
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/121191/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Muaaz-Us-Salam, Syed, Cleall, Peter John and Harbottle, Michael John 2019. The case for examining fluid
flow in municipal solid waste at the pore-scale - A review. Waste Management and Research 37 (4) , pp.

315-332. 10.1177/0734242X19828120 

Publishers page: http://dx.doi.org/10.1177/0734242X19828120 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



ABBREVIATIONS 

MSW, Municipal solid waste; REV, Representative elementary volume; FLAC, Fast 
lagrangian analysis of continua; ERT, Electrical resistivity tomography; CFD, Computational 
fluid dynamics; NH, Neglects heterogeneity; IC, Ignores coupled phenomena; AD, Advection-
dispersion; DP, Dual-porosity 

1 

The Case for Examining Fluid Flow in Municipal 1 

Solid Waste at the Pore-Scale – A Review 2 

AUTHOR NAMES  3 

 Syed Muaaz-Us-Salam* **, Peter John Cleall*, Michael John Harbottle* 4 

AUTHORS’ ADDRESS 5 

Geoenvironmental Research Centre, School of Engineering, Cardiff University, Wales, U.K. � 6 

AUTHOR INFORMATION 7 

Corresponding Author* **. Email: muaaz-us-salams@cardiff.ac.uk. ORCID: orcid.org/0000-8 

0002-0848-8851 9 

 10 

 11 

 12 

 13 

 14 

 15 



 2 

Graphical abstract 16 

 17 

 18 

 19 

 20 

 21 

  22 



 3 

ABSTRACT 23 

In this paper, we discuss recent efforts from the last 20 years to describe transport in municipal 24 

solid waste (MSW). We first discuss emerging themes in the field to draw the reader’s attention to 25 

a series of significant challenges. We then examine contributions regarding the modelling of 26 

leachate flow to study transport via mechanistic and stochastic approaches, at a variety of scales. 27 

Since MSW is a multiphase, biogeochemically active porous medium, and with the aim of 28 

providing a picture of transport phenomena in a wider context, we then discuss a selection of 29 

studies on leachate flow incorporating some of the complex landfill processes (e.g. biodegradation, 30 

settlement). It is clear from the literature survey that our understanding of transport phenomena 31 

exhibited by landfilled waste is far from complete. Attempts to model transport have largely 32 

consisted of applying representative elementary-scale models (the smallest volume which can be 33 

considered representative of the entire waste mass). Due to our limited understanding of fluid flow 34 

through landfilled waste, and the influence of simultaneously occurring biogeomechanical 35 

processes within the waste mass, elementary-scale models have been unable to fully describe the 36 

flow behaviour of MSW. Pore-scale modelling and experimental studies have proven to be a 37 

promising approach to study fluid flow through complex porous media. Here, we suggest that pore-38 

scale modelling and experimental work may provide valuable insights into transport phenomena 39 

exhibited by MSW, which could then be used to revise elementary-scale models for improved 40 

representation of field-scale problems.  41 

 42 

 43 

 44 
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1. INTRODUCTION 48 

Global municipal solid waste (MSW) generation is expected to increase at least threefold by the 49 

end of the century (Hoornweg and Bhada-tata, 2012; Hoornweg et al., 2013). Due to high 50 

production rates and landfilling being the most common method of waste disposal worldwide, a 51 

significant proportion of this waste is expected to go to landfill. Likewise, in parts of the world 52 

where disposal has moved away from landfilling, closed facilities will remain. As such, landfilling, 53 

at least for the foreseeable future will be of relevance to the waste sector. The leachate produced 54 

due to infiltration of net precipitation, typically contains dissolved heavy metals, recalcitrant 55 

organics and inorganics that could contaminate groundwater and surface water if allowed to escape 56 

from the landfill (Kjeldsen et al., 2002). As such, the fate of this waste water within the landfill 57 

mass and in the geoenvironment is of interest to environmental engineers and scientists (Remmas 58 

et al., 2017). In bioreactor landfills, the leachate may be recirculated through the waste mass to 59 

enhance degradation and methane recovery with the prospect of early stabilization of the landfill 60 

(Barlaz and Reinhart, 2004; Reinhart et al., 2002).  Moreover, flushing technologies using water 61 

and/or other biotechnological agents have also been studied to accelerate landfill stabilisation and 62 

decrease its potential to contaminate the surrounding geoenvironment (Bolyard, 2016; Bolyard and 63 

Reinhart, 2016; Hettiaratchi et al., 2014; Hettiaratchi et al., 2015; Jayasinghe et al., 2014; Rashid 64 

et al., 2017). The aforementioned approaches may pave the way towards sustainable landfilling 65 
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(Jayasinghe, 2013; Jayasinghe et al., 2011, 2014; Jayasinghe et al., 2013; Rashid et al., 2017). 66 

However, for field-scale application and prediction, an understanding of the transport phenomena 67 

at play within the waste matrix, which will ultimately determine the effectiveness of flushing or 68 

recirculation techniques with the possibility of relatively early stabilisation of the landfill, is 69 

required.  70 

MSW is a complex, biogeochemically active, heterogeneous porous medium (Barlaz et al., 71 

1990). Due to its spatially and temporally varying nature (both within individual landfills and 72 

across the worldwide inventory), it is challenging to develop transport models with a realistic 73 

prospect of widespread applicability to MSW. However, it is important to note that models, no 74 

matter how complex, will always be a simplification of reality, and that the need and accuracy of 75 

models is often operationally defined. Early studies on flow were focused primarily on predicting 76 

the overall volume of leachate produced from an MSW sample under laboratory conditions 77 

(Ahmed et al., 1992; Demetracopoulos et al., 1986a; Demetracopoulos et al., 1986b; El-Fadel et 78 

al., 1997; Khanbilvardi et al., 1995; Korfiatis et al., 1984; Noble and Arnold, 1991; Zeiss, 1992). 79 

The most common approach to model the flow of leachate has consisted of applying the Richards 80 

equation to calculate the evolution of the leachate velocity in space-time while also incorporating 81 

the convection-dispersion equation to provide solute concentrations (Bendz and Singh, 1999; 82 

Demetracopoulos et al., 1986a; Demetracopoulos et al., 1986b; El-Fadel et al., 1997; Han et al., 83 

2011; Haydar and Khire, 2005; Haydar and Khire, 2007; Khire and Kaushik, 2012; Khire and 84 

Mukherjee, 2007; Khire and Saravanathiiban, 2010; Korfiatis et al., 1984; Noble and Arnold, 85 

1991). Extensive use of these mechanistic representative elementary volume (REV) (often defined 86 

as the smallest volume which can be considered representative of the entire waste mass) based 87 

models has been carried out to understand the flow behaviour of MSW (Rosqvist and Destouni, 88 
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2000; Rosqvist et al., 2005) with some studies focusing on conceptual models of the pore structure 89 

of MSW at the elementary scale (Han et al., 2011; Woodman et al., 2014, 2015; Woodman et al., 90 

2013). However, to date, our understanding of the flow of leachate, biogas and the impact of other 91 

simultaneously occurring biogeochemical processes on flow and transport is incomplete, 92 

especially at the pore-scale. This is particularly important to note since it is these pore-scale 93 

processes, with the possibility of field-scale processes dominating particular facets at particular 94 

times, that ultimately govern the overall behaviour in reactive porous media (Blunt, 2001; Blunt 95 

et al., 2013; Menke et al., 2017; Xiong, 2015; Xiong et al., 2016). It is likely that processes average 96 

over a wide range of different scales, which would explain the success of the widely used empirical 97 

landfill gas models. The real challenge lies in the integration of modelling processes at all the 98 

scales and understanding how averaging works. It is clear that one of the most difficult aspects to 99 

model is the inherent heterogeneity of the waste mass, and the impact of different waste 100 

components (e.g. their shapes, sizes and varying biodegradation rates) and numerous coupled 101 

processes on the flow regime. In this paper, heterogeneity is referred to as the variability in the 102 

properties of MSW, while preferential flow is defined as the phenomenon where the leachate takes 103 

the path of least resistance through the waste mass and channels through the larger pores (Beaven 104 

et al., 2011; Dixon and Langer, 2006; Dixon et al., 2008a; Dixon et al., 2011; Dixon et al., 2008b; 105 

