuellerstorfi with all representative sample means falling between 12 Ma and 11 Ma.  

Furthermore, there are no D. altispira representative sample mean values prior to 12 Ma.  To 

alleviate this problem, adjacent samples have been combined into longer time slices so that 

they satisfy the requirements in terms of the number of specimens and total number of depth 

profiles (Table 5.6, Figure 5.12 and Appendix 7).  It is acknowledged that by combining 

adjacent samples, which span up to 420 kyr, could incorporate orbital scale climatic variability 

into the binned samples.  However, the individual samples that have been combined into a 

single binned sample do not show significant offsets to other samples they have been 

combined with in a bin (Figure 5.12).  In addition, due to the coarse sampling resolution of 

the record, orbital climatic variability is not inferred because this could introduce sample 

aliasing over these timescales anyway.  In fact, by binning adjacent samples to generate a 

representative mean Mg/Ca for a longer timeslice could in fact average out orbital scale 

variability, reducing uncertainty and assisting the interpretation of longer term climatic 

trends.  Incorporating the six binned C. wuellerstorfi and the nine binned D. altispira Mg/Ca 

samples with the robust samples makes minimal difference to the overall statistics, the 

average Mg/Ca values for each record being well within error to when binned samples are 

not included. 
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C. wuellerstorfi 

Average 
Age (Ma) 

Minimum 
Age (Ma) 

Maximum 
Age (Ma) 

# Samples 
Binned 

# Specimens 
Used 

# Profiles 
used 

Sample Mean 
Mg/Ca 

(mmol/mol) 

Sample 2 
SE 

10.07 9.86 10.28 2 4 26 2.89 0.20 

10.64 10.49 10.79 2 6 28 3.28 0.28 

10.91 10.82 10.99 3 12 51 2.86 0.12 

11.95 11.88 12.02 2 9 44 3.04 0.20 

12.62 12.57 12.66 2 10 44 2.52 0.13 

13.03 12.85 13.20 3 12 44 2.99 0.17 

        

D. altispira 

Average 
Age (Ma) 

Minimum 
Age (Ma) 

Maximum 
Age (Ma) 

# Samples 
Binned 

# Specimens 
Used 

# Profiles 
used 

Sample Mean 
Mg/Ca 

(mmol/mol) 

Sample 2 
SE 

9.57 9.48 9.65 3 13 51 4.02 0.21 

10.15 10.03 10.28 2 8 24 4.70 0.48 

10.72 10.64 10.79 2 9 39 4.65 0.34 

11.06 10.89 11.23 5 11 22 4.20 0.48 

11.48 11.43 11.53 3 13 40 4.55 0.26 

11.70 11.67 11.72 2 9 35 4.09 0.31 

12.71 12.57 12.85 4 12 50 4.40 0.31 

13.24 13.13 13.34 3 7 25 4.26 0.31 

Table 5.6:  Details about the age range and the number of samples, specimens, and profiles combined 

for each binned sample of C. wuellerstorfi and D. altispira.   
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Figure 5.12:  Average Mg/Ca (mmol/mol) for each sample (large black symbols), and each test of robust 

samples (small grey symbols) and binned samples (small coloured symbols) of (A) C.wuellerstorfi 

(squares), and (B) D. altispira (circles).  Average Mg/Ca (mmol/mol) of tests from different individual 

samples combined within a binned sample are denoted by different colours.  
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Both the benthic C. wuellerstorfi and planktic D. altispira Mg/Ca records at Sunbird-1 display 

no obvious general long term trend through the interval (Figure 5.13).  There is a 0.7-0.8 

mmol/mol decrease in both records at 11.8-11.7 Ma.  This is followed by a recovery to 

approximately previous values at 11.5-11.4 Ma.  D. altispira Mg/Ca decreases by a similar 

magnitude from ~4.4 mmol/mol to ~3.7 mmol/mol between 10.7 Ma and 10.36 Ma, before 

again recovering to ~4.2 mmol/mol at 9.85 Ma.  There is insufficient C. wuellerstorfi data 

through this interval, even incorporating the binned samples, to discern whether there is a 

similar decrease.  Furthermore, the coarse sampling frequency and the requirement to 

combine samples in order for an Mg/Ca value to be representative could be obscuring similar 

variability through the rest of the record.   

Figure 5.13: Mean C. wuellerstorfi (black squares) and D. altispira (blue circles) Mg/Ca ratios 

(mmol/mol) for robust (dark symbols) and binned (pale symbols) samples.  See text for details on 

sample binning.  Error bars denote the age range for binned samples and the ± 2SE of Mg/Ca from all 

depth profiles in the sample.   

2

2.5

3

3.5

4

4.5

5

5.5

6

9 10 11 12 13 14

Robust C. wuellerstorfi

Binned C. wuellerstorfi

Robust D. altispira

Binned D. altispira

Age (Ma)

M
g

/C
a
 (

m
m

o
l/
m

o
l)



Cardiff University 165 | P a g e  Michael Nairn 

5.4.5 Calculating bottom water and sea surface temperature at Sunbird-1 

A suite of bottom water temperature (Figure 5.14) and sea surface temperature (Figure 5.15) 

records have been calculated using the range of scenarios outlined in Section 5.4.  These 

ranges incorporate both H values from the different estimates of Eocene Mg/CaSW (1.6 

mol/mol and 2.1 mol/mol), and the differing temperature calibrations used (Lear et al., 2002, 

Anand et al., 2003, Lo Giudice Cappelli et al., 2015, Evans et al., 2016a).  For SST scenarios 

when surface pH is considered stable (Figure 5.15a), and when surface pH varies in 

accordance with Sosdian et al. (2018), are shown (Figure 5.15b).   

Figure 5.14: Mean absolute bottom water temperature (BWT) at Sunbird-1 using robust and binned 

samples.  Temperatures based on Lear et al. (2002) (Equation 5.4) are blue circles, and temperatures 

based on Lo Giudice Cappelli et al. (2015) (Equation 5.6) are red squares.  Filled symbols joined by solid 

lines correspond to an H value of 0.4, and open symbols joined by dashed lines correspond to an H 

value of 0.31 calculated assuming Eocene Mg/CaSW values of 2.1 mol/mol and 1.6 mol/mol respectively.  

Error bars signify the age range of binned samples.   
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Figure 5.15: Absolute sea surface temperature (SST) at Sunbird-1 using robust and binned samples and 

(A) a constant pH of 8.1, or (B) varying pH of Sosdian et al. (2018).  Temperatures based on Evans et al. 

(2016b) (Equations 5.7 and 5.8) are blue circles, and temperatures based on Anand et al. (2003) 

(Equation 5.5) are red squares.  Filled symbols joined by solid lines correspond to an H value of 0.26, 

and open symbols joined by dashed lines corresponds to an H value of 0.2 calculated assuming Eocene 

Mg/CaSW values of 2.1 mol/mol and 1.6 mol/mol respectively (Figure 5.5, Equation 5.3).   
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From this range of scenarios those which use an Eocene Mg/CaSW value of 2.1 mol/mol as 

calculated using the polynomial association between Mg/CaSW and age are preferred 

(Equation 5.2), as are the SST scenarios which incorporate the effect of changing pH on the 

Mg/Ca value used to determine temperature (Figure 5.15b).  Despite being species-specific 

for C. wuellerstorfi the calibration of Lo Giudice Cappelli et al. (2015) (Equation 5.6) only 

covers a bottom water temperature range from 0 to 10⁰C meaning BWT at Sunbird-1 extends 

outside this calibration range.  The general Cibicidoides calibration of Lear et al. (2002) goes 

up to 18⁰C, encompassing the full range of BWT from the Sunbird-1 record, and therefore this 

BWT calibration is preferred (Equation 5.4) (Figure 5.16b and Appendix 8a).  Despite being 

widely applied to extinct planktic foraminfera species such as D. altispira the multi-species 

SST calibration of Anand et al. (2003) has a considerably higher temperature sensitivity than 

recent work which incorporates the influence of the carbonate system (Evans et al., 2016a).  

Therefore, the SST calibration of Evans et al. (2016a) is preferred (Figure 5.16a and Appendix 

8b), despite it being species-specific to G. ruber.   

 

For these preferred scenarios the sample and analytical uncertainties, and the calibration 

uncertainty are distinguished between (Figure 5.16).  This is because the calibration 

uncertainty only influences the absolute temperature values, and can be discounted for 

assessing any trends in relative BWT and SST.   



Cardiff University 168 | P a g e  Michael Nairn 

 
Figure 5.16: Evolution of (A) SST (circles) using the temperature calibration of Evans et al. (2016a) 

(Equations 5.7 and 5.8), and (B) BWT (squares) using the exponential equation of Lear et al. (2002) 

(Equation 5.4) at Sunbird-1.  Both records include robust (filled symbols) and binned (open symbols) 

Mg/Ca samples and use an Eocene Mg/CaSW of 2.1 mol/mol (Figure 5.5).  Error bars show the age range of 

the binned samples.  Two uncertainty envelopes are provided, one incorporating only the sample and 

analytical error (solid black lines), and one which also includes the calibration uncertainty (dashed grey 

lines).  The calibration uncertainty on the BWT record is derived from the envelope on the Mg/CaSW curve 

(±0.5 mol/mol) and the range in the coefficients of the temperature calibration.  Addition uncertainty on 

the SST record is due to uncertainty (~±0.06 pH units) in the pH reconstruction of Sosdian et al. (2018), 

and any salinity influence (±0.5⁰C).   
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The large uncertainty associated with the absolute temperature estimates (~± 2.5⁰C for BWT 

and ~± 3.9⁰C for SST (2 SE)) is due to the ± 0.5 mol/mol envelope on the Mg/CaSW curve (Figure 

5.5), the errors on the calibration coefficients (Equation 5.4), the ~± 0.06 envelope on the pH 

estimate (Figure 5.4), and any potential salinity effect on the planktic foraminiferal Mg/Ca 

values.  This makes the interpretation of absolute temperature change challenging.  Therefore 

interpretation of the evolution of water temperature at Sunbird-1 will focus on the relative 

changes which exclude this calibration uncertainty, as denoted by the solid black envelopes 

in Figure 5.16, reducing the uncertainty (2 SE) to ± 0.6⁰C for BWT and to ± 0.9⁰C (2SE) for SST.  

Both temperature records have the same general features of the respective Mg/Ca records 

suggesting that temporal changes in pH and Mg/CaSW have little influence on the Mg/Ca 

record.  BWT at Sunbird-1 remains relatively constant at 12 ± 3 ⁰C (Figure 5.16b), and SST 

remains relatively stable at ~27-28⁰C through the interval (Figure 5.16a).   

 

5.5 Discussion 

5.5.1 Controls on intra- and inter-specimen variability 

The Mg/Ca ratio of foraminiferal calcite tests record brief snapshots of SST or BWT over their 

week to month lifespans.  Acquiring multiple depth profiles through multiple tests reveals 

that the Mg/Ca ratios of both C. wuellerstorfi and D. altispira are not homogenous within an 

individual test, or between tests from the same sample (Chapter 5.4.3).  Similar intra- and 

inter-specimen heterogeneity is observed across multiple species of foraminifera, both 

cultured and in core tops (Eggins et al., 2004, Anand and Elderfield, 2005, Sadekov et al., 2005, 

Sadekov et al., 2008a, Fehrenbacher and Martin, 2014).  This intra- and inter-specimen 

variability is lost during traditional solution based ICP-MS analysis, which requires the pooling 
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and homogenisation of multiple individual tests.  The sampling resolution of the record makes 

it impossible to quantitatively distinguish between different drivers of Mg/Ca variability acting 

on different timescales.  Sampling at much higher resolution, over shorter time intervals, 

reduces the possible drivers which allows for better attribution of the observed temperature 

variability (Sadekov et al., 2008b, Koutavas and Joanides, 2012).  Below some possible drivers 

of this variability are considered, and an assessment of their potential influence on the 

observed Mg/Ca variability within, and between, tests is made.  These are merely suggestions 

and possible interpretations so should therefore not be considered statistically significant 

until much larger sample sizes at substantially higher sampling resolution can be analysed.   

 

5.5.1.1  Intra-specimen  

Discussion of the intra-specimen variability will focus on the 10 specimens of C. wuellerstorfi 

and D. altispira measured from the 1551-1554m (11.74 Ma) sample (Chapter 5.4.3).  Both C. 

wuellerstorfi and D. altispira show intra-specimen variability, indicating that there exists 

geochemical differences between adjacent chambers of the foraminiferal tests.  This 

variability in Mg/Ca ratios is higher in the planktic D. altispira (1.5 to 2 fold) than it is in the 

benthic C. wuellerstorfi (1.2 to 1.7 fold), an observation which holds true over the record as a 

whole.  Unlike with the all-encompassing outer chamber of Orbulina universa used in Chapter 

4 it was not possible to ablate all spots on the same chamber of either C. wuellerstorfi or D. 

altispira, although to reduce this effect on Mg/Ca early, juvenile stage chambers are avoided.  

Foraminiferal tests grow incrementally, one chamber at a time with the layer of calcite 

forming each new chamber covering the previously formed chambers.  Consequently, each 
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chamber will have calcified from seawater with differing temperatures as well as other 

environmental conditions, such as pH, which influence the Mg/Ca composition.   

 

Profiles through adjacent chambers with different Mg/Ca ratios could be reflecting weekly 

variations in temperature (Toyofuku et al., 2000).  The observed 1.5 to 2 fold intra-specimen 

variability would equate to an apparent change in calcification temperature of up to 14⁰C 

between chambers of D. altispira.  This is likely unreasonable at a tropical location which 

demonstrates considerably less SST variability in the modern day.  Vertical migration between 

hydrographic regimes of varying temperature during their lifespan of weeks to months could 

contribute to the observed intra-specimen variability of D. altispira Mg/Ca.  However, at the 

modern day site of Sunbird-1 the upper water column is well mixed making this unlikely.  

Therefore, effects beyond calcification temperature are required to account for the observed 

Mg/Ca variability within individuals of D. altispira. 

 

Contaminant phases with elevated Mg in the interior of the test can result in extreme Mg/Ca 

ratios (Rathmann et al., 2004, Hasenfratz et al., 2016, Hines et al., 2017).  However, selecting 

integration intervals with low Al/Ca and Mn/Ca ratios, and excluding any profiles with 

elevated Mg/Ca associated with elevated ratios of these contaminant phases post data 

processing, means contamination is not expected to be the cause of high Mg/Ca ratios, 

amplifying the intra-test variability.   

 

Intra-test variability observed in D. altispira from the 1551-1554m sample is 1.5 to 2 fold, at 

the lower range of the two to four fold intra-specimen variability reported previously in 
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planktic foraminiferal Mg/Ca (Eggins et al., 2003, Eggins et al., 2004, Sadekov et al., 2005, 

Fehrenbacher et al., 2015, Spero et al., 2015, Holland et al., 2017).  This suggests that some 

of the intra-test Mg/Ca variability observed in culture experiments (Fehrenbacher et al., 2015, 

Spero et al., 2015, Holland et al., 2017), and core tops (Eggins et al., 2004, Sadekov et al., 

2005) is translated into downcore records.  Despite being extinct, D. altispira was similar to 

the extant O. universa in that it had symbionts (Aze et al., 2011) which regulate foraminiferal 

calcification.  Therefore, the observed intra-test Mg/Ca variability is suspected to be a result 

of diurnal changes in the pH of the microenvironment from which the foraminiferal calcite 

precipitates caused by photosynthesis and respiration of algal symbionts.  Invoking symbiont 

driven biological effects as the principle cause of intra-specimen variability is consistent with 

the higher intra-specimen variability observed in D. altispira than in C. wuellerstorfi.   

 

A caveat of this interpretation for the intra-specimen variability in Mg/Ca is that the depth 

profiles show no obvious evidence of the diurnal banding typical of Mg/Ca in cultured, 

symbiont bearing, planktic foraminifera (Eggins et al., 2004, Fehrenbacher et al., 2015, Spero 

et al., 2015, Davis et al., 2017, Holland et al., 2017).  These results suggest that despite the 

range of natural variability of Mg/Ca observed in live caught planktic foraminifera being 

translated into the fossil record, the pattern of intra-test Mg/Ca variability is not preserved in 

fossil foraminifera.   

 

The diurnal modulation of Mg/Ca by algal symbionts cannot explain the similar intra-

specimen variability in the symbiont free C. wuellerstorfi.  The 1.2 to 1.7 fold intra-test 

variability in C. wuellerstorfi requires an alternative explanation.  In the absence of other 
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definitive controls this is proposed to be a combination natural, stochastic variability in Mg 

uptake, and changes in calcification temperature during the foraminifera’s life cycle (Sadekov 

et al., 2005).  More detailed, in situ culturing of benthic foraminifera at high pressure are 

required to assess this intra-test variability (Wollenburg et al., 2015).   

 

5.5.1.2  Inter-specimen 

The picked specimens comprising each sample provide a record of the environmental 

conditions from when their individual calcite test was precipitated.  The average sampling 

resolution through the Sunbird-1 record is ~43kyr (Figure 2.5).  Therefore, each sample is 

recording up to 6 snapshots of the ambient sea surface and bottom water conditions through 

a ~43kyr time interval, the temporal distribution of these snapshots being unknown.  This 

range in Mg/Ca between specimens from the same sample allows for an estimation of the 

temperature variability through the sampling interval.  The inter-specimen range in Mg/Ca is 

much higher in D. altispira (0.97-3.17 mmol/mol) than it is in C. wuellerstorfi (0.34-2.03 

mmol/mol) (Figure 5.9).  It is worth noting that the binned samples do not have significantly 

higher inter-specimen variability than the samples that are robust, without the need to 

combine adjacent samples.   

 

This inter-specimen heterogeneity could have many causes, including natural variability and 

changes in temperature on seasonal, inter-annual, decadal, millennial, and orbital timescales.  

These possible causes are not an exhaustive list.  Previous studies assessing inter-specimen 

variability have been on a Holocene-Last Glacial Maximum timescale (Koutavas and Joanides, 

2012) or from core-tops (Sadekov et al., 2008b) meaning the temperature differences could 
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be interpreted solely in terms of seasonal and inter-annual variability.  The coarser sampling 

resolution of Sunbird-1 means longer timescale drivers of temperature variability must be 

considered, most importantly orbital forcing.   

 

Inter-specimen variability of ± 5-6% in Mg/Ca exists in culture experiments of O. universa 

where temperature is held constant (Holland et al., 2017, Spero et al., 2015).  This is translated 

into core top measurements (Sadekov et al., 2005) demonstrating that Mg/Ca differences 

between specimens occur naturally, with no influence of the environmental conditions during 

calcification.  Although it is not possible to assess directly whether this is translated into 

downcore records, as absolute temperature is unknown, it would be unreasonable to not 

incorporate this natural variability between specimens at constant temperature.  This natural 

inter-specimen variability, unrelated to calcification temperature, coupled with the fact D. 

altispira is extinct hinders any direct conversion of planktic foraminiferal Mg/Ca variability 

between specimens into temperature variability through the sampling interval.  However, 

some suggestions can be made.   

 

Seasonal differences in sea surface temperature may be recorded by the single specimen LA-

ICP-MS analyses, variability which is lost when specimens are broken open and homogenised 

prior to solution based ICP-MS analysis.  To investigate whether local temperature variations 

can explain the observed magnitude of inter-specimen Mg/Ca variability it was compared to 

the range of modern day temperature measurements near the site of Sunbird-1.  Weekly 

resolved satellite measurements between 1997 and 2010 from the nearby Mozambique 

Channel demonstrates that modern day SST varies between 25.0⁰C and 30.2⁰C, an inter-
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annual variability of 5.2⁰C (Fallet et al., 2011) similar to that recorded by meteorological 

observations (McClanahan, 1988).  No equivalent time series of BWT measurements is 

available for comparison to the C. wuellerstorfi Mg/Ca inter-specimen variability.  Using the 

preferred palaeotemperature equation of Evans et al. (2016a) (Equations 5.7 and 5.8), an 

average Mg/CaSW through the interval of 3.55 mol/mol, an average seawater pH through the 

interval of 8.03, and incorporating the pH correction (Equation 5.1) this equates to a planktic 

foraminiferal Mg/Ca range of 3.44 mmol/mol to 4.64 mmol/mol.  This suggests that tests 

precipitated in the same year could have Mg/Ca ratios that differ by ~1.2 mmol/mol, assuming 

an inter-annual variability in SST of 5.2⁰C.  This is less than the average inter-specimen Mg/Ca 

range for D. altispira of 2.01 mmol/mol, and considerably less than the maximum inter-

specimen range of 3.17 mmol/mol (Figure 5.17).  Therefore, assuming modern day 

measurements, inter-annual SST variability cannot fully explain the inter-specimen variability 

of D. altispira, accounting for 59% on average, and only 38% of the maximum D. altispira inter-

specimen Mg/Ca range.   

 

Incorporating the observed 5-6% natural variability between tests cultured at constant 

temperatures (Spero et al., 2015) to the measured ~5.2⁰C inter-annual variability observed at 

the modern day site of Sunbird-1 (Fallet et al., 2011, McClanahan, 1988) accounts for 

approximately 2/3 of the mean inter-specimen Mg/Ca variability in D. altispira.  The remaining 

~3-4⁰C inter-specimen variability observed in SST at Sunbird-1 could be attributed to a 

heightened seasonal or inter-annual cycle during the mid-late Miocene.  However, it is more 

likely that SST variability on orbital timescales causes this remaining SST variability between 

specimens from the same sample.   
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Figure 5.17:  The maximum range in (A) C. wuellerstorfi and (B) D. altispira Mg/Ca between specimens 

from the same sample.  Horizontal error bars denote the age range of binned samples.  The vertical, red 

error bars in (B) represent the 5-6% natural variability observed in planktic foraminifera cultured at 

the same temperature.  The horizontal red line in (B) denotes the 5.2⁰C inter-annual SST variability 

from satellite measurements taken between 1997 and 2010 (Fallet et al., 2011), samples above this 

line displaying greater than modern day inter-annual variability.  

 

0

0.5

1

1.5

2

2.5

3

3.5

9.5 10 10.5 11 11.5 12 12.5 13 13.5

In
te

rs
p

e
c
im

e
n

 M
g

/C
a
 R

a
n

g
e
 (

m
m

o
l/
m

o
l) A C. wuellerstorfi

0

0.5

1

1.5

2

2.5

3

3.5

9.5 10 10.5 11 11.5 12 12.5 13 13.5

In
te

rs
p

e
c
im

e
n

 M
g

/C
a
 R

a
n

g
e
 (

m
m

o
l/
m

o
l)

Age (Ma)

B D. altispira



Cardiff University 177 | P a g e  Michael Nairn 

Global climate through this time interval shows a response to obliquity (41kyr) and 

eccentricity (100kyr) forcing (Holbourn et al., 2013).  For a more quantitive attribution of 

inter-test variability, resulting from temperature variability on seasonal to orbital timescales 

a larger dataset is required. Unfortunately, due to the low foraminiferal abundance, this was 

not possible at Sunbird-1.  Furthermore, in order to deconvolve the influence of temperature 

variability across multiple timescales a higher resolution record is needed.   

 

A combination of biological effects causing Mg variability within specimens, and differences 

in calcification temperature between specimens on seasonal to orbital timescales causes the 

observed Mg/Ca variability within samples.  However, the different contributions of the 

multiple possible drivers of temperature variability between specimens cannot be accurately 

quantified.  This corroborates previous findings pertaining to the variability in SST estimates 

using foraminiferal Mg/Ca thermometry (Sadekov et al., 2008b).  Although not currently 

possible, if the variability resulting from biological effects could be reliably quantified, then 

the contribution of seasonal, and in particular orbital scale, variability in temperature to the 

Mg/Ca variability within samples could be reconstructed.   

 

5.5.2 Evolution of bottom water temperature at Sunbird-1 

The BWT at Sunbird-1 is substantially warmer than other mid-late Miocene records from deep 

water open ocean sites (Lear et al., 2015) including a global compilation of sites (Cramer et 

al., 2011) (Figure 5.18).  This is probably a result of the shallow water depth of Sunbird-1, 

meaning BWT is not recording a true deep water signal.  Sunbird-1 was certainly not at abyssal 

depths through the mid-late Miocene, the pinnacle reef underlying the hemipelagic clays 
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containing vuggy porosity, indicating meteoric exposure, at ~13.8 Ma.  The shallow water 

depth of Sunbird-1 is further supported by the similar features in the planktic and benthic 

foraminiferal Mg/Ca temperature records (Figure 5.15).  Temporal variations in, and the 

influence of subsidence on, BWT will be further discussed in Chapter 6.   

 

Here the impact of adopting this microanalytical approach, incorporating the careful 

identification of contaminant free regions of multiple foraminiferal depth profiles and the 

post data processing screening for elevated concentrations of contaminant indicators, is 

assessed.  The Mg/Ca data acquired via solution based ICP-MS analysis (Appendix 4) has been 

Figure 5.18: Sunbird-1 BWT (black squares) compared to ODP Site 806 in the Western Pacific (blue 

triangles) (Lear et al., 2015), and a compilation of Pacific deep water sites (red line) (Cramer et al., 

2011).   

2

4

6

8

10

12

14

16

9.5 10 10.5 11 11.5 12 12.5 13 13.5

Robust Sample

Sample Uncertainty

Binned Sample

ODP 806 (Lear et al. 2015)

Compilation (Cramer et al. 2011)

90% EnvelopeB
W

T
 (

o
C

)

Age (Ma)



Cardiff University 179 | P a g e  Michael Nairn 

translated to bottom water temperature (Appendix 9), using the same favoured scenario as 

with the Mg/Ca data acquired via laser ablation ICP-MS.  The BWT reconstruction from the 

solution based ICP-MS Mg/Ca record (Figure 5.19) is consistently higher than that 

reconstructed using the microanalytical approach (Figure 5.17 b).  The offset (~2-10 °C) is 

likely dampened by the fact that the measured Mg/Ca values above 6.2 mmol/mol (18°C) 

exceed the range of the preferred exponential calibration of Lear et al., (2002).  However, 

similarities between the two BWT records exist supporting there being a temperature 

influence on the solution-based C. wuellerstorfi Mg/Ca record (Chapter 3).  For example, the 

temperature decrease recorded at 11.8 Ma is present in both records.  Therefore, this 

supports the suggestion that the solution-based Mg/Ca record is recording temperature 

variability and changing redox conditions.  The dominant decreasing trend in the solution-

based Mg/Ca record, attributed to changing redox conditions as the site subsided reducing 

the concentration of secondary Mg incorporation in diagenetic foraminiferal coatings, is not 

present in the LA-ICP-MS BWT reconstruction.  This strongly suggests that the influence of 

major changes in sedimentary redox conditions on the bulk trace metal concentrations can 

be eliminated by the careful microanalytical approach implemented by this study.  Along with 

stringent contaminant screening during data processing this approach has successfully 

isolated a more robust and reliable downcore benthic foraminiferal Mg/Ca record of primary 

bottom water temperature.  This assumes the microanalytical approach has not introduced a 
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sampling bias which favours colder bottom water temperatures, although this possibility will 

be discussed in Chapter 6.   

 

5.5.3 Mid-late Miocene sea surface temperatures in the equatorial Indian Ocean 

The Mid Miocene Climate Transition (MMCT) marks the transition from the relatively warm, 

high CO2, dynamic climate state of the Miocene Climatic Optimum (MCO) to a more stable 

climatic state no longer characterised by large fluctuations in atmospheric CO2 (Foster et al., 

2012, Badger et al., 2013, Sosdian et al., 2018).  This coincided with the expansion of the 

Antarctic Ice Sheet to approximately modern day volume ~13.8 Ma.  Despite the lower 

Figure 5.19:  Sunbird-1 BWT record (squares) reconstructed by applying the exponential equation of Lear 

et al. (2002) (Equation 5.4) and an Eocene Mg/CaSW of 2.1 mol/mol (Figure 5.5) to the solution-based ICP-

MS Mg/Ca data.  The uncertainty envelope incorporates the analytical uncertainty on the Mg/Ca 

measurements, the envelope on the Mg/CaSW curve (±0.5 mol/mol), and the range in the coefficients of the 

temperature calibration.   
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atmospheric CO2 following this climate transition (Foster et al., 2012, Sosdian et al., 2018) 

temperatures were likely warmer than the modern day (Pound et al., 2011, Rousselle et al., 

2013), suggesting a decoupling of global temperature and atmospheric CO2 forcing (Knorr et 

al., 2011, LaRiviere et al., 2012).  Currently, general circulation models struggle to simulate 

the warmer than modern day temperatures as well as the global distribution of SST from the 

alkenone proxy (LaRiviere et al., 2012, Rousselle et al., 2013, Herbert et al., 2016) without 

forcing atmospheric CO2 to levels much higher than what proxies reconstruct (von der Heydt 

and Dijkstra, 2006), or significantly altering climate forcings other than CO2 (Knorr et al., 

2011).  This decoupling of temperature and CO2 is unlike the majority of the Cenozoic, through 

which these two environmental parameters are closely linked (Zachos et al., 2001, Zhang et 

al., 2013).   

 

Despite the significance of this climate transition remarkably few records of SST following the 

MMCT exist, leaving a hole in our understanding of how surface ocean temperatures evolved 

through this interval (Lunt et al., 2008).  Furthermore, the records that do exist are based on 

the Mg/Ca ratios of frosty planktic foraminifera (Sosdian et al., 2018) or unsaturated 

alkenones (Huang et al., 2007, LaRiviere et al., 2012, Seki et al., 2012a, Rousselle et al., 2013, 

Zhang et al., 2014, Herbert et al., 2016), which may be influenced by recrystallisation or 

limited by proxy saturation respectively.  The analytical approach employed here, 

identification of the primary Mg/Ca signal and stringent contaminant screening, provides the 

accurate and reliable absolute tropical SST estimates previously lacking from this time 

interval.   
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The record of Herbert et al. (2016) reveals significant interhemispheric cooling of ~6⁰C across 

all major ocean basins and latitudinal ranges between 12Ma and 5.4Ma.  This late Miocene 

cooling of SST is latitudinally heterogeneous, with the pole-to-equator temperature gradient 

steepening to near-modern values through this interval.  These studies may have 

underestimated tropical SST, and therefore latitudinal temperature gradients, between 12 

Ma and 8 Ma because of the Uk37 proxy reaching its limit.  If this was the case, and tropical 

SSTs through this interval were >28-29⁰C, the magnitude of the following cooling would be 

greater, reducing the increase in latitudinal temperature gradient.   

