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Figure 1: (a) An artist draws a portrait drawing using a sparse set of lines and very few shaded regions to capture the
distinctive appearance of a given face photo. (b) Our APDrawingGAN learns this artistic drawing style and automatically
transforms a face photo into a high-quality artistic portrait drawing. (c) Using the same input face photo, six state-of-the-art
style transfer methods cannot generate desired artistic drawings: Deep Image Analogy [20], CNNMRF [18], Gatys [11] and
Headshot Portrait [32] change facial features or fail to capture style, CycleGAN [40] and Pix2Pix [15] produce false details
around hair, eyes or corners of the mouth.

Abstract

Significant progress has been made with image styliza-
tion using deep learning, especially with generative adver-
sarial networks (GANs). However, existing methods fail to
produce high quality artistic portrait drawings. Such draw-
ings have a highly abstract style, containing a sparse set of
continuous graphical elements such as lines, and so small
artifacts are more exposed than for painting styles. More-
over, artists tend to use different strategies to draw different
facial features and the lines drawn are only loosely related
to obvious image features. To address these challenges,
we propose APDrawingGAN, a novel GAN based architec-
ture that builds upon hierarchical generators and discrim-
inators combining both a global network (for images as a
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whole) and local networks (for individual facial regions).
This allows dedicated drawing strategies to be learned for
different facial features. Since artists’ drawings may not
have lines perfectly aligned with image features, we develop
a novel loss to measure similarity between generated and
artists’ drawings based on distance transforms, leading to
improved strokes in portrait drawing. To train APDrawing-
GAN, we construct an artistic drawing dataset containing
high-resolution portrait photos and corresponding profes-
sional artistic drawings. Extensive experiments, and a user
study, show that APDrawingGAN produces significantly
better artistic drawings than state-of-the-art methods.

1. Introduction

Portrait drawings are a longstanding and distinct art
form, which typically use a sparse set of continuous graph-



ical elements (e.g., lines) to capture the distinctive appear-
ance of a person. They are drawn in the presence of the per-
son or their photo, and rely on a holistic approach of obser-
vation, analysis and experience. An artistic portrait drawing
should ideally capture the personality and the feelings of the
person. Even for an artist with professional training, it usu-
ally requires several hours to finish a good portrait (Fig. 1a).

Training a computer program with artists’ drawings and
automatically transforming an input photo into high-quality
artistic drawings is much desired. In particular, with the
development of deep learning, neural style transfer (NST),
which uses CNNs to perform image style transfer was
proposed [11]. Later on, generative adversarial network
(GAN) based style transfer methods (e.g., [15, 40, 2, 5])
have achieved especially good results, by utilizing sets of
(paired or unpaired) photos and stylized images for learn-
ing. These existing methods are mostly demonstrated us-
ing cluttered styles, which contain many fragmented graph-
ical elements such as brush strokes, and have a significantly
lower requirement for the quality of individual elements
(i.e., imperfections are much less noticeable).

Artistic portrait drawings (APDrawings) are substan-
tially different in style from portrait painting styles studied
in previous work, mainly due to the following five aspects.
First, the APDrawing style is highly abstract, containing a
small number of sparse but continuous graphical elements.
Defects (such as extra, missing or erroneous lines) in AP-
Drawings are much more visible than other styles such as
paintings (e.g., impressionist and oil painting) involving a
dense collection of thousands of strokes of varying sizes
and shapes. Second, there are stronger semantic constraints
for APDrawing style transfer than for general style transfer.
In particular, facial features should not be missing or dis-
placed. Even small artifacts (e.g., around the eye) can be
clearly visible, distracting and unacceptable. Third, the ren-
dering in APDrawings is not consistent between different
facial parts (e.g., eyes vs. hair). Fourth, the elements (e.g.
the outline of facial parts) in APDrawings are not precisely
located by artists, posing a challenge for methods based on
pixel correspondence (e.g., Pix2Pix [15]). Finally, artists
put lines in APDrawings that are not directly related to low
level features in the view or photograph of the person. Ex-
amples include lines in the hair indicating the flow, or lines
indicating the presence of facial features even if the image
contains no discontinuities. Such elements of the drawings
are hard to learn. Therefore, even state-of-the-art image
style transfer algorithms (e.g., [11, 15, 18, 20, 32, 40]) of-
ten fail to produce good and expressive APDrawings. See
Fig. 1c for some examples.

