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Abstract 

A recent application of microwaves in the healthcare area is for the rapid detection of bacterial 
spores, particularly of clinically significant spores such as Clostridium difficile. Here, we 
present a working model of C. difficile spore disruption by the action of a 2.45GHz microwave 
electric field, independent of overall sample heating. The model shows how inner layers of the 
spore with the lower complex permittivity values will be subject to higher values of electric 
field. The model also shows how the electric effects can be enhanced, focusing the electric 
field into “hotspots” using ‘angled’ nanoparticles, yielding effective DNA release even at low 
microwave power levels. The model’s predictions have been validated through experimental 
results, which show an enhancement of DNA release from spores.
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1. Introduction

Infections linked to Clostridium difficile are a significant problem. In hospitals, the organism 

is primarily acquired through the faecal-oral route as spores excreted by infected patients 

contaminate the healthcare environment. Data from Public Health England (PHE C. difficile 

annual data 2015) and Wales (PHW monthly C. difficile update 2015) and the Office of 

National Statistics (ONS C. difficile 2015) show that there were approximately 15,000 

confirmed cases in England and 2,000 in Wales in 2012, with a total of around 2,000 reported 

deaths in England and Wales combined.  

When under stress, low on nutrients or following oxygen exposure, C. difficile vegetative cells 

sporulate (i.e. form spores) (Ðapa et al., 2013). Spores are resistant to antibiotics, stomach acid, 

desiccation, temperatures of up to 95° C, alcohol-based cleaning agents and other chemical 

biocides, and can survive for several months on surfaces and within the environment (Fordtran, 

2006, Kim et al., 1981).  

Existing methods to detect the presence of C. difficile spores in clinical samples are slow and 

expensive. Tests such as the cell cytotoxicity assay can take up to two days and are expensive 

due to the tissue culture requirement. PCR (polymerase chain reaction) assays such as Cepheid 

Xpert can give detection in 45 minutes from a clinical sample, but are labour intensive (Barbut 

et al., 2009). In addition, the problem with DNA assays is the requirement for DNA to be 

readily presentable. Without extracting the DNA, these assays will not work for testing surfaces 

or early stages of infection as the DNA will be ‘locked’ within the spores and so will be 

inaccessible for PCR. 

To counteract the issues associated with diagnosis, a sensor which uses microwave extraction 

of DNA is currently under development, which can detect pathogens in under one minute. The 

technology was originally based on microwave-accelerated metal-enhanced fluorescence 

(MAMEF, Aslan et al., 2008, 2010) and was shown to work on both Bacillus and Clostridium 

spores (Joshi et al., 2014). This technology is being developed further to incorporate the use of 
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a bespoke microwave cavity resonant at a frequency of 2.45 GHz, that focuses the electric field 

component into the sample volume, with the goal of using added nanoparticles to further 

intensity the electric field and so reduce the microwave power requirements of the system. 

However, to fully understand the role of nanoparticles and the underlying mechanisms at play 

in the extraction process, it is necessary to model the interaction of bacterial spores with the 

microwave fields. 

Microwaves have been used since the 1990s to deactivate bacteria and spores, for both hospital 

applications (Pellerin, 1994) and industrial food treatment (Vaid and Bishop, 1998). 

Microwaves have also been used to inactivate both vegetative bacteria and spores, including 

Bacillus anthracis, Bacillus subtilis (Celandroni et al. 2004) and Bacilllus licheformus (Kim et 

al., 2009). 

Typically, the microwave mechanism of action in biological applications is assumed to be 

heating effects alone. Non-thermal effects were reported by Celandroni et al. (2004), but no 

mechanism was suggested.  In order to fully appreciate the contribution of non-thermal effects, 

it is necessary to consider the spore structure at the molecular level.  

A spore contains polar molecules (such as polar groups on proteins) within the tightly packed 

spore coat. The movement of the polar regions in response to the alternating microwave electric 

field can cause structural damage to the coat, without any requirement for heating. These 

effects were observed in high power microwave exposure by Celandroni et al. (2004), whereby 

B. subtilis spores exhibited structural changes that appeared to be different to the effects caused

by direct heating by traditional means. Similar results were later obtained by Kim et al., (2009) 

with B. licheniformis. Therefore, high power microwave exposure may cause spore damage, 

distinct to that of heating.  