 

The relatively constant surface temperature through the 4.5 Myr Sunbird-1 record suggests 

that tropical climate was relatively stable following the global cooling associated with the 

expansion of the East Antarctic Ice Sheet across the MMCT.  The Sunbird-1 late Miocene SST 

estimates are similar to the modern day measurements from the 17 CTD profiles which 

provide sea surface temperature measurements in a 0.75⁰ x 0.75⁰ grid square around the 

modern day site of Sunbird-1 (Boyer et al., 2013).  These CTD profiles indicate that the modern 

day mixed layer is ~50m water depth, in which temperature varies between 26.5⁰C and 

28.5⁰C.  This is consistent with more recent CTD data from the nearby GLOW sites (Birch et 

al., 2013) and the average mean satellite sea surface temperature of 27.6⁰C in the nearby 

Mozambique Channel (Fallet et al., 2011).  Notably the CTD data does not reflect the 5.2⁰C 

inter-annual variability of the satellite and meteorological observations (McClanahan, 1988, 

Fallet et al., 2011).  That these Sunbird-1 SST estimates from LA-ICP-MS analyses are 

comparative with SST at the modern day study site supports the validity of LA-ICP-MS micro-

analysis of Mg/Ca from multiple profiles in multiple specimens for reconstructing palaeo-SST.  
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Furthermore, SST estimates using the δ18O palaeo-thermometer are extremely similar 

(Chapter 6).  This is despite the substantial intra- and inter- specimen variability in D. altispira 

Mg/Ca, which likely exceeds the range in calcification temperature through the samples.  

Furthermore, this study indicates that LA-ICP-MS analyses of poorly preserved foraminifera 

can provide reliable Mg/Ca SST’s, as long as thorough data screening is conducted.   

 

The results from Sunbird-1 indicate that SST in the equatorial Indian Ocean remained stable 

at temperatures of ~27⁰C-29⁰C through the 13.3 Ma to 9.5 Ma interval.  Other data from the 

Uk37 proxy show there to be a substantial cooling of sea surface temperature at mid-to-high 

latitudes in both hemispheres through this interval (LaRiviere et al., 2012, Herbert et al., 

2016).  Combined the stable tropical sea surface temperatures with the interhemispheric sea 

surface temperature decrease at mid-to-high latitudes suggests there was an increasing 

latitudinal temperature gradient through the mid-late Miocene.  The increase in latitudinal 

temperature gradient is decoupled from any substantial change in atmospheric CO2 (Foster 

et al., 2012, Zhange et al., 2013, Sosdian et al., 2018).  This is unlike the majority of the 

Cenozoic, through which the two environmental parameters are closely linked.  Therefore, an 

alternative mechanism for the increased equator to pole temperature gradient is required.  

Oceanographic reorganisation could act as a primary control through this interval, 

redistributing heat from the equator, to depth, instead of to surface waters at higher 

latitudes.  
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This record from Sunbird-1 supports the robustness of contemporaneous alkenone based 

studies which exhibit similar absolute tropical SST estimates (Huang et al., 2007, Seki et al., 

2012a, Rousselle et al., 2013, Zhang et al., 2014, Herbert et al., 2016) (Figure 5.20).  The Uk
37 

SST calibration fails to reconstruct SST>29⁰C (Müller et al., 1998) but these results using 

Mg/Ca palaeo-thermometry suggest that this major restriction does not apply to this time 

interval, unlike with the preceding Miocene Climatic Optimum (MMCO) where Mg/Ca 

temperature estimates are higher than those estimated with the Uk
37 proxy (Badger et al., 

2013).   
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Figure 5.20: SST at Sunbird-1 compared to U
k
37 SST estimates at contemporaneous sites.  ODP Site 722 

(Huang et al., 2007) in the Arabian Sea, and ODP & IODP Sites 846 (Herbert et al., 2016), 850 (Zhang et 

al., 2014), 1241 (Seki et al., 2012a), and U1338 (Rousselle et al., 2013) in the Eastern Equatorial Pacific.  

The upper limit for the U
k
37 proxy (29⁰C) is shown by the thick dashed black line.  All previously 

published records used for comparison are kept on their original age models. 



Cardiff University 185 | P a g e  Michael Nairn 

Although not a true tropical location, and only 2 data points, the Badger et al. (2013) Mg/Ca 

record from the Mediterranean estimates SST of ~27.5⁰C at ~13Ma, both within the Sunbird-

1 SST uncertainty envelope (Figure 5.22).  Mg/Ca-SST records based on frosty planktic 

foraminifera also suggest stable tropical SST of 27-29⁰C between 13-8 and 11.4Ma (Sosdian 

et al., 2018) (Figure 5.21).  This suggests that Mg/Ca may be significantly less influenced by 

diagenetic recrystallization processes than previously thought.  The study of Sosdian et al. 

(2018) derives SST from ODP Sites 761, 872, 926, and 1000 using Mg/Ca measurements of the 

planktic foraminifera Trilobatus trilobus.  T. trilobus is an extant species of planktic 

foraminifera which lives in the upper water column and, similarly to the extinct D. altispira 

used in this study, has photosymbionts.  Unlike this study all the sites used by Sosdian et al. 

(2018) are distal to any coastline, and are therefore assumed to be representative of the open 

ocean.  Furthermore, well preserved planktic foraminifera from clay-rich sediments of coastal 

Tanzania yield Indian Ocean sea surface temperatures of 27⁰C at 12.2 Ma and 29⁰C at 11.55 

Ma using the δ18O palaeo-thermometer (Stewart et al., 2004), again in agreement with the 

Sunbird-1 temperature estimates.  Although sparse in number, that previous absolute tropical 

SST estimates are in agreement with those reconstructed from Sunbird-1 using a very strict 

and stringent microanalytical approach supports their reliability (Figure 5.20 and 5.21), 

despite the potential caveats noted by these studies.   
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It is worth noting that the tropical SST records of Herbert et al. (2016), references therein, 

and this SST record do not sample the warm pool of the Western Pacific, where we would 

expect SST to be greater than 29⁰C, temperatures which unsaturated alkenones cannot 

reconstruct.  The technique used in this study could be applied to palaeo-warm pool sites 

which recover sediment from the mid-late Miocene.  These SST reconstructions will allow a 

more complete assessment as to whether there really was a true steepening of the latitudinal 

temperature gradient, which is a vital component of ocean circulation, transporting heat 

around the planet.   

Figure 5.21:  Estimated SST at Sunbird-1 compared to other Mg/Ca derived SST estimates from ODP 

Sites 761 (Sosdian et al., 2018), and terrestrial outcrops in Malta (Badger et al., 2013).  Two 

temperature estimates using the δ18O of exceptionally preserved foraminifera from Tanzania are also 

shown (Stewart et al., 2004).   
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5.5.4 Short lived decreases in temperature at Sunbird-1 

Although the improved estimates provided by the Sunbird-1 record suggest absolute tropical 

sea surface temperatures remained relatively stable through the mid-late Miocene some 

temporal variability does persist.  A distinctive feature of both records is the temperature 

decrease between 12.0 Ma and 11.5 Ma.  The BWT record shows a ~2.5⁰C transient decrease 

in temperature at 11.8-11.75 Ma, followed by a recovery over the next ~200 kyrs.  Between 

11.85Ma and 11.8 Ma SST drops sharply by ~3⁰C, the magnitude of this temperature decrease 

being within error of the concomitant drop in BWT.  SST remains at ~24-25⁰C (excluding one 

SST value of 28.6⁰C at 11.62 Ma) before recovering to pre excursion values by 11.48 Ma.  The 

similarity in duration, timing, and magnitude of the BWT and SST decrease between 11.8 Ma 

and 11.5 Ma suggests a single controlling mechanism, potentially a global or regional driver. 

 

However, this transient temperature drop is not seen in BWT records from deep water, open 

ocean sites (Lear et al., 2010, Cramer et al., 2011, Lear et al., 2015) (Figure 5.18).  No transient 

decrease in sea surface temperature is recorded from contemporaneous alkenone based 

estimates of tropical SST utilising the Uk
37 proxy from the Arabian Sea (Huang et al., 2007), and 

the Eastern Equatorial Pacific (Seki et al., 2012b, Rousselle et al., 2013, Zhang et al., 2014, 

Herbert et al., 2016) (Figure 5.20).  That this transient decrease in SST and BWT is not 

identified at other tropical sites suggests it is not the result of a global driver, and supports a 

mechanism causing local ocean cooling of the full water column at Sunbird-1. 

 

One possibility is unaccounted for changes in either salinity or pH on the foraminiferal Mg/Ca 

ratios.  An unaccounted for local salinity increase would decrease foraminiferal Mg/Ca, a 
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temporal trend inferred as decreasing BWT and SST.  The lack of a robust and quantifiable 

proxy for salinity means a ± 0.5⁰C uncertainty was added to the temperature estimates, which 

does not account for any possible temporal changes in the salinity at Sunbird-1.  This could 

be influenced by the influx of open ocean waters from the Indian Ocean gyre to the site.  

Despite incorporating varying pH from a globally distributed set of open ocean sites (Sosdian 

et al., 2018), any localised changes in pH at Sunbird-1 cannot be accounted for.  An increase 

in pH locally would cause a decrease in Mg/Ca, and result in an artificial lowering of 

reconstructed temperatures through this interval.  The influence of these potential local 

processes on the temperature record will be discussed in detail, with particular reference to 

the tectonic subsidence of the site in Chapter 6.   

 

This 2-3⁰C negative SST excursion between 10.7 Ma and 10.36 Ma is considerably less abrupt 

than the ~3⁰C drop in ~50 kyrs from 11.85 Ma, happening over a 300-400 kyr interval.  This 

SST decrease is similar in timing and magnitude to the ocean cooling associated with the onset 

of monsoonal upwelling at ODP Sites 722 and 730 in the Western Arabian Sea (Zhuang et al., 

2017).  However, at ODP Sites 722 and 730 this is a permanent shift in SST as opposed to the 

transient 300-400 kyr excursion observed in the Sunbird-1 SST record.  Pertinently, unlike the 

first transient temperature decrease, this event is only identified in the SST record, and not 

the BWT record.  Therefore, unlike the 3-4⁰C decrease at ~11.8 Ma any interpretation cannot 

invoke the full water column.  The increased palaeo-water depth at Sunbird-1 between 11.8 

Ma and 10.7 Ma produced a decoupling of SST and BWT.  By 10.7 Ma the surface and bottom 

waters are recording different transient temperature trends, indicating that they are two 
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distinct water masses.  This interpretation, and the influence of local oceanography and 

seawater chemistry, will be explored further in Chapter 6. 

 

5.6 Conclusions 

The use of LA-ICP-MS, and rigorous screening criteria for contamination, provides new, 

robust, absolute temperature records from foraminiferal Mg/Ca data for the South West 

Indian Ocean between 13.5 Ma and 9.5 Ma.  Absolute estimates of 27-29⁰C suggest that sea 

surface temperature was relatively constant through the interval.  This supports the mid-late 

Miocene as a key transition in the Earth’s climate state, represented by the development of 

stronger latitudinal temperature gradients.  Recently published solution based foraminiferal 

Mg/Ca record based on frosty foraminifera reconstruct similar tropical SST’s (Sosdian et al., 

2018).  This adds support to the suggestion that Mg/Ca may be significantly less affected by 

diagenetic recrystallization processes than δ18O (Edgar et al., 2015).  Estimated BWT of ~12⁰C 

through the record is warmer than estimates from open ocean sites, reflecting the shallow 

palaeo-water depth of the site.   

 

The acquisition of multiple depth profiles through multiple specimens reveals substantial 

intra- and inter-specimen Mg/Ca variability.  This is likely recording primary temperature 

variability, that is nullified by traditional solution based ICP-MS analysis of bulk foraminiferal 

samples.  Although further consideration of the biological precipitation of foraminiferal 

calcite is required these results suggest that temperature variability on both inter-annual and 

orbital timescales is recorded. 
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As well as reconstructing the poorly understood climate of the late Miocene, this analytical 

technique has allowed the reconstruction of reliable Mg/Ca derived palaeotemperatures 

using foraminifera whose bulk trace element ratios demonstrate diagenetic alteration by an 

Mg-Mn-rich phase.  This opens up the potential for Mg/Ca palaeothermometry on other 

challenging time intervals, and locations, where contaminant coatings inhibit the geochemical 

analysis of primary foraminiferal calcite.   

 

A limitation of the palaeotemperature records presented here is their reduced resolution due 

to the grouping of adjacent samples to ensure the mean Mg/Ca is representative.  This 

limitation resulted from a substantial quantity of depth profiles failing to pass the strict 

contaminant screening.  To alleviate this problem it is strongly suggested that future LA-ICP-

MS studies aiming to reconstruct palaeotemperature from contaminated foraminifera 

analyse twice as many depth profiles as was required in order to obtain a mean Mg/Ca value 

that is representative for the sample.  Unfortunately, this was not possible at Sunbird-1 due 

to the low foraminiferal abundance. 
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6 Unravelling the influence of Temperature, Ice Volume, 

Sedimentation, and Subsidence on Sunbird-1 

6.1 Introduction 

The dry, land-based East Antarctic Ice Sheet (EAIS) expanded to its continental margins at 

~13.8 Ma (Flower and Kennett, 1994, Holbourn et al., 2005, Lewis et al., 2007), and the onset 

of major Northern Hemisphere glaciation likely did not take place until at least the Pliocene 

(Sosdian and Rosenthal, 2009, Bailey et al., 2013).  Therefore, the intervening mid-late 

Miocene interval provides an opportunity to study the stability of the EAIS in a warmer than 

modern world.   

 

Compilations of benthic foraminiferal δ18O imply that the extent of continental ice following 

this EAIS expansion remains relatively stable (Zachos et al., 2001, Zachos et al., 2008, Cramer 

et al., 2009).  However, current estimates of global ice volume in this unipolar icehouse world 

have several complications meaning it is poorly understood (Lear et al., 2015).  One of these 

major complications is the poor preservation of foraminifera through the mid-late Miocene 

(Lyle et al., 1995), resulting in large uncertainties in proxy based reconstructions, in particular 

with Mg/Ca palaeotemperatures (Lear et al., 2015).  Foraminifera from Sunbird-1 

demonstrate glassy preservation, potentially providing a new insight into this critical time 

interval in terms of our understanding of EAIS volume and dynamics.   

 

However, the evolution of Sunbird-1 is also influenced by local tectonics, the site of deposition 

subsiding continuously through the mid-late Miocene.  In this chapter attempts are made to 
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unravel these different controls on the Sunbird-1 geochemical records, teasing apart the 

influence of subsidence, sedimentation, temperature, and global ice volume.  To aid this 

stable isotope (δ13C and δ18O) and trace metal records from benthic and planktic foraminifera 

have been generated.  Changes in the extent of continental ice volume will equally impact the 

benthic and planktic foraminiferal δ18O records, whereas subsidence will influence benthic 

environmental conditions and hence δ13C and δ18O records to a much greater than extent 

than surface water conditions, and hence the planktic foraminiferal δ13C and δ18O records. 

 

This approach, supplementing the geochemical records previously discussed, has enabled me 

to unravel the competing controls on the evolution of Sunbird-1 and draw inferences about 

the global climate state, in particular the stability of the EAIS, through the mid-late Miocene.   

 

Summary of Scientific Experiments 

 In this chapter stable carbon (δ13C) and oxygen (δ18O) isotope analyses of planktic and 

benthic foraminifera from the Sunbird-1 well are reported. 

 The benthic foraminifera Cibicidoides mundulus and the planktic foraminifera 

Globigerinoides obliquus were used for these stable isotope analyses.   

 The influence of temperature on the δ18O values was independently constrained using 

the LA-ICP-MS temperature records reported in Chapter 5.  This has allowed the 

determination of the planktic and benthic foraminiferal δ18OSW records.   
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6.2 Materials and methods 

6.2.1 Sample selection  

In order to generate paired benthic and planktic foraminiferal geochemical records between 

6 and 10 individuals of the benthic foraminfera Cibicidoides mundulus, and up to 15 

individuals of the planktic foraminifera Globigerinoides obliquus were used (Appendix 3).  

Foraminifera showing glassy preservation were used (Figure 2.1).  Despite 6-15 specimens 

being used for analysis, the possibility of seasonal bias impacting the isotopic results cannot 

be ruled out.  Planktic foraminiferal specimens from the intermediate 250-355 µm size 

fraction were used because they best estimate δ13C values of dissolved inorganic carbon 

(Birch et al., 2013, John et al., 2014).  This avoids the bias towards lower values when respired 

carbon is incorporated into smaller or juvenile species (Spero et al., 1997, Schmidt et al., 2008) 

and the photosymbiont fractionation that affects larger foraminiferal tests (Birch et al., 2013).  

The same is true for δ18O, young individuals often display a slight negative offset interpreted 

as an ontogenetic effect caused by the incorporation of oxygen from metabolic CO2 (Filipsson 

et al., 2010).  G. obliquus is an extinct, symbiont bearing species with a tropical to subtropical 

palaeogeographical distribution, and is interpreted as being a surface mixed-layer dweller 

(Keller, 1985, Aze et al., 2011).  The assertion that G. obliquus inhabits and calcifies in the 

surface mixed layer (Keller, 1985, Aze et al., 2011) is supported by multispecies analyses from 

a synchronous time slice in the Indian Ocean offshore Tanzania showing G. obliquus to have 

the most negative δ18O (-2.5‰) of all species (Paul Pearson, personal communication 2018).  

Additionally, G. obliquus has not been observed to have any gametogenic overgrowths, 

associated with precipitation of calcite during or post sinking.  Therefore, the G. obliquus 
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records are a genuine surface water mixed layer signal and can be used to reconstruct sea 

surface conditions.   

 

Samples were analysed for their δ18O and δ13C isotopic composition using the method 

detailed in Chapter 2.4.  The long term analytical precision, based on repeat analysis of NBS‐

19 is ±0.042‰ for δ13C and ±0.076‰ for δ18O (n=469, 2 standard deviations) and on repeat 

analysis of BCT63 is ±0.040‰ for δ13C and ±0.066‰ for δ18O (n=310, 2 standard deviations).  

C. mundulus δ18O and δ13C results from the following three depths (1389-1392m, 1410-

1413m, and 1461-1464m) and G. obliquus δ18O and δ13C results from a depth of 1503-1506m, 

where m is metres below sea level, were rejected due to them being low sample aliquots with 

poor precision, and their values being anomalous to nearby samples.   

 

6.2.2 Calculating δ18OSW independently using Mg/Ca temperatures 

Foraminiferal δ18O is primarily controlled by calcification temperature and δ18OSW (Chapter 

2.2.1.1).  The use of an independent palaeotemperature proxy, such as Mg/Ca, can 

deconvolve these two primary controls, providing simultaneous records of temperature and 

δ18OSW (Lear et al., 2000, Billups and Schrag, 2002).  For the planktic foraminiferal δ18OSW 

record the palaeotemperature equation of Bemis et al. (1998) generated using planktic 

foraminifera over a calibration range of 15-25⁰C is used (Equation 6.1), and for the benthic 

foraminiferal δ18OSW record the δ18OSW equation based on Cibicidoides and Planulina of Lynch‐

Stieglitz et al. (1999) generated using in-situ benthic foraminifera of the genera Cibicidoides 

and Planulina over a calibration range of 4-26⁰C is used (Equation 6.2), where ‘T’ is 
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temperature in ⁰C in both equations.  The Sunbird-1 Mg/Ca temperatures are used to 

calculate δ18OSW.   

 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟔. 𝟏:   (𝛅𝟏𝟖𝐎𝐂𝐚𝐥𝐜𝐢𝐭𝐞 – 𝛅
𝟏𝟖𝐎𝐒𝐞𝐚𝐰𝐚𝐭𝐞𝐫  + 𝟎. 𝟐𝟕) =  −𝟎. 𝟐𝟏 ± 𝟎. 𝟎𝟎𝟑 𝐓 +  𝟑. 𝟏𝟎 ± 𝟎. 𝟎𝟕 

 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟔. 𝟐:   (𝛅𝟏𝟖𝐎𝐂𝐚𝐥𝐜𝐢𝐭𝐞 – 𝛅
𝟏𝟖𝐎𝐒𝐞𝐚𝐰𝐚𝐭𝐞𝐫  + 𝟎. 𝟐𝟕) =  −𝟎. 𝟐𝟏 ± 𝟎. 𝟎𝟎𝟐 𝐓 +  𝟑. 𝟑𝟖 ± 𝟎. 𝟎𝟑 

 

For Mg/Ca palaeotemperatures where adjacent samples have been combined to ensure the 

mean Mg/Ca of the sample is representative, the same has been done with the corresponding 

δ18O samples when calculating δ18OSW.   

 

Due to the low foraminiferal abundances throughout Sunbird-1 it was not possible to conduct 

trace metal and stable isotope analyses on the same species of planktonic or benthic 

foraminifera, which would have been preferable.  D. altispira and G. obliquus were selected 

for reconstructing surface water conditions because they were present throughout the core, 

allowing for single species trace metal and stable isotope records.  Having to use different 

planktic foraminiferal species for the Mg/Ca temperature record and the δ18O record could 

lead to limitations when reconstructing planktic foraminiferal δ18Osw.  In particular, if D. 

altispira reconstructs subsurface water conditions this limitation to planktic foraminiferal 

δ18Osw will need serious consideration.  Whether this is the case is assessed by comparing the 

absolute sea surface temperatures recorded by each species (Chapter 6.4.1).   
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6.2.3  Bottom water and sea surface temperature reconstructions 

Due to the limited sample size of, and complications with, the trace metal data described in 

Chapter 5 two approaches to calculate both bottom water and sea surface temperatures are 

employed.  The first uses the salinity independent Mg/Ca palaeo-thermometer (Chapter 5), 

and the second assumes δ18OSW using the compilation of Cramer et al. (2011) to calculate 

temperature using δ18O.   

 

In order to convert the foraminiferal δ18O values to temperature any changes in ice volume 

require correcting for.  For this the δ18OSW value from the nearest 0.1 Myr time interval in the 

compilation of Cramer et al. (2011) (Figure 6.1) is applied, isolating the temperature control 

on the δ18O records.  This ice volume corrected δ18O data is then converted to temperature.  

For G. obliquus the palaeotemperature equation of Bemis et al. (1998) (Equation 6.1) is 

applied, and for C. mundulus the palaeotemperature equation of Lynch‐Stieglitz et al. (1999) 

(Equation 6.2) is applied.  The palaeotemperature equations used incorporate the necessary 

-0.27‰ correction when converting from SMOW to VPDB (Hut, 1987).   

 

The influence of Rayleigh distillation and the atmospheric transport of vapour means that the 

δ18OSW of surface waters can vary by as much as 1.5‰ depending on their latitude (Broecker, 

1989, Zachos et al., 1994).  If unaccounted for this could bias reconstructions of sea surface 

temperature or continental ice volume.  Using the latitudinal correction of Zachos et al. (1994) 

gives a δ18OSW of 0.1‰ for the modern day study site of Sunbird-1.  The absence of a 

significant offset from ‰SMOW (0‰) suggests that this will have a negligible influence on 

the isotopic SST reconstructions.   
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Furthermore, any uncertainty in the planktic foraminiferal δ18O ratios originating from the 

influence of salinity needs accounting for.  The absence of a robust, independent salinity proxy 

makes any quantitive attribution of this uncertainty challenging, and therefore δ18O variability 

due to changes in salinity is incorporated into any temperature estimate uncertainty.  

Available data from the 17 CTD profiles in a 0.75⁰ x 0.75⁰ grid square around the modern day 

study site show salinity varies between 34.9 and 35.4 PSU in the upper 200m of the water 

column (Boyer et al., 2013).  Using the δ18OSW-salinity relationship of LeGrande and Schmidt 

(2006) (Equation 6.3) this range of 0.5 PSU results in a maximum δ18OSW uncertainty of 

±0.091‰ based on 332 modern day measurements in the Indian Ocean.  Using the 

palaeotemperature equation for planktic foraminifera of Bemis et al. (1998) (Equation 6.1) 
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Figure 6.1:  δ18Osw (solid red line) and 90% confidence envelope (dashed red lines) from the Pacific 

Ocean compilation of Cramer et al. (2011).   
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this equates to a 0.4⁰C uncertainty in the calculated surface temperature from G. obliquus 

δ18O, an uncertainty significantly lower than that from the Cramer et al. (2011) δ18OSW 

compilation (Figure 6.1).   

 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟔. 𝟑:   𝛅𝟏𝟖𝐎𝐬𝐰(𝐒𝐌𝐎𝐖) = (𝟎. 𝟏𝟔 ± 𝟎.𝟎𝟎𝟒 𝐱 𝐒𝐚𝐥𝐢𝐧𝐢𝐭𝐲) − 𝟓. 𝟑𝟏 ± 𝟎. 𝟏𝟑𝟓 

 

As with the temperature estimates from the downcore LA-ICP-MS Mg/Ca record (Chapter 5) 

the analytical uncertainty (2 SD), and the δ18OSW uncertainty in the temperature calibration 

originating from salinity variability and the global Cramer et al. (2011) compilation are 

distinguished between.  This is because the calibration uncertainty does not influence any 

relative temperature trends.   
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6.3 Results 

6.3.1 δ13C 

C. mundulus δ13C (δ13CBF) ranges from +0.20 ‰ to +3.49 ‰ with a mean value of 1.30 ‰, and 

G. obliquus δ13C (δ13CPF) ranges from +1.15 ‰ to +4.26 ‰ with a mean value of 1.93 ‰.  Both 

records exhibit a similar range of values (Table 6.1, Appendix 10), and there is a strong 

similarity between the benthic and planktic foraminiferal δ13C downcore records (Figure 6.2).  

This is reinforced by their significant positive correlation (R2=0.59) (Figure 6.3).  Both records 

are dominated by a pronounced negative shift of ~2 ‰ through the early part of the record 

(Figure 6.2).  C. mundulus δ13C is initially ~3 ‰ but decreases to ~1.5 ‰ by 13 Ma and then 

~1‰ at 12 Ma, after which it remains relatively stable.  The ~2‰ negative shift in the G. 
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Figure 6.2:  Sunbird-1 δ13C records for C. mundulus (open squares) and G. obliquus (filled circles).  5 

point moving averages are plotted, C. mundulus as a dashed line and G. obliquus as a solid line.  
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obliquus δ13C record is even more striking, isotopic values decreasing sharply from an initial 

4‰ to ~1.7‰ in ~500 kyr, after which δ13C remains relatively stable (Figure 6.2).  Despite the 

long-term stability in both δ13C records from 12 Ma to 9.5 Ma both demonstrate variability 

following the pronounced initial excursion, but without any obvious periodicity, likely due to 

the sampling resolution.  The covariance of benthic and planktic foraminiferal δ13C is also 

apparent through this younger interval, the two records broadly tracking each other from 12 

Ma onwards. 
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Figure 6.3: Covariance between C. mundulus δ13C and G. obliquus δ13C (R2=0.59, n=74).   
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6.3.2 δ18O 

C. mundulus δ18O (δ18OBF) ranges from -1.68 ‰ to +1.78 ‰ with a mean value of 0.02 ‰, and 

G. obliquus δ18O (δ18OPF) ranges from -3.63 ‰ to -2.34 ‰ with a mean value of -2.92‰.  C. 

mundulus δ18O exhibits a much larger range (3.46 ‰) than G. obliquus δ18O (1.29 ‰) (Table 

6.1, Appendix 10).  The δ18OBF and δ18OPF records share some features, notably the ~0.6‰ 

positive shift at 12.5 Ma (Figure 6.4, blue panel), similar to the shared negative shifts of the 

respective δ13C records.  Through this interval, prior to ~12.0 Ma, benthic foraminiferal δ18O 

values are initially isotopically light, ~-1.5 ‰, becoming ~-0.8‰ by 12.4 Ma.  This positive shift 

of ~0.6‰ matches that of the δ18OPF record, which shifts from ~-3.4‰ to ~-2.7‰, albeit the 

δ18OBF record has greater variability.  However, from ~12 Ma onwards the two records diverge 
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Figure 6.4: Sunbird-1 δ18O records for C. mundulus (open squares) and G. obliquus (filled circles).  Five 

point moving averages are plotted, C. mundulus as a dashed line and G. obliquus as a solid line.  
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greatly.  Therefore, there is weaker covariance between the benthic and planktic 

foraminiferal δ18O records (R2=0.20) (Figure 6.5).  This suggests that there is a lack of any 

significant benthic imprint on the δ18OPF record, supporting the fidelity of the planktic signal.   

 

Prior to, and following, the positive 0.6‰ shift at ~12.5 Ma, the δ18OPF record remains 

remarkably stable, values averaging -3.4‰ prior to 12.5 Ma and -2.7‰ afterwards, with very 

little variability (Figure 6.4).  While the δ18OPF record remains stable at ~-2.7‰ there is a 

further positive shift in the δ18OBF record, accompanied by extreme point-to-point variability 

of up to 2‰ between 12 Ma and 11 Ma (Figure 6.4, grey panel).  Through this interval δ18OBF 

fluctuates dramatically between the comparatively stable intervals before and after, values 

ranging from -1.4‰ to 1.2‰ over ~1 Myr.  From 11 Ma-9.5 Ma, the variability in the δ18OBF 
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Figure 6.5: Covariance between C. mundulus δ18O and G. obliquus δ18O (R2=0.20, n=74).  
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record decreases, varying between -0.10 ‰ and 1.78 ‰ (Figure 6.4, yellow panel).  This 

youngest interval of the δ18OBF record has reduced variability compared to between 12 Ma 

and 11 Ma, but it still remains considerably greater than δ18OPF, which remains extremely 

stable.   

