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Abstract

Calmodulin (CaM) is a universal calcium (Ca2+)-binding messenger that regulates many vital 

cellular events. In cardiac muscle, CaM associates with ryanodine receptor 2 (RyR2) and 

regulates excitation-contraction coupling. Mutations in human CALM1, CALM2, and CALM3 

genes have been associated with life-threatening heart disorders, such as long QT syndrome 

(LQTS) and catecholaminergic polymorphic ventricular tachycardia. A novel de novo LQTS-

associated missense CaM mutation (E105A) was recently identified in a 6-year-old boy, who 

experienced an aborted first-episode of cardiac arrest. Herein, we report the first molecular 

characterization of CaM E105A mutation. Expression of CaM E105A mutant in zebrafish 

embryos resulted in cardiac arrhythmia and increased heart rate, suggestive to ventricular 

tachycardia. In vitro biophysical and biochemical analysis revealed that E105A confers a 

deleterious effect on protein stability and a reduced Ca2+-binding affinity due to loss of 

cooperativity. Finally, CaM E105A mutation resulted in a reduced CaM-RyR2 interaction and 

defective modulation of [3H]ryanodine binding. Our findings suggest that CaM E105A 

mutation dysregulates normal cardiac function by a complex mechanism involving alterations 

in both CaM-Ca2+ and CaM-RyR2 interactions.
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Introduction

Calmodulin (CaM) is a ubiquitous, highly conserved calcium (Ca2+)-binding protein that 

binds and regulates a number of different protein targets, thereby affecting a wide range of vital 

cellular processes.1 CaM acts as an intracellular Ca2+ sensor, decoding downstream Ca2+ signals 

and by undergoing conformational changes, binds specifically to its multiple protein partners 

in a Ca2+-dependent manner.2 CaM is a relatively small protein composed of 148 amino acids 

with a with very basic domain architecture. Based on its crystal structure, it consists of two 

globular domains located at the N- and C- termini (N- and C- lobes), separated by a flexible α-

helix, in a dumbbell-resembling conformation. Each lobe consists of two EF hand motifs, with 

each motif binding one Ca2+ ion.3 Thus, the total Ca2+ binding capacity of CaM is four Ca2+ 

ions, allowing it to interact with multiple protein targets in both apo-CaM (Ca2+-free CaM) and 

Ca2+-CaM (Ca2+-loaded CaM) forms. Interestingly, the N- and C-lobes appear to have 

markedly distinct Ca2+ binding characteristics, making the decoding of Ca2+ signals a highly 

complex process.4, 5

In cardiac cells, CaM is known to interact and regulate multiple key proteins involved in 

excitation-contraction coupling (ECC) and Ca2+ homeostasis. These proteins include the 

cardiac ryanodine receptor type 2 (RyR2), voltage operated potassium (K+), sodium (Na+) and 

L-type Ca2+ channels.6 The RyR2 is a large transmembrane high conductance Ca2+ release 

channel that mediates Ca2 release from the sarcoplasmic reticulum (SR) to activate cardiac 

muscle contraction.6 RyR2 gating is crucial for the receptor function and is mediated by a 

number of modulators (including ions, small molecules and proteins), which regulate the exact 

timing of channel opening or closing.7 It is well established that CaM binds to RyR2 

stoichiometrically (one CaM per subunit of the homotetrameric RyR2) and inhibits its open 

probability at both low and high cytosolic Ca2+ concentrations. Several studies have proposed 

that CaM regulation of RyR2 is essential for normal cardiac function.8-10
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In humans there are three CaM genes (CALM1, CALM2 and CALM3), which encode 

an identical protein and are all expressed in cardiac tissue.5, 6 A number of recent genetic studies 

have identified several missense mutations in all three CALM genes, in individuals with a 

family history of severe cardiac disorders and early onset sudden cardiac death.11-16

A recent clinical study reported a case of aborted cardiac arrest in a seemingly healthy 

6-year-old boy who exhibited profound QT prolongation with an increasing heart rate before 

the recurrence of polymorphic ventricular tachycardia at a pediatric intensive care unit.17 The 

patient had no family history of heart disease, while his parents’ ECGs appeared to be normal. 

Genetic screening revealed a novel de novo missense variation c.A314C in exon 5 of CALM1 

gene of this patient.17 This nucleotide change results in the substitution of a conserved glutamic 

acid (E) with an alanine (A) residue (p.E105A) within the third EF-hand motif in the C-domain 

of CaM protein.