Kjeldsen and Beaven, 2011; Powrie and Beaven, 1999; Woodman, 2007). 106 

The objective of this paper is to provide a case for examining fluid flow in municipal solid waste 107 

at the pore-scale. Following from El-Fadel et al. (1997), we pay particular attention to the 108 

development of the field within the last 20 years.  Whilst attempting to make a case for moving 109 

past the REV this paper is not intended to provide an exhaustive overview of the field. Instead, we 110 

reflect on a focussed collection of recent key contributions with the aim of painting an accurate 111 



 7 

picture of the state of the art, highlighting the limitations of and gaps in our knowledge to identify 112 

emerging themes in the field and provide suggestions for future work. We first discuss emerging 113 

themes in the field to draw the reader’s attention to a series of significant challenges. We then 114 

examine contributions regarding the modelling of leachate flow and chemical transport via 115 

mechanistic and stochastic approaches, at a variety of scales.  This is followed by consideration of 116 

contributions regarding leachate flow and chemical transport incorporating some of the complex 117 

landfill processes (e.g. biodegradation). We conclude with future needs and recommendations to 118 

improve our understanding of transport phenomena within MSW. Our recommendations are 119 

focused around obtaining pore-scale insights (Figure 1) into these processes with the ultimate aim 120 

of better field-scale prediction. We provide the literature search methodology as part of supporting 121 

information for this article.  122 

2. EMERGING THEMES IN THE FIELD & MOTIVATION 123 

As shown in Table 1, in the last 20 years, work in the field has developed from consideration of 124 

homogeneous 1D models primarily focused on the liquid phase to representation of complex 3D 125 

transport processes (e.g. solute transport, biodegradation, settlement), and the interaction of these 126 

phenomena with the waste structure. However, from the literature discussed hereafter, it is evident 127 

that our understanding of the transport phenomena at play in MSW is far from complete.  128 

As discussed in the following sections, elementary-scale models (e.g. the Richards equation) 129 

have been applied extensively in the last 20 years to study flow in MSW. While researchers have 130 

tried to consider the physical and biogeochemical processes taking place in the waste mass, current 131 

modelling approaches simplify these processes in comparison to the high level of complexity 132 

found in a typical MSW landfill system, likely adding to the discrepancies between experimental 133 
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data and models; all the while there is growing evidence that these complex processes play a 134 

significant role in transport through MSW. Of course, models are always a simplification of reality, 135 

and even coupling of relatively simple processes produces models that can be difficult to validate 136 

against typical, easily available datasets. However, validation exercises are vital to identify the 137 

range of validity of a particular model and its weaknesses. For instance a relatively recent model 138 

comparison exercise, which is explored in detail later, found inconsistencies between available 139 

models and their ability to predict experimental data from a well-constrained lab-scale MSW 140 

landfill (Beaven, 2008; Beaven et al., 2008), suggesting that perhaps our understanding of 141 

underlying coupled processes within the waste matrix needs improvement before reliable short-142 

term and long-term predictions can be made. It is also important to note that models are made for 143 

a specific objective and in many cases the models are performing at an acceptable level to achieve 144 

that objective. An example of this is the use of landfill gas models in practice (for example GasSim 145 

(Golder Associates, 2012) is a widely used model in the UK) (Clewes et al., 2008).  Such models 146 

are extreme simplifications of reality (e.g. based on zero or first-order decay functions) but match 147 

the measured trends well and are used to make operational decisions, even though our 148 

understanding of the underlying processes in the waste body is still quite poor. The same applies 149 

to the stoichiometric equations used in recent geochemical speciation modelling work for landfills 150 

(van der Sloot et al., 2017; van der Sloot et al., 2007). While this may be the case for models with 151 

a certain objective, when it comes to flow/transport models incorporating biogeomechanical 152 

phenomena to describe the landfill system and predict its behaviour, they are difficult to validate 153 

due to lack of complete data sets, and/or they become highly parameterized requiring empirical 154 

data to infer model parameters, and even then, the high number of degrees of freedom make it 155 

difficult to parameterize the models. Within this body of work, we have also found that there is a 156 
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significant lack of full validation of a number of flow and transport models which attempt to 157 

incorporate biogeomechanical processes, against real experimental or field data. Where model 158 

comparison exercises have occurred, discrepancies between modelled and experimental data are 159 

suggestive of our lack of understanding of the MSW system. As such, it is difficult to say at this 160 

moment in time whether these complex models are applicable to real-life scenarios for the 161 

operational needs of the waste industry.  162 

Recent studies (Woodman, 2007; Woodman et al., 2017; Woodman et al., 2014, 2015; 163 

Woodman et al., 2013), contrary to previous work (Bendz et al., 1998; Bengtsson et al., 1994; 164 

Oman and Rosqvist, 1999; Rosqvist and Bendz, 1999; Rosqvist and Destouni, 2000; Rosqvist et 165 

al., 2005), have discovered that some tracers (e.g. lithium, deuterium) exhibit anomalous transport 166 

in MSW, with tracers previously thought to be geochemically inert (Oman and Rosqvist, 1999; 167 

Reinhart, 1989; Rosqvist and Destouni, 2000) in their passage through the pores of MSW being 168 

found to exhibit non-conservative transport (Woodman et al., 2014, 2015). Current mechanistic 169 

REV-based approaches have not been able to predict this behaviour; thus, we do not fully know 170 

what happens to these tracers as they travel through the pore space. Upon studying the impact of 171 

mechanical compression of the waste matrix on diffusion of different tracers with varying 172 

diffusivities, researchers have also found that while compression decreases the hydraulic 173 

conductivity block diffusion times do not vary significantly, contrary to predictions by continuum-174 

scale models (e.g. Richards’ equation), suggesting that our understanding of diffusive transport 175 

through MSW may not be entirely representative of real-life behaviour (Woodman et al., 2014). 176 

From anomalous tracer transport, to conceptual models of the structure of MSW, it is clear that 177 

our understanding of the role of MSW structure and its fluid-structure interaction with leachate as 178 

it travels through the pore space is incomplete and requires further development.  179 
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It is also clear that the structure of the waste plays a significant role in the transport of leachate. 180 

Generally, attempts to describe the structure as a homogeneous matrix have been unsuccessful, 181 

with leachate exhibiting preferential channelling. Typically, in attempts to describe preferential 182 

channelling, the waste structure has been split into two domains representing slow- and fast-183 

moving water. It is possible that these dual-porosity/permeability models are an oversimplification 184 

of the complex flow behaviour exhibited by MSW, where the flow regimes are instead more likely 185 

to be a continuous spectrum rather than just two categories of flow. However, it is important to 186 

acknowledge that the simplifications within these models are a direct consequence of the intended 187 

purpose of modelling. If the purpose is understanding, then simplification allows a focus on the 188 

interaction of the main governing principles, if the purpose is prediction then the focus is 189 

interpolation and extrapolation. However, it is important to note here that it is likely that this 190 

preferential channelling, at least in part, is a direct consequence of the structure of MSW and the 191 

fluid-structure interaction exhibited by the system as the leachate flows through the pore network.  192 

 To further understanding of these phenomena, conceptual models of the waste structure have 193 

been proposed, where the waste mass is assumed to contain low and high permeability objects in 194 

layers. Here, preferential pathways occur through the large gaps between these objects, and 195 

advection dominates, whereas within these layers, diffusion dominates and occurs mainly in the 196 

horizontal direction within the more permeable layers (Bendz et al., 1998; Woodman et al., 2014). 197 