To address the above challenges, we propose APDraw-
ingGAN, a novel Hierarchical GAN architecture dedicated
to face structure and APDrawing styles for transforming
face photos to high-quality APDrawings (Fig. 1b). To effec-

tively learn different drawing styles for different facial re-
gions, our GAN architecture involves several local networks
dedicated to facial feature regions, along with a global net-
work to capture holistic characteristics. To further cope
with line-stroke-based style and imprecisely located ele-
ments in artists’ drawings, we propose a novel distance
transform (DT) loss to learn stroke lines in APDrawings.

The main contributions of our work are three-fold:

• We propose a Hierarchical GAN architecture for artis-
tic portrait drawing synthesis from a face photo, which
can generate high-quality and expressive artistic por-
trait drawings. In particular, our method can learn
complex hair style with delicate white lines.

• Artists use multiple graphical elements when creating
a drawing. In order to best emulate artists, our model
separates the GAN’s rendered output into multiple lay-
ers, each of which is controlled by separated loss func-
tions. We also propose a loss function dedicated to
APDrawing with four loss terms in our architecture, in-
cluding a novel DT loss (to promote line-stroke based
style in APDrawings) and a local transfer loss (for lo-
cal networks to preserve facial features).

• We pre-train our model using 6,655 frontal face photos
collected from ten face datasets, and construct an AP-
Drawing dataset (containing 140 high-resolution face
photos and corresponding portrait drawings by a pro-
fessional artist) suitable for training and testing. The
APDrawing dataset and code is available.1

2. Related Work
Image stylization has been widely studied in non-

photorealistic rendering and deep learning research. Below
we summarize related work in three aspects.

2.1. Style transfer using neural networks

Gatys et al. [11] first proposed an NST method using a
CNN to transfer the stylistic characteristics of a style image
to a content image. For a given image, its content and style
features are represented by high layer features and texture
information captured by Gram matrices [10] in a VGG net-
work, respectively. Style transfer is achieved by optimizing
an image to match both the content of the content image and
the style of the style image. This method performs well on
oil painting style transfer of various artists. However, their
style is modeled as texture features, and thus not suitable
for our target style with little texture.

Li and Wand [18] used a Markov Random Field (MRF)
loss instead of the Gram matrix to encode the style, and
proposed the combined MRF and CNN model (CNNMRF).

1https://cg.cs.tsinghua.edu.cn/people/˜Yongjin/
Yongjin.htm

https://cg.cs.tsinghua.edu.cn/people/~Yongjin/Yongjin.htm
https://cg.cs.tsinghua.edu.cn/people/~Yongjin/Yongjin.htm


CNNMRF can be applied in both non-photorealistic (art-
work) and photo-realistic image synthesis, since local patch
matching is used in MRF loss and promotes local plausibil-
ity. However, local patch matching restricts this method to
only work well when the style and content images contain
elements of similar local features.

Liao et al. [20] proposed Deep Image Analogy for visual
attribute transfer by finding semantically meaningful dense
correspondences between two input images. They compute
correspondence between feature maps extracted by a CNN.
Deep Image Analogy was successfully applied to photo-to-
style transfer, but when transferring APDrawing style, im-
age content is sometimes affected, making subjects in the
resulting images less recognizable.

Johnson et al. [16] proposed the concept of perceptual-
loss-based on high-level features and trained a feed for-
ward network for image style transfer. Similar to [11], their
texture-based loss function is not suitable for our style.

In addition to aforementioned limitations for APDrawing
style transfer, most existing methods require the style image
to be close to the content image.

2.2. Non-photorealistic rendering of portraits

In the field of NPR, many methods have been devel-
oped for generating portraits [29]. Rosin and Lai [28] pro-
posed a method to stylize portraits using highly abstracted
flat color regions. Wang et al. [38] proposed a learning-
based method to stylize images into portraits which are
composed of curved brush strokes. Berger et al. [3] pro-
posed a data-driven approach to learn the portrait sketching
style, by analyzing strokes and geometric shapes in a col-
lection of artists’ sketch data. Liang et al. [19] proposed
a method for portrait video stylization by generating a fa-
cial feature model using extended Mask R-CNN and ap-
plying two stroke rendering methods on sub-regions. The
above methods generate results of a specific type of art, e.g.,
curved brush stroke portrait, portrait sketching. However,
none of them study the style of artistic portrait drawing.