 

The lack of high magnitude point-to-point variability of the Sunbird-1 δ18OPF record, in 

particular between 12 Ma and 11 Ma suggests it is likely a more robust and reliable surface 

mixed layer signal uninhibited by any significant secondary alteration of the foraminiferal 

calcite on the seafloor.  Furthermore, the differences in style, magnitude, and timing of the 

benthic and planktic foraminiferal δ18O records following the initial ~0.6‰ shift centred at 

12.5 Ma suggests they have different primary controls.   

 

 Mean 
(‰) 

Median 
(‰) 

Max (‰) Min (‰) 
Range 
(‰) 

5-95% Range 
(‰) 

C. mundulus δ13C 
(n=87) 

1.30 1.17 3.49 0.20 3.29 2.09 

G. obliquus δ13C 
(n=77) 

1.93 1.79 4.26 1.15 3.11 2.16 

C. mundulus δ18O 
(n=87) 

0.02 0.37 1.78 -1.68 3.46 2.70 

G. obliquus δ18O 
(n=77) 

-2.92 -2.86 -2.34 -3.63 1.29 0.88 

Table 6.1: Distribution statistics for C. mundulus and G. obliquus δ13C and δ18O in the Sunbird-1 record. 
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6.3.3 Δδ13C and Δδ18O  

The difference between the benthic and planktic foraminiferal records gives information 

about changes in the bottom water to surface water stable isotope gradient.  The benthic-

planktic gradients are calculated from the same sample, as opposed to the smoothed curves 

in Figure 6.2 and Figure 6.4.  The benthic-planktic foraminiferal δ13C (Δδ13C) record exhibits 

minimal variability post ~12 Ma, G. obliquus δ13C being consistently 0.5‰-1‰ heavier than 

C. mundulus δ13C (Figure 6.6).  This relatively constant surface to bottom water δ13C gradient 

is expected because the two records track each other (Figure 6.2) and demonstrate a strong 

covariance (Figure 6.3).  Prior to 12.5 Ma, when both δ13C records are dominated by steep 

~2‰ negative excursions, there is very large, stochastic variability in Δδ13C suggesting a highly 

Figure 6.6:  Sunbird-1 benthic-planktic foraminiferal Δδ13C (open squares) record.  The solid line 

represents 5 point moving averaged data and the red horizontal line signifies equivalent values (Δδ13C 

=0). 
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dynamic water column.  There is a slight bump towards Δδ13C=0 at 11.8 Ma to 11.5 Ma, owing 

to slightly heavier benthic foraminiferal δ13C through this interval.   

 

Due to the much larger range in δ18OBF relative to δ18OPF (3.46‰ versus 1.29‰) the difference 

between the two is dominated by changes in the benthic foraminiferal record.  Therefore, the 

benthic-planktic foraminiferal δ18O (Δδ18O) record can be split into three intervals, separated 

at ~12.0 Ma and at ~11.0 Ma, in exactly the same way as the δ18OBF record (Figure 6.7).  Prior 

to 12.0 Ma Δδ18O is ~2‰ and after 11 Ma it is ~3.5‰, but with significant scatter about these 

average values.  In the transition interval between 12.0 Ma and 11.0 Ma the Δδ18O record 

shows extremely high magnitude variability on 104 year timescales, values ranging from 1.2‰ 

to 4.0‰.  The differing downcore trends (Figure 6.4) and lack of any significant covariance 
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Figure 6.7: Sunbird-1 benthic-planktic foraminiferal Δδ18O (open squares) record.  The solid line 

represents 5 point moving averaged data. 
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(Figure 6.5) between C. mundulus δ18O and G. obliquus δ18O explains why there is significant 

scatter in the Δδ18O record.   

 

There is no correlation between the respective benthic-planktic gradients (R2=0.02) (Figure 

6.8) suggesting Δδ13C and Δδ18O through the Sunbird-1 record have differing primary controls, 

or threshold responses to gradual climatic or tectonic change.   

 

 

Figure 6.8: Crossplot of Δδ13C and Δδ18O values through the Sunbird-1 record.  There is no significant 

correlation (R2=0.02, n=74). 
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6.3.4 δ18O SST and BWT records 

The δ18O values were converted to temperature accounting for δ18OSW, and propagated the 

analytical and calibration uncertainty, following the method outlined in Section 6.2.2.  SST 

ranges from 27°C - 31°C, with a mean temperature of 29⁰C (Figure 6.9a), and BWT ranges 

from 9°C – 23⁰C, with a mean temperature of 16⁰C (Figure 6.9c) (Appendix 11).  Sea surface 

temperature for the anomalously high δ18OPF value at 12.57 Ma (Figure 6.4) is not calculated.  

For comparison the Mg/Ca SST (Figure 6.9b) and BWT (Figure 6.9d) records generated in 

Chapter 5 are shown.  As explained in detail in Chapter 5.3, these were determined using the 

calibrations of Evans et al. (2016a) and Lear et al. (2002) respectively, both including a 

correction for Mg/CaSW using an Eocene Mg/CaSW of 2.1 mol/mol.  The planktic foraminiferal 

Mg/Ca is further corrected for the influence of changing pH using the relationship of Evans et 

al. (2016b) and the surface ocean pH record of Sosdian et al. (2018).   

 

The δ18O SST record remains relatively stable between 27°C and 31°C, the only distinctive 

trend being a ~3°C decrease between ~12.7 Ma and 12.0 Ma (Figure 6.9a), a decrease not 

seen in the Mg/Ca SST record (Figure 6.9b).  The δ18O BWT record is completely different, 

displaying point to point variability of up to 10°C (Figure 6.9c).  This variability in δ18O 

reconstructed BWT is largest between 12 Ma and 11 Ma, BWT fluctuating between ~20°C, 

which dominates prior to 12.0 Ma, and ~10°C, which dominates after 11.0 Ma.  As with the 

Δδ18O record (Figure 6.7), the large variability and range of δ18OBF values dominates the BWT-

SST temperature gradient record (Figure 6.10).  The Sunbird-1 δ18O derived temperature 

gradient increases from <10°C prior to 12.0 Ma to ~15°C after 11.0 Ma, via a 1 Myr interval of 

highly variable temperature gradient (Figure 6.9c).  In both Figure 6.9 and 6.10 the analytical  
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Figure 6.9: (a) Sea Surface Temperature (blue circles) and (c) Bottom Water Temperature (blue squares) records generated by applying Equation 6.2 and 6.3 

respectively to the δ18O data displayed in Figure 6.2.  Seawater δ18O (δ18Osw) is from the Cramer et al. (2011) compilation.  Error bars denote the analytical 

uncertainty (± 2SD), and the grey dashed lines denote the uncertainty envelope resulting from the cumulative analytical and calibration uncertainty.  The 

calibration uncertainty incorporates the 90% confidence envelope on the δ18OSW compilation (Figure 6.3), and the estimated 0.091‰ salinity influence on 

planktic foraminiferal δ18O.  Mg/Ca SST (b) and BWT (d) records from Chapter 5 are given for comparison.   
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error associated with the δ18O measurements is shown as error bars.  The uncertainty 

envelopes in Figure 6.9a and Figure 6.9c incorporates this analytical uncertainty of the δ18O 

measurements as well as uncertainties within the salinity and temperature calibrations, and 

the uncertainty associated with the δ18OSW compilation.   

 

6.3.5 Surface and bottom water calculated δ18OSW 

Using the method outlined in Section 6.2.3 the LA-ICP-MS Mg/Ca records (Chapter 5) are used 

as independent palaeotemperature values to account for the temperature control on δ18O.  

This allows both surface and bottom water δ18Osw records at Sunbird-1 to be calculated 

(Figure 6.11) (Appendix 12).  Due to binning of samples with very different δ18O values the 

Figure 6.10: Record of the bottom water to surface water temperature gradient generated by applying 

Equations 6.1 and 6.2 to the δ18O data displayed in Figure 6.7.  Error bars denote the analytical 

uncertainty (± 2SD).   
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sample uncertainty (2 SD) of the 1570.5 m (11.95 Ma) benthic foraminiferal δ18Osw is 

extremely high (± 2.67‰).  Therefore, it is not included in Figure 6.11b. 

 

Planktic foraminiferal δ18Osw has a total range of 1‰, values ranging from -0.46‰ to 0.54‰ 

with a mean of 0.01‰.  Benthic foraminiferal δ18Osw has a much larger range of 2.54‰, values 

ranging from -1.94‰ to 0.61‰ with a mean of -0.55‰.  Having accounted for the influence 

of temperature, both δ18Osw records (Figure 6.11) are very similar to their respective δ18O 

records (Figure 6.4).  This is unsurprisingly considering the overall stability of the LA-ICP-MS 

temperature records (Chapter 5.4.5).   

 

Despite the large envelopes on absolute values, as denoted by the grey dashed lines in Figure 

6.11, this is predominantly a result of the calibration uncertainties.  By considering the 

uncertainty relating to the analysis and sampling, as denoted by the vertical error bars in 

Figure 6.11, relative shifts within both records can be discussed.  Planktic foraminiferal δ18Osw 

increases by ~0.5‰ through the record (Figure 6.11a).  The magnitude of this δ18Osw increase 

is the same as the increase in both δ18O records at ~12.5 Ma (Figure 6.4).  Between 12.0 Ma 

and 11.4 Ma there are two distinctive excursions in the planktic foraminiferal δ18Osw record 

of ~0.8‰ amplitude, and durations of 400 kyr and 150 ± 50 kyr respectively.  These cycles are 

poorly defined, due to the low sampling resolution, which also hinders interpretation due to 

possible aliasing of any orbital frequency variability.  The most distinctive feature of the 

benthic foraminiferal δ18Osw record is the extremely high point to point variability of up to 

2.5‰ between 11.8 Ma and 11.0 Ma (Figure 6.11b).  This overprints a general increasing 

trend, δ18Osw values post 11.0 Ma approximately 1.5‰ heavier than prior to 11.8 Ma.   
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Figure 6.11: Surface water (A) and bottom water (B) δ18Osw records from Sunbird-1.  Planktic 

foraminiferal δ18Osw is calculated using the δ18O equation of Bemis et al. (1998) (Equation 6.1), and 

benthic foraminiferal δ18Osw is calculated using the δ18O equation of Lynch‐Stieglitz et al. (1999) (Equation 

6.2).  Temperatures from Mg/Ca samples regarded as robust (filled symbols) and binned (open symbols) 

are distinguished between (see Chapter 5.4.4 for details).  Binned samples have horizontal error bars 

denoting the age range the sample incorporates.  Vertical error bars denote the cumulative analytical and 

sample uncertainty of the δ18O and Mg/Ca values (± 2SD).  The uncertainty envelope (grey dashed lines) 

denotes the full uncertainty, incorporating the analytical and sample uncertainty, and the full calibration 

uncertainty from the calculation of temperature from Mg/Ca and in the δ18Osw calibration equations.   
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6.4 Discussion 

6.4.1 Sunbird-1 planktic foraminiferal Mg/Ca and δ18O: towards reliable absolute SST 

reconstructions for the Miocene  

The Sunbird-1 δ18OPF SST record reconstructs very similar absolute temperatures to the 

planktic foraminiferal Mg/Ca SST record reconstructed using LA-ICP-MS (Figure 6.12).  Mean 

SST from the Sunbird-1 δ18OPF record (29⁰C) is 2⁰C higher than mean SST from the Mg/Ca 

record (27⁰C), although with the exception of the two transient decreases in Mg/Ca 
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Figure 6.12: Sea surface temperature records at Sunbird-1 from planktic foraminiferal δ18O (blue) and 

Mg/Ca (black).  The Mg/Ca record distinguishes between robust (filled symbols) and binned (open 

symbols) samples (see Chapter 5.4.4 for details).  Error bars on the δ18O record denote the analytical 

uncertainty (± 2SD), and error bars on the Mg/Ca record denote the sample uncertainty (± 2SE).  

Binned Mg/Ca samples also have horizontal error bars denoting the age range the sample incorporates.   
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reconstructed SST initiating at 11.8 Ma and 10.7 Ma (Chapter 6.4.3) the records are within 

error of each other.   

 

The similarity of the absolute SSTs reconstructed by the two proxies supports their 

robustness.  This strengthens the argument that the LA-ICP-MS Mg/Ca SST record is recording 

a primary temperature signal and that the absolute sea surface temperatures at Sunbird-1 

should be considered primary.  Further evidence for the robustness of the δ18OPF record is 

that it is isotopically offset by ~-2‰ from the δ18O record reconstructed using Globigerinoides 

quadrilobatus at ODP site 758 on the 90°East ridge (Banerjee et al., 2017) (Figure 6.13).  

Additionally, the Sunbird-1 δ18OPF record displays very strong point to point stability, unlike 
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Figure 6.13: Planktic foraminiferal δ18O from Sunbird-1 (filled squares) and ODP Site 758 on the ninety-

east ridge (open squares) (Banerjee et al., 2017).  Five point moving averages are represented by solid 

and dashed lines respectively. 
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the record from ODP site 758 in the North-Eastern Indian Ocean (Banerjee et al., 2017) (Figure 

6.13).  Both planktic foraminiferal species are inferred as being surface mixed layer dwellers 

(Keller, 1985) so water depth of calcification cannot account for this offset.  If this 2‰ offset 

was to be interpreted solely in terms of temperature this would equate to ~9°C (Bemis et al., 

1998), whereas the modern day difference is ~2⁰C (Boyer et al., 2013).  ODP site 758, located 

on the ninety-east ridge, is dominated by carbonate ooze (Banerjee et al., 2017) making it 

more susceptible to post depositional alteration overprinting the oxygen isotopic signature of 

the primary surface water conditions (Pearson et al., 2001, Sexton et al., 2006, Pearson and 

Burgess, 2008).  This potential diagenetic influence towards isotopically heavier δ18O in the 

planktic foraminifera at ODP site 758 likely explains the remaining ~1.6‰ offset between the 
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Figure 6.14: Temperature profiles down through the water column around the modern day position of 

Sunbird-1 generated from CTD measurements (Boyer et al., 2013), satellite data (Fallet et al., 2011).  
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two δ18OPF records and strongly supports the fidelity and reliability of the Sunbird-1 planktic 

foraminiferal δ18O record.   

 

Furthermore, both Sunbird-1 SST records are similar to modern day SST in the region, as 

indicated by CTD data from the same 17 CTD profiles from the 0.75⁰ x 0.75⁰ grid square 

around the modern day study site that were used to determine the seasonal variability in 

salinity (Boyer et al., 2013) (Figure 6.14).  That both of the Sunbird-1 Miocene SST records are 

much more in line with modern SST than those from ODP Site 758 (Banerjee et al., 2017), also 

supports their robustness. These CTD profiles indicate that the modern day mixed layer is 

~50m water depth, in which temperature varies between 26.5⁰C and 28.5⁰C.  This is 

consistent with more recent CTD data from the nearby GLOW sites (Birch et al., 2013) and the 

average mean satellite sea surface temperature of 27.6⁰C in the nearby Mozambique Channel 

(Fallet et al., 2011) (Figure 6.14).  However, it is worth noting that the CTD data fail to reflect 

the ~5⁰C seasonal variability recorded by satellite data (Fallet et al., 2011) and meteorological 

observations (McClanahan, 1988), likely due to lower sampling density of the CTD 

measurements.   

 

Due to it being extinct the paleoecology of D. altispira is poorly understood, and cannot be 

groundtruthed.  However, the similarity in SST reconstructions strongly suggests that D. 

altispira and G. obliquus record the same conditions.  G. obliquus is interpreted as recording 

a surface water mixed layer signal (Keller and Barron, 1985, Aze et al, 2011), and these results 

therefore suggest that D. altispira resided in the same depth habitat.   
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Despite reconstructing similar absolute temperatures, the δ18O SST record doesn’t have the 

two distinct transient decreases in temperature seen in the Mg/Ca SST record.  This suggests 

that a secondary influence on at least one of the proxies has not been properly accounted for, 

causing the discrepancy.  This could be an increase in global or local δ18OSW masking a genuine 

transient SST decrease in the δ18O record, a local decrease in pH or [CO3
2-] causing an artificial 

transient SST or BWT decrease in the Mg/Ca record, or a combination of both.  This could be 

explained by two intervals of expanding continental ice volume.  Although not incorporated 

into the Cramer et al. (2011) compilation recent studies have proposed continued ice growth 

following the MMCT (Holbourn et al., 2013, Lear et al., 2015, Kominz et al., 2016).  A second 

possibility is that the secondary influence is local, the complex continental shelf locality 

influencing the local seawater chemistry.  The divergence in the SST records could be 

explained by two transient intervals of colder, fresher surface waters at 11.8 Ma and 10.7 Ma.  

There could be several possible mechanisms to explain the synchronous cooling and 

freshening of the surface waters.  One mechanism is the upwelling of colder water from 

depth, however, deeper waters are typically denser as a result of being more saline than the 

surface waters above.  The proximity to the continent means increased surface run off from 

rivers must be considered as a possible mechanism of cold, fresh water input.  However, a 

significant increase in siliciclastic riverine input would be expected to be associated with a 

distinct change in lithology or grain size, neither of which are observed for either interval 

(Figure 2.3 and 2.4). 
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6.4.2 Dissimilar Mg/Ca and δ18O BWT reconstructions 

In stark contrast to the planktic foraminiferal LA-ICP-MS Mg/Ca and planktic foraminiferal 

δ18O records which reconstruct similar SSTs, the respective benthic foraminiferal records are 

extremely dissimilar (Figure 6.15).  The Mg/Ca reconstructed BWT record is very stable, 

remaining ~12⁰C to 13⁰C through the interval, whereas the δ18O reconstructs BWT of ~20⁰C 

from 13.8 Ma to 12.0 Ma, displays point to point variability of up to 10⁰C between 12.0 Ma 

and 11.0 Ma, before then stabilising at ~11⁰C to ~16⁰C for the rest of the record.  The 

difference likely originates from a secondary control on one of the proxies being unaccounted 

for.  Due to its high variability this likely infleunces the δ18O BWT record.  That δ18O was 

measured on homogenised samples of 6-10 foraminifera makes it unlikely that the observed 

variability is due to the seasonal and inter-annual temperature variability inferred between 

individuals analysed by LA-ICP-MS (Chapter 5.5.2.2).  Therefore, in addition to the Cramer et 

al. (2011) global δ18OSW compilation, there are likely other controls influencing the benthic 

foraminiferal δ18OSW, and therefore δ18OBF at Sunbird-1.  Possible causes could be local salinity 

changes, changing bottom water mass (Broecker et al., 1982), influence of coastal water, the 

input of river waters (Rohling and Cooke, 1999), and changing water depth, or more likely a 

combination of these drivers.  These possible controls on the benthic foraminiferal δ18OSW 

records beyond temperature and global δ18OSW compilation will be revisited in Section 

6.4.4.1.   
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6.4.3 Sunbird-1 δ13C as a recorder of global carbon cycling and local subsidence  

Foraminiferal δ13C is primarily governed by the δ13C of the DIC of the seawater it precipitates 

from.  The δ13C of DIC in the ocean is ~0-2‰, with surface enrichment of δ13C relative to the 

deep ocean due to the preferential utilisation of the lighter 12C during biological production 

in the euphotic zone (Zeebe and Wolf-Gladrow, 2001).  The degradation of organic matter at 

depth releases this light carbon, lowering the δ13C of the deep ocean relative to the surface 

by ~1‰ (Craig, 1970, Kroopnick, 1985).  This flux of organic carbon from the surface ocean 
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Figure 6.15: Bottom water temperature records at Sunbird-1 from benthic foraminiferal δ18O (blue) 

and Mg/Ca (black).  The Mg/Ca record distinguishes between robust (filled symbols) and binned (open 

symbols) samples (see Chapter 5.4.4 for details).  Error bars on the δ18O record denote the analytical 

uncertainty (± 2SD), and error bars on the Mg/Ca record denote the sample uncertainty (± 2SE).  

Binned Mg/Ca samples also have horizontal error bars denoting the age range the sample incorporates.   
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reservoir to the deep ocean reservoir, the biological pump, is one aspect of the global carbon 

cycle.  From 12 Ma onwards there is a consistent ~1‰ offset between the benthic and 

planktic foraminiferal Sunbird-1 δ13C records (Figure 6.6), variability in the two records 

tracking each other (Figure 6.2).  This 1‰ offset between the two records is consistent with 

the expected Δδ13C resulting from the biological pump, the export of organic matter from the 

surface to deep ocean.  This record of an active biological pump at the site suggests the water 

column was stratified at the site after 12 Ma.  The corresponding decoupling of the δ18O 

records from this time supports the inference from the 1‰ Δδ13C offset, that the Sunbird-1 

ocean had thermal and chemical vertical gradients after 12 Ma.  (Figure 6.4 and 6.7).  

Furthermore, Sunbird-1 δ13CBF values are relatively consistent with contemporaneous benthic 

Figure 6.16:  C. mundulus δ13C record from Sunbird-1 (filled blue squares) and its 5 point moving 

average (solid blue line).  ODP Site 761 in the South East Indian Ocean (open circles) (Lear et al., 2010) 

and a Pacific compilation (red line) (Cramer et al., 2009) are shown for comparison.  The positive δ13C 

excursion of the Monterey Excursion is highlighted by the yellow panel.   
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foraminiferal δ13C records from deep water sites across a range of ocean basins after 12 Ma 

(Lear et al., 2003, Cramer et al., 2009, Lear et al., 2010, Banerjee et al., 2017, Lear et al., 2015) 

(Figure 6.16).  This suggests that by 12 Ma the site of deposition closely represents a deep 

water signal.  However, prior to 12 Ma this is not the case, the standout features of the 

Sunbird-1 δ13C records being the ~2‰ negative shifts prior to 12 Ma.  Despite their similarities 

in overall magnitude, the style and duration of the respective shifts differ (Figure 6.17).  By 

investigating these shifts in the Sunbird-1 δ13CBF and δ13CPF records prior to 12 Ma, and the 

differences between them, the influence of changes in the carbon cycle, both global and local, 

and the local subsidence at Sunbird-1, can be unravelled.  
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Figure 6.17: δ13C records for C. mundulus (blue squares) and G. obliquus (orange circles) from the 13.7 

Ma to 11.5 Ma interval of the Sunbird-1 well.  Five point moving averages are plotted, C. mundulus as a 

blue dashed line and G. obliquus as an orange solid line.  Two intervals with different primary controls, 

as discussed in the text, are highlighted by the yellow (Interval A from 13.7 ma to 13.0 Ma) and grey 

(Interval B from 13.0 Ma to 12.0 Ma) panels.  The black circle at 13.0 Ma indicates when δ13CBF = δ13CPF. 
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The majority of the δ13CBF shift, and entirety of the δ13CPF shift takes place between 13.7 Ma 

and 13.0 Ma, identified by the yellow panel (Interval A) in Figure 6.17.  This coincides with the 

final recovery from the positive δ13C Monterey excursion (Figure 6.16).  However, the 

magnitude of the global δ13Csw signal (Cramer et al., 2009), and a record from ODP Site 761 in 

the South East Indian Ocean (Lear et al., 2010), between 13.7 Ma and 13.0 Ma is less than the 

observed signal in either Sunbird-1 record (Figure 6.16).  This suggests that prior to 13 Ma 

benthic foraminifera from Sunbird-1 are not recording a global deep water signal, where δ13C 

is controlled primarily by the relative fluxes between seawater and other carbon reservoirs, 

and that other more localised effects also imparted an important control on the negative δ13C 

shifts prior to 13 Ma.   

 

The δ13C records were adjusted for changes in seawater δ13C (δ13Csw) using the compilation 

of deep Pacific sites interpolated to a 0.1 Myr resolution (Cramer et al., 2009).  Doing this 

removes the global δ13CSW signal meaning any changes in δ13C seen in the Sunbird-1 record 

can be attributed to local effects (Figure 6.18).  This allows for local geological interpretation, 

with particular reference to the subsidence of the site.  A compilation of deep Pacific sites for 

this δ13Csw adjustment is applied because the Pacific shows minimal changes in seawater 

chemistry over short timescales, the large ocean volume buffering any changes in seawater 

chemistry and carbon accumulation.  The global signal accounts for ~0.7‰ of the negative 

shift, decreasing the magnitude of the early excursion prior to 13 Ma in the δ13CPF record to 
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~1.5‰, and in the δ13CPF record to ~0.6‰ (Figure 6.18).  This global signal reflects the final 

recovery from the positive carbon isotope excursion and associated δ13C maximum of the 

Monterey Excursion (CM6) resulting from increased organic carbon burial through the MCO 

(Vincent and Berger, 1985, Woodruff and Savin, 1991, Flower and Kennett, 1993a, Shevenell 

et al., 2004, Holbourn et al., 2014).  Using the Pacific compilation acts to smooth the excursion 

that is recorded by single site records, (e.g. ODP 761 as shown in Figure 6.16) so this ~0.7‰ 

influence of the global signal is likely a conservative estimate.  However, no single record from 

a deep water site displays a negative carbon isotope excursion in excess of 1‰ following the 

Figure 6.18:  Adjusted benthic (blue squares) and planktic (orange circles) foraminiferal δ13C records 

from Sunbird-1 and their 5 point moving averages (dashed blue and solid orange lines respectively).  

The adjusted records have been corrected for the influence of the global δ13CSW signal using a 

compilation of Pacific deep water sites (Cramer et al., 2009).  Yellow (Interval A) and grey (Interval B) 

panels as Figure 6.17. 
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Monterey Excursion (Woodruff and Savin, 1991, Flower and Kennett, 1993a, Shevenell et al., 

2004, Holbourn et al., 2007, Holbourn et al., 2014) 

 

The ~0.7‰ global δ13CSW signal accounts for approximately one half of the δ13CBF shift and 

approximately one third of the δ13CPF shift prior to 13 Ma. This means that there remains a 

site specific negative shift which requires explaining.  Because there is a larger total shift in 

δ13CPF (~2.2‰) than there is in δ13CBF (~1.3‰) through the 13.7 – 13.0 Ma interval (Figure 

6.17), the shift in the δ13CPF record adjusted for the global δ13CSW signal (~1.5‰) is greater 

than the corresponding shift in the adjusted δ13CBF record (~0.6‰) (Figure 6.18).  Therefore, 

this local process has a significantly greater influence on the surface waters than the bottom 

waters.  As discussed previously Sunbird-1 is located on a continental margin that was 

subsiding throughout the late Miocene having been sub-aerially exposed following the MMCT 

(~13.8 Ma).  This subsidence out of the high productivity, surface water into waters with 

reduced primary productivity at depth could be the dominant influence on the δ13CBF record 

prior to 13 Ma.  However, this interpretation that the negative δ13CBF shift prior to 13Ma 

reflects decreasing δ13CSW values at increased water depth as the site subsides is not 

supported by the higher magnitude, synchronous δ13CPF excursion of magnitude (Figure 6.18).   

 

Here some potential explanations for these δ13C shifts between 13.7 Ma and 13.0 Ma from 

values >1‰ higher than the global mean (Figure 6.16) are considered: (1) Sunbird-1 is 

recording the true magnitude of the global carbon isotope shift at this time, (2) Sunbird-1 is 

recording an amplification of the global δ13C signal, (3) Sunbird-1 was influenced by a varying 
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influx of waters from the Indian Ocean gyre, and (4) Sunbird-1 experienced declining local 

primary productivity.    

 

One possible explanation is that the full 1.3‰ to 2.2‰ negative shift has a global cause.  The 

Sunbird-1 record initiates within the δ13C maximum of CM6, and the Sunbird-1 negative δ13C 

shift is synchronous with the ~0.8‰ shift recorded from open ocean sites during the recovery 

from CM6 (Holbourn et al., 2007, Lear et al., 2010, Holbourn et al., 2013).  Is it possible that 

Sunbird-1 is recording the true magnitude of the positive δ13C excursion of CM6, and its signal 

is dampened in open ocean sites, as a result of bioturbation and low sedimentation rates?  

Using the simple model of Kump and Arthur (1999) the ~0.8‰ δ13C excursion at CM6 requires 

a ~70% increase in burial of organic carbon globally (Badger et al., 2013).  Therefore, a 

significantly greater, and likely unrealistic, increase in organic matter burial is required to have 

taken place if the 2.2‰ shift in the Sunbird-1 δ13CPF record represents the “true” global signal.  

This, in conjunction with an absence of evidence from other sites, suggests that a >2‰ 

negative shift out of the CM6 carbon maxima is highly unlikely.   

 

A second possibility is that shelf sites such as Sunbird-1 are more susceptible to higher 

magnitude changes in water mass δ13C, and hence record an amplified carbon maxima at 

CM6.  The Monterey hypothesis states that during carbon maxima events there was lower 

oxygen levels and higher organic carbon within the sediment in marginal basin environments 

(Flower and Kennett, 1993b).  This widespread sequestration of organic carbon in shallow 

marine basins (e.g. Sunbird-1) contributed to deep sea δ13C maxima, such as CM6 (Flower and 

Kennett, 1993b).  Amplified sequestration, and subsequent release, of isotopically light 
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carbon at the site of Sunbird-1 could have locally amplified the global δ13C signal through the 

MCO, which Sunbird-1 records the recovery from.   