However, such proposed conceptual models of the structure of MSW are likely to be, at best, 198 

difficult to validate via continuum modelling approaches that are prevalent in the literature. As 199 

such, when considering transport of leachate in landfills, it may be necessary to adopt more 200 

complex models offered by REV approaches to add an extra layer of detail and consider the 201 

composition and hydraulic properties of MSW components and the resulting pore network. As 202 
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discussed below, it is likely that different waste components exhibit different permeability 203 

characteristics and may cause local variation of flow properties within the waste matrix (Muaaz-204 

Us-Salam et al., 2017), and it might be important to take these into account, especially due to the 205 

ever-evolving pore-structure of MSW due to biodegradation, mechanical creep etc. (Fei, 2016; Fei 206 

and Zekkos, 2012; Fei and Zekkos, 2013; Fei and Zekkos, 2016; Fei et al., 2013; Fei et al., 2014a; 207 

Fei et al., 2014b, 2015, 2016). 208 

3. MODELLING OF LEACHATE FLOW & SOLUTE TRANSPORT  209 

In this section we consider the development of mechanistic and stochastic modelling approaches 210 

to represent leachate flow in MSW and seek to critically assess how well these models have been 211 

able to capture experimentally observed behaviour. Whilst a considerable number of studies have 212 

been reported e.g. (Abbaspour, 2005; Abbaspour et al., 2004; Al-Thani et al., 2004; Brun and 213 

Engesgaard, 2002; El-Fadel, 1999; Haydar and Khire, 2005; Islam et al., 2001; Olaosun, 2001; 214 

Oman and Rosqvist, 1999; Powrie and Beaven, 1999; Rosqvist and Bendz, 1999; Ünlü and Rowe, 215 

2004), we discuss a selected few representative contributions in detail to highlight the significant 216 

issues. 217 

3.1. Mechanistic techniques: Earlier studies on flow were focused on simple REV-based 218 

approaches, predominantly involving models treating MSW as a homogeneous porous medium 219 

based on Darcy’s law incorporating advection-dispersion phenomena to represent solute transport 220 

(Ahmed et al., 1992; Bleiker et al., 1995; Chen and Chynoweth, 1995; Deeley et al., 1985; 221 

Demetracopoulos et al., 1986b; El-Fadel et al., 1997; Khanbilvardi et al., 1995; Pohland, 1980; 222 

Reinhart, 1995; Reinhart, 1996; Sykes and Farquhar, 1983; Sykes et al., 1982). For instance, the 223 

theory of unsaturated flow through homogeneous and isotropic porous media has been applied to 224 
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study flow through MSW by Korfiatis et al., 1984. Their model used a vertical 1D equation for 225 

downward flow through an unsaturated porous medium, considering the variation of moisture 226 

content with time, hydraulic conductivity with depth and a source-sink term. Overall, the 227 

agreement between the modelled and experimental data was poor. To our knowledge, this was one 228 

of the first recorded studies to demonstrate the existence of preferential flow and spatial variance 229 

of hydraulic properties of municipal solid waste. Much of this earlier work highlighted the 230 

unsuitability of assuming MSW to be a homogeneous, porous medium and the importance of 231 

including the heterogeneous nature of waste in the modelling framework.  232 

In recent years, researchers have also used commercial codes and simulation software (e.g. 233 

HYDRUS, MODFLOW-SURFACT, COMSOL Multiphysics etc.) to model transport in MSW 234 

(Audebert et al., 2016a; Audebert et al., 2016b; Beaven et al., 2011; Fellner and Brunner, 2010; 235 

Haydar and Khire, 2005; Haydar and Khire, 2007; Khire and Kaushik, 2012; Khire and Mukherjee, 236 

2007; Khire and Saravanathiiban, 2010; Kjeldsen and Beaven, 2011; Olivier et al., 2009; Saquing 237 

et al., 2012; Slimani et al., 2016; Tinet et al., 2011a; Tinet et al., 2011b). Amongst commercial 238 

codes, HYDRUS has been a recurrent choice for modelling flow through MSW (Fellner and 239 

Brunner, 2010; Haydar and Khire, 2005; Haydar and Khire, 2007; Khire and Kaushik, 2012; Khire 240 

and Mukherjee, 2007; Reddy et al., 2013). HYDRUS is based on a modified form of the Richards 241 

equation solved for saturated-unsaturated flow, and the advection-dispersion equation for solute 242 

and heat transport. The Richards equation may also be modified to include dual-243 

porosity/permeability effects (Simunek and van Genuchten, 2008; Šimůnek et al., 2011). For 244 

instance, transport of phenol as a model contaminant in a laboratory-scale reactor containing 245 

simulated MSW has been studied and its transport modelled via HYRUS-1D (Saquing et al., 2012; 246 

Simunek et al., 2003; Simunek and van Genuchten, 2008). Solute transport in the liquid phase was 247 
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described by the advection-dispersion equation. When the combined effects of sorption and 248 

biodegradation on phenol transport were studied, the model was in very poor agreement with the 249 

data, yielding an inversely derived biodegradation rate that was two orders of magnitude higher 250 

than the independently measured rate, suggesting that transport through the MSW medium is 251 

complex and the fluid-structure interaction exhibited through the medium is of relevance for 252 

hydrological prediction.  253 

In recent years, as demonstrated below, the scale of interest for modelling leachate transport has 254 

shifted from bench scale towards pilot- and field-scales, partly due to developments in 255 

computational capacity but also because engineers, waste managers and regulatory authorities are 256 

ultimately interested in the field-scale. For instance, researchers have adopted a kinetic wave 257 

model, first proposed by Beven and Germann (1981) for describing water flows in soils with 258 

macropores, to determine the channel flow in landfills (Bendz et al., 1998). A source/sink term 259 

was used to account for flow from and into the channel from the matrix (Beven and Germann, 260 

1981). Upon moisture intrusion into the landfill due to precipitation or leachate recirculation, water 261 

would filtrate from the channel into the matrix domain, whereas during dry periods it would be 262 

released to the channel domain. They tested their approach against a pilot-scale MSW sample and 263 

found that the model could describe the arrival of the wetting front and the drainage front during 264 

unsteady flow, whereas it was not able to describe the observed dispersion through the MSW 265 

sample. Their work highlighted the unsuitability of assuming the flux laws through MSW to be 266 

strictly convective in nature, and the importance of considering the spatial variability of this porous 267 

medium for hydrological modelling.  268 

A very popular mechanistic approach to modelling of flow has been to apply different 269 

formulations of the Richards equation, dividing the domain into two homogeneous and isotropic 270 
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overlapping continua (e.g. mobile and immobile regions of liquid) in an attempt to capture the 271 

complex pore space of MSW (Beaven et al., 2011; Di Bella et al., 2012; Di Bella et al., 2015; 272 

Fellner and Brunner, 2010; Han et al., 2011; Kjeldsen and Beaven, 2011; McDougall, 2011; 273 

Slimani et al., 2016; Statom et al., 2006; Tinet et al., 2011b). For instance, vertical flow in MSW 274 

samples at the pilot-scale has been investigated by Woodman et al., (2015) interestingly in their 275 

study lithium did not behave conservatively as a tracer. The positively skewed tracer breakthrough 276 

curves exhibited tailing, as observed in previous studies (Bendz et al., 1998; Oman and Rosqvist, 277 

1999; Rosqvist and Bendz, 1999; Rosqvist and Destouni, 2000; Rosqvist et al., 2005). They 278 

compared advection-dispersion, dual-porosity and hybrid advection-dispersion/dual-porosity 279 

models. In the advection-dispersion approach, different processes responsible for non-uniform 280 

flow are essentially lumped together into the dispersivity parameter. The dual-porosity model 281 

consistently offered a better fit. The hybrid advection-dispersion/dual-porosity model only 282 

performed well when either advection-dispersion or dual-porosity behaviour dominated. This 283 

research shed light on the previously mentioned anomalous transport within MSW, in terms of 284 