The inclusion of nanoparticles has been reported to result in the physical breaking of the 

bacterial cell walls, and that this effect is related to the shape of the nanoparticles (Acharya et 

al., 2018). Following on from this, it is possible that different shaped nanoparticles will have 

distinct effects on spores and may be able to physically damage the spore outer surface. To 

investigate this, spherical, angled “urchin” shaped nanoparticles were investigated alongside 

spherical nanoparticles to test if the enhanced electric field around expected to develop around 

angled nanoparticles results in damage to the spore surface. 
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In the work of Aslan et al. (2008), silver nanoparticles in the form of silver island films were 

used in conjunction with microwaves to disrupt B. anthracis spores. However, these were only 

used as substrates for fluorophores to which the DNA would bind. The authors hypothesised 

that the DNA moves towards the nanoparticles, driven by the temperature gradient, with silver 

being colder due to it not being heated directly by microwaves. More recently, 70 nm magnetite 

(Fe2O3) nanoparticles were used as an in vitro demonstration of localised hyperthermia of 

biological tissue for cancer treatment (Kim et al., 2016). In this experiment, the nanoparticle-

treated sample reached a higher overall temperature compared with untreated tissue. The 

nanoparticles themselves do not heat significantly, but enhance the heating of tissue (Pearce et 

al., 2016). 

Our work has a unique approach in that the goal is to use the nanoparticles to directly interact 

with the spores, enhancing the disruptive effect of microwaves for DNA release. To understand 

how the nanoparticles and spores interact under an applied microwave electric field, it was 

necessary to model these interactions and then verify experimentally that the results correlate 

with the model’s predictions. 

2. Methods

2.1 Microwave system components 

The arrangement of the main components which form the microwave exposure system is 

described below. The microwave signal generator (Telemakus TEG-4000-1) was connected to 

an RF switch (Telemakus TES-7000-30), which using a bi-directional coupler (Mini-Circuits 

ZABDC20-322H-S+) drives a power amplifier (Mini-Circuits ZHL-30W-252-S+). The output 

of the power amplifier was connected,  via another directional coupler (Mini-Circuits 

ZABDC20), to a cylindrical resonant TM010 cavity, previously described by Williams et al., 

2015, resonant at 2.45 GHz. The coupled forward and reflected signals were measured using 

two power sensors (Telemakus TED-8000-40).  

The generated signal passed through an RF switch, where, depending on the switch state, it is 

either directed to the power amplifier, or to the coupled port of a bi-directional coupler, where 

it is attenuated by approximately 20 dB. The power amplifier increases the signal power by 

approximately +47 dB (from 1 mW up to 50 W rms), and this signal then enters the cavity. A 

second bi-directional coupler allows measurement of the signal power. The circuit schematic 

is shown in Figure 1. 
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Figure 1. A schematic representation of the microwave power delivery system, consisting of source, 

amplifier and applicator (cavity). The theoretical full power output, after cable and equipment losses 

have been taken into account, is approximately +45 dBm (31.6 W). 

The system was operated from a laptop computer connected to all instruments by USB. A 

custom program (written in National Instruments LabVIEW 2012) was responsible for system 

control and  providing the user interface. 

2.2     Modelling of Nanoparticles and Spores 

A physical model for nanoparticle focusing of the microwave electric field was built in 

COMSOL Multiphysics 5.0.  Spherical nanoparticles of diameter 100 nm were centred in a 

1000 nm cube of deionised water. The relative permittivity of water was set as 80 at a 

microwave frequency of 2.45 GHz. A uniform electric field was applied parallel to the z-axis, 

penetrating the whole water cube. In this geometry we expect the usual polar enhancement of 

the electric field magnitude around a spherical metal particle by a factor of 3 over that of the 

applied field. 