 

Although possible, that the full shifts in the Sunbird-1 δ13C records representing the true 

global signal, or an amplified version the global signal, is unlikely.  This is because the absolute 

values of δ13C at Sunbird-1 are ~1.5‰ greater than contemporaneous sites and >1‰ higher 

than the maximum value of ~2.7‰ in the modern open ocean (Boyer et al., 2013).  Despite 

there being increased shallow remineralisation in a warmer world (John et al., 2014), it is 

more probable that a more localised process driving the surface seawater δ13C to >4‰ on the 

Sunbird-1 continental shelf prior to ~13 Ma is required.  Early deposition at Sunbird-1 took 

place in a highly complex continental shelf environment proximal to the continent.  The high 

absolute values at Sunbird-1 prior to 13 Ma could be due to Sunbird-1 being partially isolated 

from the open ocean.  Consequently, there would have been a considerable influence from 

biological (e.g. primary productivity) and physical environmental (e.g. water mass mixing and 

riverine input) processes through the earliest interval of the record, prior to 13 Ma.   

 

An increased influence of the nutrient poor Indian Ocean gyre would drive δ13C towards more 

typical values as the site subsided, the open ocean water mass having lower δ13C than the 

continental shelf.  Physical processes such as riverine input can have a dominant influence on 

δ13CDIC (Zeebe and Wolf-Gladrow, 2001).  This can result in variability of up to 1‰ in δ13C on 

the local scale in shelf environments (Reynolds et al., 2017), supporting the potential for this 

being the cause of the substantially elevated Sunbird-1 δ13C values prior to 13 Ma.   
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As well as the site of Sunbird-1 deposition, the global sea level fall of ~60 m associated with 

the MMCT would have subaerially exposed the proximal continental shelves, providing a 

source of organic carbon and nutrients.  The resulting physical weathering of these exposed 

shelves likely delivered nutrients into the coastal waters via rivers.  Enhanced supply of 

nutrients and organic matter from the nearby continent to the site of deposition may have 

resulted in extremely high primary productivity, and invigorated carbon remineralisation in 

the water column above Sunbird-1 deposition (John et al., 2014).  This enhanced nutrient 

supply, increasing primary productivity, would have increased the δ13CDIC of the water column 

(John et al., 2014) due to the preferential uptake of 12C by photosynthetic phytoplankton, a 

process commonly observed in coastal and upwelling regions characterised by high nutrient 

availability.  This is supported by the downcore change in the concentrations of redox 

sensitive trace metals, which also indicate that in this early interval of the record Sunbird-1 

was characterised by high primary productivity causing changeable sedimentary redox 

conditions (Chapter 3).  Furthermore, through this interval prior to 13.0 Ma benthic 

foraminiferal B/Ca is at the lower limit of the reported, species-specific, range from core tops, 

despite the shallow water depth. It is important to note that the B/Ca records are not 

impacted by the contaminant coatings (Chapter 3). Therefore, it is suggested that prior to 13 

Ma, invigorated remineralisation of organic matter raised CO2 and ∑CO2, and hence decreased 

bottom water Δ[CO3
2-].   

 

A decrease in local primary productivity could cause a decrease in both of the benthic and 

planktic foraminiferal δ13C records, while also accounting for the shift in δ13CPF being greater 

than the coeval shift in δ13CBF (Figure 6.19).  A decrease in productivity, and the associated 
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reduction in organic matter remineralisation, is again supported by the increase in between 

B/Ca, and therefore Δ[CO3
2-] between 13.7 Ma and 13.0 Ma (Chapter 3).  Local coastal effects 

on δ13C have a much lower influence on δ18O, which is primarily driven by global and regional 

changes in temperature, salinity, and δ18OSW (Emiliani, 1955, Craig and Gordon, 1965, 

Shackleton, 1967).  Therefore, crucially, the changes in productivity inferred as having a 

significant influence on the δ13C records would have a negligible impact on the δ18O signal, 

evidenced by their lack of correlation.   

 

The favoured explanation for the δ13C shift from exceptionally high isotopical values at 13.7 

Ma is that of declining productivity from a regime with extremely high local productivity to a 

regime with more typical productivity for a coastal location.  This explains both the 

simultaneous negative shift in both records, and the greater magnitude of the shift in the 

planktic foraminiferal δ13C record.  Furthermore, this explanation agrees with the benthic 

foraminiferal trace metal records.   
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Between 13.0 Ma and 12.0 Ma the δ13CPF record remains stable while the δ13CBF has a further 

~0.6‰ negative shift (Interval B in Figure 6.16).  This part of the record is primarily controlled 

by subsidence, influencing δ13CBF without having any effect on the δ13CPF record (Figure 6.20).  

Although the tectonic subsidence of the site would have had an influence between 13.7 Ma 

and 13.0 Ma, the shift from a higher productivity regime to a lower productivity regime is the 

Figure 6.19:  Schematic δ13C water depth profiles for a high productivity setting (black line) and a low 

productivity setting (grey).  The impact of the proposed transition from the higher productivity setting 

to the lower productivity setting between 13.7 Ma (circles) and 13.0 Ma (diamonds) on the planktic 

(orange) and benthic (blue) foraminiferal δ13C records is shown.   
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dominant process on the δ13C signal through this interval.  This changes between 13.0 Ma and 

12.0 Ma, when the tectonic subsidence of the basin becomes the dominant process 

influencing the δ13C records (Figure 6.20). There is a lack of benthic foraminiferal Mg/Ca data, 

reconstructing BWT, through this interval identified by the shifts in the δ13C records (Figure 

6.21).  Unfortunately, this precludes an accurate assessment of whether BWT decreased 

Figure 6.20:  Schematic δ13C water depth profiles for a high productivity setting (black line) and a low 

productivity setting (grey).  The impact of subsidence of the site, after the prior transition to the lower 

productivity setting, between 13.0 Ma (diamonds) and 12.0 Ma (squares) on the planktic (orange) and 

benthic (blue) foraminiferal δ13C records is shown.   
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between 13.0 Ma and 12.0 Ma.  This would be expected if the δ13C record was recording 

subsidence, the chemocline and thermocline being intrinsically linked, physical mixing 

resulting in the upper ~50 m of the water column being characterised by relatively constant 

conditions, at the modern day site of Sunbird-1 (World Ocean Database, 2013) (Figure 6.22).   

 

Figure 6.21:  Benthic δ13C (blue squares), and planktic δ13C (orange circles) foraminiferal records from 

Sunbird-1 plotted alongside the benthic foraminiferal Mg/Ca (black) Sunbird-1 record.   
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Figure 6.22:  δ13C (blue dashed) and temperature (black solid) profiles for the upper 500m of the water 

column from the 4 CTD profiles in a 15⁰ x 15⁰ grid square around the modern day site of Sunbird-1 in 

the SW Indian Ocean (World Ocean Database 2013 (Boyer et al., 2013)).   
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6.4.4 Global ice volume and local oceanographic controls on Sunbird-1 δ18Osw 

The oxygen isotope composition (δ18O) of foraminiferal calcite is primarily controlled by 

calcification temperature and the oxygen isotope composition of the seawater (δ18Osw) it 

calcifies from (Emiliani, 1955, Shackleton, 1967) (Chapter 2.2.1.1).  Using an independent 

proxy for temperature, such as Mg/Ca, can simultaneously isolate the δ18Osw component of 

the δ18O record (Lear et al., 2000, Billups and Schrag, 2002).  The δ18Osw of foraminiferal calcite 

is principally controlled by global continental ice volume and the local evaporation-

precipitation, which correlates with salinity.  Further local variability resulting from advection, 

melting icebergs and sea ice, and freshwater input from rivers can influence the δ18Osw 

(Rohling and Cooke, 1999, Pearson, 2012), although not all will be relevant at Sunbird-1, in 

particular melting icebergs and sea ice.  Because the deep ocean is largely unaffected by local 

changes the primary driver of δ18Osw change in deep water sites is global continental ice 

volume, the growth of ice sheets elevating δ18Osw.  Changes in salinity do influence deep water 

δ18Osw, especially due to water mass changes, albeit the signals are a lot smaller than those 

at the surface.  Global ice volume during the mid to late Miocene interval covered by Sunbird-

1 is commonly regarded to be relatively stable following the expansion of the EAIS to a land-

based ice sheet across the MMCT (Flower and Kennett, 1994, Lear et al., 2003, Lewis et al., 

2007, John et al., 2011).  

 

As described previously, there is very little downcore correlation (Figure 6.4) or covariance 

(Figure 6.5) between the benthic and planktic foraminiferal δ18O records.  This lack of 

association between the benthic and planktic foraminiferal δ18O records cannot be explained 

by temperature variability, as it is still apparent in the respective δ18OSW records (Figure 6.11).  
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Not only does this suggest they have different primary controls but also that there was 

significant decoupling of the planktic and benthic water masses throughout the Sunbird-1 

interval.   

 

6.4.4.1  Local oceanographic control on Sunbird-1 benthic foraminiferal δ18OSW 

Sunbird-1 δ18OBF values are considerably lower than contemporaneous benthic foraminiferal 

δ18O records from a range of ocean basins (Zachos et al., 2001, Lear et al., 2003, Westerhold 

Figure 6.23:  C. mundulus δ18O record from Sunbird-1 (filled squares) and its 5 point moving average 

(solid line).  Previously published records from ODP Site 758 in the Indian Ocean (Banerjee et al., 2017) 

(open downward triangles), ODP Site 761 off North West Australia (Lear et al., 2010) (open diamonds), 

ODP Site 806 in the western equatorial Pacific (Lear et al., 2015) (open upward triangles), and ODP Site 

926 in the western equatorial Atlantic (open circles) (Lear et al., 2003) are plotted as open symbols for 

comparison.  The trend from a compilation of Pacific sites is shown as  a red line, with dashed red lines 

as 95% confidence intervals (Cramer et al., 2009).   
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et al., 2005, Zachos et al., 2008, Cramer et al., 2009, Lear et al., 2010, Holbourn et al., 2013, 

Lear et al., 2015, Banerjee et al., 2017) (Figure 6.23).  Using the Sunbird-1 Mg/Ca records to 

independently constrain temperature, isolating the δ18Osw component of the Sunbird-1 δ18OBF 

record, shows that the warmer BWT at Sunbird-1 accounts for some, but not all, of this 

observed difference (Figure 6.24).  The ~1.5‰ increase in benthic foraminiferal δ18OSW over 

the whole record is significantly greater than the ~0.5‰ increase, considered to reflect 

Antarctic Ice Sheet expansion, at more typical open ocean benthic sites (Lear et al., 2010, 

Cramer et al., 2011, Lear et al., 2015).  The calibration between δ18OSW and ice volume, and 

therefore eustatic sea level, are poorly constrained beyond the Pleistocene.  By assuming the 

maximum 1.29‰ δ18OSW change/100m of Gasson et al. (2016), determined using a cold 

climate, high eccentricity model scenario incorporating approximate mid-Miocene 

topography, solely invoking changes in global continental ice volume to explain the Sunbird-

1 benthic foraminiferal δ18OSW increase would require a ~120m sea level equivalent ice sheet 

expansion.  This is likely a conservative estimate and would require a significant contribution 

of permanent Northern Hemisphere ice sheets in addition to further increase of Antarctic ice 

volume increase following the MMCT.  This is highly unfeasible, with recent estimates of EAIS 

volume following the MMCT of at least 89% modern day ice volume (John et al., 2011), and 

greater than modern day ice volume (Lear et al., 2015).  Furthermore, a significant 

contribution from Northern hemisphere ice sheets would be required despite major Cenozoic 

Northern hemisphere glaciation likely originating around 2.7 Ma (Sosdian and Rosenthal, 

2009, Bailey et al., 2013), although ephemeral ice sheets and isolated glaciers on Greenland 

may have persisted since the late Eocene (Eldrett et al., 2007).  This strongly suggests that 

Sunbird-1 benthic foraminiferal δ18OSW is not recording a typical global deep-water signal, 

controlled primarily by the waxing and waning of high latitude continental ice sheets, 
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something which is unsurprising considering the shallow water depth of deposition.  

Additionally absolute benthic foraminiferal δ18OSW values prior to 12.0 Ma are isotopically 

lighter, suggesting continental lower ice volume, than those of an ice free Eocene world, -

0.89‰ (Cramer et al., 2011).  Therefore, the Sunbird-1 benthic foraminiferal δ18OSW record 

should be considered in terms of local and regional effects, these dominating over the 

influence of changes in continental ice volume.   

Figure 6.24: Sunbird-1 benthic foraminiferal δ18Osw record as Figure 6.11b distinguishing between 

temperatures from Mg/Ca samples regarded as robust (black squares) and binned (grey squares) (see 

Chapter 5.4.4 for details).  Binned samples have horizontal error bars denoting the age range the 

sample incorporates.  Vertical error bars denote the cumulative analytical and sample uncertainty of 

the δ18O and Mg/Ca values (± 2SD).  Previously published benthic foraminiferal foraminiferal δ18Osw 

records from ODP Site 761 off North West Australia (Lear et al., 2010) (open diamonds) and ODP Site 

806 in the western equatorial Pacific (Lear et al., 2015) (open upward triangles) are plotted as open 

symbols for comparison.  The trend from a compilation of Pacific sites is shown as a red line, with 

dashed red lines as 90% confidence intervals (Cramer et al., 2011).  The ice free Eocene δ18Osw value of 

-0.89‰ (SMOW) (Cramer et al., 2011) is shown as a horizontal blue dashed line.  
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The high magnitude point-to-point variability of up to 2‰ seen between 11.8 Ma and 11.0 

Ma in the Sunbird-1 benthic foraminiferal δ18Osw record is uncharacteristic for deep water 

sites (Figure 6.24).  That the extremely high magnitude benthic foraminiferal δ18OSW is not 

associated with any BWT trend (Chapter 5) makes it all the more perplexing.  To be solely 

explained in terms of ice volume variability would require repeated growth and melting of 

the entire EAIS on 105 year timescales.  Although likely having an influence, the 2‰ 

magnitude of the point-to-point variability in the benthic foraminiferal δ18OSW cannot be 

solely explained by a dynamic East Antarctic Ice Sheet (Figure 6.24).  This is similar to the 

~1.5‰ increase in benthic foraminiferal δ18OSW through the interval as a whole, in that the 

higher magnitude point-to-point variability suggests that any influence of changing global ice 

volume is drowned out by another primary control.  This primary control must account for a 

~1‰ increase in benthic foraminiferal δ18OSW through the record as well as the majority of 

the up to 2‰ point to point variability, without incorporating any significant BWT variability 

at the site.  Additionally, the respective planktic foraminiferal Mg/Ca and δ18O records show 

minimal variability, and therefore the surface waters at Sunbird-1 demonstrate a lack of 

response to this primary driver of benthic foraminiferal δ18OSW change.  

 

Only correcting for the global δ18OSW compilation when calculating BWT from δ18OBF 

reconstructs BWT on average 8⁰C warmer than the Mg/Ca BWT record prior to ~11.8 Ma 

(Figure 6.15).  This suggests one of two things; that benthic foraminiferal δ18OSW is being 

driven to more negative values through this interval, or that the Mg/Ca BWT record misses a 

cooling trend through the record by reconstructing artificially low BWT temperatures prior to 

11.8 Ma, or a combination of both.  The magnitude of the variability in the δ18OBF record 
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between 11.8 Ma and 11.0 Ma mean it is likely forced by a combination of changes in 

temperature and δ18OSW (driven by salinity).  Reconstructed BWT using both techniques are 

extremely similar, and the benthic foraminiferal δ18OSW values are similar to those of more 

typical deep water sites after 11 Ma (Figure 6.24), suggesting this complicated process no 

longer has a significant influence on the benthic foraminiferal δ18OSW.   

 

Assuming Mg/Ca BWT is correct and there is no cooling trend through the record, the lighter 

δ18OSW of the bottom water mass which dominates prior to ~11.8 Ma may be influenced by 

fresh water input from the continent, the site being more proximal to the continent and 

having not subsided to deeper waters.  Lower salinity water masses, such as those influenced 

by significant fresh water run-off, are characterised by more negative δ18O values (Craig and 

Gordon, 1965, Duplessy et al., 1991, Srivastava et al., 2007).  By 11.0 Ma the Sunbird-1 bottom 

water mass is no longer influenced by this continental fresh water input, likely due to having 

subsided deep enough to be permanently bathed by a deep water mass.  The suggestion of a 

change in dominant water mass from one of lower salinity influenced by fresh water input 

from the continent, to one more typical of an open ocean site with higher salinity waters 

could be investigated by foraminiferal abundance work.  If this suggestion is correct, planktic 

foraminiferal abundance would increase at ~11.8 Ma, because planktic foraminifera dislike 

shallow, low salinity waters.   

 

From ~11.8 Ma- 11.0 Ma the benthic foraminiferal δ18OSW record fluctuates between the 

values of these two intervals, causing the high magnitude and high frequency oscillations in 

the benthic foraminiferal δ18OSW record.  Again, assuming that the Mg/Ca BWT record is 
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robust and there is no significant influence of temperature through this interval, the high 

magnitude and high frequency benthic foraminiferal δ18OSW variability of up to 2.0‰ 

displayed between 11.8 Ma and 11.0 Ma is a record of fluctuations between two 

oceanographic regimes with contrasting water mass properties, one that prevails prior to 11.8 

Ma and the other after 11.0 Ma.  Through this interval of transition, the bottom water 

properties influencing δ18OSW flip dramatically between these two end member states, 

recording highly dynamic and variable bottom water conditions.  This emphasises that 

Sunbird-1 was an extremely dynamic oceanographic region.   

Figure 6.25: Bottom water temperature records at Sunbird-1 from benthic foraminiferal δ18O (blue) 

and Mg/Ca (black).  The Mg/Ca record distinguishes between robust (filled symbols) and binned (open 

symbols) samples (see Chapter 5.4.4 for details).  Error bars on the δ18O record denote the analytical 

uncertainty (± 2SD), and error bars on the Mg/Ca record denote the sample uncertainty (± 2SE).  

Binned Mg/Ca samples also have horizontal error bars denoting the age range the sample incorporates.  

The vertical red arrows indicate the 5-10⁰C difference between the two proxies prior to 12.0 Ma, an 

interval through which there are no robust Mg/Ca BWT estimates.  
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The possibility that the LA-ICP-MS Mg/Ca record misses a cooling trend in the bottom water 

temperatures has to be considered.  This is particularly relevant because of the lack of robust 

Mg/Ca temperature data prior to 12.0 Ma, the interval where there is a 5-10⁰C difference 

between the two records of proxy reconstructed BWT (Figure 6.25).  Furthermore, for the 

high frequency 2‰ point to point variability in the δ18OBF record to be solely explained by 

changes in salinity would require changes of ~12 PSU using the LeGrande and Schmidt (2006) 

Indian Ocean calibration (Equation 6.3).  This seems unrealistic.  The absence of a cooling 

trend in the Mg/Ca BWT record and the high point to point variability in the δ18O record can 

be explained by the LA-ICP-MS BWT record only sampling the cool parts of the record.  The 

strict and thorough screening criteria employed to remove LA-ICP-MS profiles with elevated 

Mg/Ca values resulting from contamination by a Mg-Mn-rich diagenetic outer coating has 

likely created a selection bias.  This selection bias in the LA-ICP-MS BWT record, removing high 

bottom water temperatures, does not exist in the benthic foraminiferal δ18O record (Figure 

6.25).   

 

The subsidence of the basin means a cooling trend would be expected.  This is supported by 

the trend in the H. elegans Sr/Ca solution ICP-MS record which demonstrates a ~7⁰C cooling 

using the BWT calibration of Rosenthal et al. (2006) incorporating only samples from the 

Indonesian Seaway, waters oversaturated with respect to aragonite (Lear et al., 2008).  

Although the absolute bottom water temperatures reconstructed by this solution ICP-MS 

record cannot be assumed reliable due to the large sedimentary redox signal (Chapter 3), the 

relative trend indicates a ~7⁰C cooling trend.  Using the δ18O equation of Lynch‐Stieglitz et al. 
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(1999) a 7⁰C cooling trend equates to a ~1.5‰ increase in δ18O meaning a much more realistic 

salinity variability of only ~1 PSU is required to explain the δ18OBF signal.   

 

Irrespective of the controlling factor on the complicated δ18OBF record, changes in the salinity 

of the water mass bathing the bottom waters, a cooling trend which has been missed by the 

LA-ICP-MS Mg/Ca BWT record, or a combination of both, the stability of the δ18OPF record 

indicates that this only influences the bottom waters, and not the surface waters.  The clear 

decoupling of the benthic and planktic foraminiferal δ18O signals from 11.8 Ma onwards 

strongly suggests that the site has subsided sufficiently for the bottom waters to be bathed 

by a different water mass than the surface waters.   

 

6.4.4.2  Long term evolution of global ice volume 

There is a general increasing trend with a total magnitude of between 0.10‰ and 0.96‰ 

through the Sunbird-1 planktic foraminiferal δ18OSW record (Figure 6.26).  The noisiness from 

the uncertainty in the Mg/Ca measurements causes the high degree of uncertainty in this 

trend.  However, even incorporating this uncertainty the relative trend of increasing δ18Osw 

through the record is robust.  The approximately 0.5‰ magnitude of this δ18OSW increase 

between 13.3 Ma and 9.5 Ma is similar to that of more typical deep water sites (Billups and 

Schrag, 2003, Lear et al., 2003, Lear et al., 2010, Lear et al., 2015), and the global compilation 

(Cramer et al., 2011).  Therefore, this general long term increasing trend in planktic 

foraminiferal δ18OSW at Sunbird-1 is recording the long term evolution of global continental 

ice volume.  The 0.5‰ increase in δ18OSW through the record corresponds to a 39-48m sea 

level equivalent increase in continental ice volume using the range of Miocene δ18OSW 
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sensitivities of Gasson et al. (2016).  The well constrained absolute SST estimates through the 

mid-late Miocene (Chapter 5) mean that the absolute δ18OSW values presented here are a 

major improvement on previous studies which are relatively poorly constrained through the 

interval (Lear et al., 2003, Lear et al., 2010, Lear et al., 2015).  Therefore, the confidence in 

there being increased continental ice volume through the unipolar icehouse interval following 
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Figure 6.26: Sunbird-1 planktic foraminiferal δ18Osw record as Figure 6.11a, distinguishing between 

temperatures from Mg/Ca samples regarded as robust (black circles) and binned (grey circles) (see 

Chapter 5.4.4 for details).  Binned samples have horizontal error bars denoting the age range the 

sample incorporates.  Vertical error bars denote the cumulative analytical and sample uncertainty of 

the δ18O and Mg/Ca values (± 2SD).  Previously published benthic foraminiferal δ18Osw records from 

ODP Site 761 off North West Australia (Lear et al., 2010) (open diamonds) and ODP Site 806 in the 

western equatorial Pacific (Lear et al., 2015) (open upward triangles) are plotted as open symbols for 

comparison.  The trend from a compilation of Pacific sites is shown as a red line, with dashed red lines 

as 90% confidence intervals (Cramer et al., 2011).  Vertical blue panels indicate proposed periods of 

ice sheet growth, corresponding with the Mi5 and Mi6 events of (Miller et al., 1991).   
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the MMCT is greatly improved, the increase being approximately 39-48m sea level equivalent 

in magnitude.   

 

The noisy nature of the planktic foraminiferal δ18OSW record, combined with the low sampling 

resolution makes identifying distinct intervals of ice growth challenging.  Despite this there 

are two apparent periods through which planktic foraminiferal δ18OSW increases centred at 

~11.4 Ma and ~10.4 Ma (signified by the vertical blue panels in Figure 6.26) which are 

interpreted as phases of ice sheet intensification.  The two 105 year increases in the record 

correspond with the Mi5 and Mi6 events of Miller et al. (1991), later reported by other 

authors (Turco et al., 2001, Westerhold et al., 2005, Lear et al., 2010, John et al., 2011).  That 

these intervals align with the proposed Mi5 and Mi6 continental ice sheet growth events 

further supports the interpretation that Sunbird-1 planktic foraminiferal δ18OSW is recording 

a global ice volume signal (Figure 6.26).  It would be expected that benthic foraminiferal 

δ18OSW would record similar increases, ice volume change affecting both planktic and benthic 

foraminiferal δ18OSW signatures.  However, this is not the case for these two intervals in 

Sunbird-1, and the changing water mass properties as the site subsides drowns out the 

influence of the ice-sheet growth events (Chapter 6.4.4.1).   

 

This also supports an ice volume contribution of ~0.5‰ to the benthic foraminiferal δ18OSW 

signal, and more typical contemporaneous deep water records (Figure 6.24).  However, this 

leaves the further 1‰ increase in the Sunbird-1 benthic foraminiferal δ18OSW record requiring 

explanation, without invoking million year timescale ice sheet evolution.   
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6.4.4.3  A dynamic Antarctic ice sheet following the MMCT? 

The ice sheet hysteresis hypothesis of Pollard and DeConto (2005) and the thresholds for both 

Northern and Southern Hemisphere glaciation of DeConto et al. (2008) suggest that global ice 

volume was likely relatively stable between 13.8 Ma and 9.5 Ma.  Additionally, due to changes 

in orbital configuration, the high latitudes had reduced seasonality following the MMCT 

meaning the Antarctic Ice Sheet is expected to have been less susceptible to dynamic changes 

in volume (Holbourn et al., 2013).   
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Figure 6.27: Planktic foraminiferal δ18Osw record for the interval between 12 Ma and 11 Ma from 

Sunbird-1 distinguishing between temperatures from Mg/Ca samples regarded as robust (black 

circles) and binned (grey circles) (see Chapter 5.4.4 for details).  Red arrows show proposed high 

frequency ice volume change inferred from the planktic foraminiferal δ18Osw record. 
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Despite this, two high frequency ~0.5‰ fluctuations between 11.8 Ma and 11.5 Ma are 

present in the planktic foraminiferal δ18OSW record, interpreted as recording global ice volume 

change (Figure 6.27).  This suggests that there could have been significant Antarctic ice sheet 

variability between 12 Ma and 11 Ma despite not being simulated by coupled climate-ice 

sheet models (Huybrechts, 1993, Pollard and DeConto, 2005, DeConto et al., 2008, Gasson et 

al., 2014).  Incorporating new ice shelf hydrofracturing and ice cliff collapse mechanisms ice 

sheet retreat (Pollard et al., 2015) has allowed 0.52‰ to 0.66‰ variations in δ18OSW (Gasson 

et al., 2016), although it is worth noting these simulations are for the marine based ice sheets 

of the early to mid-Miocene.  This planktic foraminiferal δ18OSW record from Sunbird-1 

supports similar magnitude fluctuations resulting from a dynamic EAIS after its expansion to 

a dry, land-based ice sheet of approximately modern day volume across the MMCT.  Although 

ice sheet models currently struggle to simulate it, similar large-scale variability of the East 

Antarctic Ice Sheet through the mid-late Miocene, inferred from high resolution δ18O records 

(Westerhold et al., 2005, Holbourn et al., 2013) and backstripping estimates (John et al., 2011, 

Kominz et al., 2016), has been inferred despite relatively stable atmospheric CO2 (Greenop et 

al., 2014, Sosdian et al., 2018).  Additionally, provenance studies proximal to the ice margin 

reveal that the EAIS exhibited a dynamic response to climatic change during the Pliocene 

(Cook et al., 2013), behaviour which the Sunbird-1 δ18OSW records demonstrate to be 

applicable in the mid-late Miocene (Figure 6.19).   

 

6.5 Conclusions 

The environmental conditions at Sunbird-1 between 13.7 Ma and 9.4 Ma were influenced by 

multiple processes, including subsidence, primary productivity, local oceanography, ice 
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volume change, and the global carbon cycle.  This is evidenced by the decoupling of Mg/Ca, 

B/Ca, δ13C, and δ18O records at the site.  Foraminiferal stable isotope records are dominated 

by a shift from a restricted coastal environment with an extremely high supply of nutrient rich 

riverine waters, to a lower nutrient, higher salinity environment more typical of the open 

ocean.  This increased influx of open ocean waters caused a decrease in primary productivity 

and carbon remineralisation, and an increase in salinity at Sunbird-1 through the mid-late 

Miocene.  The primary driver of these shifts was the increasing water depth and connectivity 

to the Indian Ocean of Sunbird-1 as the site subsided.  This variability and mixing of water 

masses at Sunbird-1 significantly influenced primary productivity and climate on the local 

scale at Sunbird-1, as seen in both the benthic and planktic foraminiferal δ13C records and the 

benthic foraminiferal δ18O record.   

 

The influence of the highly changeable oceanographic regime local to Sunbird-1 is most 

apparent in the benthic foraminiferal δ18O record.  The isolated seawater δ18O component of 

the signal cannot be explained solely in terms of ice volume change, as this would require 

repeated growth and melting of the entire East Antarctic Ice Sheet, with a further contribution 

from northern hemisphere ice sheets, on 105 year timescales, which is unrealistic.  The 

dominant influence of local oceanographic and tectonic induced changes on the benthic 

foraminiferal δ18O record demonstrates the complexity of Sunbird-1.    

 

The complex and unique evolution of the site makes interpretation of global changes in 

carbon cycling and climate challenging.  However, some inferences can be drawn.  The final 

recovery from the Monterey excursion can be easily distinguished, although constraining the 
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absolute magnitude of the carbon isotope excursion at the site is complicated by the 

concomitant decrease in productivity.  An independent constraint for productivity would 

enable this, indicating whether there was an amplified Monterey excursion carbon isotope 

signal at the coastal location.   