REV domain-based modelling approaches, indicating that multi-porosity mechanisms may be 285 

significant, and considering the variety of components present in MSW (wood, paper, card, food 286 

waste etc.), this is entirely plausible (Athanasopoulos, 2008; Beaven et al., 2011; Dixon et al., 287 

2011; Dixon et al., 2008b; Gotze et al., 2016; Grellier, 2007; Hossain, 2002; Koganti, 2015; 288 

Matasovic et al., 2008; Reddy et al., 2011; Reddy et al., 2009; Zekkos, 2005; Zekkos et al., 2010; 289 

Zekkos et al., 2008). For instance, researchers have studied the hydraulic properties of different 290 

MSW components (e.g. paper and wood (Ghane et al., 2014; Ghane et al., 2016; Han et al., 2011; 291 

Subroy et al., 2014)) where both these components’ hydraulic properties could be described by 292 

dual-permeability Richards equations, but their intrinsic permeability varied by 1-2 orders of 293 
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magnitude, suggesting that if they were both present in a waste matrix, due to their varying 294 

hydraulic characteristics, it may not be possible to model the dual-porosity characteristics of the 295 

entire waste body by assigning them a single set of properties.  296 

It is important to note that any model be it analytical or numerical is an approximation of real 297 

behaviour.  Whilst analytical models cannot really handle heterogeneity, and therefore have 298 

lumped parameters, numerical models do allow us to include heterogeneity however, the number 299 

of parameters required make it very difficult to parameterize the models. All assumptions, the 300 

manner in which the models are implemented (reaction pathways/solution algorithms/numerical 301 

schemes) and how the boundary conditions are integrated into the model also have a significant 302 

impact on the model outcome. This could help explain why models based on the same governing 303 

equations, initial and boundary conditions can yield varying predictions (Beaven, 2008; Beaven et 304 

al., 2008).  305 

The increasingly popular dual-porosity approach was recently tested against field-scale data by 306 

Woodman et al., (2017).  Solute transport and horizontal fluid flow between well pairs in a 307 

saturated MSW landfill via the use of lithium and bromide tracers along with a fluorescent dye 308 

was investigated. Poor fits were obtained with the advection-dispersion model, while the dual-309 

porosity model considered offered a better fit to the breakthrough curves. However, simply 310 

because dual-porosity models tend to fit the data better than others (likely due to the extra degrees 311 

of freedom in the equations) is not sufficient to conclude that this is absolutely and the only manner 312 

in which fluid flows through MSW, it is more of an indication that REV-based dual-porosity 313 

approaches are relatively better at describing the behaviour than other simpler REV-based 314 

approaches. This research also added to the growing body of evidence regarding the anomalous 315 

behaviour of lithium as a tracer in MSW (Woodman et al., 2014, 2015; Woodman et al., 2013). 316 
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More importantly, this anomalous behaviour highlights the significance of the fluid-structure 317 

interaction of the MSW with the mobile liquid, tracers and transport phenomena in general. Fitting 318 

parameters in a model to match data is an approach that is adequate if interpolation and limited 319 

extrapolation is the objective of model. Nevertheless, models developed to increase our 320 

mechanistic understanding should be based on independently determined material parameters. 321 

However, this is only practical for relatively small simple waste samples and upscaling to full-322 

scale landfills will require some form of fitting (determination of parameters of a probability 323 

distribution), thereby moving the model away from its mechanistic basis. 324 

Similar to the above, the Richards equation has also been applied to model leachate pumping 325 

and injection data at the field-scale by Slimani et al. (2016). They tested the Richards equation 326 

under homogeneous conditions, as well as stratified conditions by decreasing the permeability with 327 

depth in order to represent ‘real-life’ conditions, drawing support from the conceptual model of 328 

the layered structure of MSW first presented by Bendz and Singh (1999). They found the 329 

homogeneous assumption to be inappropriate to describe the flow behaviour, and that 330 

consideration of stratification yielded better fits to the data.  It should be noted that REV-based 331 

modelling approaches, where the domain is essentially homogenized, albeit segmented in some 332 

approaches, as discussed above, may not be entirely suitable to carry out a deeper investigation 333 

into the role of the structure of MSW, or that of its different components and their dual-/multi-334 

porosity characteristics. This is because the transport processes at play take place inside the pores 335 

of this porous medium and it is likely that it is their multi-scale behaviour that governs transport 336 

at the field-scale. In another study, researchers developed a dual-porosity flow model to study the 337 

flow of leachate to vertical wells (Ke et al., 2018). As is typical for this type of model, the waste 338 

mass was divided into matrix and fracture domains, whereby flow could occur horizontally and 339 
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vertically towards the vertical well with the possibility of mass exchange between the two 340 

continua. Sensitivity analysis indicated that the hydraulic properties of the fracture domain 341 

influence leachate drawdown more so than those of the matrix domain. Interestingly, the degree 342 

of anisotropy (horizontal hydraulic conductivity	÷ vertical hydraulic conductivity) was found to 343 

have a negative impact on leachate drawdown as it gets sequentially harder for leachate to flow 344 

vertically. Furthermore, the authors also tested their model against field-scale drawdown test data. 345 

Whereby upon fitting the data to the proposed model to obtain parameters such as hydraulic 346 

conductivities of the fracture and matrix continua, the authors were able to obtain a reasonably 347 

good fit. Their study shed light on the need for field-scale data which is required to inform current 348 

elementary-scale models, without which the predictive capabilities of current elementary-scale 349 

models are very limited.  350 

Researchers have also applied electrical resistivity tomography (ERT) subsurface modelling to 351 

understand the flow in two landfill cells and subsequently model the flow of leachate within them 352 

(Audebert et al., 2016a; Audebert et al., 2016b). Despite the inherent heterogeneity of landfilled 353 

waste, similarities between the leachate injection experiments were reported. They proposed a 354 

hydrodynamic model (based on the dual permeability model in HYDRUS-2D) with one parameter 355 

set to predict leachate flow for the waste deposit cells. Similar to recent studies, they found the 356 

dual continuum approach better described the flow of leachate in comparison with the single-357 

continuum assumption (Han et al., 2011; Woodman, 2007; Woodman et al., 2017; Woodman et 358 

al., 2014, 2015; Woodman et al., 2013). 359 

3.2. Stochastic and probabilistic modelling: Instead of mechanistic approaches, some 360 

researchers albeit comparatively few in number, have adopted stochastic and/or probabilistic 361 

modelling approaches (McCreanor and Reinhart, 1999, 2000; Reinhart et al., 2002; Rosqvist and 362 
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Destouni, 2000; Rosqvist et al., 2005; Zacharof and Butler, 2004a, b). For instance, the U.S. 363 

Geological Survey’s saturated-unsaturated transport model (SUTRA) has been applied to model 364 

flow in MSW in homogeneous anisotropic and heterogeneous waste masses (McCreanor and 365 

Reinhart, 1999, 2000) using a stochastic approach to model the heterogeneous nature of MSW. 366 

They used normal, exponentially increasing and exponentially decreasing probability density 367 

functions to model the frequency-hydraulic conductivity relationships for anisotropy and 368 

heterogeneity. The flow in the model itself was described by a general form of Darcy’s law (Voss, 369 

1984). They compared results for the homogeneous, isotropic case, due to low computation times, 370 

against field data for cumulative leachate volumes generated and found errors ranging from 27 to 371 