There are also some example-based stylization methods
designed for portraits. Selim et al. [30] proposed a portrait
painting transfer method by adding spatial constraints into
the method [11] to reduce facial distortion. Fišer et al. [9]
proposed a method for example-based stylization of portrait
videos by designing several guiding channels and applying
the guided texture synthesis method in [8]. However, all
these methods use similar texture synthesis approaches that
make them unsuitable for the APDrawing style.

2.3. GAN-based image synthesis

Generative Adversarial Networks (GAN) [12] have
achieved much progress in solving many image synthesis
problems, in which closely related to our work are Pix2Pix
and CycleGAN.

Pix2Pix [15] is a general framework for image-to-image
translation, which explores GANs in a conditional set-
ting [22]. Pix2Pix can be applied to a variety of image trans-
lation tasks and achieves impressive results on various tasks
including semantic segmentation, colorization and sketch to
photo translation, etc.

CycleGAN [40] is designed to learn translation between
two domains without paired data by introducing cycle-
consistency loss. This model is particularly suitable for
tasks in which paired training data are not available. When
applied to a dataset with paired data, this method produces
results similar to the fully supervised Pix2Pix, but with
much more training time.

Neither Pix2Pix nor CycleGAN works well for APDraw-
ing styles and often generates blurry or messy results due to
the five challenges summarized in Sec. 1 for APDrawings.

3. Overview of APDrawingGAN
We model the process of learning to transform face pho-

tos to APDrawings as a function Ψ which maps the face
photo domain P into a black-and-white line-stroke-based
APDrawing domain A. The function Ψ is learned from
paired training data Sdata = {(pi, ai)|pi ∈ P, ai ∈ A, i =
1, 2, ..., N}, where N is the number of photo-APDrawing
pairs in the training set.

Our model is based on the GAN framework, consist-
ing of a generator G and a discriminator D, both of which
are CNNs specifically designed for APDrawings with line-
stroke-based artist drawing style. The generator G learns
to output an APDrawing in A while the discriminator D
learns to determine whether an image is a real APDrawing
or generated.

Since our model is based on GANs, the discriminator D
is trained to maximize the probability of assigning the cor-
rect label to both real APDrawings ai ∈ A and synthesized
drawings G(pi), pi ∈ P , and simultaneously G is trained
to minimize this probability. Denote the loss function as
L(G,D), which is specially designed to include four terms
Ladv(G,D), LL1

(G,D), LDT (G,D) and Llocal(G,D).
Then the function Ψ can be formulated by solving the fol-
lowing min-max problem with the function L(G,D):

min
G

max
D

L(G,D) = Ladv(G,D) + λ1LL1
(G,D)

+λ2LDT (G,D) + λ3Llocal(G,D)
(1)

In Sec. 4, we introduce the architecture of APDrawing-
GAN. The four terms in L(G,D) are presented in Sec. 5.
Finally, we present the training scheme in Sec. 6. An
overview of our APDrawingGAN is illustrated in Fig. 2.

4. APDrawingGAN Architecture
Unlike the standard GAN architecture, here we propose

a hierarchical structure for both generator and discrimina-
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Figure 2: The framework of the proposed APDrawingGAN. The hierarchical generator G takes a face photo pi ∈ P as input
and can be decomposed into a global network (for global facial structure), six local networks (for four local facial regions,
the hair and the background region) and a fusion network. Outputs of six local nets are combined into Ilocal and fused with
the output Iglobal of the global network to generate the final output G(pi). The loss function includes four terms, in which a
novel DT loss is introduced to better learn delicate artistic line styles. The hierarchical discriminatorD distinguishes whether
the input is a real APDrawing or not based on the classification results by combining both a global discriminator and six local
discriminators.

tor, each of which includes a global network and six local
networks. The six local networks correspond to the local
facial regions of the left eye, right eye, nose, mouth, hair
and the background. Furthermore, the generator has an ad-
ditional fusion network to synthesize the artistic drawings
from the output of global and local networks. The reason
behind this hierarchical structure is that in portrait drawing,
artists adopt different drawing techniques for different parts
of the face. For example, fine details are often drawn for
eyes, and curves drawn for hair usually follow the flow of
hair but do not precisely correspond to image intensities.
Since a single CNN shares filters across all locations in an
image and is very difficult to encode/decode multiple draw-
ing features, the design of hierarchical global and local net-
works with multiple CNNs can help the model better learn
facial features in different locations.