In a similar manner, a spore was simulated as a four-layer ellipsoid with the layers representing 

the exosporium, coat, membrane and core of the spore. The relative permittivity of the layers 

were set as follows: 40 for the exosporium and the core, 10 for the coat, and 2.5 for the 

membrane. The lower permittivity of membranes is discussed in the literature but the values 

vary depending on composition (Dilger at al., 1979; Tian, 2010). The exact values for spore 

membranes have not been measured, and the exact composition of the spore membrane, coat 

and exosporium are not sufficiently known to allow phantoms to be made, hence values were 

extrapolated from similar materials. Note that the relative permittivity of biological material at 

microwave frequencies is usually considered to be a complex quantity j , with the 

real part quantifying polarisation and the imaginary part quantifying energy loss. For all 

materials we will assume that   (as is the case for water and many biological materials at 

microwave frequencies around 2.45 GHz), so for simplicity we will only consider the real part 

 in our simulations. 

Table 1. Assumed relative permittivity values  

Layer  Source for value extrapolation 
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Exosporium 40 Lyu et. al., 2018 

Coat 10 Bibi et. al., 2016 

Membrane 2.5 Dilger at al., 1979, Tian, 2010 

Core 40 Lyu et. al., 2018 

The spore itself was modelled as an ellipsoid with semiaxis dimensions of 1.0, 0.7 and 0.7µm, 

in accordance with typical spore geometries reported (Paredes-Sabja et al., 2016). Layer 

thicknesses within the membranes of C. difficile spores vary significantly both between 

different strains and within a single strain, so a typical layer thickness of 0.1µm was chosen for 

all the layers; this is representative with values observed experimentally, as shown in Figure 2. 

Figure 2. Transmission electron micrographs of C. difficile (adapted from Paredes-Sabja et al., 2012) 

highlighting the variation in layer thicknesses and morphologies within the same strain. 

2.3  Preparing purified spore suspensions 

Spores of four isolates of C. difficile were used (National Anaerobic Reference Unit, Cardiff, 

Wales). The CD630 strain was chosen due to being fully genome sequenced (Lawley et al., 

2009). The R20291 and DS1813 strain were chosen due to belonging to the 027 “hypervirulent” 

ribotype. The DS1748 strain was chosen due to reported difference in hydrophobicity from 

other strains (Joshi  et al., 2012).  

The method was adapted from that of Sorg and Sohenshein (Sorg and Sohenshein, 2008;, 2010). 

Bacteria were incubated anaerobically in BHIS (brain-heart infusion) agar at 37° C for 4 days. 

Following incubation, cells were collected from the surface of the plate, using a 10 µl 

inoculating loop and suspended in 1 ml SDW (sterile deionised water) in a sterile Eppendorf 

tube. The suspension was incubated at 4° C overnight and then centrifuged at 5000 g for 5 

minutes, after which the supernatant was discarded and the pellet was re-suspended in 1 ml of 

ice cold water. This washing step was repeated 4 times. The suspensions were then layered 

onto a 50% sucrose solution and centrifuged at 3,400 g for 20 minutes, after which the pellet 

was re-suspended in 1 ml of ice cold water. The suspension was then centrifuged at 5000 g for 
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5 minutes and the pellet was re-suspended in 1 ml of ice cold water. This washing step was 

also repeated 4 times. The resulting final pellet was re-suspended in SDW and stored at 4° C. 

2.4 DNAse treatment of spores 

Purified spores were further treated to remove any DNA from solution and spore surfaces. 

DNAse treatment was adapted from Herman et al. (1995). A sample of 40 ng of DNase I in 

0.067 M phosphate buffer (pH 7) and 15 mM MgCl2 was incubated at 37° C with a spore 

sample of 1 ml in volume, containing 108 spores, with aliquots taken every 24 hours. The 

concentration of DNA in each aliquot was measured using Qubit dsDNA and ssDNA detection, 

as detailed in section 2.5.2 below. 

For the samples to be stored as stocks for later experiments, the DNAse was deactivated by 

heating the sample up to 70° C for 15 min. The samples were washed by centrifuging at 5000 

g and the samples pellets were re-suspended in SDW.  