 

The Sunbird-1 planktic foraminiferal δ18OSW record increases by ~0.5‰ between 13.3 Ma and 

9.4 Ma, implying an increase in global ice volume equivalent to a 39-48m drop in sea level.  

The absence of high frequency global shifts in the benthic foraminiferal δ18O record (Zachos 

et al., 2001, Billups and Schrag, 2002, Zachos et al., 2008, Cramer et al., 2009), and stability of 

coupled ice sheet climate models at mid-late Miocene CO2 concentrations (Huybrechts, 1993, 

Pollard and DeConto, 2005, DeConto et al., 2008, Gasson et al., 2014) has been interpreted 

as evidence for a stable East Antarctic Ice Sheet following its expansion to approximately its 

modern day volume across the MMCT (Shevenell et al., 2004, Holbourn et al., 2005, John et 

al., 2011, Lear et al., 2015).  However, the Sunbird-1 planktic foraminiferal δ18OSW record 

displays high frequency (100 kyr– 400 kyr) variability between 12 Ma and 11 Ma, suggesting 

the EAIS was more dynamic through this interval than climate models simulate.  Oxygen 

isotope shifts of similar timing and magnitude (Westerhold et al., 2005, Holbourn et al., 2013), 

as well as backstripping estimates (John et al., 2011, Kominz et al., 2016), from the interval 

further support a dynamic EAIS as it continued to expand through the mid-late Miocene.  This 

proposed dynamic behaviour of the ice sheet overprints the long-term trend of continued 

EAIS expansion after the MMCT. 
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7 Synthesis 

7.1 Conclusions 

Despite its importance, a lack of well-preserved records from either oceanic or continental 

drilling have been recovered from the mid-late Miocene impeding our ability to reconstruct 

and understand the global climate system through the interval.  The Sunbird-1 core off the 

coast of Kenya in the South West Indian Ocean provides continuous sediment recovery from 

~13.75 - ~9.42 Ma (Chapter 2).  Sedimentation at Sunbird-1 is dominated by hemipelagic clays 

which have been shown to reduce the impact of diagenesis and geochemical alteration of 

foraminifera that typifies the commonly used carbonate oozes (Pearson et al., 2001, Sexton 

et al., 2006, Pearson and Burgess, 2008, Sexton and Wilson, 2009,).   

 

The shallow water depth, proximity to the continent, and tectonic subsidence of Sunbird-1 

complicates the local seawater chemistry and depositional conditions.  A high flux of detrital 

organic matter from the nearby continent resulted in reduced pore water oxygen 

concentrations between 13.7 Ma and 12.0 Ma.  This is interpreted from benthic foraminiferal 

redox sensitive trace metal records (U/Ca, Mn/Ca, and Fe/Ca) which indicate changing 

sedimentary redox conditions at the site (Chapter 3).  These conditions facilitated the 

significant diagenetic precipitation of authigenic uranium and Mn-Fe oxides onto 

foraminiferal tests.  These outer coatings contain elevated magnesium, overprinting the 

primary geochemical signal and hence hindering Mg/Ca temperature reconstruction.  

Attempts to correct for this using a novel technique analysing paired aragonite-calcite tests 

proved promising but unsuccessful, likely due to the prior application of a thorough chemical 

cleaning protocol.   
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To address this, a microanalytical approach using highly spatial resolved Laser Ablation ICP-

MS depth profiles to identify the primary foraminiferal test was developed (Chapter 4).  In 

order to successfully apply this technique the ablation parameters to collect accurate, precise, 

and reproducible depth profiles using the new LA-ICP-MS setup in the Cardiff University 

CELTIC laboratory were optimised.  Using medium to low fluences and repetition rates this 

study successfully enables the collection, and analysis, of intra-test trace metal variability in 

foraminifera.  As well as optimising the ablation parameters the inferred diagenetic coating 

overprinting the primary Mg/Ca signal can be identified.  Therefore, the primary calcite 

required for Mg/Ca paleothermometry can be identified and used to study past ocean 

temperatures from challenging time intervals and localities where contaminant coatings have 

previously inhibited paleoenvironmental studies.   

 

Application of the optimised ablation parameters determined in Chapter 4, combined with a 

rigorous screening protocol, provides a new absolute tropical sea surface temperature record 

through the mid-late Miocene (Chapter 5).  SST estimates of 27-29⁰C suggest a stable tropical 

climate through the interval.  In addition to improving estimates of absolute tropical SST 

through the poorly understood mid-late Miocene, this analytical technique derives robust 

paleotemperatures from diagenetically altered foraminifera.  When combined with the 

interhemispheric cooling at mid-high latitudes (Herbert et al., 2016) this new record of well 

constrained absolute SST suggests an increased latitudinal temperature gradient, which is a 

key component of the modern day climate state.  The increase in the equator to pole 

temperature gradient is decoupled from any changes in atmospheric CO2.  This is unlike the 
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majority of the Cenozoic through which ocean temperature and atmospheric CO2 are closely 

linked (Zachos et al., 2008, Zhang et al., 2013).  The lack of any significant trend in atmospheric 

CO2 suggests there was likely a key mechanistic control of oceanographic reorganisation on 

the global climate system through this interval.   

 

Sunbird-1 had a complicated and unique evolution through the mid-late Miocene, influenced 

by tectonic subsidence, and changes in local productivity and oceanography.  This makes 

interpreting global changes in carbon cycling and climate evolution challenging (Chapter 6).  

Between 13.7 Ma and 12.0 Ma geochemical records from the site are dominated by a shift 

from a restricted, high productivity, coastal environment to a lower productivity environment 

with reduced carbon remineralisation more typical of the open ocean.  The primary driver of 

this shift was the increasing water depth and connectivity to the Indian Ocean of Sunbird-1 as 

the site subsided.   

 

However, the planktic foraminiferal δ18OSW record is not influenced by the influence of 

tectonic subsidence of the site.  Using the improved absolute SST estimates from Mg/Ca 

paleothermometry (Chapter 5) to account for the temperature influence on the δ18O signal 

implies a 39-48m sea level equivalent increase in global ice volume between 13.3 Ma and 9.4 

Ma.  Furthermore, the high frequency variability between 12 Ma and 11 Ma suggests a 

dynamic EAIS on top of the long-term trend of continued expansion through the mid-late 

Miocene.  
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7.2 Limitations of the LA-ICP-MS analysis in this thesis 

Mg/Ca in U. peregrina has been proposed as a robust palaeotemperature proxy (Elderfield et 

al., 2010), and may be more abundant in the deeper part of the core, where productivity was 

high. To improve the temporal resolution of the bottom water temperature record LA-ICP-MS 

analysis of U. peregrina should be conducted.  The extent to which the screening of the LA-

ICP-MS data has produced an artificial selection bias in the bottom water temperature record 

could also be revisited. This could, for example, involve EPMA or SEM-EDX analyses of 

foraminifera from different diagenetic regimes to better determine suitable Mn/Ca 

thresholds above which foraminiferal Mg/Ca be impacted. 

 

Future studies which aim to determine the number of depth profiles required to acquire a 

Mg/Ca value that is representative for the sample should first determine the number of 

profiles required for a representative Mg/Ca from a single specimen, before then determining 

the number of specimens required for a representative Mg/Ca value for the sample.  

Distinguishing between these two sources of variability will also assist in deconvolving the 

causes of the heterogeneity, intra- and inter-specimen.  This process should be performed for 

every species analysed, and repeated for regions with different oceanographic regimes. 

Although doing this at Sunbird-1 would have been helpful for a better quantitive attribution 

of the sources of variability, the adopted method successfully achieved its primary purpose 

of determining how many depth profiles were required from a sample to acquire a 

representative Mg/Ca value for interpreting downcore trends.   
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C. wuellerstorfi trace metal ratios from the end of the Sunbird-1 record, after 11.0 Ma, do not 

demonstrate the changing redox conditions of the majority of the record.  That LA-ICP-MS C. 

wuellerstorfi Mg/Ca results from this same interval are extremely similar, and show no 

systematic offset indicating the accuracy is good.  In order to better test the accuracy of the 

LA-ICP-MS analyses a direct comparison with solution ICP-MS analyses on the same tests 

could be performed.  A starting point for this analysis would be to analyse the O. universa test 

used for the optimisation of ablation settings to see whether it produces similar trace 

metal/calcium values to the average of the full laser profile.  Future studies must ensure that 

when conducting accuracy tests in this manner they do not apply extra chemical cleaning prior 

to solution ICP-MS analysis.   

 

7.3 Future research directions 

Using paired aragonitic-calcitic trace metal/calcium demonstrated potential as a simple, 

quick, and inexpensive approach to correct for the contaminant coatings.  Its limitation in this 

study was likely the prior application of the reductive and oxidative chemical cleaning 

procedures.  By omitting these steps future studies could more accurately use aragonitic tests 

to determine the Mg/Mn, Mg/Fe, and Mg/U ratios of the contaminant phase, and apply this 

to correct for secondary Mg incorporation into calcitic tests.   

 

Records of redox sensitive trace metal concentrations from solution based ICP-MS analyses 

indicate significant changes in sedimentary redox conditions at Sunbird-1.  Corresponding 

analyses on planktic foraminifera would be able to show whether this influence was 

ubiquitous, or restricted to benthic foraminiferal species within the upper sediment column.  
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Unfortunately, there was very low planktic foraminiferal abundance through the record, and 

the reconstruction of a Mg/Ca SST record by LA-ICP-MS was prioritised.   

 

The downcore LA-ICP-MS records produced in Chapter 5 reveal there to be significant intra-

specimen variability in Mg/Ca ratios.  The primary focus of this research was to use a newly 

developed LA-ICP-MS set-up collect representative Mg/Ca values from sample depths, which 

could be used to reconstruct downcore palaeotemperature records.  To enable this the 

number of foraminiferal depth profiles required for a mean Mg/Ca ratio for a sample to be 

representative was determined (Chapter 4.3.4).  A large number of depth profiles, from 

multiple specimens, were required due to homogenise the intra- and inter-specimen 

variability.  A further avenue of interesting, and important, research that this introduces is 

whether the variability within a specimen is intra- or inter-chamber.  This was not investigated 

in this thesis, but an experimental set-up designed specifically to address this important 

question is proposed below. 

 

An experiment testing what proportion of the intra-specimen variability can be explained by 

differences between chambers should be conducted on both D. altispira and C. wuellerstorfi.  

Furthermore, all specimens should be from the same sample depth.  Therefore, the Sunbird-

1 sample depth with the highest abundance of C. wuellerstorfi and D. altispira should be used 

for this experiment.  Foraminiferal abundance work, as discussed below, will allow this to be 

determined.  The maximum number of ablation pits from the penultimate (f-1) and previous 

(f-2) chambers would be analysed (Figure 7.1).  For each chamber the shapiro-wilk test for 

normality should be applied to determine whether the Mg/Ca ratios are normally distributed.  
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This will decide whether the ANOVA (normally distributed) or Kruskal-Wallis (not normally 

distributed) test for whether the Mg/Ca ratios from each chamber originate from the same 

distribution.  If the null hypothesis that the Mg/Ca ratios from each chamber originate from 

the same distribution is rejected, then there are significant heterogeneities between adjacent 

chambers.  Therefore, intra-specimen variability would primarily result from variability 

between, as opposed to within, chambers.  If required, this experiment can be expanded to 

incorporate further chambers, including the final one, allowing a full assessment of Mg/Ca 

ratio consistency within and between chambers throughout foraminiferal ontogeny.   

The benthic foraminiferal δ18O record demonstrates large point-to-point variability, proposed 

to be due to changes in salinity and freshwater input.  There does not currently exist a proxy 

Figure 7.1:  SEM image of Cibicidoides wuellerstorfi from the 1551-1554 m depth sample of Sunbird-1.  

Proposed ablation spots in the penultimate (f-1, yellow) and previous (f-2, green) chambers are 

annotated onto the image.  Note that the final chamber of this specimen has been broken. 

BROKEN FINAL 
CHAMBER 
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which independently and quantitively reconstructs salinity.  However, it would be possible 

through further research to investigate a possible influence of salinity changes through time 

at Sunbird-1.  This could be achieved, albeit not quantitively, by compiling foraminiferal 

abundance curves.  In particular, an increase in the benthic-to-planktic foraminiferal ratio 

could suggest increased freshwater input, planktonic foraminifera are generally less abundant 

in lower salinity waters.  Furthermore, the presence, or increased abundance, of freshwater 

foraminiferal species as well as ostracods would also support increased riverine input of lower 

salinity water during these intervals.  The Na/Ca ratios of foraminifera have recently been 

proposed as a possible quantitive salinity proxy (Bertlich et al., 2018, Geerken et al., 2018).  

However, this potential salinity proxy is still in the development stage and requires substantial 

further culture and core-top studies before being quantitively applied to downcore records 

such as Sunbird-1.   

 

Although the three metre sampling interval prevented this at Sunbird-1, the high 

sedimentation rates, averaging 6.5 cm/kyr, would offer the opportunity to study climate at 

higher (orbital to sub-orbital) resolution.  Therefore, the work in this thesis on Sunbird-1 could 

be used as a pilot study for future drilling proposals, offering an insight into the possibilities 

shallow water, clay-rich sites provide.   

 

This thesis demonstrates the potential to accurately reconstruct sea surface temperature and 

continental ice volume from diagenetically altered foraminifera.  The analytical approach 

developed and implemented here should be applied to more sites and time intervals where 

foraminiferal preservation has previously restricted our understanding of the climate system.  
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The mid-late Miocene is a prime example of this.  Did the East Antarctic Ice Sheet behave 

dynamically through this unipolar icehouse world despite minimal atmospheric CO2 forcing, 

as suggested by this study?  Are the proposed Mi5 and Mi6 ice growth events observed in a 

global distribution of records?  To answer these questions the same analytical approach 

developed in this study to a global distribution of high resolution sites, dominated by 

hemipelagic clays, including, if possible, more typical open ocean sites should be applied.   
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9 Appendices 

 

Appendix 1:  Weighed coarse fraction (% >63µm) in the Sunbird-1 core.  Shaded samples 

are discounted.  See text for details. 

 

Depth 

(MBSL) 

Age 

(Ma) 

Coarse Fraction 

(% >63µm) 

1356 9.44 58.11 

1359 9.48 60.93 

1362 9.52 15.18 

1365 9.57 19.84 

1368 9.61 13.30 

1371 9.65 11.52 

1374 9.69 8.98 

1377 9.73 9.58 

1380 9.78 7.86 

1383 9.82 16.27 
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1386 9.86 8.67 

1389 9.90 12.07 

1392 9.94 10.44 

1395 9.99 14.98 

1398 10.03 10.26 

1401 10.07 8.32 

1404 10.11 13.71 

1407 10.15 14.43 

1410 10.20 10.19 

1413 10.24 12.43 

1416 10.28 7.11 

1419 10.32 8.39 

1422 10.36 10.10 

1425 10.41 10.30 

1428 10.45 9.82 

1431 10.49 12.81 
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1434 10.54 11.43 

1437 10.59 7.80 

1440 10.64 8.81 

1443 10.69 8.42 

1446 10.74 4.64 

1449 10.79 7.34 

1452 10.82 8.92 

1455 10.86 7.28 

1458 10.89 9.19 

1461 10.93 11.97 

1464 10.96 9.12 

1467 10.99 12.98 

1470 11.03 16.14 

1473 11.06 11.31 

1476 11.09 15.95 

1476 11.13 12.25 
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1479 11.16 10.15 

1482 11.20 12.37 

1488 11.23 8.79 

1491 11.26 8.88 

1494 11.30 14.84 

1497 11.33 17.32 

1500 11.36 14.24 

1503 11.40 16.40 

1506 11.43 10.65 

1509 11.47 10.19 

1512 11.50 10.00 

1515 11.53 10.27 

1518 11.57 11.61 

1521 11.60 11.00 

1524 11.60 10.50 

1527 11.61 10.15 
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1530 11.61 10.61 

1533 11.62 8.60 

1536 11.62 8.58 

1539 11.63 5.72 

1542 11.63 8.03 

1545 11.66 7.33 

1548 11.69 4.24 

1551 11.71 7.60 

1554 11.74 8.50 

1557 11.77 8.36 

1560 11.80 8.03 

1563 11.82 11.70 

1566 11.85 12.69 

1569 11.88 10.36 

1572 12.02 12.34 

1575 12.16 12.10 
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1578 12.29 N/A 

1581 12.43 13.29 

1584 12.57 16.43 

1587 12.66 15.15 

1590 12.76 10.98 

1593 12.85 14.08 

1596 12.94 12.58 

1599 13.04 10.98 

1602 13.13 11.40 

1605 13.20 13.50 

1608 13.27 10.56 

1611 13.34 12.95 

1614 13.41 16.62 

1617 13.48 17.23 

1620 13.55 19.14 

1623 13.62 21.09 
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1626 13.69 20.36 
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Appendix 2: Cardiff University foraminifera cleaning procedure for trace metal analysis. 

 

I.  Before You Start 

 

• Set your tubes of crushed forams in a clean, perspex rack.  Ensure samples are clearly 

labelled with permanent ink and record a list or diagram of samples before starting.  

Randomize your samples prior to cleaning. 

• Locate your reagents (remake or refill as necessary).  All reagents should be prepared 

and stored in new, acid-leached PE bottles.  You will need: 

 

10% HCl or HNO3 for rinsing pipette tips (250 mL; top up bottle from labelled dewars in the 

flow bench each day you clean) 

DI H2O for rinsing pipette tips (250 mL; rinse and refill bottle with fresh water each day you 

clean) 

DI H2O for foram cleaning (500 mL wash bottle; rinse and refill with fresh water each day you 

clean) 

Trace grade methanol for foram cleaning (store in a 250 mL bottle; pour off a small amount 

into a 125 mL spray bottle just before use) 

Empty 60 mL bottle for reducing reagent 

Empty 60 mL bottle for rinsing reducing reagent 

Empty 60 mL bottle for oxidizing reagent  
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DI H2O for sample transfers (250 mL; rinse and refill bottle with fresh water each day you 

clean) 

0.002 M HNO3 for foram leaching (0.001 M for small samples) (250 mL; make fresh if old or 

contaminated)  

 

• Turn on flow bench and allow to run for at least 15 minutes before using. 

• Wipe down all work surfaces with DI water before starting (counter surfaces, interior 

of flow benches and fume cupboard, equipment surfaces). 

• If floor has not been mopped recently, mop floor using DI water from the reservoir in 

Room 2.12. 

 

 

II.  Removal of Fine Clays 

 

1. Drain the ultrasonic bath in the flow bench and refill with fresh DI H2O.  Fill to the base 

of your perspex rack.  Use the prop provided and never fill below the minimum fill line. 

2. Tap your sample rack firmly on the bench to shake forams to the base of tubes. 

3. Open tube tops slowly in case forams are stuck to the sides or lids. 

4. Using your DI H2O for foram cleaning, gently fill each tube most of the way. 

5. If forams are visible in the tube lids, add a small amount of water to the lids as well.  

Close tubes. 
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6. Tap rack firmly on the bench to settle forams and get rid of any air bubbles.  CHL: If 

forams will not settle or bubbles won’t rise, tap the side or corners of the rack firmly on the 

edge of the flow bench.  

7. Turn on siphon (switch is on the rear of the pump, on the right-hand side).  Always 

make sure the siphon tip is in the flow bench when the pump is on. 

8. If siphon waste beaker is full, empty into the labelled waste container beneath the 

water purifier.  Check the waste level throughout the cleaning process and don’t let it rise 

above the “max fill” line. 

9. Rinse siphon tip in 10% HCl (3x) and then DI H2O (3x) tip rinses.  Don’t siphon up too 

much tip rinse at once, as this can cause siphon waste to splash and contaminate the pump 

tubing. 

10. Siphon off as much water as possible from the tubes.  This works best if you avoid 

putting the siphon tip directly in the sample.  Instead, rest the tip against the front of the tube, 

above water level, and siphon down gradually.    

11. Open all tubes and fill ~1/3 full with water (not quite up to the rack base).  Close tubes.  

CHL: The forams will agitate best in minimal H2O. 

12. Tap rack as necessary to remove air bubbles.  

13. Ultrasonicate for 1 minute (set the bath to “hold”).  Fine clays should now be dislodged 

and held in suspension. 

14. Turn off bath and remove rack.  Open all tubes and vigorously squirt DI H2O for foram 

cleaning into each tube so as to agitate the sample and mix clays throughout.  Close tubes. 
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15. Tap rack firmly on the bench, invert and shake, then wait for forams to settle.  Don’t 

wait too long, or suspended clays will also settle.  If necessary, tap the rack again to encourage 

forams to settle.    

16. Clean siphon tip (3x 10% HCl and 3x DI H2O) while waiting for forams to settle. 

17. Siphon off as much water as possible.  Don’t siphon off your forams.   

18. Repeat steps 11-17 a total of 3x with DI H2O.  To avoid systematic variations in the 

effectiveness of clay removal: Begin siphoning at a different row and (or) side of the rack 

during each rinse step.  Change the orientation of the rack in the sonic bath during each 

sonication. 

19. Fill 125 mL spray bottle ~1/5 full with trace grade methanol.  Loosen cap of spray 

bottle when not in use to keep methanol from dripping from the tip. 

20. Repeat steps 11-17 1-2x with trace grade methanol, depending on the degree of clay 

contamination in your samples.  Special instructions for methanol: 

 

• Always wear goggles when working with methanol 

• Fill tubes to the top of the rack with methanol (rather than just 1/3 full) 

• Do not add additional methanol after ultrasonicating; simply siphon off existing 

methanol 

• Methanol is less viscous than water, so take special care when siphoning; don’t go to 

quite to the bottom of the tube 

• When siphoning methanol, it may work better to press siphon tip against the rear of 

the tube (rather than the front) 
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• Dispose of any leftover methanol in the labelled waste container 

 

21. Repeat steps 11-17 an additional 2x with DI H2O. 

22. Pipette off all remaining water using a clean (3x 10% HCl and 3x DI H2O), 100 μL 

(yellow) pipette tip.  It is not necessary to rinse the tip between samples. 

 

 

III.  Removal of Metal Oxides (Reducing Step) 

 

1. Turn on power source for hotplate in the fume cupboard and set to 300 °C. 

2. Rinse and fill the glass evaporating dish in the fume cupboard with DI H2O from the 

ELGA tap.  Fill to the base of your perspex rack.  Set on hotplate.  

3. Rinse and fill tall form beaker containing thermometer with DI H2O from the ELGA tap.  

Set on hot plate.  Use this to top up the evaporating dish as water evaporates. 

4. Drain the ultrasonic bath in the fume cupboard and refill with fresh DI H2O.  Fill to the 

base of your perspex rack.  Use the prop provided and never fill below the minimum fill line. 

5. Prepare your reducing reagent in the labelled, empty 60 mL bottle.  Please note that 

hydrous hydrazine is volatile, carcinogenic, and explosive.  Always work in the fume cupboard 

and take care to minimize exposure.  Dispose of all related waste (pipette tips, parafilm, 

gloves) in a plastic bag and seal bag before removing from fume cupboard. 
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• Pour 10 mLs ammonia solution and 10 mLs citric acid/ammonia solution (both stored 

in the fridge) into the empty bottle; pour these reagents directly from the bottles (no pipettes) 

and take care not to touch the lids of reagent bottles to any other surfaces.   

• Prepare a waste bag, a fresh strip of parafilm, and a clean (3x 10% HCl and 3x DI H2O) 

1000 μL (blue) pipette tip 

• Remove hydrous hydrazine from fridge 

• Pipette 1200 μL hydrous hydrazine into the reducing reagent 

• Dispose of pipette tip 

• Cap reducing reagent and invert to mix 

• Re-parafilm hydrous hydrazine and return to fridge 

 

6. Before proceeding, ensure hot water bath is hot (on verge of boiling, 80-90 °C).  This 

can take about 30 minutes. 

7. Open tubes.  Using a clean (3x 10% HCl and 3x DI H2O) 100 μL pipette tip, add 100 μL 

reducing reagent to each tube.  Be aware that the reagent has a low viscosity and tends to 

drip.  Close tubes firmly. 

8. Because ammonia has a high vapor pressure, tube caps will tend to blow open in the 

hot water both.  To prevent this, clamp tubes shut by screwing a perspex plate to the top of 

your rack.  Ensure your tubes are firmly closed and that they are in good contact with the 

plate surface. 
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9. Place racks in the hot water bath for a total of 30 minutes.  Calcium carbonate is 

slightly soluble in ammonia, so avoid letting your foram fragments sit in the reducing agent 

for longer than the necessary 30 minutes.  Every 2 minutes: 

 

• Remove rack 

• Tighten screws on perspex clamp 

• Invert, shake, and tap rack to settle forams and remove bubbles 

• Ultrasonicate rack for a few seconds (this will agitate the reagent into all parts of the 

sample and discourage dissolved oxides from re-precipitating) 

• Tap rack firmly and return to hot water bath  

• Top off the water bath as necessary using hot water from the beaker 

 

10. After 30 minutes, remove rack and clamp and carefully open and close all tubes to 

release gas.  Keep one finger on the top of the tube and use your thumb to open the tube in 

a peeling motion. 

11. Pipette off as much reducing reagent as possible using a clean (3x 10% HCl and 3x DI 

H2O) 100 μL pipette tip.  Do not use siphon.  Eject waste into the reducing reagent bottle.  

Eject tip into waste bag.   

12. Fill tube caps and tubes (to top of rack or higher) with DI H2O for foram cleaning.  Close 

tubes.  Tap rack firmly to settle forams.   
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13. Turn on the siphon in the fume cupboard using the labelled control knob on the left-

hand panel.  Rinse the siphon tip (3x 10% HCl and 3x DI H2O).  Siphon caps and then siphon 

off as much water as possible from tubes. 

14. Repeat steps 12 and 13 two more times. 

15. Fill tubes half full with DI H2O for foram cleaning, close tubes, then set in the hot water 

bath for 5 minutes. 

16. In the meantime, prepare a fresh strip of parafilm.  

17. Remove hydrazine waste container (brown bottle) from fridge and place in fume 

cupboard. 

18. Dump leftover reducing reagent into waste container. 

19. Fill the empty 60 mL bottle for rinsing reducing reagent with DI H2O from the ELGA 

tap. 

20. Rinse the reducing reagent bottle 2-3x with DI H2O, dumping rinse water into the 

waste container. 

21. Re-parafilm waste container and return to fridge. 

22. If 5 minutes have passed, remove rack from hot water bath, clean siphon tip (3x 10% 

HCl and 3x DI H2O), siphon caps, and then siphon off as much water as possible from tubes.  

23. Repeat steps 12 and 13 two more times. 

24. Repeat step 15. 

25. Repeat step 22.  It is now safe to remove the rack from the fume hood. 
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26. Turn hotplate off or down as appropriate (you will need it again in Section V).  Please 

remember to turn off the power source as well. 

 

 

IV.  Sample Transfer 

 

1. In the flow bench, label a new set of acid-leached tubes for your samples. 

2. Using a disposable scalpel, cut off ~1/4 of a 100 μL pipette tip.   

3. Set the pipettor to 70 μL and thoroughly clean the pipette tip (6x 10% HCl and 6x DI 

H2O). 

4. If you have not already, rinse and refill your DI H2O for sample transfers.   

5. Open an old tube.  Hold pipette tip directly over foram fragments and pipette and 

expel fragments (± H2O) into the new tube of the same sample number. 

6. Add a small amount of DI H2O for sample transfers to the old tube.  Repeat transfer 

until no foram fragments are visible in the old tube and then again once more (usually 2-3x). 

7. Between samples, rinse the pipette tip 2-3x in your DI H2O for sample transfers. 

8. Once all samples have been transferred into new tubes, turn on the siphon, clean the 

siphon tip (3x 10% HCl and 3x DI H2O), and siphon off as much water as possible.  
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V.  Removal of Organic Matter (Oxidizing Step) 

 

1. In the fume cupboard, ensure hot water bath is hot (on verge of boiling, 80-90 °C) and 

filled to the base of your perspex rack. 

2. Prepare your oxidizing reagent in the labelled, empty 60 mL bottle. 

 

• Pour 15 mL 0.1 N NaOH (stored in the fridge) into the empty bottle; pour this reagent 

directly from the bottle (no pipettes) and take care not to touch the lid of the reagent bottle 

to any other surface 

• Using a clean (3x 10% HCl and 3x DI H2O) 100 μL pipette tip, add 50 μL H2O2; SB: 

please pour a small quantity of H2O2 into the H2O2 bottle cap, pipette from the cap, and 

dispose of cap contents before re-capping the bottle   

• Cap reagent bottle and invert to mix 

 

3. Open tubes and add 250 μL oxidizing reagent to each sample.  Close tubes. 

4. Set rack in hot water bath for 5 minutes.  

5. Remove rack and invert, shake, and tap the rack to settle forams and remove bubbles.  

Ultrasonicate rack for a few seconds, then tap rack firmly and return to hot water bath. 

6. Repeat steps 4 and 5. 

7. Open tubes and top them off with DI H2O for foram cleaning. 
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8. Turn on siphon, clean siphon tip (3x 10% HCl and 3x DI H2O), and siphon off oxidizing 

reagent. 

9. Repeat steps 7 and 8 two more times.  

 

 

VI.  Dilute Acid Leach 

 

1. In the flow bench, clean a 1000 μL pipette tip (3x 10% HCl and 3x DI H2O).  

2. Add 250 μL 0.002 N HNO3 to each tube.  Because HNO3 will dissolve carbonate, you 

may wish to use 0.001 N HNO3 for small samples.  You may also wish to skip ultrasonication 

and do fewer (or no) repetitions of the leach. 

3. Tap the rack firmly and check for air bubbles.  If necessary, tap some more. 

4. Ultrasonicate the rack for 30 seconds. 

5. Remove rack from bath.  Invert, shake, and tap rack firmly to settle forams.  

6. Open tubes.  While waiting for forams to settle, turn on siphon and clean siphon tip 

(3x 10% HCl and 3x DI H2O). 

7. Once forams have settled, siphon off as much acid as possible. 

8. Repeat steps 2-7 4x as quickly as possible to avoid dissolving your samples.  To avoid 

systematic variations in the effectiveness of the acid leach: Begin siphoning at a different row 

and (or) side of the rack during each rinse step.  Change the orientation of the rack in the 

sonic bath during each sonication. 
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9. Fill tubes and caps with DI H2O for foram cleaning.  Close tubes. 