4.1. Hierarchical generator G

The generator G transforms input face photos to AP-
Drawings. The style of APDrawings is learned once the
model is trained. In the hierarchy of G = {Gglobal, Gl∗,
Gfusion}, Gglobal is a global generator, Gl∗ = {Gl eye l,
Gl eye r, Gl nose, Gl mouth, Gl hair, Gl bg} is a set of six lo-
cal generators, and Gfusion is a fusion network.

We design G using the U-Net structure [26]. Each of
Gl eye l, Gl eye r, Gl nose and Gl mouth is a U-Net with
three down-convolution and three up-convolution blocks.

Each of Gl hair and Gl bg is a U-Net with four down-
convolution and four up-convolution blocks. The role of
local generators in Gl∗ is to learn the drawing style of dif-
ferent local face features; e.g., hairy style for hair (i.e., re-
peated wispy details by short choppy or long strokes to
capture the soft wispiness of individual hair strands), del-
icate line style for eyes and nose, and solid or line style
for mouth. A U-Net with skip connections can incorporate
multi-scale features and provide sufficient but not excessive
flexibility to learn artists’ drawing techniques in APDraw-
ings for different facial regions.

The inputs to Gl eye l, Gl eye r, Gl nose, Gl mouth are
local regions centered at the facial landmarks (i.e., left
eye, right eye, nose and mouth) obtained by the MTCNN
model [39]. The input to Glbg is the background region de-
tected by a portrait segmentation method [31]. The input to
Ghair is the remaining region in the face photo. We blend
outputs of all local generators into an aggregated drawing
Ilocal, by using the min pooling at overlapping regions. This
min pooling can effectively retain responses from individual
local generators, as low intensities are treated as responses
for black pixels in artistic drawings.
Gglobal is a U-Net with eight down-convolution and

eight up-convolution blocks, which deals with the global
structure of the face. Gfusion consists of a flat convolution
block, two residual blocks and a final convolution layer. We
use Gfusion to fuse together Ilocal and Iglobal (i.e., the out-



(a) An APDrawing x (b) IDT (x) (c) I′DT (x)

Figure 3: Two distance transforms IDT (x) and I ′DT (x) of
an APDrawing x.

put of Gglobal) for obtaining the final synthesized drawing
of G. In many previous GAN models (e.g., [12, 14]), usu-
ally some noise is input or added in the generator network.
Following [15], we do not add noise in G explicitly, but use
dropout [33] in U-Net blocks to work as noise.

4.2. Hierarchical discriminator D

The discriminator D distinguishes whether the input
drawing is a real artist’s portrait drawing or not. In the hier-
archy of D = {Dglobal, Dl∗}, Dglobal is a global discrim-
inator and Dl∗ = {Dl eye l, Dl eye r, Dl nose, Dl mouth,
Dl hair, Dl bg} is a set of six local discriminators. Dglobal

examines the whole drawing to judge the holistic APDraw-
ing features, while the local discriminators in Dl∗ examine
different local regions to evaluate the quality of fine details.

We implement Dglobal and all local discriminators in
Dl∗ using the Markovian discriminator in Pix2Pix [15]. The
only difference is the input: the whole drawings or different
local regions. The Markovian discriminator processes each
70 × 70 patch in the input image and examines the style of
each patch. Local patches from different granularities (i.e.,
coarse and fine levels at global and local input) allow the
discriminator to learn local patterns and better discriminate
real artists’ drawings from synthesized drawings.

5. Loss Function
There are four terms in the loss function in Eq. 1, which

are explained as follows.
Adversarial loss Ladv models the discriminator’s ability

to correctly distinguish real or false APDrawings. Follow-
ing Pix2Pix [15], the adversarial loss is formulated as:

Ladv(G,D) =
∑

Dj∈D
E(pi,ai)∼Sdata

[log(Dj(pi, ai)

+ log(1−Dj(pi, G(pi)))]. (2)

When Dj ∈ Dl∗, the images pi, ai and G(pi) are all re-
stricted to the local region specified by Dj . As D maxi-
mizes this loss while G minimizing it, Ladv forces the syn-
thesized drawings to become closer to the target domain A.