160%, indicating the unsuitability of modelling the waste mass isotropically. They discussed that 372 

the discrepancies were likely due to preferential flow. Overall, their study was one of the first to 373 

highlight the possibility of applying stochastic approaches to tackle the problem of waste 374 

heterogeneity. Similarly, a probabilistic Lagrangian modelling approach was adopted to interpret 375 

tracer breakthrough curves by (Rosqvist and Destouni, 2000; Rosqvist et al., 2005). To account 376 

for preferential flow, they divided the domain into mobile and immobile water (Hopmans et al., 377 

2002; Kohne et al., 2009; Simunek et al., 2003; Simunek and van Genuchten, 2008; Vereecken et 378 

al., 2016). Likewise, another approach divided the waste into regions of fast and slow flow paths, 379 

where the solute advection variability between these fast and slow flow paths was described by a 380 

bimodal probability density function (BIM). The tracer breakthrough curves had a long tail, and 381 

the early peaks were indicative of rapid solute transport in preferential flow paths, while the 382 

prolonged tails were possibly due to transport in the slow regions. Overall, the experimental work 383 

indicated the existence of nonuniform transport. Interestingly, the authors claimed that the MIM 384 

model was able to fit to the data adequately, however, the dispersivity values were unreasonably 385 
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high suggesting that the spreading of the breakthrough curves could not be explained by local 386 

dispersion alone. The BIM model achieved good agreement with the tracer tests. Interestingly, the 387 

model interpreted that 90% of total water flow occurred through 47% of the water content of the 388 

waste sample, suggesting that preferential flow dominated the flow regime. This study showed 389 

that the landfill system cannot be described by models based on homogeneous isotropic media and 390 

indicated that two-domain models are better at describing transport through MSW. Interestingly, 391 

recent work (Caicedo-Concha, 2016; Caicedo-Concha et al., 2011; Caicedo, 2013; de Vries et al., 392 

2017; Kohne et al., 2009; Simunek et al., 2003; Simunek and van Genuchten, 2008; Vereecken et 393 

al., 2016) has suggested that different MSW fractions affect flow in different ways and as such, 394 

the validity of assigning the same immobile region characteristics to the entire waste matrix is 395 

debatable. Of course, the suitability of adopting such assumption depends significantly on the 396 

objectives of the model, as accuracy is operationally defined and not an absolute term.  397 

4. MODELLING OF LEACHATE & GAS TRANSPORT INCORPORATING 398 

DEGRADATION & DEFORMATION  399 

Here, we consider the development of modelling approaches to represent leachate flow in MSW 400 

coupled with biogeomechanical processes occurring within the waste mass. Within this body of 401 

work, we demonstrate that there is a significant lack of validation against real experimental or field 402 

data. Where validation has occurred, the differences between modelled and experimental data 403 

suggest a lack in our understanding of the MSW system as a whole. For instance, as noted earlier 404 

a recent model comparison exercise was conducted where modellers were provided with set-up 405 

and operational data for two experimental lab-scale landfills and invited to submit predictions for 406 

variables such as waste settlement, gas generation, changes in leachate chemistry etc. (Beaven, 407 
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2008; Beaven et al., 2008; Clewes et al., 2008; Ivanova et al., 2008; Lobo et al., 2008; McDougall, 408 

2008; Reichel and Haarstrick, 2008; White, 2008; White and Beaven, 2013). The majority of the 409 

models underpredicted the cumulative biogas production, with one of the models overpredicting 410 

the yield (for one of the experiments, by almost twofold). Most of the models predicted the trends 411 

in data such as settlement and volatile fatty acid concentrations with varying degrees of accuracy. 412 

Detailed descriptions of some of these models and their underlying frameworks are discussed later.  413 

To describe two-phase flow (gas, liquid) in landfills, REV-based models obeying Darcy’s law 414 

overall, and in some instances explicitly modelled via variants of the Richards equation, with van 415 

Genuchten functions to describe relative permeabilities of leachate and gas, have been applied 416 

widely (Feng and Zhang, 2013; Feng et al., 2017; Feng et al., 2015; Feng and Zheng, 2014; Feng 417 

et al., 2016; Kindlein et al., 2006; Sanchez et al., 2006; Sanchez et al., 2007, 2010; White and 418 

Beaven, 2013; White et al., 2011; White et al., 2014). As a typical example, Reddy et al. (2014) 419 

applied the finite-difference based Fast Lagrangian Analysis of Continua (FLAC) model to 420 

simulate two-phase flow in bioreactor landfills. They assumed leachate and biogas to be 421 

immiscible fluids whose flow was governed by leachate saturation and capillary pressure (pressure 422 

difference between pore water and pore gas). The flow of these two fluids was described via 423 

Darcy’s law, and the relative permeabilities were related to the saturation of the waste via van 424 

Genuchten functions (van Genuchten, 1980). Upon validation against data obtained from the 425 

literature (-laboratory & field-scale) & similar single-phase modelling work, the authors claimed 426 

that FLAC was on par with currently available/used models.  427 

4.1. Implicit and explicit modelling of biogeomechanics. Likewise, variants of the two-phase 428 

approach have been coupled with models of other biogeomechanical processes in landfills in 429 

attempts to describe the whole system. For instance, a 2D multiphase flow and transport model 430 
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incorporating degradation was presented by Kindlein et al., 2006. They modelled the landfill 431 

system as a homogeneous domain arguing that the landfill heterogeneity at the field-scale can be 432 

neglected, which, as previously discussed, may not be a suitable assumption. The hydraulic model 433 

for multiphase flow was based on the work of Bear and Helmig by applying Darcy’s law for fluid 434 

flow incorporating diffusion and dispersion (Bear, 1972; Helmig, 1997). The relative permeability 435 

of waste and gas was based on the Brooks and Corey functions (Brooks and Corey, 1964). Monod 436 

kinetics was employed to model biodegradation and the evolution of organic compounds with 437 

time. Biodegradation was coupled with multiphase flow implicitly by including sinks and sources 438 

in the multiphase equations for leachate and biogas. Although they did not validate their model 439 

against field-scale or laboratory-scale data, their model suggested that leachate tends to move 440 

preferentially around regions of waste exhibiting gas production. Overall, their study showed the 441 

possibility of modelling flow of leachate and gas exclusively, while considering biodegradation as 442 

sources and sinks instead of explicitly modelling individual degradation stages. However, their 443 

study lacked the inclusion of the inherent heterogeneity of the waste, which might have impacted 444 

their results.   445 

In many instances, many of the two-phase flow models in the literature have not been fully tested 446 

against experimental or field-data, and where reported, the agreement between these types of 447 

models and measured data has been poor. For instance, a hydro-bio-mechanical model to represent 448 

the behaviour of landfilled waste has been developed (Datta et al., 2017; Kazimoglu et al., 2006; 449 

McDougall, 2007; McDougall, 2011). The hydraulic model was based on the 2D formulation of 450 

Richards’ equation, and the van Genuchten parameters were used to express the relationship 451 

between suction and moisture content in order to solve unsaturated flow scenarios. The 452 

biodegradation model was based on modelling individual anaerobic degradation reactions 453 
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explicitly (hydrolysis, acetogenesis, methanogenesis). However, the biodegradation model 454 

assumed a perfectly-mixed two-stage anaerobic digester, while all the degradable waste was 455 

classified as cellulose in the modelling of these reactions. Recently, Datta et al. applied this model 456 

to a laboratory-scale experiment studying coupled processes in MSW (Datta et al., 2017). The 457 

overall predicted methane generation volume was more than double the experimental value, 458 

suggesting that approximating all the degradable content of MSW as cellulose for modelling 459 

purposes is likely an unsuitable assumption, particularly due to the presence of hemicellulose and 460 

the more recalcitrant, lignin components of the biodegradable matter within MSW. Similarly, 461 

researchers have developed a 3D two-phase flow model for leachate and gas flow in landfills (Feng 462 

et al., 2018; Feng et al., 2017). As with Kindlein et al. (2006) they modelled the leachate and gas 463 

flow via Darcy’s law, with source-sink terms for gas and leachate resulting from biodegradation 464 

from the landfill, ignoring intermediate degradation products (Feng and Zhang, 2013; Feng et al., 465 