10. Tap rack firmly, check for bubbles, and ultrasonicate for a few seconds. 

11. Remove rack from bath.  Invert, shake, and tap rack firmly to settle forams. 

12. Turn on siphon and clean siphon tip (3x 10% HCl and 3x DI H2O).  Once forams have 

settled, siphon caps and then siphon off as much water as possible from tubes.  

13. Repeat steps 10-13. 

14. Pipette off all remaining water using a clean (3x 10% HCl and 3x DI H2O), 100 μL 

pipette tip.  It is important to remove as much water as possible.  Use a new, freshly-cleaned 

tip for each sample.   

 

Your samples may be stored indefinitely at this point. 
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Appendix 3:  Number of foraminifera from the 250-355 µm size fraction analysed for stable 

isotope (Cibicidoides mundulus and Globigerinoides obliquus) and trace metal/calcium 

(Cibicidoides wuellerstorfi, Uvigerina peregrina, and Hoeglundina elegans) ratios in the 

Sunbird-1 core.  Shaded samples are discounted.  See text for details. 

 

Depth 
(MBSL) 

Age 
(Ma) 

Cibicidoides 
mundulus 

Globigerinoid
es obliquus 

Cibicidoides 
wuellerstorfi 

Uvigerina 
peregrina 

Hoeglundina 
elegans 

1356 9.44 5 12 9 0 7 

1359 9.48 6 15 
   

1362 9.52 10 16 
   

1365 9.57 10 0 5 0 11 

1368 9.61 12 15 
   

1371 9.65 6 0 5 3 15 

1374 9.69 4 15 13 0 15 

1377 9.73 10 15 
   

1380 9.78 8 15 
   

1383 9.82 5 15 6 0 9 

1386 9.86 12 15 
   

1389 9.90 8 15 
   

1392 9.94 6 4 6 2 9 

1395 9.99 8 15 
   

1398 10.03 10 15 
   

1401 10.07 6 16 9 13 7 

1404 10.11 12 15 
   

1407 10.15 12 16 
   

1410 10.20 6 0 4 14 15 

1413 10.24 12 15 
   

1416 10.28 12 15 
   

1419 10.32 5 15 7 14 15 

1422 10.36 6 15 
   

1425 10.41 6 15 
   

1428 10.45 6 15 6 15 15 

1431 10.49 6 15 
   

1434 10.54 6 15 
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1437 10.59 5 0 8 14 15 

1440 10.64 11 16 
   

1443 10.69 12 15 
   

1446 10.74 6 10 7 2 14 

1449 10.79 6 16 
   

1452 10.82 6 15 
   

1455 10.86 5 0 9 15 15 

1458 10.89 6 14 
   

1461 10.93 8 15 
   

1464 10.96 6 0 15 12 15 

1467 10.99 6 13 
   

1470 11.03 10 15 
   

1473 11.06 4 0 14 13 7 

1476 11.09 10 15 
   

1479 11.13 11 15 
   

1482 11.16 11 15 15 15 15 

1485 11.20 9 15 
   

1488 11.23 6 15 
   

1491 11.26 0 0 15 15 14 

1494 11.30 12 15 
   

1497 11.33 12 15 
   

1500 11.36 6 15 
   

1503 11.40 12 15 
   

1506 11.43 12 13 
   

1509 11.47 5 10 11 15 15 

1512 11.50 6 12 
   

1515 11.53 12 15 
   

1518 11.57 6 15 11 15 15 

1521 11.60 12 15 
   

1524 11.60 6 15 
   

1527 11.61 5 10 8 15 15 

1530 11.61 12 14 
   

1533 11.62 6 11 
   

1536 11.62 6 10 14 14 15 

1539 11.63 12 15 
   

1542 11.63 6 3 
   

1545 11.66 6 12 
   

1548 11.69 6 0 15 13 12 
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1551 11.71 12 14 
   

1554 11.74 6 12 
   

1557 11.77 12 8 
   

1560 11.80 12 13 
   

1563 11.82 5 0 15 15 7 

1566 11.85 4 4 
   

1569 11.88 12 12 
   

1572 12.02 6 15 15 15 15 

1575 12.16 12 10 
   

1578 12.29 12 13 
   

1581 12.43 5 7 10 12 3 

1584 12.57 12 12 
   

1587 12.66 6 14 
   

1590 12.76 6 12 10 15 15 

1593 12.85 4 13 
   

1596 12.94 6 15 
   

1599 13.04 5 10 12 15 13 

1602 13.13 5 15 
   

1605 13.20 4 12 
   

1608 13.27 7 10 0 15 9 

1611 13.34 5 6 
   

1614 13.41 12 14 
   

1617 13.48 10 14 0 14 0 

1620 13.55 12 15 
   

1623 13.62 10 13 
   

1626 13.69 4 10 0 15 7 
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Appendix 4:  Trace Metal/Calcium ratios from solution based ICP-MS analyses of benthic foraminifera (Cibicidoides wuellerstorfi, Uvigerina 

peregrina, and Hoeglundina elegans) in the Sunbird-1 core.   

Cibicidoides wuellerstorfi  

Depth 
(MBSL) 

Age 
(Ma) 

Mg/Ca 
(mmol/mol) 

2SD 
Sr/Ca 

(mmol/mol) 
2SD 

U/Ca 
(nmol/mol) 

2SD 
Al/Ca 

(µmol/mol) 
2SD 

Mn/Ca 
(µmol/mol) 

2SD 
B/Ca 

(µmol/mol) 
2SD 

Fe/Ca 
(µmol/mol) 

2SD 

1356 9.44 2.82 0.04 1.43 0.02 12.70 0.52 45.71 0.96 99.55 2.29 224.87 5.22 1011.80 16.39 

1365 9.57 4.41 0.06 1.47 0.02 18.24 0.55 22.32 0.46 127.85 0.69 202.05 6.26 1033.03 15.50 

1374 9.69 3.59 0.07 1.47 0.05 10.72 0.27 8.90 0.17 109.86 1.67 207.37 4.56 625.13 24.88 

1383 9.82 3.37 0.04 1.49 0.02 19.86 1.02 33.63 2.64 98.65 3.41 213.12 10.74 753.61 28.64 

1401 10.07 3.76 0.10 1.49 0.05 10.18 0.79 127.89 5.29 84.99 2.26 234.83 5.73 590.38 4.01 

1428 10.45 7.42 0.09 1.88 0.03 160.56 2.25 202.65 0.81 417.97 6.35 143.58 1.15 5444.66 218.88 

1437 10.59 4.26 0.08 1.64 0.01 54.02 1.67 206.59 7.23 319.00 8.68 227.28 5.14 6257.69 325.40 

1446 10.74 3.67 0.11 1.51 0.03 34.00 1.46 87.84 2.20 113.92 3.46 222.82 8.16 1280.17 82.44 

1455 10.86 5.39 0.06 1.77 0.01 118.94 2.33 36.52 1.03 268.90 2.10 190.56 2.93 3474.63 95.90 

1464 10.96 6.14 0.01 1.85 0.03 274.79 4.18 53.96 0.17 220.08 2.60 165.00 7.46 3644.46 228.87 

1473 11.06 17.83 0.71 1.81 0.06 155.93 1.62 57.30 1.58 191.39 2.76 170.73 4.30 5122.20 160.84 

1482 11.16 9.00 0.07 2.10 0.02 236.83 0.85 290.68 6.69 336.07 2.89 130.85 2.07 6377.97 43.37 

1491 11.26 7.22 0.19 2.05 0.05 180.27 2.74 209.41 3.89 270.60 2.22 145.09 3.48 5073.93 9.13 

1509 11.47 11.22 0.08 2.32 0.01 271.05 8.13 345.74 2.63 888.59 4.98 146.35 1.08 9741.15 300.03 

1518 11.57 11.21 0.11 2.71 0.02 326.84 5.36 371.72 4.16 1008.04 3.63 127.47 2.63 11048.34 269.58 

1536 11.63 8.15 0.13 2.27 0.02 262.59 7.72 282.15 4.01 661.36 9.92 165.56 4.04 7527.38 16.56 

1548 11.69 4.70 0.04 1.92 0.04 117.91 2.71 38.12 0.63 210.04 2.77 184.81 11.38 3876.54 4.65 

1563 11.83 6.53 0.10 2.21 0.01 196.93 5.24 78.01 0.89 262.36 5.30 156.60 1.50 6879.71 81.18 
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1572 12.02 7.99 0.11 2.30 0.02 247.32 2.37 389.86 3.66 544.65 7.41 142.07 1.70 7645.52 128.44 

1581 12.43 12.90 0.19 2.44 0.05 525.44 4.52 244.50 4.06 290.16 2.67 158.15 2.53 9801.74 429.32 

1590 12.76 7.75 0.12 2.47 0.05 393.27 3.70 276.75 5.37 295.52 4.79 138.06 2.93 9480.37 83.43 

1599 13.04 9.02 0.02 2.78 0.06 586.24 17.47 210.57 1.90 296.58 3.86 140.70 2.28 12047.17 390.33 

Uvigerina peregrina 

Depth 
(MBSL) 

Age 
(Ma) 

Mg/Ca 
(mmol/mol) 

2SD 
Sr/Ca 

(mmol/mol) 
2SD 

U/Ca 
(nmol/mol) 

2SD 
Al/Ca 

(µmol/mol) 
2SD 

Mn/Ca 
(µmol/mol) 

2SD 
B/Ca 

(µmol/mol) 
2SD 

Fe/Ca 
(µmol/mol) 

2SD 

1371 9.65 2.47 0.02 1.22 0.02 2.70 0.36 24.72 0.44 19.07 0.78 36.18 2.73 321.10 11.75 

1401 10.07 2.03 0.03 1.18 0.03 14.63 0.49 3.36 0.18 18.31 0.42 30.67 1.20 271.73 12.28 

1410 10.20 2.20 0.02 1.20 0.02 6.84 0.11 3.39 0.07 15.55 0.23 30.22 1.17 255.12 4.03 

1419 10.32 2.21 0.02 1.21 0.01 13.94 0.10 9.24 0.09 24.10 0.23 31.92 0.59 438.71 6.76 

1428 10.45 4.47 0.09 1.48 0.02 110.81 0.84 131.28 2.70 241.20 1.01 28.29 0.98 3024.23 66.53 

1437 10.59 4.56 0.10 1.35 0.02 88.33 0.71 96.14 0.87 459.11 6.06 27.76 0.59 3060.35 36.72 

1455 10.86 3.65 0.02 1.33 0.02 37.22 0.39 75.81 1.05 121.41 1.75 31.48 1.17 1529.62 50.17 

1464 10.96 12.34 0.02 1.88 0.01 272.14 3.59 363.41 4.36 391.37 6.73 25.00 0.54 7956.63 74.79 

1473 11.06 13.94 0.05 1.80 0.01 198.54 1.63 144.21 1.53 263.10 1.42 24.95 0.35 5292.20 93.14 

1482 11.16 8.49 0.09 1.91 0.01 219.75 3.52 240.56 1.64 298.33 5.85 25.90 0.66 5078.06 145.23 

1491 11.26 6.98 0.06 1.88 0.03 191.39 4.06 232.12 1.67 241.64 2.22 27.23 1.00 4759.93 33.32 

1509 11.47 5.08 0.06 1.75 0.01 128.05 2.07 165.65 2.35 301.13 5.18 28.55 0.47 4261.44 17.90 

1518 11.57 4.35 0.04 1.53 0.03 70.82 2.61 131.79 0.90 277.47 7.21 31.60 1.52 2869.13 66.56 

1527 11.61 4.42 0.10 1.56 0.03 131.07 4.14 103.28 2.40 176.29 1.66 30.64 1.18 3156.41 2.53 

1536 11.63 5.25 0.07 1.73 0.04 222.20 16.27 170.21 1.23 447.25 7.16 29.97 1.76 4264.77 7.68 

1548 11.69 4.13 0.03 1.72 0.03 103.49 1.74 87.08 0.68 155.85 1.12 29.44 0.98 3957.23 5.54 

1563 11.83 10.67 0.07 2.27 0.03 337.01 2.43 151.22 2.33 269.29 0.48 25.78 0.56 8853.21 42.50 
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1572 12.02 7.49 0.03 2.19 0.02 276.44 2.71 272.71 0.93 367.41 5.51 24.36 0.89 8355.38 170.45 

1581 12.43 22.00 0.14 2.71 0.03 491.29 10.02 194.61 3.70 421.72 4.89 20.27 0.09 16839.99 299.75 

1590 12.76 14.53 0.03 3.02 0.02 723.44 18.66 139.01 0.67 515.12 3.61 18.21 0.17 14268.88 65.64 

1599 13.04 12.38 0.06 3.19 0.03 1267.29 46.89 122.25 1.32 662.08 6.09 16.45 0.62 16402.60 167.31 

1608 13.27 13.30 0.12 3.12 0.07 1016.40 27.24 98.38 0.47 651.25 9.64 16.48 0.28 16640.78 266.25 

1617 13.48 11.79 0.13 3.11 0.01 656.06 23.22 124.50 1.07 430.77 4.91 15.84 0.34 14759.56 298.14 

1626 13.69 15.52 0.42 2.73 0.09 909.27 26.73 93.87 1.86 524.84 3.04 17.93 0.27 15459.23 163.87 

                

Hoeglundina elegans 

Depth 
(MBSL) 

Age 
(Ma) 

Mg/Ca 
(mmol/mol) 

2SD 
Sr/Ca 

(mmol/mol) 
2SD 

U/Ca 
(nmol/mol) 

2SD 
Al/Ca 

(µmol/mol) 
2SD 

Mn/Ca 
(µmol/mol) 

2SD 
B/Ca 

(µmol/mol) 
2SD 

Fe/Ca 
(µmol/mol) 

2SD 

1365 9.57 0.77 0.04 2.89 0.11 69.10 3.32 7.48 0.48 1.17 0.02 77.21 2.46 48.44 0.70 

1371 9.65 1.55 0.01 2.87 0.03 129.72 1.32 41.61 0.20 44.23 0.50 64.60 1.78 1339.87 0.07 

1374 9.69 0.84 0.02 2.77 0.05 112.18 1.66 4.26 0.17 9.75 0.06 78.05 1.17 259.55 0.05 

1383 9.82 0.84 0.01 2.75 0.02 67.50 0.77 9.48 0.13 1.39 0.03 83.78 0.85 45.98 0.72 

1392 9.94 0.92 0.04 2.79 0.05 74.28 5.90 22.21 0.70 1.04 0.16 90.87 5.85 63.16 0.83 

1401 10.07 2.30 0.03 3.26 0.09 206.72 4.47 37.32 0.51 91.88 0.88 73.68 0.96 2289.60 0.18 

1410 10.20 1.40 0.02 2.98 0.01 118.94 2.02 28.39 0.37 36.23 0.11 70.15 1.59 616.06 0.18 

1419 10.32 2.26 0.01 2.94 0.08 135.22 2.38 26.83 0.58 113.74 0.55 65.19 0.73 1558.27 0.08 

1422 10.36 6.57 0.06 3.52 0.02 322.12 7.67 170.02 2.99 398.18 7.41 56.17 1.43 7439.78 0.05 

1428 10.45 2.65 0.02 2.98 0.02 119.91 1.82 42.40 0.71 114.96 1.15 65.54 1.02 1558.20 0.06 

1437 10.59 0.79 0.01 2.99 0.04 125.67 1.28 15.81 0.31 1.26 0.01 74.30 1.23 67.64 0.13 

1446 10.74 0.80 0.01 3.08 0.04 95.12 0.99 7.92 0.11 1.30 0.02 72.25 1.46 41.14 0.16 

1455 10.86 1.48 0.01 3.16 0.02 136.55 0.36 45.94 0.53 48.53 0.56 67.05 1.60 736.63 0.09 

1464 10.96 3.90 0.13 3.09 0.07 184.28 3.91 76.30 0.64 220.07 1.63 65.60 0.46 3175.91 0.19 
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1473 11.06 1.16 0.01 3.11 0.06 100.99 1.86 72.96 0.10 3.85 0.06 104.97 1.72 56.20 0.64 

1482 11.16 4.60 0.07 3.26 0.03 252.06 1.71 172.67 1.04 169.18 1.96 61.30 0.82 3493.91 0.09 

1491 11.26 7.10 0.07 3.18 0.04 231.53 1.57 365.39 2.85 328.04 2.03 50.24 0.20 5327.23 0.16 

1509 11.47 6.02 0.02 3.15 0.02 236.32 3.88 214.25 1.80 422.09 0.42 102.60 2.22 4613.90 0.39 

1518 11.57 6.61 0.04 3.27 0.06 221.33 3.19 194.30 3.03 815.67 7.99 56.38 0.15 6601.75 0.07 

1536 11.63 6.16 0.07 3.31 0.06 262.75 4.89 164.89 0.59 644.03 5.67 53.32 1.38 6341.26 0.07 

1548 11.69 8.83 0.15 3.70 0.08 389.20 4.98 31.23 1.31 483.00 6.76 46.06 0.97 12485.06 0.10 

1563 11.83 13.84 0.33 4.15 0.09 581.68 10.82 276.37 5.14 665.16 7.05 22.05 1.45 19885.49 0.12 

1572 12.02 8.37 0.11 3.44 0.03 343.39 2.68 231.54 2.87 442.57 9.91 45.57 0.62 10938.44 0.08 

1590 12.76 14.33 0.20 4.74 0.10 1038.51 31.78 166.15 3.52 534.34 10.15 16.07 0.93 22001.77 0.13 

1599 13.04 13.87 0.10 4.54 0.04 1191.81 20.26 120.86 1.35 784.89 13.81 24.66 0.39 21755.73 0.02 

1608 13.27 13.73 0.07 4.35 0.09 907.93 15.98 71.98 1.19 589.96 5.07 24.68 0.27 20590.55 0.14 

1626 13.69 14.91 0.33 4.56 0.11 1184.86 23.93 108.20 1.93 783.22 19.89 19.76 0.53 21425.63 0.10 

Appendix 5:  Cibicidoides wuellerstorfi and Dentogloboquadrina altispira LA-ICP-MS Mg/Ca ratios from the 1551-1554m sample in the Sunbird-

1 core.  Up to 10 profiles through 10 tests were analysed for each species.  Shaded samples are discounted.  See text for details. 

Cibicidoides wuellerstorfi 

Specimen 
Number 

Profile 
Number 

Profile Mg/Ca 
(mmol/mol) 

Profile Mn/Ca 
(µmol/mol) 

Profile Al/Ca 
(µmol/mol) 

Specimen 
Profiles 

Used 

Total 
Profiles 

Used 

Specimen Mean 
Mg/Ca 

(mmol/mol) 

Intraspecimen 
2 SE 

Sample Mean 
Mg/Ca 

(mmol/mol) 

Sample 2 
SE 

1 1 6.80 467.27 2654.60 
      

1 2 4.35 224.29 3680.80 
      

1 3 6.63 468.73 1365.38 
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1 4 10.50 505.93 8862.24 
      

1 5 8.70 560.47 4152.12 
      

1 6 21.78 1285.88 23443.02 
      

1 7 5.56 323.35 2800.42 
      

1 8 3.19 153.21 796.48 
      

1 9 2.58 80.51 242.79 
      

1 10 2.57 68.17 358.13 2 2 2.57 0.00 2.57 0.00 
           

2 1 6.61 437.54 11905.64 
      

2 2 6.74 498.79 11212.72 
      

2 3 4.97 135.38 6558.72 
      

2 4 6.80 566.65 12822.73 
      

2 5 6.77 578.77 12326.34 
      

2 6 4.93 326.17 7190.55 
      

2 7 2.11 36.35 354.46 
      

2 8 2.59 51.89 201.35 2 4 2.35 0.34 2.46 0.20 
           

3 1 3.38 157.50 301.76 
      

3 2 3.00 111.60 116.54 
      

3 3 3.18 173.53 384.49 
      

3 4 3.09 123.62 92.59 
      

3 5 3.11 101.25 70.42 
      

3 6 2.95 96.20 125.30 
      

3 7 3.12 123.60 124.84 
      

3 8 3.05 102.87 131.85 
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3 9 2.67 59.36 109.43 
      

3 10 2.81 60.47 34.29 8 12 2.97 0.11 2.80 0.17 
           

4 1 2.88 178.20 356.34 
      

4 2 3.00 198.13 371.91 
      

4 3 2.50 200.66 436.84 
      

4 4 2.16 158.49 186.75 
      

4 5 2.32 228.60 339.96 
      

4 6 2.24 221.92 488.08 
      

4 7 1.97 160.66 171.24 
      

4 8 2.00 172.37 281.71 
      

4 9 2.71 114.45 350.30 
      

4 10 3.08 119.63 3492.19 9 21 2.42 0.24 2.64 0.16 
           

5 1 2.72 60.05 34.91 
      

5 2 2.30 32.97 BELOW LOD 
      

5 3 2.06 28.56 BELOW LOD 
      

5 4 2.50 33.55 15.53 
      

5 5 2.01 23.65 14.62 
      

5 6 2.62 59.02 24.06 
      

5 7 2.31 31.47 24.37 
      

5 8 2.39 32.26 19.22 
      

5 9 1.72 26.45 16.05 
      

5 10 2.06 43.93 8.93 10 31 2.27 0.19 2.52 0.14 
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6 1 2.32 58.74 234.66 
      

6 2 2.27 81.55 209.41 
      

6 3 2.29 78.96 192.51 
      

6 4 3.12 123.75 2323.85 
      

6 5 2.77 89.92 2147.52 
      

6 6 2.33 39.52 911.12 
      

6 7 2.26 63.12 545.70 
      

6 8 2.24 59.09 105.73 
      

6 9 2.37 53.84 180.70 
      

6 10 2.74 67.75 1736.96 7 38 2.30 0.03 2.48 0.12 
           

7 1 2.68 49.00 20.32 
      

7 2 3.04 65.86 83.41 
      

7 3 2.23 63.72 18.44 
      

7 4 2.79 49.09 20.51 
      

7 5 3.14 76.08 55.90 
      

7 6 3.97 81.09 100.41 
      

7 7 3.79 69.12 102.21 
      

7 8 2.87 72.50 28.56 
      

7 9 2.59 71.16 43.95 7 45 2.76 0.21 2.52 0.11 
           

8 1 2.77 39.90 49.82 
      

8 2 2.45 23.45 26.54 
      

8 3 2.44 23.93 38.50 
      

8 4 2.75 34.77 39.22 
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8 5 2.55 28.78 50.98 
      

8 6 2.51 115.37 356.22 
      

8 7 2.71 53.24 46.47 
      

8 8 2.58 57.11 185.68 
      

8 9 2.23 35.09 34.09 9 54 2.55 0.05 2.53 0.09 
           

9 1 2.64 64.07 216.95 
      

9 2 3.55 55.36 1188.61 
      

9 3 2.78 40.59 50.58 
      

9 4 6.23 124.22 15437.28 
      

9 5 27.34 198.22 136122.02 
      

9 6 2.93 48.34 102.11 
      

9 7 3.89 180.91 1227.04 
      

9 8 2.98 63.41 482.34 
      

9 9 3.66 85.15 2043.17 
      

9 10 2.70 47.27 159.02 5 59 2.81 0.12 2.55 0.09 
           

10 1 1.62 21.53 7.20 
      

10 2 2.04 67.92 29.88 
      

10 3 2.82 107.52 2297.15 
      

10 4 1.92 76.33 79.46 
      

10 5 1.64 21.27 147.30 
      

10 6 2.13 74.64 903.57 
      

10 7 1.96 91.73 288.40 
      

10 8 2.22 89.34 216.43 
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10 9 2.02 52.02 70.88 8 67 1.94 0.14 2.48 0.09 
           

Dentogloboquadrina altispira 

Specimen 
Number 

Profile 
Number 

Profile Mg/Ca 
(mmol/mol) 

Profile Mn/Ca 
(µmol/mol) 

Profile Al/Ca 
(µmol/mol) 

Profiles 
Used 

Total 
Profiles 

Used 

Specimen Mean 
Mg/Ca 

(mmol/mol) 

Intraspecimen 
2 SE 

Sample Mean 
Mg/Ca 

(mmol/mol) 

Sample 2 
SE 

1 1 4.29 135.91 1051.58 
      

1 2 2.55 60.08 2954.85 
      

1 3 4.16 122.92 2145.85 
      

1 4 3.01 101.10 393.93 
      

1 5 3.99 147.10 684.97 
      

1 6 3.44 221.55 261.14 
      

1 7 3.88 123.65 86.25 
      

1 8 2.67 140.51 163.48 4 4 3.25 0.45 3.25 0.45 
           

2 1 4.00 48.54 104.05 
      

2 2 4.39 177.82 2260.88 
      

2 3 3.83 134.93 108.14 
      

2 4 3.85 72.18 176.33 
      

2 5 4.19 52.21 97.48 
      

2 6 4.04 120.71 247.50 
      

2 7 3.88 46.25 152.04 
      

2 8 4.62 84.81 9191.57 
      

2 9 3.67 107.17 107.34 
      

2 10 3.77 127.52 134.45 8 12 3.90 0.11 3.69 0.24 
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3 1 2.98 38.76 174.94 
      

3 2 3.63 115.68 25.31 
      

3 3 4.01 84.68 162.80 
      

3 4 2.93 47.72 31.35 
      

3 5 3.68 49.39 298.93 
      

3 6 4.00 123.31 113.15 
      

3 7 2.97 44.74 459.94 
      

3 8 3.71 54.99 252.16 
      

3 9 3.53 71.79 42.79 
      

3 10 4.05 172.26 127.54 8 20 3.43 0.27 3.58 0.19 
           

4 1 3.56 177.09 388.39 
      

4 2 2.68 70.66 1289.21 
      

4 3 2.67 72.76 446.64 
      

4 4 3.77 143.72 1994.85 
      

4 5 2.84 83.44 1341.72 
      

4 6 2.76 99.77 1250.12 
      

4 7 3.39 158.76 238.26 
      

4 8 2.86 93.46 84.11 
      

4 9 3.46 99.77 1534.95 
      

4 10 3.01 75.13 3649.24 8 28 2.96 0.20 3.41 0.18 
           

5 1 3.52 175.52 390.40 
      

5 2 2.67 70.52 1285.17 
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5 3 2.66 72.21 443.15 
      

5 4 3.76 143.41 2041.42 
      

5 5 2.81 82.64 1314.64 
      

5 6 2.75 99.60 1259.40 
      

5 7 4.75 86.39 134.06 
      

5 8 4.70 165.53 239.43 
      

5 9 5.07 155.35 184.85 
      

5 10 5.23 73.34 106.15 6 34 3.48 0.88 3.42 0.22 
           

6 1 3.63 75.79 115.40 
      

6 2 4.37 100.23 5354.09 
      

6 3 3.89 40.91 4606.43 
      

6 4 2.94 58.76 126.24 
      

6 5 3.36 32.27 2572.33 
      

6 6 4.31 78.44 3154.13 
      

6 7 3.41 83.15 2001.13 
      

6 8 3.75 160.46 254.45 
      

6 9 4.19 227.45 406.01 
      

6 10 3.46 116.30 192.33 7 41 3.57 0.30 3.44 0.19 
           

7 1 3.60 82.34 427.25 
      

7 2 9.92 144.47 32842.16 
      

7 3 5.13 104.01 16818.22 
      

7 4 4.25 80.17 8658.66 
      

7 5 3.11 83.02 250.86 
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7 6 2.98 88.43 127.45 
      

7 7 3.28 89.61 160.29 
      

7 8 2.85 86.86 190.67 
      

7 9 5.07 139.49 12143.06 5 46 3.17 0.23 3.41 0.17 
           

8 1 3.87 138.79 80.93 
      

8 2 3.71 80.81 73.71 
      

8 3 3.84 45.72 118.05 
      

8 4 3.48 130.95 58.55 
      

8 5 3.84 115.21 83.94 
      

8 6 4.30 133.56 316.96 
      

8 7 3.42 67.84 130.27 
      

8 8 3.37 55.20 171.26 
      

8 9 3.56 157.32 59.17 
      

8 10 3.97 127.07 57.76 9 55 3.67 0.14 3.46 0.15 
           

9 1 4.47 180.27 162.10 
      

9 2 4.51 145.99 114.83 
      

9 3 4.50 156.87 53.55 
      

9 4 4.36 80.51 256.09 
      

9 5 3.78 114.19 67.45 
      

9 6 5.38 483.62 615.02 
      

9 7 5.21 129.74 302.94 
      

9 8 4.15 99.60 680.68 
      

9 9 4.36 161.91 287.49 
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9 10 4.54 154.56 154.52 8 63 4.33 0.17 3.57 0.15 
           

10 1 4.21 73.09 30.09 
      

10 2 4.46 81.03 48.76 
      

10 3 3.88 56.01 489.43 
      

10 4 4.01 57.76 30.39 
      

10 5 3.96 53.64 461.28 
      

10 6 4.03 52.55 99.54 
      

10 7 3.64 54.27 78.15 
      

10 8 4.52 182.15 24.67 
      

10 9 4.24 125.98 209.41 
      

10 10 4.29 104.37 133.39 9 72 4.08 0.16 3.63 0.14 
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Appendix 6:  Summary of Cibicidoides wuellerstorfi and Dentogloboquadrina altispira mean 

Mg/Ca ratios in the Sunbird-1 core from LA-ICP-MS analyses.  Shaded samples are discounted.  

See text for details. 