Pixel-wise loss LL1
drives the synthesized drawings

close to ground-truth drawings in a pixel-wise manner. We

compute the LL1 loss for each pixel in the whole drawing:

LL1
(G,D) = E(pi,ai)∼Sdata

[‖G(pi)− ai‖1] (3)

Using the L1 norm generally outputs less blurry results than
the L2 norm and so is more suitable for APDrawing style.

Line-promoting distance transform loss LDT is a
novel measure specially designed for promoting line strokes
in the style of APDrawings. Since the elements in APDraw-
ings are not located precisely corresponding to image in-
tensities, we introduce LDT to tolerate the small misalign-
ments — that are often present in artists’ portrait drawings
— and to better learn stroke lines in APDrawings. To do
so, we make use of distance transform (DT) and Chamfer
matching as follows.

A DT (a.k.a. distance map) can be represented by a digi-
tal image, in which each pixel stores a distance value. Given
a real or synthesized APDrawing x, we define two DTs of x
as images IDT (x) and I ′DT (x): assuming x̂ is the binarized
image of x, each pixel in IDT (x) stores the distance value to
its nearest black pixel in x̂ and each pixel in I ′DT (x) stores
the distance value to its nearest white pixel in x̂. Fig. 3
shows an example.

We train two CNNs2 to detect black and white lines in
APDrawings, denoted as Θb and Θw. The Chamfer match-
ing distance between APDrawings x1 and x2 is defined as

dCM (x1, x2) =
∑

(j,k)∈Θb(x1)

IDT (x2)(j, k)

+
∑

(j,k)∈Θw(x1)

I ′DT (x2)(j, k)
(4)

where IDT (x)(j, k) and I ′DT (x)(j, k) are distance values at
the pixel (j, k) in the images IDT (x) and I ′DT (x), respec-
tively. dCM (x1, x2) measures the sum of distances from
each line pixel in x1 to closest pixel of the same type (black
or white) in x2. Then LDT is defined as

LDT (G,D) =E(pi,ai)∼Sdata
[dCM (ai, G(pi))

+ dCM (G(pi), ai)]
(5)

Local transfer loss Llocal puts extra constraints on the
intermediate output of six local generators in Gl∗, and then
behaves as a regularization term in the loss function. Denote
the six local regions of an APDrawing x as El(x), Er(x),
Ns(x), Mt(x), Hr(x) and Bg(x). Llocal is defined as

Llocal(G,D) =
E(pi,ai)∼Sdata

[
||Gl eye l(El(pi))− El(ai)||1

+||Gl eye r(Er(pi))− Er(ai)||1
+||Gl nose(Ns(pi))−Ns(ai)||1
+||Gl mouth(Mt(pi))−Mt(ai)||1
+||Gl hair(Hr(pi))−Hr(ai)||1
+||Gl bg(Bg(pi))−Bg(ai)||1

]
(6)

2We use two-tone NPR images and the corresponding lines generated
by the NPR algorithm [27] as data to train the two CNN models.



Figure 4: From left to right: original face photos, NPR re-
sults [27], NPR results adding clear jaw contours (used for
pre-training) and the results of APDrawingGAN. Face pho-
tos are from the datasets of CFD [21] and Siblings [36].

6. Training APDrawingGAN
APDrawing dataset. To train the proposed APDraw-

ingGAN, we build a dataset containing 140 pairs of face
photos and corresponding portrait drawings. To make the
training set distribution more consistent, all portrait draw-
ings were drawn by a single professional artist. All images
and drawings are aligned and cropped to 512 × 512 size.
Some examples are illustrated in supplemental material.

Initialization with pre-training. Since it is time-
consuming and laborious for an artist to draw each portrait
drawing, our constructed dataset consists of only a small
number of image pairs, which makes the training particu-
larly challenging. To address this issue, we use a coarse-
level pre-training to make the training starting at a good ini-
tial status. We collect 6,655 frontal face photos taken from
ten face datasets [37, 21, 6, 25, 24, 7, 35, 34, 4, 36]. For
each photo, we generate a synthetic drawing using the two-
tone NPR algorithm in [27]. Since it often generates results
without clear jaw lines (due to low contrast in the image at
these locations), we use the face model in OpenFace [1] to
detect the landmarks on the jaws and subsequently add jaw
lines to the NPR results. Two examples are illustrated in
Fig. 4. Note that the drawings synthesized in this simple
way are only a coarse approximation and still far from ideal
APDrawings. We use a pre-trained model after 10 epochs as
the initialization for the subsequent formal training. Since
our NPR generated drawings (unlike artists’ drawings) are
accurately aligned to the photos, we do not use the distance
transform loss in pre-training.