2017; Feng and Zheng, 2014; Feng et al., 2016; Kindlein et al., 2006). The relative permeabilities 466 

were modelled by adopting the van Genuchten and Mualem model and assuming that gas and 467 

leachate are immiscible, the porosity of the waste remains constant and isothermal conditions 468 

prevail (Mualem 1976; van Genuchten 1980). Comparison against field data for spatial variation 469 

of pore water pressure showed poor fits, and the authors discussed the possibility of heterogeneity 470 

of the waste hydraulic properties causing disagreements between measured and predicted data. 471 

This study highlighted the importance of considering the flow of leachate and gas as coupled 472 

phenomena, and the unpredictability that arises in modelling these phenomena when the waste 473 

structure and its heterogeneity are not considered, as is typical of REV-based modelling strategies.  474 

In addition to modelling two-phase flow with biogeomechanical processes, some researchers 475 

have opted for a compromise between modelling biodegradation explicitly, reaction-by-reaction 476 
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(McDougall, 2007; Kindlein et al., 2007) and simply including it as a source-sink term by 477 

modelling bulk biogas generation as a first-order process. For instance, a 2D coupled hydro-bio-478 

mechanical model was recently developed (Reddy et al., 2017a; Reddy et al., 2017b). The two-479 

phase hydraulic model was based on Richards’ equation, where the biogas and leachate were 480 

considered immiscible and the relative permeabilities of the leachate and gas were modelled via 481 

the van Genuchten model. A Mohr-Coulomb based plane-strain plasticity model was adopted to 482 

model the settlement of the waste. USEPA’s LandGEM model was used to model first-order 483 

biodegradation of the waste mass (USEPA, 2005). It should be pointed out that whilst this model 484 

has not been verified against field data as of yet, the authors have performed parametric case 485 

studies to identify the importance of certain parameters to inform bioreactor landfill design. Their 486 

modelling framework does not consider heterogeneity of the hydraulic, biochemical and 487 

geotechnical properties of the waste mass, which would likely impact their model’s predictions at 488 

the field-scale. Their framework also assumes a first order bulk gas generation and degradation 489 

behaviour from the waste mass. Recent evidence has shown that different MSW components 490 

which are biodegradable exhibit variable degradation behaviour and that lignin-rich components 491 

of MSW generally do not undergo biodegradation in the landfill environment (Jayasinghe et al., 492 

2014; Krause et al., 2017; Krause et al., 2016; Muaaz-Us-Salam et al., 2017; Wang, 2015; Wang 493 

and Barlaz, 2016; Wang et al., 2015; Wang et al., 2011; Wang et al., 2013; Warwick et al., 2018; 494 

Ximenes et al., 2015; Ximenes et al., 2008). Overall, their studies have provided valuable insights 495 

into the importance of coupled processes in designing bioreactor landfills for leachate recirculation 496 

and early stabilization of the waste mass.  497 

4.2. Consideration of heterogeneity. In addition to coupling biogeochemical processes with 498 

the aforementioned two-phase REV-based approaches, some researchers have also attempted to 499 
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capture the heterogeneity of the waste mass (McCreanor and Reinhart, 1999, 2000; Sanchez et al., 500 

2006; Sanchez et al., 2007, 2010; Zacharof and Butler, 2004a, b). For example, flow has been 501 

modelled stochastically through MSW incorporating waste heterogeneity and biogas production 502 

(McCreanor and Reinhart, 1999, 2000; Zacharof and Butler, 2004a, b) . In the latter model, 503 

biochemical pathways (hydrolysis, acetogenesis and methanogenesis) were modelled individually 504 

for the various components of the organic fraction represented by carbohydrates, fats and proteins. 505 

Model molecules for each of these components were chosen and growth/decay functions were 506 

used to model the rates of change in the molar mass of these components during hydrolysis, 507 

acetogenesis and methanogenesis. Flow was modelled stochastically to include the effects of waste 508 

heterogeneity by taking the overall flow through the landfill to be time invariant. It was also 509 

assumed that the flows through the waste were log-normally distributed against the average 510 

vertical water velocities. The statistical velocity model was then used to calculate the travel times 511 

of the leachate particles by using the random function given by the ratio of the distance travelled 512 

to the average velocity experienced. Since time was the key variable in the hydrological and 513 

biochemical modules, it was used as the basis to produce the integrated model with the overall aim 514 

of predicting leachate and biogas compositions. However, similar to other field-scale models 515 

discussed in this section, testing against actual field data was not reported. It should also be noted 516 

that whilst stochastic modelling may be suitable to fit experimental data and gain some insight into 517 

the flow regime of the porous medium, unlike mechanistic approaches, it is not an ideal way to 518 

gain in-depth understanding of the physics and biogeochemistry of these phenomena. In another 519 

attempt to consider the impact of the inherent heterogeneity of MSW on flow and biogeochemical 520 

phenomena, a 3D model for biodegradation, and flow of landfill gas and leachate has been 521 

developed (Sanchez et al., 2006; Sanchez et al., 2007, 2010). They modelled individual aerobic 522 
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and anaerobic degradation reactions by employing Suk et al. and Lee et al.’s models for the 523 

dissolved carbon, its conversion to organic acids and the rate of growth of microorganisms.(Lee et 524 

al., 2001; Suk et al., 2000) They then employed El-Fadel et al.’s strategy to model the bulk 525 

biodegradation of the waste by including relative biodegradability of certain fractions (El-Fadel et 526 

al., 1996; El-Fadel, 1996). The biodegradation module linked with the standard convection-527 

diffusion-reaction equation to model the concentration of landfill gas. Their hydraulic model was 528 

based on Richard’s equations, while the relative permeabilities of gas and leachate were modelled 529 

via van Genuchten functions. They considered heterogeneity of the waste mass by introducing 530 

spatial variation of permeabilities and porosities in 3D by employing the sequential Gaussian 531 

simulation technique. Although they did not test their model against actual field data, they 532 

simulated a variety of scenarios for homogeneous and heterogeneous landfills. In summary, their 533 

study demonstrated the impact of waste heterogeneity on flow of leachate and gas, and the 534 

significance of including two-phase flow to realistic modelling of landfill processes, since the 535 

inter-phase interactions impact the gauge pressure within the waste mass and influence the stability 536 

of landfills. (Table 1 here) 537 

5. FUTURE NEEDS & RECOMMENDATIONS 538 

In light of the state of the art reviewed above, we identify the following challenges and on this 539 

basis, provide recommendations for future research needs and potential multidisciplinary 540 

approaches to address them. 541 

(1) The ‘black box’ of waste – As perhaps suggested by other researchers, we recommend that 542 

gaining a better understanding of the aforementioned challenges requires penetrating the 543 

‘black box’ of waste. To achieve this an extra layer of detail is required in our current 544 
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continuum-scale understanding of transport. For instance, geophysics and petroleum 545 

engineering literature is rich with contributions successfully exploring transport in 546 

permeable geological media at the pore-scale (Bijeljic et al., 2011; Blunt, 2017; Blunt et al., 547 

2013; Mostaghimi, 2012; Mostaghimi et al., 2010; Mostaghimi et al., 2012; Mostaghimi et 548 

al., 2016; White and Beaven, 2008 ). Currently, a popular approach to modelling transport 549 

at the pore-scale involves using micro-CT X-ray scanning techniques to provide image data 550 

which are compiled to produce a digital 3D representation of pore-structure which is then 551 

used to define the modelling domain for flow simulations via various methods (e.g. Lattice-552 