Cibicidoides wuellerstorfi 

Depth 
(MBSL) 

Age (Ma) 
# Spots 

used 
# Specimens 

Used 

Sample Mean 
Mg/Ca 

(mmol/mol) 

Interspecimen 
2 SE 

Sample 
2 SE 

1359 9.48 N/A N/A N/A N/A N/A 

1362 9.52 N/A N/A N/A N/A N/A 

1371 9.65 N/A N/A N/A N/A N/A 

1386 9.86 21 4 2.99 0.39 0.22 

1398 10.03 N/A N/A N/A N/A N/A 

1416 10.28 5 1 2.43 N/A 0.25 

1422 10.36 N/A N/A N/A N/A N/A 

1425 10.41 N/A N/A N/A N/A N/A 

1431 10.49 19 4 3.60 0.69 0.30 

1434 10.54 N/A N/A N/A N/A N/A 

1440 10.64 N/A N/A N/A N/A N/A 

1449 10.79 9 2 2.59 0.65 0.28 

1452 10.82 15 3 2.69 0.20 0.12 

1458 10.89 16 4 2.99 0.36 0.20 

1467 10.99 20 5 2.88 0.40 0.24 

1476 11.09 26 5 2.96 0.30 0.13 

1479 11.13 31 6 2.88 0.40 0.19 

1488 11.23 17 3 2.51 0.16 0.12 

1500 11.36 28 6 2.79 0.26 0.19 

1506 11.43 25 5 2.76 0.35 0.17 

1512 11.50 27 5 3.13 0.42 0.29 

1515 11.53 20 4 2.19 0.25 0.15 

1521 11.60 26 5 2.79 0.20 0.14 

1524 11.61 28 5 2.93 0.56 0.25 

1530 11.62 28 6 2.83 0.37 0.19 

1533 11.62 29 5 2.89 0.63 0.24 

1542 11.64 24 4 2.80 0.13 0.13 

1545 11.67 30 6 2.69 0.33 0.17 
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1548 11.69 19 4 3.39 0.40 0.21 

1551 11.72 26 6 2.44 0.29 0.16 

1554 11.75 67 10 2.48 0.18 0.09 

1557 11.77 18 4 2.84 0.58 0.26 

1560 11.80 25 5 3.21 0.72 0.29 

1566 11.85 26 5 3.09 0.44 0.24 

1569 11.88 24 5 2.66 0.26 0.14 

1572 12.02 20 4 3.50 0.46 0.29 

1584 12.57 21 5 2.23 0.21 0.16 

1587 12.66 23 5 2.78 0.15 0.13 

1590 12.76 N/A N/A N/A N/A N/A 

1593 12.85 22 6 3.06 0.33 0.19 

1599 13.04 N/A N/A N/A N/A N/A 

1602 13.13 14 3 2.88 0.70 0.33 

1605 13.20 8 3 3.02 0.85 0.47 

1611 13.34 N/A N/A N/A N/A N/A 

1623 13.62 10 2 2.95 1.31 0.53 

       

Dentogloboquadrina altispira 

Depth 
(MBSL) 

Age (Ma) 
# Spots 

used 
# Specimens 

Used 

Sample Mean 
Mg/Ca 

(mmol/mol) 

Interspecimen 
2 SE 

Sample 
2 SE 

1359 9.48 19 5 3.63 0.71 0.36 

1362 9.52 14 4 4.34 0.47 0.39 

1371 9.65 18 4 4.20 0.43 0.28 

1386 9.86 25 5 4.17 0.79 0.35 

1398 10.03 16 5 4.18 0.89 0.54 

1416 10.28 8 3 4.65 0.91 0.77 

1422 10.36 34 6 3.67 0.72 0.33 

1425 10.41 30 6 4.13 0.41 0.25 

1431 10.49 28 6 4.01 0.49 0.32 

1434 10.54 34 6 3.08 0.32 0.16 

1440 10.64 20 5 4.75 0.93 0.47 

1449 10.79 19 4 4.54 0.90 0.49 

1452 10.82 22 5 4.42 0.55 0.40 

1458 10.89 3 1 3.03 N/A 0.16 

1467 10.99 2 2 4.93 0.14 0.10 

1476 11.09 6 2 4.43 0.90 0.71 
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1479 11.13 4 3 5.07 0.31 0.23 

1488 11.23 7 3 3.82 1.49 1.04 

1500 11.36 34 6 4.10 0.36 0.18 

1506 11.43 14 4 4.48 0.76 0.49 

1512 11.50 13 4 4.85 0.82 0.38 

1515 11.53 13 5 4.33 0.57 0.41 

1521 11.60 28 6 3.60 0.23 0.27 

1524 11.61 30 6 3.56 0.67 0.30 

1530 11.62 18 4 4.25 0.85 0.47 

1533 11.62 13 4 4.89 0.30 0.45 

1542 11.64 27 5 3.19 0.55 0.25 

1545 11.67 21 4 4.28 0.90 0.37 

1548 11.69 0 0 N/A N/A N/A 

1551 11.72 16 5 3.83 0.74 0.45 

1554 11.75 72 10 3.63 0.26 0.14 

1557 11.77 12 4 4.51 0.42 0.47 

1560 11.80 34 6 3.47 0.32 0.17 

1566 11.85 24 5 4.32 0.48 0.31 

1569 11.88 12 4 4.69 0.68 0.54 

1572 12.02 28 6 4.04 0.54 0.27 

1584 12.57 11 2 3.74 1.88 0.78 

1587 12.66 13 4 4.25 0.56 0.39 

1590 12.76 16 3 4.85 0.49 0.63 

1593 12.85 10 3 4.83 0.58 0.43 

1599 13.04 0 0 N/A N/A N/A 

1602 13.13 15 3 4.40 1.00 0.42 

1605 13.20 6 2 3.72 0.07 0.43 

1611 13.34 4 2 4.51 1.38 0.64 

1623 13.62 0 0 N/A N/A N/A 
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Appendix 7:  Summary of Robust plus binned Cibicidoides wuellerstorfi and Dentogloboquadrina altispira mean Mg/Ca ratios in the Sunbird-1 

core from LA-ICP-MS analyses.  Minimum and maximum age refer to the age range of the combined (binned) samples (Table 5.6). 

 

Cibicidoides wuellerstorfi 

Depth 
(MBSL) 

Age (Ma) 
Minimum Age 

(Ma) 
Maximum Age 

(Ma) 
# Spots 

used 
# Specimens 

Used 
Sample Mean 

Mg/Ca (mmol/mol) 
Interspecimen 

2 SE 
Sample 

2 SE 
Interspecimen 

Range 

1401 10.07 9.86 10.28 26 4 2.89 0.32 0.20 0.96 

1440 10.64 10.49 10.79 28 6 3.28 0.59 0.28 1.97 

1459 10.91 10.82 10.99 51 12 2.86 0.21 0.12 1.25 

1476 11.09 11.09 11.09 26 5 2.96 0.30 0.13 0.90 

1479 11.13 11.13 11.13 31 6 2.88 0.40 0.19 1.47 

1500 11.36 11.36 11.36 28 6 2.79 0.26 0.19 0.81 

1506 11.43 11.43 11.43 25 5 2.76 0.35 0.17 1.07 

1512 11.50 11.50 11.50 27 5 3.13 0.42 0.29 1.14 

1521 11.60 11.60 11.60 26 5 2.79 0.20 0.14 0.65 

1524 11.61 11.61 11.61 28 5 2.93 0.56 0.25 1.71 

1530 11.62 11.62 11.62 28 6 2.83 0.37 0.19 1.25 

1533 11.62 11.62 11.62 29 5 2.89 0.63 0.24 1.89 

1542 11.64 11.64 11.64 24 4 2.80 0.13 0.13 0.34 

1545 11.67 11.67 11.67 30 6 2.69 0.33 0.17 0.97 

1551 11.72 11.72 11.72 26 6 2.44 0.29 0.16 0.81 
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1554 11.75 11.75 11.75 67 10 2.48 0.18 0.09 1.16 

1560 11.80 11.80 11.80 25 5 3.21 0.72 0.29 2.03 

1566 11.85 11.85 11.85 26 5 3.09 0.44 0.24 1.36 

1570.5 11.95 11.88 12.02 44 9 3.04 0.36 0.20 1.91 

1585.5 12.62 12.57 12.66 44 10 2.52 0.21 0.13 1.02 

1600 13.03 12.85 13.20 44 12 2.99 0.27 0.17 1.55 

 

Dentogloboquadrina altispira 

Depth 
(MBSL) 

Age (Ma) 
Minimum Age 

(Ma) 
Maximum Age 

(Ma) 
# Spots 

used 
# Specimens 

Used 
Sample Mean 

Mg/Ca (mmol/mol) 
Interspecimen 

2 SE 
Sample 

2 SE 
Interspecimen 

Range 

1365 9.57 9.48 9.65 51 13 4.02 0.31 0.21 2.16 

1386 9.86 9.86 9.86 25 5 4.17 0.79 0.35 2.29 

1407 10.15 10.03 10.28 24 8 4.70 0.69 0.48 2.75 

1422 10.36 10.36 10.36 34 6 3.67 0.72 0.33 2.57 

1425 10.41 10.41 10.41 30 6 4.13 0.41 0.25 1.22 

1431 10.49 10.49 10.49 28 6 4.01 0.49 0.32 1.53 

1434 10.54 10.54 10.54 34 6 3.08 0.32 0.16 1.02 

1444.5 10.72 10.64 10.79 39 9 4.65 0.54 0.34 2.50 

1452 10.82 10.82 10.82 22 5 4.42 0.55 0.40 1.39 

1463 11.06 10.89 11.23 22 11 4.20 0.51 0.48 2.87 

1500 11.36 11.36 11.36 34 6 4.10 0.36 0.18 1.17 

1510.5 11.48 11.43 11.53 40 13 4.55 0.40 0.26 2.73 

1521 11.60 11.60 11.60 28 6 3.60 0.23 0.27 1.14 
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1524 11.61 11.61 11.61 30 6 3.56 0.67 0.30 1.94 

1531.5 11.62 11.62 11.62 31 8 4.63 0.49 0.36 2.42 

1542 11.64 11.64 11.64 27 5 3.19 0.55 0.25 1.68 

1548 11.70 11.67 11.72 35 9 4.09 0.53 0.31 2.53 

1554 11.75 11.75 11.75 72 10 3.63 0.26 0.14 3.17 

1560 11.80 11.80 11.80 34 6 3.47 0.32 0.17 0.97 

1566 11.85 11.85 11.85 24 5 4.32 0.48 0.31 1.41 

1572 12.02 12.02 12.02 28 6 4.04 0.54 0.27 1.78 

1588.5 12.71 12.57 12.85 50 12 4.40 0.43 0.31 2.94 

1606.5 13.24 13.13 13.34 25 7 4.26 0.55 0.31 2.00 

 

 

Appendix 8a:  Bottom Water Temperatures calculated from the robust plus binned Cibicidoides wuellerstorfi mean Mg/Ca ratios in the Sunbird-

1 core from LA-ICP-MS analyses (Appendix 7).  Minimum and maximum age refer to the age range of the combined (binned) samples (Table 5.6).  

Seawater Mg/Ca is calculated from this study using Equation 5.2, the polynomial fit through the proxy data in Figure 5.5.  Temperature is 

calculated using the calibration of Lear et al. (2002) assuming an Eocene seawater Mg/Ca of 2.1 mol/mol (H=0.4) (Equation 5.4).  Maximum and 

Minimum temperatures refer to the full range of absolute temperatures derived incorporating the analytical, sample, and calibration 
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uncertainty.  Spl Error Only Maximum and Minimum temperatures refer to the range of temperatures derived from the analytical and sample 

uncertainty only. Shaded samples are discounted.  See text for details. 

Bottom Water Temperature 

Depth 
(MBSL) 

Age (Ma) 
Minimum 
Age (Ma) 

Maximum 
Age (Ma) 

Sample 
Mean Mg/Ca 
(mmol/mol) 

Seawater 
Mg/Ca 

(mol/mol) 

Temperature 
(°C) 

Maximum 
Temperature 

(°C) 

Minimum 
Temperature 

(°C) 

Spl Error Only Max 
Temperature (°C) 

Spl Error Only 
Min Temperature 

(°C) 

1401 10.07 9.86 10.28 2.89 3.68 12.30 14.95 10.03 12.92 11.64 

1440 10.64 10.49 10.79 3.28 3.62 13.54 16.44 11.02 14.30 12.70 

1459 10.91 10.82 10.99 2.86 3.59 12.31 14.73 10.26 12.70 11.90 

1476 11.09 11.09 11.09 2.96 3.57 12.66 15.11 10.59 13.05 12.26 

1479 11.13 11.13 11.13 2.88 3.56 12.41 15.07 10.14 13.01 11.77 

1500 11.36 11.36 11.36 2.79 3.54 12.15 14.81 9.87 12.77 11.49 

1506 11.43 11.43 11.43 2.76 3.53 12.04 14.63 9.83 12.60 11.45 

1512 11.50 11.50 11.50 3.13 3.52 13.22 16.16 10.65 14.03 12.33 

1521 11.60 11.60 11.60 2.79 3.51 12.17 14.64 10.07 12.60 11.71 

1524 11.61 11.61 11.61 2.93 3.51 12.61 15.44 10.16 13.35 11.80 

1530 11.62 11.62 11.62 2.83 3.51 12.29 14.93 10.03 12.87 11.66 

1533 11.62 11.62 11.62 2.89 3.51 12.49 15.30 10.05 13.22 11.69 

1542 11.64 11.64 11.64 2.80 3.51 12.20 14.66 10.12 12.62 11.76 

1545 11.67 11.67 11.67 2.69 3.51 11.85 14.45 9.62 12.42 11.23 

1551 11.72 11.72 11.72 2.44 3.50 10.95 13.50 8.77 11.53 10.33 

1554 11.75 11.75 11.75 2.48 3.50 11.09 13.39 9.16 11.43 10.74 
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1560 11.80 11.80 11.80 3.21 3.49 13.48 16.42 10.91 14.27 12.61 

1566 11.85 11.85 11.85 3.09 3.49 13.13 15.96 10.69 13.83 12.38 

1570.5 11.95 11.88 12.02 3.04 3.48 12.98 15.66 10.69 13.56 12.37 

1585.5 12.62 12.57 12.66 2.52 3.41 11.33 13.80 9.24 11.80 10.84 

1600 13.03 12.85 13.20 2.99 3.37 12.96 15.58 10.73 13.46 12.43 

 

Appendix 8b:  Sea Surface Temperatures calculated from the robust plus binned Dentogloboquadrina altispira mean Mg/Ca ratios in the 

Sunbird-1 core from LA-ICP-MS analyses (Appendix 7).  Minimum and maximum age refer to the age range of the combined (binned) samples 

(Table 5.6).  pH is calculated by linear interpolation between the pH measurements of Sosdian et al. (2018).  pH corrected Mg/Ca is calculated 

using the multi-species calibration of Evans et al. (2016b) (Equation 5.2).  Seawater Mg/Ca is calculated from this study using Equation 5.2, the 

polynomial fit through the proxy data in Figure 5.5. The pre-exponential (B) and exponential (A) constants of the Mg/Ca-temperature calibration 

are calculated using the calibration of Evans et al. (2016a), (Equation 5.7 and 5.8).  Temperature is calculated as ln((Mg/Ca)/B)/A, using the values 

of B and A calculated in the previous columns. Maximum and Minimum temperatures refer to the full range of absolute temperatures derived 

incorporating the analytical, sample, and calibration uncertainty.  Spl Error Only Maximum and Minimum temperatures refer to the range of 

temperatures derived from the analytical and sample uncertainty only.  
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Sea Surface Temperature 

Depth 
(MBSL) 

Age (Ma) 
Minimum 
Age (Ma) 

Maximum 
Age (Ma) 

Sample Mean 
Mg/Ca (mmol/mol) 

pH  
pH Corrected 

Mg/Ca (mmol/mol) 
Seawater Mg/Ca 

(mol/mol) 
Pre-exponential 

Constant (B) 
Exponential 
Constant (A) 

1365 9.57 9.48 9.65 4.02 8.05 3.91 3.74 0.4714 0.0791 

1386 9.86 9.86 9.86 4.17 8.11 4.30 3.70 0.4721 0.0787 

1407 10.15 10.03 10.28 4.70 8.09 4.73 3.67 0.4727 0.0784 

1422 10.36 10.36 10.36 3.67 8.07 3.61 3.65 0.4732 0.0781 

1425 10.41 10.41 10.41 4.13 8.06 4.05 3.64 0.4733 0.0781 

1431 10.49 10.49 10.49 4.01 8.05 3.90 3.63 0.4735 0.0780 

1434 10.54 10.54 10.54 3.08 8.05 2.97 3.63 0.4736 0.0779 

1444.5 10.72 10.64 10.79 4.65 8.04 4.46 3.61 0.4741 0.0777 

1452 10.82 10.82 10.82 4.42 8.04 4.24 3.60 0.4743 0.0776 

1463 11.06 10.89 11.23 4.20 8.04 4.03 3.57 0.4750 0.0773 

1500 11.36 11.36 11.36 4.10 8.04 3.93 3.54 0.4758 0.0769 

1510.5 11.48 11.43 11.53 4.55 8.04 4.36 3.53 0.4761 0.0768 

1521 11.60 11.60 11.60 3.60 8.01 3.36 3.51 0.4764 0.0766 

1524 11.61 11.61 11.61 3.56 8.01 3.31 3.51 0.4764 0.0766 

1531.5 11.62 11.62 11.62 4.63 8.01 4.27 3.51 0.4765 0.0766 

1542 11.64 11.64 11.64 3.19 8.00 2.92 3.51 0.4765 0.0766 

1548 11.70 11.67 11.72 4.09 7.97 3.65 3.50 0.4767 0.0765 

1554 11.75 11.75 11.75 3.63 7.95 3.18 3.50 0.4768 0.0764 

1560 11.80 11.80 11.80 3.47 7.99 3.16 3.49 0.4770 0.0764 

1566 11.85 11.85 11.85 4.32 8.00 3.98 3.49 0.4771 0.0763 

1572 12.02 12.02 12.02 4.04 8.03 3.84 3.47 0.4776 0.0761 
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1588.5 12.71 12.57 12.85 4.40 8.05 4.24 3.40 0.4797 0.0753 

1606.5 13.24 13.13 13.34 4.26 8.00 3.90 3.35 0.4813 0.0746 

 

Sea Surface Temperature (cont) 

Depth 
(MBSL) 

Age (Ma) 
Minimum 
Age (Ma) 

Maximum 
Age (Ma) 

Temperature 
(°C) 

Maximum 
Temperature (°C) 

Minimum 
Temperature (°C) 

Spl Error Only Max 
Temperature (°C) 

Spl Error Only Min 
Temperature (°C) 

1365 9.57 9.48 9.65 26.77 30.47 23.55 27.42 26.07 

1386 9.86 9.86 9.86 28.05 32.19 24.40 29.09 26.93 

1407 10.15 10.03 10.28 29.38 33.92 25.35 30.62 28.01 

1422 10.36 10.36 10.36 26.02 30.18 22.29 27.13 24.81 

1425 10.41 10.41 10.41 27.48 31.38 24.05 28.23 26.69 

1431 10.49 10.49 10.49 27.03 31.15 23.35 28.01 25.97 

1434 10.54 10.54 10.54 23.58 27.04 20.46 24.22 22.92 

1444.5 10.72 10.64 10.79 28.85 33.10 25.10 29.76 27.86 

1452 10.82 10.82 10.82 28.25 32.71 24.28 29.38 27.01 

1463 11.06 10.89 11.23 27.67 32.41 23.40 29.06 26.11 

1500 11.36 11.36 11.36 27.44 31.31 24.04 28.00 26.85 

1510.5 11.48 11.43 11.53 28.84 33.03 25.17 29.56 28.08 

1521 11.60 11.60 11.60 25.48 29.60 21.77 26.43 24.45 

1524 11.61 11.61 11.61 25.29 29.51 21.48 26.34 24.15 

1531.5 11.62 11.62 11.62 28.64 33.08 24.71 29.62 27.59 

1542 11.64 11.64 11.64 23.68 27.64 20.07 24.65 22.63 

1548 11.70 11.67 11.72 26.61 30.80 22.88 27.56 25.60 
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1554 11.75 11.75 11.75 24.81 28.30 21.69 25.30 24.30 

1560 11.80 11.80 11.80 24.76 28.42 21.48 25.38 24.12 

1566 11.85 11.85 11.85 27.79 32.05 24.02 28.69 26.82 

1572 12.02 12.02 12.02 27.40 31.53 23.73 28.24 26.50 

1588.5 12.71 12.57 12.85 28.97 33.46 25.01 29.87 28.00 

1606.5 13.24 13.13 13.34 28.03 32.82 24.08 28.98 27.01 
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Appendix 9:  Bottom Water Temperatures calculated from the Cibicidoides wuellerstorfi solution based ICP-MS Mg/Ca ratios in the Sunbird-1 

core (Appendix 4) and corrected for seawater Mg/Ca.  Seawater Mg/Ca is calculated from this study using Equation 5.2, the polynomial fit 

through the proxy data in Figure 5.5.  Temperature is calculated using the calibration of Lear et al. (2002) assuming an Eocene seawater Mg/Ca 

of 2.1 mol/mol (H=0.4) (Equation 5.4).  Maximum and Minimum temperatures refer to the full range of absolute temperatures derived 

incorporating the analytical and calibration uncertainty.  Spl Error Only Maximum and Minimum temperatures refer to the range of temperatures 

derived from the analytical uncertainty only.  

Bottom Water Temperature 

Depth 
(MBSL) 

Age (Ma) 
Mg/Ca 

(mmol/mol) 
Seawater Mg/Ca 

(mol/mol) 
Temperature 

(°C) 
Maximum 

Temperature (°C) 
Minimum 

Temperature (°C) 
Spl Error Only Max 
Temperature (°C) 

Spl Error Only Min 
Temperature (°C) 

1356 9.44 2.82 3.75 12.01 14.11 10.26 12.14 11.88 

1365 9.57 4.41 3.74 16.14 18.50 14.14 16.25 16.02 

1374 9.69 3.59 3.72 14.25 16.55 12.31 14.42 14.07 

1383 9.82 3.37 3.71 13.70 15.89 11.85 13.81 13.58 

1401 10.07 3.76 3.68 14.74 17.15 12.70 14.98 14.49 

1428 10.45 7.42 3.64 21.01 23.73 18.72 21.13 20.90 

1437 10.59 4.26 3.62 15.94 18.36 13.89 16.11 15.76 

1446 10.74 3.67 3.60 14.59 17.02 12.53 14.85 14.32 

1455 10.86 5.39 3.59 18.12 20.62 16.01 18.21 18.02 

1464 10.96 6.14 3.58 19.33 21.84 17.22 19.35 19.31 

1482 11.16 9.00 3.56 22.85 25.66 20.48 22.92 22.79 

1491 11.26 7.22 3.55 20.84 23.70 18.42 21.09 20.59 

1509 11.47 11.22 3.53 24.91 27.86 22.42 24.98 24.85 

1518 11.57 11.21 3.52 24.92 27.90 22.39 25.01 24.82 

1536 11.63 8.15 3.51 22.00 24.84 19.61 22.15 21.86 
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1548 11.69 4.70 3.50 16.95 19.37 14.92 17.03 16.87 

1563 11.83 6.53 3.49 19.99 22.69 17.73 20.13 19.86 

1572 12.02 7.99 3.47 21.86 24.67 19.48 21.98 21.73 

1581 12.43 12.90 3.43 26.30 29.43 23.64 26.43 26.16 

1590 12.76 7.75 3.39 21.67 24.49 19.28 21.80 21.52 

1599 13.04 9.02 3.37 23.08 25.89 20.72 23.10 23.07 
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Appendix 10:  Stable Isotope ratios of the benthic foraminifera (Cibicidoides mundulus) and 

the planktic foraminifera (Globigerinoides obliquus) in the Sunbird-1 core.  Shaded samples 

are discounted.  See text for details. 

 

Cibicidoides mundulus 

Depth (MBSL) Age (Ma) δ13C (‰ VPDB) δ13C 1 SD δ18O (‰ VPDB) δ18O 1 SD 

1356 9.44 0.203 0.017 0.633 0.039 

1359 9.48 1.115 0.042 0.763 0.057 

1362 9.52 1.086 0.029 0.383 0.031 

1365 9.57 0.816 0.019 0.437 0.019 

1368 9.61 0.956 0.012 0.807 0.027 

1371 9.65 0.789 0.019 0.550 0.03 

1374 9.69 1.047 0.028 1.012 0.054 

1377 9.73 0.714 0.014 0.301 0.014 

1380 9.78 0.995 0.012 0.545 0.017 

1383 9.82 1.253 0.018 1.238 0.034 

1386 9.86 0.813 0.018 0.558 0.024 

1389 9.90 1.45 0.032 1.779 0.053 

1392 9.94 0.655 0.092 0.256 0.087 

1395 9.99 1.127 0.014 1.114 0.024 

1398 10.03 0.947 0.014 0.166 0.027 

1401 10.07 0.958 0.031 0.969 0.062 

1404 10.11 1.137 0.024 0.567 0.018 

1407 10.15 1.014 0.017 -0.101 0.041 

1410 10.20 1.422 0.024 1.421 0.049 

1413 10.24 1.731 0.087 -0.192 0.102 

1416 10.28 0.927 0.012 0.358 0.026 

1419 10.32 1.269 0.019 0.400 0.051 

1422 10.36 0.988 0.02 0.903 0.021 

1425 10.41 1.263 0.016 0.988 0.041 

1428 10.45 1.305 0.016 0.241 0.03 

1431 10.49 1.097 0.015 0.540 0.049 

1434 10.54 0.835 0.018 0.572 0.046 

1437 10.59 1.23 0.017 1.128 0.041 
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1440 10.64 0.87 0.018 0.376 0.024 

1443 10.69 0.651 0.022 1.158 0.03 

1446 10.74 1.113 0.027 0.862 0.041 

1449 10.79 0.642 0.03 0.375 0.038 

1452 10.82 0.912 0.022 0.595 0.051 

1455 10.86 0.813 0.025 0.588 0.036 

1458 10.89 0.8 0.007 0.742 0.028 

1461 10.93 0.733 0.016 -0.335 0.032 

1464 10.96 0.809 0.027 1.712 0.065 

1467 10.99 1.078 0.013 0.614 0.028 

1470 11.03 0.784 0.019 -0.475 0.021 

1473 11.06 0.994 0.018 -0.171 0.029 

1476 11.09 1.113 0.033 2.737 0.06 

1476 11.13 1.24 0.032 0.377 0.026 

1479 11.16 0.701 0.015 -1.432 0.018 

1482 11.20 1.236 0.03 0.637 0.045 

1488 11.23 1.179 0.026 -0.052 0.027 

1491 11.26 1.231 0.023 -1.089 0.037 

1494 11.30 1.106 0.019 -0.723 0.028 

1497 11.33 0.783 0.015 0.843 0.036 

1500 11.36 1.385 0.018 0.370 0.04 

1503 11.40 1.164 0.027 -0.987 0.041 

1506 11.43 0.915 0.027 -0.765 0.018 

1509 11.47 0.85 0.022 0.629 0.035 

1512 11.50 1.14 0.028 0.538 0.037 

1515 11.53 1.402 0.023 0.092 0.021 

1518 11.57 1.443 0.015 0.424 0.015 

1521 11.60 0.972 0.016 -0.681 0.022 

1524 11.60 1.281 0.014 0.280 0.022 

1527 11.61 1.994 0.024 0.466 0.047 

1530 11.61 0.962 0.021 -1.317 0.03 

1533 11.62 1.344 0.019 1.095 0.03 

1536 11.62 1.571 0.028 0.717 0.051 

1539 11.63 1.212 0.012 -0.697 0.014 

1542 11.63 1.292 0.024 0.682 0.039 

1545 11.66 1.415 0.015 1.124 0.04 

1548 11.69 1.045 0.024 1.107 0.046 

1551 11.71 1.236 0.018 -0.436 0.036 
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1554 11.74 1.174 0.014 0.935 0.017 

1557 11.77 0.935 0.021 -0.747 0.03 

1560 11.80 0.88 0.018 -0.699 0.015 

1563 11.82 1.419 0.017 -0.112 0.034 

1566 11.85 1.398 0.013 -0.318 0.044 

1569 11.88 0.925 0.008 -1.618 0.011 

1572 12.02 1.374 0.028 0.935 0.051 

1575 12.16 1.171 0.017 -1.522 0.034 

1578 12.29 1.565 0.021 -0.435 0.046 

1581 12.43 1.489 0.023 -0.672 0.036 

1584 12.57 1.587 0.022 -1.073 0.046 

1587 12.66 1.999 0.023 -1.028 0.023 

1590 12.76 1.449 0.017 -1.106 0.032 

1593 12.85 1.28 0.034 -0.791 0.031 

1596 12.94 2.756 0.019 -1.669 0.03 

1599 13.04 1.588 0.018 -0.886 0.029 

1602 13.13 1.738 0.029 -1.051 0.046 

1605 13.20 2.831 0.013 -1.353 0.022 

1608 13.27 2.554 0.026 -1.255 0.033 

1611 13.34 1.885 0.024 -0.347 0.041 

1614 13.41 3.046 0.021 -1.550 0.019 

1617 13.48 3.494 0.017 -1.563 0.017 

1620 13.55 2.588 0.013 -1.682 0.024 

1623 13.62 3.039 0.012 -1.132 0.026 

1626 13.69 2.696 0.019 -1.487 0.03 

 

 

Globigerinoides obliquus 

Depth (MBSL) Age (Ma) δ13C (‰ VPDB) δ13C 1 SD δ18O (‰ VPDB) δ18O 1 SD 

1356 9.44 1.151 0.031 -2.546 0.034 

1359 9.48 1.848 0.024 -3.045 0.038 

1362 9.52 1.699 0.015 -2.697 0.029 

1365 9.57 N/A N/A N/A N/A 

1368 9.61 1.771 0.036 -2.630 0.019 

1371 9.65 N/A N/A N/A N/A 
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1374 9.69 1.859 0.025 -2.863 0.025 