In the present study, the in vivo functional effects of CaM E105A mutation on normal 

zebrafish embryonic heart function were investigated following human CaM wild type 

(CaMWT) and CaM E105A mutant (CaME105A) complementary RNA (cRNA) microinjection 

experiments in zebrafish embryos. CaMWT and CaME105A mutant were bacterially expressed 

and affinity purified as recombinant proteins and their biophysical properties were analyzed by 

circular dichroism (CD) and thermal denaturation experiments. The Ca2+-binding affinities of 

both the N- and C-lobes of CaME105A mutant were determined by monitoring the intrinsic 

tyrosine and phenylalanine fluorescence and compared to those of CaMWT. Furthermore, co-

immunoprecipitation experiments of native RyR2 with CaMWT and CaME105A mutant were 

employed to compare their relative RyR2-binding affinities. Finally, the functional effect of 

CaM E105A mutation on the RyR2 activity was examined with isolated SR membranes via a 

[3H]ryanodine binding assay. Our findings suggest that the arrhythmogenic CaM E105A 

mutation dysregulates the normal embryonic heart function in zebrafish by a complex 
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mechanism, which involves defects in both CaM-Ca2+ binding and CaM-RyR2 interaction and 

regulation.

Material and Methods

A detailed description of methods is provided in the Supplementary Material and Methods 

section.

Results

Expression of CaME105A mutant in zebrafish embryos mimics patient’s ventricular 

tachycardia

To investigate any potential in vivo functional effects of the LQTS-associated CaM 

E105A mutation on zebrafish embryonic heart function, we generated and injected synthetic 

cRNA corresponding to CaMWT and CaME105A mutant into zebrafish embryos. Injected 

zebrafish embryos were then raised up to 72 hours post-fertilization (hpf) and their cardiac 

function was assessed. As shown in Figure 1A (left panel), expression of CaMWT and CaME105A 

mutant in zebrafish embryos did not affect normal embryo development, as neither gross 

morphological changes nor difference in the survival rate were observed in comparison to the 

control group (uninjected zebrafish embryos). However, we observed a slight change in the 

heart morphology of CaME105A-injected zebrafish with ~31.5% embryos exhibiting extended 

cardiac chambers (Figure 1A, right panel). The average heart rate was significantly increased 

in this group at an average of 160.5 beats per minute (bpm), (**p = 0.007) when compared to 

the control group at 152.5 bpm (Figure 1B). Furthermore, cardiac function assessment was 

performed. Analysis of the cardiac activity of zebrafish ventricle revealed that CaME105A 

mutant-injected zebrafish displayed irregular pattern of heart beating in comparison to the 

median of the CaMWT and control groups (Figure 2). The CaME105A resulted in increased 
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arrhythmic potential in this zebrafish model. Collectively, our data suggest that expression of 

CaME105A mutant in zebrafish embryos results in cardiac arrhythmia and increased heart rate, 

mimicking the clinical presentation of the reported 6-year-old boy, which displayed increased 

heart rate and ventricular tachycardia.

E105A mutation alters CaM thermal stability in the presence of Ca2+

To investigate the effect of E105A mutation on the in vitro biophysical and biochemical 

properties of CaMWT protein, CaME105A mutant was subcloned into the pHSIE plasmid 

expression vector and a bacterial expression system was used to express large quantities of 

recombinant CaMWT and CaME105A proteins. Expressed recombinant proteins were affinity 

purified, as we have previously described.6, 18 Figure 3A shows the affinity-purified untagged 

CaMWT and CaME105A recombinant proteins analyzed by SDS-PAGE and immunoblot analysis 

using an anti-CaM rabbit monoclonal antibody. For each CaM construct, a single protein band 

with mobility corresponding to the predicted molecular mass (~17.4 kDa) was observed, which 

was also confirmed by the immunoblot detection. 

CD spectra recorded at 4 oC indicated that CaME105A has the same overall conformation 

as CaMWT both in the absence and presence of Ca2+ (Fig. 3BI). In the presence of 1mM EDTA, 

thermal denaturation curves showed only small differences with Tm
1 and Tm

2 ~46 and 63 0C 

and ΔHvH
1 and ΔHvH

2 ca. -100 and -185 kJ/mol, respectively (Fig. 3BII, III). These values are 

in good agreement with those previously reported for CaMWT.19, 20 In the presence of Ca2+, 

CaME105A showed a clear bimodal transition with Tm
1 and Tm

2 ~58 and 97 0C compared to ~90 

and 120 0C observed for CaMWT, respectively. A similar behavior we had observed for the 

arrhythmogenic CaMD130G mutant in a previous study.6
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E105A mutation dramatically alters the Ca2+-binding properties of CaM C-domain