Formal training. We partition our APDrawing dataset
into a training set of 70 image pairs and a test set of 70 im-
age pairs. Then we apply data augmentation of small-angle
rotation (-10◦∼10◦) and scaling (1∼1.1) to the training set.
Furthermore, we apply the Adam optimizer [17] with learn-
ing rate 0.0002 and momentum parameters β1 = 0.5, β2 =

0.999 and batch size of 1.

7. Experiments
We implemented APDrawingGAN in PyTorch [23] and

conducted experiments on a computer with an NVIDIA Ti-
tan Xp GPU. The input and output of the generator G are
color photos and gray drawings, respectively, and so the
numbers of input and output channels are 3 and 1. In all our
experiments, the parameters in Eq. 1 are fixed at λ1 = 100,
λ2 = 0.1, λ3 = 25. All the evaluation results presented in
this section are based on the test set to ensure fairness.

7.1. Ablation study in APDrawingGAN

We perform an ablation study on some key factors in
APDrawingGAN and the following results show that all of
them are essential to APDrawingGAN and they jointly pro-
duce high-quality results of APDrawing stylization.

Local networks (i.e., Gl∗ and Dl∗) in APDrawingGAN
are essential to capture the style of each facial region. Since
the style of an APDrawing contains several independent
rendering techniques in different local regions, without lo-
cal networks, the model cannot learn the varying styles well
with a location-independent fully convolutional network.
As shown in Fig. 5, without local networks, the model gen-
erates messy results, where both facial region and hair re-
gion exhibit messy hairy style, leading to obvious defects.

Line-promoting DT loss LDT is essential to produce
good and clean results with delicate lines. Without the DT
loss, there are fewer delicate lines in the hair region and
some undesirable white patches appear instead, as shown in
the second row in Fig. 5. Moreover, some unattractive lines
appear around the jaw, leading to drawings unlike the input
photo, as shown in both results in Fig. 5. These lines are
effectively avoided by using the DT loss.

Initialization using the model pre-trained on the NPR
data helps the model to generate good results in less time.
The results without initialization are worse in having more
messy lines in the facial region and fewer delicate white
lines in the hair region, as shown in the chin region of both
results and hair region of the second result in Fig. 5. The
pre-training helps the model to quickly converge to a good
result, avoiding such artifacts.

7.2. Comparison with state-of-the-art

We compare APDrawingGAN with six state-of-the-art
style transfer methods: Gatys [11], CNNMRF [18], Deep
Image Analogy [20], Pix2Pix [15], CycleGAN [40] and
Headshot Portrait [32]. Since the input to Gatys (with aver-
age Gram matrix), CycleGAN and Pix2Pix is different from
the input to CNNMRF, Deep Image Analogy and Headshot
Portrait, we compare them separately.

Qualitative results of comparison with Gatys, Cycle-
GAN and Pix2Pix are shown in Fig. 6. Gatys’ method [11]



(a) Input (b) Ground Truth (c) W/O local nets (d) W/O DT loss (e) W/O initialization (f) Ours

Figure 5: Ablation study: (a) input face photos, (b) ground truth drawings by an artist, (c) results of removing local networks
Gl∗ and Dl∗ in APDrawingGAN, (d) results of removing line-promoting DT loss LDT from Eq. 1, (e) results of not using
model pre-trained on NPR data as initialization, (f) our results.

Input face photo                  Ground truth                          Gatys CycleGAN Pix2Pix                      APDrawingGAN

Figure 6: Comparison results with Gatys [11], CycleGAN [40], Pix2Pix [15] and our APDrawingGAN.

by default takes one content image and one style image as
input. But for fair comparison, we use all the style images
in the training set and compute the average Gram matrix to
model the target style as in [40]. As shown in Fig. 6, Gatys’
method generates poor results for APDrawing stylization:
some facial features are missing in the stylized results, and
different regions are stylized inconsistently. The reasons be-
hind these artifacts are that the method models style as tex-
ture information in the Gram matrix, which cannot capture
our target style with little texture, and its content loss based
on VGG output cannot preserve facial features precisely.