2.5  Validation Experiments 

Spores were exposed to microwaves (in this case within the strong microwave electric field 

region along the axis of the cavity) using the cylindrical microwave cavity described by 

Williams et al., 2015, made wholly of aluminium. A 170 µl sample, at a concentration of 107 

spores/ml for spore samples, was placed in a 200 µl capped Eppendorf tube. The Eppendorf 

was then placed on the axis of the cavity via its axial sample hole. The response of the cavity 

with the sample was assessed using a network analyser (Agilent N1996A), whereby the 

microwave frequency was carefully adjusted to equal the frequency of the minimum of the 

voltage reflection coefficient. After final tuning of the cavity, to ensure an impedance match to 

its input circuity (for maximum power transfer), the sample was exposed to the microwave 

electric field, with duration, power and duty cycle all pre-selected. 

2.6  Nanoparticles used 

The nanoparticles chosen for this study, and the key reason behind their choice, are shown in 

Table 1. With the exception of the germanium nanoparticles, which were sourced from US 

Nano, all other nanoparticle suspensions were obtained from Sigma-Aldrich. The nanoparticle 

suspensions from Sigma-Aldrich were supplied as a dispersion in citrate buffer at a 

concentration of 3.8  109 particles/ml. The germanium nanoparticles came with their own 
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proprietary surfactant (formula not provided) and were mixed to a concentration 3.8  109 

particles/ml. 

Table 2. Nanoparticle types used 

Nanoparticle Effect being tested 

100 nm gold spherical Spherical nanoparticle field focusing 

30 nm gold spherical The effect of smaller size particles 

90 nm gold nano-urchins Particles with a spheroid shape with many pointed 
protrusions 

30 nm germanium  Thermal effect of the nanoparticles + field focusing 

A 10 μl aliquot of the spores was taken, first purified via the Sorg method, as previously 

described, and DNAse-treated (concentration of 108 spores/ml). This aliquot was mixed with 

170 μl of nanoparticle suspension (3.8  109 particles/ml). A 10 μl aliquot was taken from this 

mixture to serve as the non-microwaved control sample. The remaining 170 μl was loaded into 

the microwave cavity as previously described, using a 200 μl Eppendorf tube. In separate 

experiments on empty tubes, the plastic material of the tube was found to be of low permittivity, 

very low microwave loss, and so has very little interaction with the microwave electric field. 

The samples were exposed to microwave electric field using a 12W, 0.3% duty cycle (i.e. 3 ms 

“ON” time per 1000 ms) for 30 seconds. The ssDNA content of the microwaved and non-

microwaved (control) samples were then quantified using the Qubit system. 

Statistical analysis of the results was carried out in Graphpad Prism 5.0. Two-way ANOVA 

was used to determine the overall significance of results, while Bonferroni tests were used to 

compare different data sets to the controls. 

3. Results

3.1 Estimating nanoparticle heating 

3.1.1 Particle heating basic model 

The first step in modelling the nanoparticle interactions was to understand how the 

nanoparticles heat over time when subjected to constant power dissipation per unit volume. 

Heating of a material (i.e. change in temperature) over time can be described by the following 

simple equation: 

http://dx.doi.org/10.1063/1.5085442
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݀ܶ
ݐ݀

ൌ
ܳ
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			(1) 

where Q is the net heating power, ߪ is the heat capacity of the material and m is the mass of 

the material. We can expand Q into: 

		ܳ ൌ ܲ െ 	ܶ∆ܣߙ 	ሺ2ሻ 

			ൌ ܲ െ ሺܣߙ ௌܶ െ ܶௐሻ 

where P is the power dissipated (in our case, power absorbed) by the nanoparticles when 

exposed to microwaves, ߙ is the heat transfer coefficient to the surroundings, A is the total 

surface area of the nanoparticles, and ∆ܶ is the difference between the temperature of the 

particles ௌܶ and surrounding water ௐܶ. Thus, the original equation can be rewritten as:  

	
݀ ௌܶ

ݐ݀
൅
ܣߙ ௌܶ

݉ߪ
ൌ
ܲ ൅ ܣߙ ௐܶ

݉ߪ
	(3)	