Boltzmann, Navier-Stokes, Figure 1) (Abdelhay et al., 2016; Al-Gharbi and Blunt, 2005; 553 

Al-Kharusi and Blunt, 2007; Al-Khulaifi et al., 2017; Bijeljic et al., 2013; Bird et al., 2014; 554 

Boon, 2017; Davit et al., 2013; de Vries et al., 2017; Graveleau et al., 2017; Guibert et al., 555 

2016; Larachi et al., 2014; Liu et al., 2017; Menke et al., 2016; Menke et al., 2017; Pereira 556 

Nunes et al., 2015, 2016; Piller et al., 2014; Quintard, 2015; Raeini et al., 2013; Raeini et 557 

al., 2012; Roman et al., 2016; Seetha et al., 2017; Soulaine et al., 2011; Soulaine et al., 558 

2016). We suggest that studying flow and transport at the pore-scale in MSW would help 559 

us understand the complex mechanisms involved and generate vital information which can 560 

then be used to inform and/or modify our existing models for better prediction. For instance, 561 

micro-CT (depending on the resolution and sample size) might also be able to identify the 562 

pores within different MSW components (wood, food waste etc.) and with the help of pore-563 

scale computational fluid dynamics (CFD) simulations, could shed light on the dual-564 

porosity/permeability characteristics of MSW at the component-level and their role in 565 

impacting flow through the pore space.  566 
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(2) Fluid-structure interaction – The variable nature of MSW composition, and the resulting 567 

fluid-structure interaction resulting from various biogeochemical processes needs to be 568 

better understood, with particular attention to biodegradation, mechanical creep and other 569 

processes that result in a transient system with an evolving pore space (Caicedo, 2013). In 570 

order to understand the fluid-structure interactions and similar processes well, it may be 571 

beneficial to study the structure at the component-scale, including the packing between 572 

different components, as well as flow through individual material types, for instance, the 573 

fluid-structure interactions resulting from wood might be different to those resulting from 574 

food waste (Caicedo-Concha, 2016; Caicedo-Concha et al., 2011). 575 

(3) Heterogeneity – Throughout this paper it has been evident that researchers have found the 576 

multiscale heterogeneity of MSW, paired with other factors discussed above, has resulted 577 

in preferential flow and added to the complexity of modelling flow through this porous 578 

medium. This has been, and likely will continue to be, a significant challenge. Measuring 579 

and quantifying the variability of waste components in the matrix, their arrangement and 580 

the resulting multiscale heterogeneities is challenging, and has not been, to date, fully 581 

investigated. However, this review has highlighted how understanding the impact of 582 

heterogeneity on flow through MSW is an integral part of improving our predictions. Here 583 

we offer some suggestions to study heterogeneity. As discussed above, pore-scale 584 

experimental and modelling investigations of flow will likely improve our understanding of 585 

transport mechanisms. Fractal theory has been widely investigated in the sciences to study 586 

the inherent irregularity in nature and natural phenomena (Dekking et al., 1999; Hutchinson, 587 

1981; Mandelbrot, 1982; West et al., 1997). Recently, fractals have also been applied to 588 

porous media to study the properties of pore structures including multifractal analyses and 589 
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their ability to quantitatively describe multi-scale pore-structure heterogeneities (Bird et al., 590 

2006; Bird et al., 2000; Caplan et al., 2017; Gibson et al., 2006; Jaya et al., 2013; Liu and 591 

Ostadhassan, 2017; Lopes and Betrouni, 2009; Morató et al., 2017; San José Martínez et 592 

al., 2010; Wang et al., 2016a; Wang et al., 2016b; Xie et al., 2010; Xu, 2015; Xu et al., 593 

2015; Zhang et al., 2014). We suggest that this line of inquiry combined with pore-scale 594 

modelling of flow might help us quantitatively relate heterogeneity of MSW to the spatial 595 

distribution of its components and their individual dual permeability characteristics. It might 596 

also help us quantitatively determine the changes in heterogeneity due to the evolution of 597 

the pore space due to biogeochemical processes at a variety of scales to study their impact 598 

on transport phenomena.  599 

(4) Data and sources of error – Thus far, this paper has discussed modelling efforts to describe 600 

fluid flow in MSW, as well as fluid flow and transport incorporating biogeomechanical 601 

phenomena. In making the case for pore-scale modelling in MSW, a crucial focal point is 602 

the data that is required to study flow, transport and biogeomechanical processes and 603 

validate pore-scale modelling efforts. Since to the best of our knowledge such experimental 604 

data is sparse, within the context of MSW, it is important to explore possible experimental 605 

techniques and ideas at the pore-scale which could help in generation of data to gain a better 606 

understanding of the above to study and model these processes at the pore-scale. Following 607 

this, since the ultimate scale of interest is the field-scale, exploring the integration of insights 608 

obtained from pore-scale experiments and models into existing elementary/field-scale 609 

models could perhaps form the next step.  Figure 2 shows some of the processes that take 610 

place in the MSW system. Studying these processes at the pore-scale could be addressed 611 

with micro-model experiments combined with modern imaging techniques currently widely 612 
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used in digital rock physics work (Blunt et al., 2013; Xiong et al., 2016). Micromodel 613 

experiments in pore-scale literature have been vital in understanding fluid properties and 614 

fluid flow in permeable media. For instance, researchers have successfully used these 615 

techniques for investigating the evolution of the pore space in certain rocks due to typical 616 

geochemical dissolution reactions whereby the pore space is modified (Al-Khulaifi et al., 617 

2017; Blunt, 2017; Menke et al., 2016; Menke et al., 2017). However, detailed examination 618 

and review of these experimental techniques and possible lines of experimental inquiry are 619 

beyond the scope of this paper. (Fig. 1 here) 620 

While pore-scale investigation of fluid flow and biogeochemical processes might lead to new 621 

insights, as is the case with any experimental/modelling technique, sources of error and challenges 622 

will arise. One of the key points addressed in this paper has been the heterogeneity of the waste. 623 

This inherent heterogeneity makes representative sampling of a waste body very difficult and casts 624 

doubt on extrapolating the conclusions from one particular study to another. Pore-scale studies 625 

with micro-model experiments/models will likely encounter these doubts and difficulties. 626 

However, the purpose of this line of work would be to further understanding of the fundamental 627 

processes of the MSW system and the interaction between the different processes from Figure 2. 628 

What does this mean for currently existing models? Hopefully, experimental and numerical pore-629 

scale studies as described above, when put against currently existing data at the lab and field scales 630 

will help in establishing a relationship between scaling of flow/transport and 631 

biogeochemical/physical processes. This relationship between the scales should then help in 632 

understanding how averaging will work to upscale from the pore-scale, to the centimetre scale, up 633 

to the metre scale, leading all the way up to the field scale. (Fig. 2 here) 634 
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In conclusion, modelling transport phenomena in MSW is challenging due to its inherent multi-635 

scale heterogeneity and ever-evolving pore space due to various biogeochemical/physical 636 

processes. Continuum-scale models have not been able to sufficiently describe transport due to the 637 

impact of the aforementioned processes. We suggest studying transport at the pore-scale to further 638 

our understanding of transport within the pores of the waste, since it is these pore-scale processes 639 

that ultimately govern transport at the field-scale. The insights obtained could then be used to 640 

modify existing continuum-scale models for better prediction.  641 
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Table 1. An overview of recent transport models.  663 
 664 

Author(s) Objectives Features Assumptions & Limitations 

Bendz and Singh 
(1999); Bendz et 
al. (1998) 

Modelling of unsteady 
water flow in landfilled 
MSW, later modified for 
solute transport. 

DP under steady and transient 
conditions incorporating solute 
transport. 

1D, NH, IC. 

 
McCreanor and 
Reinhart (1999, 
2000) 

 
Better understanding of 
leachate movement 
mechanisms.  