Typical normalized fluorescence emission intensity measurements as a function of Ca2+ 

concentration for both CaMWT and CaME105A are presented in Figures 4A, following changes 

in the protein N-domain and C-domain respectively. For the C-domain, there is an increase in 

fluorescence intensity at 320 nm (excitation wavelength: 277 nm) as a function of the free Ca2+ 

concentration in the sample, while for the N-domain the fluorescence intensity decreases at 280 

nm (excitation wavelength: 250 nm). Intrinsic calcium-dependent fluorescence intensity 

changes at these characteristic wavelengths can be used to reliably monitor the occupancy of 

the EF-hand binding sites in each protein domain.21 To analyze the data, results from four 

independent experiments were fitted using global nonlinear regression to a model-independent 

two-site Adair function and the results are summarized in Table 1. For CaMWT C-domain, 

binding sites have an apparent Kd almost 3-fold higher than that of the N-domain binding sites 

(2.97 vs 8.08 μM respectively). The free energy change that accompanies the binding of two 

Ca2+ at the C-domain binding sites was found to be -63.1 kJ/mol with a cooperative free energy 

change of -9.8 kJ/mol, while the corresponding values for the N-domain binding sites were -

58.2 and -4.3 kJ/mol, respectively. These calculations are in good agreement with earlier 

studies under the same experimental conditions.6, 18 The N-Domain binding sites show no 

differences between CaMWT and CaME105A in terms of binding affinity (Figure 4A and Table 

1) and binding cooperativity. This is not surprising considering that E105A mutation is located 

within the C-domain of the CaM protein. Relative to the C-domain binding sites, CaME105A 

shows a ~10-fold lower affinity for Ca2+ compared to CaMWT (Table 1). Thermodynamic 

analysis of the free energy changes upon Ca2+ binding to the C-domain binding sites, reveals 

an interesting picture. The free energy change for CaME105A is similar to that of CaMWT only 

when one binding site is occupied (-26.6 kJ/mol and -28.4 kJ/mol respectively), while the total 

free energy change for binding to both C-domain binding sites is significantly reduced (11.3 
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kJ/mol less). In addition, for the C-domain of CaME105A, the free energy gained by pairing of 

the two binding sites (ΔGc) is 7.6 kJ/mol, less than that of CaMWT. The aforementioned effects 

can be interpreted as a significant loss of cooperativity between the two binding sites of this 

domain, leading to its reduced Ca2+-binding affinity. Molecular modelling (Figure 4B) based 

on CaM X-ray structure confirms our observations suggesting that glutamic acid (E) at position 

105 is directly involved in Ca2+-binding of CaM C-domain and its substitution by an alanine 

(A) residue dramatically alters the cooperativity between the two binding sites of this domain.

CaME105A mutant displays reduced RyR2 interaction and defective modulation of 

[3H]ryanodine binding

It has been demonstrated that RyR2 is the major binding site for CaM along the Z-line 

in cardiomyocytes and that dissociation of CaM from RyR2 can trigger severe ventricular 

arrhythmia.8, 10 Thus, reduced CaM-RyR2 interaction can result in heart failure. To compare 

the relative RyR2-binding affinities of CaMWT and CaME105A we used a co-

immunoprecipitation assay, as we have previously described.6, 18 Native RyR2 from pig cardiac 

SR was immunoprecipitated with a purified anti-RyR2 specific antibody in the presence of 

either recombinant CaMWT or CaME105A at different Ca2+ concentrations. Association of CaM 

with RyR2 was analyzed by SDS-PAGE electrophoresis and immunoblot analysis using the 

anti-CaM monoclonal antibody. Densitometric analysis revealed that RyR2 binding to 

CaME105A was dramatically decreased (over ~70%) compared to CaMWT at all Ca2+ 

concentrations (Figure 5A), suggesting that E105A mutation exhibits a major inhibitory effect 

on the binding of CaM to RyR2.