This is a first order, ordinary differential equation which has the well-known solution 

	 ௌܶ ൌ ௐܶ ൅	
ܲሺ1 െ ݁ି

ఈ஺௧
ఙ௠ሻ

ܣߙ
	ሺ4ሻ 

3.1.2 Heating model results 

Using equation (4), it is possible to estimate the extent of microwave electric field-induced 

heating in a suspension of nanoparticles, based on the absorbed power, with results shown in 

Figure 3. First, due to their small size, the metallic germanium particles considered here reach 

steady-state temperature very rapidly, in less than 1 ms. Secondly, particles can theoretically 

reach very high temperatures (in the region of hundreds of degrees Celsius), even after 

accounting for heat losses into the water. Finally, it must be noted, that while values of 1012 

W/m3 appear to be excessively high, this results in only 0.1W of power absorbed by a 109 

particle/ml suspension. 

Figure 3. The temperature reached by 100 nm spherical nanoparticles in water, with density 5600 kg/m3, 

heat capacity 310 J kg-1K-1 (metallic germanium), as predicted by Equation 4. The traces represent the 

heating over time, with 3 different scenarios of the power absorption by the nanoparticles, in W/m3. 

The dashed line highlights the boiling point of water.
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The dielectric heating of nanoparticles is only significant in semiconductor particles, such as  

germanium. To understand this, consider the power dissipated per unit volume within a particle, 

which is E1
2, where  is the electrical conductivity and E1 is the internal electric field within 

each particle (assumed uniform). Thus, metal particles will not dissipate since E1 is negligible 

owing to very effective electrostatic screening; however, neither will low-loss dielectrics 

dissipate since then  is negligible. In some semiconductors, such as germanium at room 

temperature, the moderate value of  is sufficiently small so as not to screen E1 to very low 

values, but large enough to cause moderate dissipation (Porch et al., 2013). For nanoparticles 

made of conductive metals, heating can be treated as zero. The highest possible heating value 

is 0.1W/m3 for an electric field of 1 V/m and happens at a conductivity of 0.409 S/m (Porch et 

al., 2013). The closest material to this value used in this study will be germanium. Since the 

power dissipation is proportional to the square of the electric field magnitude, for heating 

effects like those shown in Figure 3, a field of the order of 106 V/m would be required. Such a 

field is higher than the typical fields expected in the experimental cavity used here. With a field 

level of 104 V/m, as in the current system, the particles will heat by approximately 0.01 °C over 

the course of the 3 ms on-time exposure. This temperature difference will be rapidly equalised 

by the surrounding water, so overall the heating of the particles with the current experimental 

conditions can be considered negligible. 

We repeat the important fact that direct Ohmic heating of the nanoparticles is negligible in the 

case of gold owing to the very high electrical conductivities, which give effective screening of 

the electric field within them. Furthermore, EM scattering is also negligible since all particles 

are in the limit where the particle size is much less than the microwave wavelength (in our case 

by a factor of around 105). 

This means that particles will not heat directly using the existing setup. However, at higher 

field values, heating will be possible for semiconductor particles. The model also highlights 

the short time required to heat nanoparticles. Nanoparticles heat and reach steady-state 

temperature in less than 1 ms. This means that with high microwave electric field values, a low 

duty cycle could be employed (e.g. with 1 ms on-time). 

3.2 Electric field model using COMSOL 

3.2.1 Nanoparticles model 

An electric field distribution model of a metallic nanoparticle was generated using COMSOL. 

A metallic, spherical nanoparticle was simulated in an aqueous solution. The electric field 
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within the particle itself is approximately zero due to the screening effect of the conduction 

band electrons. Quantitatively, the (uniform) electric field within a spherical nanoparticle is:  

ଵܧ			 ൌ
଴ܧ3
2 ൅ ε

	ሺ7ሻ	

where E0 is the applied electric field the particle is subjected to, and ε is the complex 

permittivity of the material (Porch et al., 2013). This means that for highly conductive particles, 

the large imaginary part of the permittivity (owing to the large conductivity value) will drive 

E1 down to be close to zero. Even for a semiconductor particle like germanium, the electric 

field magnitude within the particle will only be approximately 13% of that of the applied field. 