1377 9.73 1.907 0.014 -2.768 0.041 

1380 9.78 1.785 0.013 -2.752 0.029 

1383 9.82 1.874 0.015 -2.828 0.039 

1386 9.86 1.738 0.015 -2.858 0.053 

1389 9.90 1.732 0.021 -2.822 0.049 

1392 9.94 N/A N/A N/A N/A 

1395 9.99 1.617 0.018 -2.878 0.021 

1398 10.03 2.021 0.025 -2.860 0.028 

1401 10.07 2.08 0.03 -2.657 0.011 

1404 10.11 1.951 0.023 -2.572 0.042 

1407 10.15 1.906 0.019 -2.829 0.027 

1410 10.20 N/A N/A N/A N/A 

1413 10.24 1.767 0.011 -2.757 0.019 

1416 10.28 1.673 0.02 -2.809 0.033 

1419 10.32 1.939 0.016 -2.852 0.035 

1422 10.36 1.773 0.019 -2.860 0.032 

1425 10.41 2.211 0.019 -2.887 0.047 

1428 10.45 2.102 0.013 -2.754 0.038 

1431 10.49 1.86 0.009 -2.886 0.029 

1434 10.54 1.569 0.022 -3.034 0.021 

1437 10.59 N/A N/A N/A N/A 

1440 10.64 1.623 0.025 -3.037 0.026 

1443 10.69 1.485 0.02 -2.944 0.037 

1446 10.74 1.683 0.022 -2.604 0.03 

1449 10.79 1.479 0.013 -2.958 0.032 

1452 10.82 1.67 0.035 -3.060 0.043 

1455 10.86 N/A N/A N/A N/A 

1458 10.89 1.956 0.029 -2.906 0.039 

1461 10.93 1.406 0.02 -2.893 0.042 

1464 10.96 N/A N/A N/A N/A 

1467 10.99 1.498 0.021 -2.748 0.035 

1470 11.03 1.628 0.013 -2.564 0.026 

1473 11.06 N/A N/A N/A N/A 

1476 11.09 1.661 0.02 -3.201 0.016 

1476 11.13 1.671 0.02 -2.793 0.024 

1479 11.16 1.855 0.029 -2.892 0.038 

1482 11.20 1.992 0.014 -2.900 0.012 
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1488 11.23 1.658 0.021 -2.852 0.027 

1491 11.26 N/A N/A N/A N/A 

1494 11.30 1.643 0.022 -2.854 0.03 

1497 11.33 1.875 0.027 -2.918 0.026 

1500 11.36 1.605 0.017 -3.018 0.024 

1503 11.40 1.917 0.027 -2.825 0.025 

1506 11.43 1.521 0.070 -2.421 0.096 

1509 11.47 1.793 0.015 -2.808 0.035 

1512 11.50 1.709 0.02 -2.797 0.027 

1515 11.53 1.945 0.029 -2.764 0.032 

1518 11.57 1.536 0.021 -3.100 0.02 

1521 11.60 1.786 0.025 -2.838 0.029 

1524 11.60 1.835 0.022 -2.815 0.032 

1527 11.61 1.741 0.007 -2.800 0.028 

1530 11.61 1.912 0.015 -2.629 0.041 

1533 11.62 2.017 0.017 -2.669 0.011 

1536 11.62 1.796 0.023 -2.850 0.032 

1539 11.63 1.69 0.024 -2.782 0.029 

1542 11.63 N/A N/A N/A N/A 

1545 11.66 1.493 0.022 -2.883 0.034 

1548 11.69 N/A N/A N/A N/A 

1551 11.71 1.814 0.017 -2.786 0.038 

1554 11.74 1.503 0.012 -2.737 0.024 

1557 11.77 1.319 0.02 -3.133 0.024 

1560 11.80 1.702 0.018 -2.830 0.02 

1563 11.82 N/A N/A N/A N/A 

1566 11.85 N/A N/A N/A N/A 

1569 11.88 1.783 0.023 -2.764 0.025 

1572 12.02 1.883 0.019 -2.668 0.022 

1575 12.16 1.618 0.033 -2.718 0.03 

1578 12.29 1.842 0.019 -2.857 0.031 

1581 12.43 2.211 0.02 -2.959 0.024 

1584 12.57 2.028 0.025 -2.338 0.072 

1587 12.66 1.875 0.018 -3.340 0.026 

1590 12.76 1.933 0.023 -3.395 0.027 

1593 12.85 1.573 0.03 -3.258 0.033 

1596 12.94 1.71 0.031 -3.229 0.019 

1599 13.04 1.783 0.018 -3.396 0.046 
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1602 13.13 1.919 0.011 -3.450 0.02 

1605 13.20 2.034 0.014 -3.197 0.024 

1608 13.27 2.434 0.017 -3.470 0.023 

1611 13.34 2.666 0.012 -3.629 0.017 

1614 13.41 3.605 0.013 -3.202 0.024 

1617 13.48 4.016 0.014 -3.254 0.026 

1620 13.55 4.256 0.017 -3.446 0.037 

1623 13.62 3.563 0.022 -3.395 0.029 

1626 13.69 3.903 0.034 -3.468 0.031 

 

 



Cardiff University 331 | P a g e  Michael Nairn 
 

Appendix 11:  Bottom Water Temperatures calculated from Cibicidoides mundulus δ18O ratios in the Sunbird-1 core (Appendix 10) using the 

calibration of Lynch-Stiegletz et al. (1999) (Equation 6.3).  Seawater δ18O (δ18Osw) is from Cramer et al. (2011), with a 90% confidence envelope 

(FIgure 6.3).  This δ18OSW was converted from VSMOW to VPDB by incorporating a -0.27‰ correction (Hut, 1987).  Maximum and Minimum 

temperatures refer to the full range of absolute temperatures derived incorporating the analytical and calibration uncertainty.  Spl Error Only 

Maximum and Minimum temperatures refer to the range of temperatures derived from the analytical uncertainty only. Shaded samples are 

discounted.  See text for details. 

Sea Surface Temperatures calculated from Globigerinoides obliquus δ18O ratios in the Sunbird-1 core (Appendix 10) using the calibration of Bemis 

et al. (1998) (Equation 6.2).  An uncertainty of ± 0.091 ‰ due to any potential influence of salinity.  Seawater δ18O (δ18Osw) is from Cramer et al. 

(2011), with a 90% confidence envelope (FIgure 6.3).  This δ18OSW was converted from VSMOW to VPDB by incorporating a -0.27‰ correction 

(Hut, 1987).  Maximum and Minimum temperatures refer to the full range of absolute temperatures derived incorporating the analytical and 

calibration uncertainty.  Spl Error Only Maximum and Minimum temperatures refer to the range of temperatures derived from the analytical 

uncertainty only. Shaded samples are discounted.  See text for details. 

 

Bottom Water Temperature 

Depth (MBSL) Age (Ma) 
δ18O (‰ 
VPDB) 

δ18O 1 SD 
Seawater 
δ18O (‰) 

Temperature 
(°C) 

Maximum 
Temperature  

(°C) 

Minimum 
Temperature  

(°C) 

Spl Error Only 
Max Temperature 

(°C) 

Spl Error Only 
Min Temperature 

(°C) 

1356 9.44 0.633 0.039 0.276 14.4 16.9 11.8 14.8 14.0 

1359 9.48 0.763 0.057 0.271 13.8 16.6 11.2 14.3 13.2 

1362 9.52 0.383 0.031 0.271 15.6 18.1 13.0 15.9 15.3 

1365 9.57 0.437 0.019 0.28 15.4 17.9 12.5 15.5 15.2 

1368 9.61 0.807 0.027 0.28 13.6 16.2 10.8 13.8 13.3 

1371 9.65 0.550 0.03 0.288 14.9 17.5 12.0 15.1 14.6 
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1374 9.69 1.012 0.054 0.288 12.7 15.5 9.8 13.2 12.1 

1377 9.73 0.301 0.014 0.288 16.0 18.6 13.2 16.2 15.9 

1380 9.78 0.545 0.017 0.281 14.8 17.3 12.0 15.0 14.7 

1383 9.82 1.238 0.034 0.281 11.5 14.2 8.8 11.9 11.2 

1386 9.86 0.558 0.024 0.256 14.7 17.2 11.9 14.9 14.4 

1389 9.90 1.779 0.053 0.256 8.9 11.7 6.1 9.4 8.3 

1392 9.94 N/A N/A 0.256           

1395 9.99 1.114 0.024 0.22 11.8 14.5 9.3 12.1 11.6 

1398 10.03 0.166 0.027 0.22 16.4 19.0 13.8 16.6 16.1 

1401 10.07 0.969 0.062 0.19 12.4 15.4 9.9 13.0 11.8 

1404 10.11 0.567 0.018 0.19 14.3 16.9 11.8 14.5 14.1 

1407 10.15 -0.101 0.041 0.169 17.4 20.2 14.9 17.8 17.0 

1410 10.20 1.421 0.049 0.169 10.1 13.1 7.6 10.6 9.7 

1413 10.24 N/A N/A 0.169           

1416 10.28 0.358 0.026 0.152 15.1 17.7 12.6 15.4 14.9 

1419 10.32 0.400 0.051 0.152 14.9 17.7 12.4 15.4 14.4 

1422 10.36 0.903 0.021 0.141 12.5 14.8 9.9 12.7 12.3 

1425 10.41 0.988 0.041 0.141 12.1 14.6 9.5 12.5 11.7 

1428 10.45 0.241 0.03 0.141 15.6 18.1 13.1 15.9 15.3 

1431 10.49 0.540 0.049 0.127 14.1 16.6 11.8 14.6 13.7 

1434 10.54 0.572 0.046 0.127 14.0 16.4 11.6 14.4 13.5 

1437 10.59 1.128 0.041 0.108 11.2 13.3 9.0 11.6 10.9 

1440 10.64 0.376 0.024 0.108 14.8 16.8 12.6 15.1 14.6 

1443 10.69 1.158 0.03 0.087 11.0 12.8 8.9 11.3 10.7 
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1446 10.74 0.862 0.041 0.087 12.4 14.3 10.3 12.8 12.0 

1449 10.79 0.375 0.038 0.063 14.6 16.4 12.7 15.0 14.3 

1452 10.82 0.595 0.051 0.063 13.6 15.4 11.7 14.1 13.1 

1455 10.86 0.588 0.036 0.039 13.5 15.2 11.7 13.8 13.1 

1458 10.89 0.742 0.028 0.039 12.8 14.4 10.9 13.0 12.5 

1461 10.93 -0.335 0.032 0.039 17.9 19.6 16.1 18.2 17.6 

1464 10.96 1.712 0.065 0.01           

1467 10.99 0.614 0.028 0.01 13.2 15.0 11.4 13.5 13.0 

1470 11.03 -0.475 0.021 0.01 18.4 20.1 16.6 18.6 18.2 

1473 11.06 -0.171 0.029 -0.018 16.8 18.7 15.1 17.1 16.6 

1476 11.09 2.737 0.06 -0.018 14.2 16.4 12.4 14.8 13.6 

1476 11.13 0.377 0.026 -0.018 22.8 24.7 21.1 23.1 22.6 

1479 11.16 -1.432 0.018 -0.034 12.9 14.7 11.3 13.1 12.7 

1482 11.20 0.637 0.045 -0.034           

1488 11.23 -0.052 0.027 -0.034 16.2 18.0 14.6 16.4 15.9 

1491 11.26 -1.089 0.037 -0.042 21.1 22.9 19.7 21.4 20.7 

1494 11.30 -0.723 0.028 -0.042 19.3 21.1 17.9 19.6 19.1 

1497 11.33 0.843 0.036 -0.042 11.9 13.7 10.5 12.2 11.5 

1500 11.36 0.370 0.04 -0.047 14.1 15.9 12.9 14.5 13.7 

1503 11.40 -0.987 0.041 -0.047 20.6 22.4 19.3 21.0 20.2 

1506 11.43 -0.765 0.018 -0.047 19.5 21.1 18.3 19.7 19.3 

1509 11.47 0.629 0.035 -0.045 12.9 14.6 11.8 13.2 12.6 

1512 11.50 0.538 0.037 -0.045 13.3 15.0 12.2 13.7 13.0 

1515 11.53 0.092 0.021 -0.045 15.4 17.0 14.3 15.6 15.2 
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1518 11.57 0.424 0.015 -0.046 13.9 15.3 12.8 14.0 13.7 

1521 11.60 -0.681 0.022 -0.046 19.1 20.7 18.1 19.3 18.9 

1524 11.60 0.280 0.022 -0.046 14.5 16.1 13.5 14.8 14.3 

1527 11.61 0.466 0.047 -0.046 13.7 15.4 12.6 14.1 13.2 

1530 11.61 -1.317 0.03 -0.046 22.1 23.8 21.1 22.4 21.9 

1533 11.62 1.095 0.03 -0.046 10.7 12.3 9.6 11.0 10.4 

1536 11.62 0.717 0.051 -0.046 12.5 14.3 11.4 13.0 12.0 

1539 11.63 -0.697 0.014 -0.046 19.2 20.7 18.1 19.3 19.1 

1542 11.63 0.682 0.039 -0.046 12.6 14.3 11.6 13.0 12.3 

1545 11.66 1.124 0.04 -0.049 10.5 12.2 9.4 10.9 10.1 

1548 11.69 1.107 0.046 -0.049 10.6 12.3 9.5 11.0 10.2 

1551 11.71 -0.436 0.036 -0.049 17.9 19.6 16.9 18.3 17.6 

1554 11.74 0.935 0.017 -0.049 11.4 12.9 10.3 11.6 11.3 

1557 11.77 -0.747 0.03 -0.051 19.4 20.9 18.3 19.7 19.1 

1560 11.80 -0.699 0.015 -0.051 19.2 20.6 18.0 19.3 19.0 

1563 11.82 -0.112 0.034 -0.051 16.4 18.0 15.2 16.7 16.1 

1566 11.85 -0.318 0.044 -0.067 17.3 18.9 16.1 17.7 16.9 

1569 11.88 -1.618 0.011 -0.067 23.5 24.8 22.3 23.6 23.4 

1572 12.02 0.935 0.051 -0.095           

1575 12.16 -1.522 0.034 -0.119 22.8 24.1 21.5 23.1 22.5 

1578 12.29 -0.435 0.046 -0.071 17.8 19.3 16.5 18.3 17.4 

1581 12.43 -0.672 0.036 -0.032 19.1 20.5 17.8 19.5 18.8 

1584 12.57 -1.073 0.046 -0.092 20.8 22.1 19.4 21.2 20.3 

1587 12.66 -1.028 0.023 -0.182 20.1 21.3 18.9 20.3 19.9 
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1590 12.76 -1.106 0.032 -0.267 20.1 21.4 18.9 20.4 19.8 

1593 12.85 -0.791 0.031 -0.322 18.3 19.7 17.3 18.6 18.0 

1596 12.94 -1.669 0.03 -0.322 22.5 23.9 21.4 22.8 22.2 

1599 13.04 -0.886 0.029 -0.341 18.7 20.0 17.7 19.0 18.4 

1602 13.13 -1.051 0.046 -0.339 19.5 21.1 18.5 19.9 19.1 

1605 13.20 -1.353 0.022 -0.322 21.0 22.4 20.0 21.2 20.8 

1608 13.27 -1.255 0.033 -0.285 20.7 22.1 19.7 21.0 20.4 

1611 13.34 -0.347 0.041 -0.285 16.4 17.9 15.4 16.8 16.0 

1614 13.41 -1.550 0.019 -0.233 22.4 23.6 21.4 22.5 22.2 

1617 13.48 -1.563 0.017 -0.188 22.6 23.8 21.6 22.8 22.5 

1620 13.55 -1.682 0.024 -0.174 23.3 24.4 22.2 23.5 23.0 

1623 13.62 -1.132 0.026 -0.174 20.7 21.9 19.5 20.9 20.4 

1626 13.69 -1.487 0.03 -0.209 22.2 23.4 21.1 22.5 21.9 

 

Sea Surface Temperature 

Depth (MBSL) Age (Ma) 
δ18O (‰ 
VPDB) 

δ18O 1 SD 
Seawater 
δ18O (‰) 

Temperature 
(°C) 

Maximum 
Temperature  

(°C) 

Minimum 
Temperature  

(°C) 

Spl Error Only 
Max Temperature 

(°C) 

Spl Error Only 
Min Temperature 

(°C) 

1356 9.44 -2.546 0.034 0.276 28.4 31.6 25.2 28.8 28.1 

1359 9.48 -3.045 0.038 0.271 30.8 34.1 27.2 31.2 30.5 

1362 9.52 -2.697 0.029 0.271 29.1 32.4 25.6 29.4 28.9 

1365 9.57 N/A N/A 0.28           

1368 9.61 -2.630 0.019 0.28 28.9 32.1 25.2 29.1 28.7 
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1371 9.65 N/A N/A 0.288           

1374 9.69 -2.863 0.025 0.288 30.0 33.3 26.3 30.3 29.8 

1377 9.73 -2.768 0.041 0.288 29.6 33.0 25.7 30.0 29.2 

1380 9.78 -2.752 0.029 0.281 29.5 32.7 25.7 29.7 29.2 

1383 9.82 -2.828 0.039 0.281 29.8 33.2 26.0 30.2 29.4 

1386 9.86 -2.858 0.053 0.256 29.8 33.4 25.9 30.4 29.3 

1389 9.90 -2.822 0.049 0.256 29.7 33.2 25.8 30.1 29.2 

1392 9.94 N/A N/A 0.256           

1395 9.99 -2.878 0.021 0.22 29.8 33.0 26.3 30.0 29.6 

1398 10.03 -2.860 0.028 0.22 29.7 33.0 26.2 30.0 29.4 

1401 10.07 -2.657 0.011 0.19 28.6 31.7 25.3 28.7 28.5 

1404 10.11 -2.572 0.042 0.19 28.2 31.6 24.6 28.6 27.8 

1407 10.15 -2.829 0.027 0.169 29.3 32.7 25.8 29.5 29.0 

1410 10.20 N/A N/A 0.169           

1413 10.24 -2.757 0.019 0.169 28.9 32.3 25.6 29.1 28.8 

1416 10.28 -2.809 0.033 0.152 29.1 32.4 25.6 29.4 28.8 

1419 10.32 -2.852 0.035 0.152 29.3 32.6 25.8 29.7 29.0 

1422 10.36 -2.860 0.032 0.141 29.3 32.4 25.8 29.6 29.0 

1425 10.41 -2.887 0.047 0.141 29.4 32.7 25.8 29.9 29.0 

1428 10.45 -2.754 0.038 0.141 28.8 32.0 25.2 29.2 28.4 

1431 10.49 -2.886 0.029 0.127 29.4 32.3 26.1 29.6 29.1 

1434 10.54 -3.034 0.021 0.127 30.1 32.9 26.8 30.3 29.9 

1437 10.59 N/A N/A 0.108           

1440 10.64 -3.037 0.026 0.108 30.0 32.6 26.9 30.2 29.7 
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1443 10.69 -2.944 0.037 0.087 29.4 32.0 26.3 29.8 29.1 

1446 10.74 -2.604 0.03 0.087 27.8 30.3 24.8 28.1 27.5 

1449 10.79 -2.958 0.032 0.063 29.4 31.8 26.5 29.7 29.1 

1452 10.82 -3.060 0.043 0.063 29.9 32.3 26.9 30.3 29.5 

1455 10.86 N/A N/A 0.039           

1458 10.89 -2.906 0.039 0.039 29.0 31.4 26.2 29.4 28.7 

1461 10.93 -2.893 0.042 0.039 29.0 31.4 26.1 29.4 28.6 

1464 10.96 N/A N/A 0.01           

1467 10.99 -2.748 0.035 0.01 28.1 30.6 25.3 28.5 27.8 

1470 11.03 -2.564 0.026 0.01 27.3 29.6 24.5 27.5 27.0 

1473 11.06 N/A N/A -0.018           

1476 11.09 -3.201 0.016 -0.018 30.2 32.6 27.6 30.3 30.0 

1476 11.13 -2.793 0.024 -0.018 28.2 30.7 25.6 28.5 28.0 

1479 11.16 -2.892 0.038 -0.034 28.6 31.2 26.0 29.0 28.3 

1482 11.20 -2.900 0.012 -0.034 28.7 31.0 26.2 28.8 28.5 

1488 11.23 -2.852 0.027 -0.034 28.4 30.9 25.9 28.7 28.2 

1491 11.26 N/A N/A -0.042           

1494 11.30 -2.854 0.03 -0.042 28.4 30.8 26.1 28.7 28.1 

1497 11.33 -2.918 0.026 -0.042 28.7 31.1 26.4 29.0 28.5 

1500 11.36 -3.018 0.024 -0.047 29.2 31.5 27.0 29.4 28.9 

1503 11.40 -2.825 0.025 -0.047 28.2 30.6 26.1 28.5 28.0 

1506 11.43 N/A N/A -0.047           

1509 11.47 -2.808 0.035 -0.045 28.2 30.5 26.1 28.5 27.8 

1512 11.50 -2.797 0.027 -0.045 28.1 30.4 26.1 28.4 27.9 
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1515 11.53 -2.764 0.032 -0.045 28.0 30.3 25.9 28.3 27.6 

1518 11.57 -3.100 0.02 -0.046 29.6 31.7 27.7 29.8 29.4 

1521 11.60 -2.838 0.029 -0.046 28.3 30.6 26.3 28.6 28.0 

1524 11.60 -2.815 0.032 -0.046 28.2 30.5 26.2 28.5 27.9 

1527 11.61 -2.800 0.028 -0.046 28.1 30.4 26.1 28.4 27.9 

1530 11.61 -2.629 0.041 -0.046 27.3 29.7 25.2 27.7 26.9 

1533 11.62 -2.669 0.011 -0.046 27.5 29.6 25.7 27.6 27.4 

1536 11.62 -2.850 0.032 -0.046 28.4 30.7 26.3 28.7 28.1 

1539 11.63 -2.782 0.029 -0.046 28.0 30.3 26.0 28.3 27.8 

1542 11.63 N/A N/A -0.046           

1545 11.66 -2.883 0.034 -0.049 28.5 30.8 26.4 28.8 28.2 

1548 11.69 N/A N/A -0.049           

1551 11.71 -2.786 0.038 -0.049 28.0 30.4 25.9 28.4 27.7 

1554 11.74 -2.737 0.024 -0.049 27.8 30.0 25.8 28.0 27.6 

1557 11.77 -3.133 0.024 -0.051 29.7 31.8 27.6 29.9 29.5 

1560 11.80 -2.830 0.02 -0.051 28.2 30.3 26.2 28.4 28.0 

1563 11.82 N/A N/A -0.051           

1566 11.85 N/A N/A -0.067           

1569 11.88 -2.764 0.025 -0.067 27.8 29.9 25.7 28.1 27.6 

1572 12.02 -2.668 0.022 -0.095 27.3 29.2 25.1 27.5 27.0 

1575 12.16 -2.718 0.03 -0.119 27.4 29.4 25.1 27.7 27.1 

1578 12.29 -2.857 0.031 -0.071 28.3 30.2 26.0 28.6 28.0 

1581 12.43 -2.959 0.024 -0.032 28.9 30.8 26.7 29.2 28.7 

1584 12.57 -2.338 0.072 -0.092           
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1587 12.66 -3.340 0.026 -0.182 30.1 31.9 27.9 30.3 29.8 

1590 12.76 -3.395 0.027 -0.267 29.9 31.8 27.8 30.2 29.7 

1593 12.85 -3.258 0.033 -0.322 29.0 31.0 26.9 29.3 28.7 

1596 12.94 -3.229 0.019 -0.322 28.9 30.8 26.9 29.0 28.7 

1599 13.04 -3.396 0.046 -0.341 29.6 31.7 27.4 30.0 29.1 

1602 13.13 -3.450 0.02 -0.339 29.8 31.8 28.0 30.0 29.6 

1605 13.20 -3.197 0.024 -0.322 28.7 30.8 26.8 28.9 28.5 

1608 13.27 -3.470 0.023 -0.285 30.2 32.2 28.3 30.4 30.0 

1611 13.34 -3.629 0.017 -0.285 31.0 32.9 29.1 31.1 30.8 

1614 13.41 -3.202 0.024 -0.233 29.2 31.1 27.3 29.4 28.9 

1617 13.48 -3.254 0.026 -0.188 29.6 31.5 27.6 29.9 29.4 

1620 13.55 -3.446 0.037 -0.174 30.6 32.6 28.5 31.0 30.3 

1623 13.62 -3.395 0.029 -0.174 30.4 32.2 28.3 30.6 30.1 

1626 13.69 -3.468 0.031 -0.209 30.5 32.4 28.5 30.8 30.2 
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Appendix 12:  Benthic and planktic foraminiferal seawater δ18O (δ18Osw) records at Sunbird-1.  Planktic foraminiferal δ18Osw (‰) is calculated 

using the equation of Bemis et al. (1998) (Equation 6.1), and benthic foraminiferal δ18Osw (‰) is calculated using the equation of Lynch-Stieglitz 

et al. (1999) (Equation 6.2).  Temperature values used are given in Appendix 8, and δ18O values are given in Appendix 10.  For Mg/Ca 

paleotemperatures where adjacent samples have been combined to ensure the mean Mg/Ca of the sample is representative, the same has been 

done with the corresponding δ18O samples.  

Planktic foraminiferal δ18Osw 

Depth 
(MBSL) 

Age (Ma) 
Minimum 
Age (Ma) 

Maximum 
Age (Ma) 

Mean 
δ18Osw 

Maximum 
δ18Osw 

Minimum 
δ18Osw 

Sample Error Only 
Maximum δ18Osw 

Sample Error Only 
Minimum δ18Osw 

1365 9.57 9.65 9.48 0.16 1.14 -0.69 0.34 -0.02 

1386 9.86 9.86 9.86 0.20 1.34 -0.81 0.53 -0.14 

1407 10.15 10.28 10.03 0.51 1.69 -0.55 0.83 0.16 

1422 10.36 10.36 10.36 -0.23 0.87 -1.21 0.07 -0.54 

1425 10.41 10.41 10.41 0.05 1.13 -0.90 0.30 -0.21 

1431 10.49 10.49 10.49 -0.04 1.05 -1.01 0.22 -0.32 

1444.5 10.72 10.79 10.64 0.23 1.35 -0.76 0.48 -0.03 

1452 10.82 10.82 10.82 0.04 1.23 -1.02 0.36 -0.30 

1463 11.06 11.23 10.89 0.08 1.30 -1.01 0.43 -0.30 

1500 11.36 11.36 11.36 -0.09 0.94 -0.99 0.08 -0.26 

1510.5 11.48 11.53 11.43 0.45 1.55 -0.53 0.66 0.23 

1521 11.60 11.60 11.60 -0.32 0.77 -1.29 -0.06 -0.59 
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1524 11.61 11.61 11.61 -0.33 0.77 -1.33 -0.05 -0.64 

1531.5 11.62 11.62 11.62 0.54 1.69 -0.49 0.79 0.26 

1548 11.70 11.72 11.67 -0.08 1.04 -1.07 0.19 -0.36 

1554 11.75 11.75 11.75 -0.36 0.58 -1.19 -0.21 -0.51 

1560 11.80 11.80 11.80 -0.46 0.50 -1.32 -0.29 -0.64 

1572 12.02 12.02 12.02 0.26 1.33 -0.70 0.48 0.02 

1588.5 12.71 12.85 12.57 -0.08 1.09 -1.11 0.17 -0.34 

1606.5 13.24 13.34 13.13 -0.37 0.85 -1.38 -0.13 -0.62 

         

Benthic Foraminiferal δ18Osw 

Depth 
(MBSL) 

Age (Ma) 
Minimum 
Age (Ma) 

Maximum 
Age (Ma) 

Mean 
δ18Osw 

Maximum 
δ18Osw 

Minimum 
δ18Osw 

Sample Error Only 
Maximum δ18Osw 

Sample Error Only 
Minimum δ18Osw 

1401 10.07 9.86 10.28 -0.07 0.75 -0.80 0.26 -0.41 

1440 10.64 10.49 10.79 0.43 1.43 -0.47 0.92 -0.06 

1459 10.91 10.82 10.99 0.13 0.82 -0.49 0.34 -0.09 

1476 11.09 11.09 11.09 -0.07 0.62 -0.68 0.13 -0.28 

1479 11.13 11.13 11.13 -1.94 -1.27 -2.52 -1.76 -2.12 

1500 11.36 11.36 11.36 -0.19 0.51 -0.80 0.02 -0.41 

1506 11.43 11.43 11.43 -1.35 -0.71 -1.90 -1.19 -1.51 

1512 11.50 11.50 11.50 0.20 0.96 -0.46 0.45 -0.06 

1521 11.60 11.60 11.60 -1.24 -0.61 -1.77 -1.10 -1.38 

1524 11.61 11.61 11.61 -0.18 0.52 -0.79 0.02 -0.40 

1530 11.62 11.62 11.62 -1.85 -1.17 -2.43 -1.66 -2.04 

1533 11.62 11.62 11.62 0.61 1.32 -0.01 0.82 0.38 
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1542 11.64 11.64 11.64 0.13 0.79 -0.43 0.30 -0.04 

1545 11.67 11.67 11.67 0.50 1.19 -0.09 0.70 0.29 

1551 11.72 11.72 11.72 -1.25 -0.58 -1.82 -1.05 -1.45 

1554 11.75 11.75 11.75 0.15 0.73 -0.33 0.26 0.05 

1560 11.80 11.80 11.80 -0.98 -0.27 -1.60 -0.78 -1.19 

1566 11.85 11.85 11.85 -0.67 0.07 -1.32 -0.43 -0.92 

1570.5 11.95 11.88 12.02 -0.72 2.45 -3.81 1.95 -3.41 

1585.5 12.62 12.57 12.66 -1.78 -1.16 -2.31 -1.64 -1.93 

1600 13.03 12.85 13.20 -1.45 -0.38 -2.43 -0.89 -2.02 