To further investigate the functional effect of this novel cardiac disease-associated CaM 

mutation on RyR2 regulation, we performed [3H]ryanodine binding assays.6, 18 [3H]ryanodine 

binding assay represents a useful biochemical tool to study the action of different modulators 
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on the RyR2 function, as it has been demonstrated that the binding of [3H]ryanodine to RyR is 

dependent upon the functional state of the channel. The effect of CaMWT and its corresponding 

mutants on [3H]ryanodine binding to RyR2 was examined in a range of different Ca2+ 

concentrations varying from 10nM to 10M. As shown in Figure 5B, CaMWT significantly 

reduced the ryanodine binding compared to control (no added CaM protein). In contrast, 

inhibition of ryanodine binding to RyR2 by CaME105A mutant was almost abolished at all high 

Ca2+ concentrations, suggesting impaired or no association of RyR2 with this CaM mutant. 

These findings support our co-immunoprecipitation experiments that indicated a dramatically 

reduced RyR2- CaME105A interaction.

Discussion

CaM is one of the most essential cytosolic Ca2+ signaling molecules regulating several 

vital biochemical cascades within eukaryotic cells. CaM is a relatively small protein but 

displays a high degree of conformational plasticity. Ca2+ binding to CaM can induce major 

conformational changes conferring to CaM the ability to bind to its multiple protein targets 

(cytosolic or membrane bound) within the cell, regulating their function in a Ca2+-dependent 

manner.2 Interestingly, CaM N- and C-lobes display different Ca2+-binding affinities and 

kinetics upon target binding highlighting the complex mechanism that this versatile molecule 

translates the Ca2+ signals to its several protein targets within the cell.5, 21

In cardiac cells, calmodulin is an important regulator of ECC and Ca2+ homeostasis 

through its direct interaction with a number of key proteins, including RyR2, voltage operated 

potassium, sodium and L-type Ca2+ channels.6 All the three CaM genes (CALM1, CALM2 and 

CALM3) that encode for an identical protein, expressed in cardiac tissue. Over the last few 

years, several genetic and clinical reports have identified a number of missense mutations in 

all three CALM genes in individuals with a family history of life-threatening arrhythmogenic 
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cardiac disorders and early onset sudden cardiac death.11-16 A recent genetic report identified a 

novel de novo LQTS-associated missense CaM mutation (E105A) in a 6-year-old boy with no 

family history of heart disease, who experienced an aborted first-episode of cardiac arrest.17 

In this study, we employed a zebrafish model to investigate for the first time the in vivo 

functional effects of CaM E105A mutation in a vertebrate model system and more specifically 

to study its impact on the normal zebrafish embryonic heart function. Zebrafish cRNA 

microinjection experiments revealed that expression of CaMWT and CaME105A mutant did not 

have any effect on the normal embryo development as neither gross morphological changes 

nor difference in the survival rate were observed in comparison to the control group. 

Interestingly and in contrast with the CaMWT-injected zebrafish, a slight change in the heart 

morphology was observed in CaME105A-injected embryos with ~31.5% exhibiting an extended 

cardiac chamber. Moreover, the expression of CaME105A mutant in these zebrafish embryos 

resulted in a specific cardiac phenotype represented in cardiac arrhythmia and an increased 

heart rate, suggestive to ventricular tachycardia. This observed cardiac phenotype mimicked 

the human LQTS cardiac phenotype due to abnormal regulation of the ion channels involved 

in cardiac repolarization. Our molecular modelling, which was based on a CaM X-ray structure, 

suggested that CaM E105 is directly involved in Ca2+-binding and that its substitution by an 

alanine could lead to alterations of the Ca2+-binding properties of CaM C-lobe. This was 

confirmed by our Ca2+-binding studies, which revealed that the C-domain of CaME105A mutant 

exhibits a 10-fold reduced Ca2+-binding affinity compared to CaMWT. This was also in 

agreement with our thermal denaturation experiments, which showed that in the presence of 

Ca2+, E105A mutation confers a deleterious impact on the protein stability. RyR2 is the main 

binding partner for CaM along the Z-line in cardiomyocytes.8, 22 RyR2 is activated by Ca2+ 

entry into the cytosol through the sarcolemmal voltage-gated channels and this Ca2+ entry 

activates RyR2, triggering RyR2-mediated Ca2+ release resulting in a rise of the free cytosolic 
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Ca2+ concentration.23 CaM binding to RyR2 inhibits Ca2+ release both at diastolic and systolic 

cytosolic Ca2+ concentrations.9 It has been proposed that aberrant CaM dissociation from RyR2 

can lead to heart failure.8 Our biochemical analysis revealed that CaM E105 mutation 

significantly reduces RyR2-CaM interaction at all Ca2+ concentrations, leading to a 

dramatically reduced modulation of [3H]ryanodine binding to RyR2. These observations could 

highlight a potential mechanism on how this CaM mutation can lead to arrhythmogenic cardiac 