Stochastic modelling incorporating 
heterogeneity. 

2D, IC. 

 
Suk et al. (2000) 

 
Develop a numerical model 
to compute leachate quality, 
gas composition, and gas 
pressure distribution over 
time in a landfill. 

2-phase, multispecies solute transport 
incorporating biodegradation. 

1D, NH and DP, ignores impact of 
biodegradation. 

Rosqvist and 
Destouni (2000) 

 
Study and quantify water 
and solute transport through 
preferential flow paths in 
biodegraded MSW by 
model interpretation of 
experimental BTCs. 

DP, under steady and transient 
conditions. 

IC, NH, unable to explain spreading of 
breakthrough curves. 

Zacharof and 
Butler (2004a, b) 

 
Mathematical modelling of 
the landfill environment. 

Stochastic modelling incorporates 
biodegradation and waste 
heterogeneity. 

Unable to simulate transient fluxes, limited 
testing against field data. 
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Rosqvist et al. 
(2005) 
 

Study and quantify 
pollutant concentrations 
after long-term leaching at 
relatively low flow rates 
and residual concentrations 
after heavy flushing of an 
MSW sample. 
 

Transfer function model able to 
simulate tracer BTCs. 

IC, NH, overpredicting tracer 
concentrations. 

Statom et al. 
(2006) 

Simulate the overall trend 
in chloride concentration 
from a closed landfill cell. 
 

DP, able to predict long-term 
leachate concentrations. 

IC, NH, steady-state conditions only, failed 
to predict high chloride concentrations. 

Kindlein et al. 
(2006) 
 

Numerical analysis of 
coupled transport and 
reaction processes inside 
landfills. 
 

2-phase transport incorporating 
degradation, heat and heterogeneity. 

2D, neglects relative biodegradability of 
different components and DP. 

(Garcia de 
Cortazar and 
Tejero Monzon, 
2007; 
Garciadecortazar 
and Monzon, 
2007) 
 

Simulation of the 
hydrological and 
biodegradation behavior of 
MSW landfills. 

Able to calculate daily leachate flow, 
organic pollution and the generation 
and composition of biogas in 
landfills. 

Impact of waste mechanics neglected, 
limited classification of biodegradable 
matter.  

McDougall (2007) 

Integrated analysis of the 
hydraulic, biodegradation 
and mechanical behavior of 
MSW. 

Coupled biodegradation, hydraulics, 
mechanics. 

No DP, NH, simplifies waste to cellulose, 
resulting in overestimation of 
biogas.(Datta et al., 2017) 
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Sanchez et al. 
(2010) 
 

Generation and transport of 
the major gaseous 
components of landfill gas. 
Study flow of both the 
leachate and the gases.  

Coupled 3D, 2-phase reactive-
transport, incorporating 
biodegradation and heterogeneity. 

Neglects DP, biodegradability and rates of 
degradation of different components. 

Reddy et al. 
(2013, 2014, 
2015) 
 

Leachate distribution in a 
bioreactor landfill, evaluate 
the performance of 
drainage blankets as 
leachate recirculation 
systems. 

2-phase flow. Gas and leachate considered immiscible, 
IC, NH. 

Woodman et al. 
(2013, 2014, 
2015, 2017) 
 

 
Quantification of the flow 
and transport of leachate in 
pilot- and field-scale MSW. 
 

DP, also developed a DP-AD hybrid. IC, DP, NH, failed to predict at the 
laboratory-scale. 

Slimani et al. 
(2016) 
 

Describe the flow around a 
well during pumping and 
injection at the field scale. 

Simulates response to pumping and 
injection, exponential relationship 
between hydraulic conductivity and 
depth used. 

No DP, anomalous behaviour at the 
transition phases, IC. 

Feng et al. (2013, 
2014, 2015, 2016 
2017a,c) 
 

Investigate the 
hydrodynamic and 
biochemical behavior 
within a bioreactor landfill 
subjected to leachate 
recirculation. 
 

3D 2-phase model with biogas 
generation. 

Gas and leachate regarded as immiscible, 
ignores mechanical effects of 
biodegradation, NH. 
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De Donno and 
Cardarelli (2017) 

Evaluate the benefit of a 
priori information for the 
characterisation of landfills. 

Data-driven, utilizes resistivity and 
chargeability to limit variation of 
parameters. 

IC, 2D snapshots of the landfill, dependent 
on ERT sensor-placement, NH. 

 665 

Note: NH, Neglects heterogeneity; IC, Ignores coupled phenomena; AD, Advection-dispersion; DP, Dual-porosity; BTC, Breakthrough 666 

curve667 



 36 

 668 

Figure 1.  Schematic of a pore-scale simulation. (a) Scanning, (b) pre-processing, (c) CFD 669 
simulation. 670 
 671 
 672 
 673 
 674 
 675 
 676 
 677 
 678 
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 680 
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 687 

Direction of flow 
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 688 
 689 

 690 
 691 
Figure 2. Different processes that take place in the MSW system. Conceptual model informed by 692 

the works of  Datta et al., 2018, Fei et al., 2014a and McDougall, 2007.  693 
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interest. * 20 

 21 
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inclusion 
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Korfiatis et al. 
(1984)28 

175 22 Rosqvist and Destouni (2000)15 
McCreanor and Reinhart (2000)16 
Haydar and Khire (2005)14 
Demetracopoulos et al. (1986)29 
Khire and Mukherjee (2007)30 
Noble and Arnold (1991)31 
Fellner and Brunner (2010)10 
Rosqvist et al. (2005)13 
McCreanor and Reinhart (1999)32 
Zeiss and Major (1992)33 
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Bendz et al. (1998)35 
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Di Bella et al. (2012)20 
Bendz and Singh et al. (1999)17 
Beaven and Kjeldsen (2010)37 

   Feng et al. (2015)26 
Audebert et al. (2016a)3 
Audebert et al. (2016b)4 
Statom et al., (2006)12 
Capelo and De Castro (2004)38 
Feng and Zhang (2013) 39 
 

    
    
Audebert et al. 
(2016) 
 

7 1 Donno and Cardarelli (2017)40 

Bendz and Singh 
(1999) 
 

17 6 Saquing et al. (2012)8 
Woodman et al. (2015)5 
Woodman et al. (2014)6 
Woodman et al. (2013)7 
Woodman (2008)41 
Caicedo (2013)42 
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Woodman et al. 
(2015) 
 

7 2 Liu et al. (2016)43 
Woodman et al. (2017)2 

Demetracopoulos 
et al. (1986)36 

23 2 Khanbilvardi et al. (1995)44 
Suk et al. (2000)45 
 
Sanchez et al. (2010)46 

Bendz et al. 
(1998)35 

26 3 Zacharof and Butler (2004a)47 
Han et al. (2011) 9 
 

Zacharof and 
Butler (2004a)47 

43 1 Zacharof and Butler (2004b)48 
 
 

Zacharof and 
Butler (2004b)48 
 

42 1 Kindlein et al. (2006)11 

Kindlein et al. 
(2006)11 
 

20 1 Agostini et al. (2012)49 

Han et al. (2011)9 
 

20 1 Slimani et al. (2016)23 

Ahmed et al. 
(1992)34 
 

28 1 McDougall et al. (1996) 

Khanbilvardi et 
al. (1995)44 
 

55 1 Oman and Rosqvist (1999)50 

Khire and 
Mukherjee 
(2007)30 
 

68 1 Haydar and Khire (2007)51 

Suk et al. (2000)45 
 

23 1 Fellner et al. (2009)52 

Haydar and 
Khire (2005)14 

95 4 White et al. (2014) 53 
Reddy et al. (2014)54 
Reddy et al. (2015)25 
Khire and Kaushik (2012)55 

*Searches conducted in October 2017 in the ISI Web of Knowledge and Google Scholar databases. 22 
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