CycleGAN [40] also cannot mimic the artistic portrait
style well. As shown in Fig. 6, CycleGAN’s results do not
look like an artist’s drawing, especially in the facial fea-
tures. There are many artifacts, such as missing details in
the eyes, blurred/dithered mouth region, dark patches (e.g.

the eyes and chin in the bottom row) caused by shadows,
not capturing eyebrow style. CycleGAN is unable to pre-
serve facial features because it uses the cycle-consistency to
constrain content, which is less accurate than a supervised
method and leads to problems when one of the domains is
not accurately recovered.

Pix2Pix [15] generates results that preserve some aspect
of artistic drawings, but they also have many artifacts. There
are many messy unwanted lines, making the stylized result
unlike the input photo, and the white lines in the hair are not
learned well. The reason is that a generator with one CNN
is unable to learn several independent drawing techniques in
different facial regions, and there is no specifically designed
loss term dedicated to the APDrawing style.

In comparison, our method captures the different draw-
ing techniques in different facial regions well and generates
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Figure 7: Comparison results with CNNMRF [18], Deep Image Analogy [20], Headshot Portrait [32] and APDrawingGAN.

high-quality results with delicate white lines in the hair and
facial features drawn in the artist’s drawing style.

Qualitative results of comparison with CNNMRF, Deep
Image Analogy and Headshot Portrait are shown in Fig. 7.
These methods take one content image and one style image
as input, and require the two images to be similar. Given
a content image in the test set, we select two style images
in the training set that are semantically similar to the con-
tent image (i.e. they have similar facial features) as shown
in Fig. 7. CNNMRF [18] generates results that do not ex-
hibit the same color distribution as the target style. Both
CNNMRF and Deep Image Analogy [20] generate results
with facial features closer to the style image but unlike
the input content image, i.e. content has been erroneously
copied from the style image. Headshot Portrait [32] is a
portrait specific method but it generates photo-realistic re-
sults, which are not the style of the target artist’s portrait
drawing. In comparison, our method generates drawings
that both preserve the facial features in the face photo and
capture the artistic portrait drawing style. Moreover, our
results are high-quality and very close to the ground truth
drawn by the artist.

For quantitative evaluation, we compare our APDraw-
ingGAN with CycleGAN [40] and Pix2Pix [15] using the
Fréchet Inception Distance (FID) [13], which is a widely
used GAN evaluation metric. We evaluate the FID on the
full test set to measure the similarity between generated AP-
Drawings and real APDrawings. The comparison results
are presented in Table 1. As a reference, we also report
the FID metric between the real APDrawings in the train-
ing set and the test set. The results show that our method
has a much lower FID value, indicating our generated dis-
tribution is closer to the real APDrawing distribution than
CycleGAN and Pix2Pix.

Due to the subjective nature of image styles, we also con-
duct a user study to compare our results to CycleGAN and
Pix2Pix, which shows that our APDrawingGAN ranks best

Table 1: Comparison of CycleGAN, Pix2Pix and our AP-
DrawingGAN in terms of the FID metric. Our method
shows a much lower FID value, indicating our generated
distribution is closer to real APDrawing distribution than
CycleGAN and Pix2Pix.

Methods FID
CycleGAN [40] 87.82

Pix2Pix [15] 75.30
APDrawingGAN 62.14

Real (training vs test) 49.72

in 71.39% of cases. More details on user study are pre-
sented in the supplementary material.

8. Conclusion and Future Work

In this paper, we propose APDrawingGAN, a Hierarchi-
cal GAN model to transform a face photo into an APDraw-
ing. Our approach is dedicated to the human face and AP-
Drawing style, and particularly aims to avoid the many ar-
tifacts produced by existing methods. Experimental results
and a user study show that our method can achieve success-
ful artistic portrait style transfer, and outperforms state-of-
the-art methods.

Although our method can learn complex hair style with
delicate white lines, the results are still not as clean as the
artist’s drawings, in hair and lip regions. We plan to address
these in future work.
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