disease. A previous study revealed that in zebrafish there are two ryr2 genes (ryr2a and ryr2b), 

which are expressed exclusively in developing central nervous system and cardiac tissue, 

respectively.24 It has been previously suggested that in mammals the RyR2 does not contribute 

to the onset of contractile activity at very early embryonic stages.24, 25 However, in zebrafish 

cardiac ryr gene (ryr2b) is expressed exclusively in the developing heart tissue (precardiac 

mesoderm) from 14 hpf, 8 hours prior to the onset of cardiac contraction at 22 hpf, and may 

well contribute to early cardiac development as well as function.24 It is very intriguing how 

various pathogenic CaM mutations impose different arrhythmogenic cardiac phenotypes, 

including CPVT, LQTS and in some cases an overlapping CPVT/LQTS phenotype. This 

suggests that there might be a mechanistic overlap between CPVT and LQTS caused by CaM 

mutations.26 CPVT is characterized by exercise- or stress-induced ventricular arrhythmias, 

which can lead to syncope or sudden cardiac death. Mutations in RyR2 and other auxiliary 

proteins, such as calsequestrin-2 and CaM, have been identified in most CPVT-affected 

patients.26-30 On the other hand, LQTS can also affect the resting heart and with increasing 

effect upon adrenergic stimulation.26, 31 In contrast to CPVT, LQTS is mainly characterized by 

dysfunction of the sarcolemmal voltage-gated Na+, Ca2+, and K+ channels in control of the 

action potential.26 Interestingly, many previous studies have proposed different molecular 

mechanisms and different CaM targets to explain how CaM mutations lead to arrhythmogenic 

cardiac disease, even within the same arrhythmia type.6, 15, 20, 23, 26, 32-35 This could be explained 
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by the multifunctional nature of CaM and the plethora of targets that binds and regulates within 

the cardiac cells. In a previous study, where we characterized five arrhythmogenic CaM 

missense mutations we provided biochemical evidence suggesting that one CPVT- (N54I) and 

two LQTS-associated (D96V and D130G) lead to a defective CaM-RyR2 binding and 

regulation.6 Our findings were in overall agreement with the results of another study, which 

showed that these mutations markedly reduce inhibition of RyR2 Ca2+ release during store 

overload-induced Ca2+ release.26 Moreover, we proposed that another LQTS-associated CaM 

mutation (F142L) had no apparent effect on RyR2 activity.6 This again was consistent with 

another study that showed that F142L CaM mutation does not impair the CaM-dependent 

inhibition of RyR2.23 We previously proposed that that the clinical presentation of CPVT or 

LQTS associated with arrhythmogenic CaM mutations may involve both altered intrinsic Ca2+-

binding as well as defective interaction with RyR2.6 In a similar fashion, Sondergaard et al. 

also suggested that the regulation of RyR2 Ca2+ release is highly sensitive and that aberrant 

regulation of RyR2 may be a common component of both CPVT and LQTS arrhythmias caused 

by CaM mutations.26 It is possible that the LQTS-associated CaM mutations that diminish the 

CaM-RyR2 interaction; and thus inhibition of the open probability of the channel, may 

contribute to LQTS phenotypes due to the increased RyR2 Ca2+ release. It is also very likely 

that in some cases the altered intrinsic Ca2+-binding of CaM triggered by the arrhythmogenic 

mutation, could indeed potentially affect in a higher degree the function of other ion channel 

complexes in the cardiac cellular arena, and the effect on RyR2 might be more secondary. 

In conclusion, taking into consideration the deleterious effects of the several currently 

identified arrhythmogenic CaM mutations on the normal function of the RyR2 as well as of the 

other ion channels in cardiac cells, further investigation is required to delineate the molecular 

mechanisms that CaM mutations lead to life-threatening arrhythmogenic cardiac disease. 

Establishing a mechanistic link between individual CaM mutants and disease pathogenesis 
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might provide the clinicians the evidence needed to stratify their patient population and select 

optimal antiarrhythmic treatment strategies to improve survival of high risk patients. Finally, 

genetic screening for CALM mutations should be recommended and performed in young 

individuals presented with arrhythmogenic cardiac disorders. 
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Table Legends
Table 1. Dissociation constants and free energy changes of Ca2+ binding to C- (ex: 277 nm, 

em: 320 nm) and N- domain sites (ex: 250 nm, em: 280 nm) at 25 oC, resolved from fitting of 

a model-independent two-site Adair function to the experimental data.

Figure Legends

Figure 1. Zebrafish embryos were injected at one cell stage with cRNA encoding CaMWT and 

CaME105A mutant. (A) Representative images of 3-day-old zebrafish (left panel) and zebrafish 

hearts (right panel) corresponding to uninjected, CaMWT and CaME105A cRNA-injected groups. 

(B) Heart rate was analyzed using Danioscope software of captured videos for zebrafish larvae 

at 3 days old. Representative graphs showing the average of heartbeats per minute for 

uninjected, CaMWT and CaME105A cRNA-injected groups, respectively. Error bars represent 

sample standard error of the mean (SEM). (n=18 analyzed per group). **p <= 0.01.

Figure 2. Cardiac activity % was calculated from oscillations in the cardiac signal, with 

corresponding peaks and lows at regular intervals over time of a total of 6 seconds. Uninjected 

zebrafish and CaMWT groups exhibited the same pattern of oscillations at approximately 2.5 

lows per second, while CaME105A injection resulted in arrhythmia evident by altered oscillations 

at a pattern of 2 lows and 3 lows per consecutive two seconds. 
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Figure 3. (A) Affinity-purified CaMWT (left panel) and CaME105A (right panel) recombinant 

proteins (1 μg) were analyzed by 15% SDS-PAGE followed by either Coomassie Brilliant Blue 

staining or immunoblot analysis using an anti-CaM rabbit monoclonal antibody (1:10,000 

dilution). (B) Far-UV CD spectra and thermal stability of CaMWT and CaME105A mutant. (I) 

Spectra were recorded at 4 0C in the presence of 1 mM CaCl2 (CaMWT green; CaME105A blue) 

and 1 mM EDTA (CaMWT orange; CaME105A red). (II) Thermal denaturation curves are shown; 

lines represent fits assuming a three-state transition. (III) The histogram summarizes melting 

temperatures (top panel) and van't Hoff's enthalpies (lower panel) resulting from the data 

shown in (II).

Figure 4. Normalized fluorescence emission intensity profiles of CaMWT (●) and CaME105A 

mutant (●) N- (left panel) and C-domain (right panel) as a function of free [Ca2+]. Dashed lines 

represent the nonlinear least-squares fit of a two-site model-independent Adair function to the 

collected data. (B) Molecular model of CaM E105A mutation revealing that E105 residue is 

directly involved in the Ca2+ binding of CaM. Overlap of wild type (blue) and CaM E105A 

(red) energy-minimized models of the EF-hand III binding site with key residues shown as 

sticks. The model is based on PDB entry 1CLL. Ca2+ ions are shown as spheres with their Van-

der-Waals radii for emphasis. 

Figure 5. (A) Co-immunoprecipitation assays showing the association of CaMWT and 

CaME105A mutant with cardiac RyR2. Native RyR2 was immunoprecipitated specifically with 

Ab1093 from CHAPS-solubilized cardiac SR membranes in the presence of 1 µM CaMWT or 

CaME105A mutant at different Ca2+ concentrations (0, 1 and 10 µM). The presence of RyR2-

precipitated CaM proteins was analyzed by 18% SDS-PAGE followed by immunoblot 

detection analysis using an anti-CaM rabbit monoclonal antibody (1:10,000 dilution). 

Densitometric analysis and normalization was performed following three independent 

experiments using three different porcine cardiac SR preparations (histograms). (B) Effect of 

CaME105A mutant on [3H]ryanodine binding to cardiac SR vesicles. The binding buffer 

contained 50 mM HEPES, 25 mM Tris, 500 mM KCl, pH 7.4 with either 1 mM EGTA (<0.01 

µM Ca2+) or with the indicated series of free Ca2+ concentrations. Normalized [3H]ryanodine 

binding data are means ± SEM of 4 independent experiments. 
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Tables

Table 1

Apparent Dissociation

Constant (Kd)
ΔG1 ΔG2 ΔGc

μM kJ/mol kJ/mol kJ/mol

C-Domain 2.97 ± 0.03 -28.4 ± 0.2 -63.1 ± 0.1 -9.8 ± 0.3
CaMWT

N-Domain 8.08 ± 0.09 -28.7 ± 0.2 -58.2 ± 0.1 -4.3 ± 0.3

C-Domain 28.7 ± 0.03 -26.6 ± 0.2 -51.8 ± 0.2 -2.2 ± 0.4
CaME105A

N-Domain 8.10 ± 0.10 -28.6 ± 0.2 -58.1 ± 0.1 -4.3 ± 0.3
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