As for the electric field in the space surrounding each particle, it will be focused at the poles in 

the usual manner; the focussing factor for field amplitude is 3 for a metallic sphere, varying 

between 1 and 3 for non-metallic particles depending on the size of the relative permittivity ; 

this result is predicted theoretically and has been confirmed by COMSOL simulations shown 

on Figure 4A. By comparison, a particle with the “urchin” shape (though this applies to any 

shape with sharp angles), is found by simulation to have smaller hotspots focused on the spikes 

with a much higher focussing factor for the electric field, as large as 7.5 (Figure 4B). Since any 

action derived from the microwave electric field is expected to be proportional to the field 

intensity E2 (for example, power dissipated) these focussing factors become even more 

significant.   

Figure 4. Results of a 3D COMSOL simulation showing the focusing of an electric field by 100 nm 

conducting metallic nanoparticles. Compared to spherical nanoparticles (A), the urchin-shaped 

nanoparticles (B) generate smaller hotspot zones but with a more strongly focused field, up to a 

maximum of 7.5 greater than the applied electric field. 

When nanoparticles interact with spores, the part of the spore in contact with the nanoparticle 

will be subjected to higher electric field. In the case of spherical nanoparticles, the enhancement 

will be small, due to the limited area of contact and low field focusing (Figure 4A). In the case 

of angled nanoparticles, the field at the contact points will be higher (Figure 4B). In addition, 

the angled shape will allow the focused field to penetrate deeper into the spore to enhance 

disruption. In conclusion, the angled nanoparticles generate hotspots with a stronger electric 

field for a given input microwave power level and are therefore better suited to electric field-

based spore disruption. 
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3.2.2 Spore model 

The spore is a complex multi-layer structure, with the outer exosporium layer and the innermost 

core containing some water, it being separated by the multiple spore coat layers and the cell 

membrane (Setlow, 2007). The main limitation of developing a COMSOL model of a spore is 

the lack of information on the electric properties of these different spore layers. While values 

can be estimated, based on the fact that the spore layers contain proteins, lipids and 

polysaccharides, the results may not be fully representative of the spore itself. 

Figure 5. A simple 3D model of multiple spore layers under the effect of an electric field. The electric 

field is amplified at the simulated dielectric spore coat and membrane layers. The maximum 

enhancement up more than a factor of 5 in the simulated membrane layer (red), indicating that this layer 

will see the electric field magnitude, and so the greatest power dissipation if the layer is lossy. 

Although the model uses assumptions regarding the exact relative permittivity values and 

thickness of the layers, the overall result will be the electric field component perpendicular to 

the membrane layers will be highest in the low permittivity layers  (such as the membrane) 

compared to the aqueous layers and the surrounding layers, irrespective of their arrangement. 

This is illustrated with the simple model below, the results of which are shown on Figure 6. 

Consider a stratified material comprising N layers of dielectric material, perpendicular to the 

plane of which an electric field is applied. We assume that 0E  is the electric field magnitude 

in the first and Nth layer, which we will assume is water. Applying the boundary condition for 

the electric field E, namely that the component of electric flux density ED r 0  is 

continuous across each boundary, where r  is the complex permittivity of each layer, the 

electric field magnitude in each layer is then rEE  /0 .  Clearly, the magnitude is reduced 

in the higher permittivity layers and increased in the lower permittivity layers, the physical 

origin being the surface density of the polarisation charge density induced in at the boundary 

between each layer. In Figure 6, we show 9 layers (with 1 and 9 being water), each of random 

thickness, with layers 2-7 having random complex permittivity values; clearly, layer 6 has the 

lowest complex permittivity. 
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Figure 6. A simple stratified layer module which demonstrates the enhanced electric field magnitude 

(here in layer 6), supporting the results from Figure 5. The thickness of the layers has no bearing on the 

calculation of the electric field strength within each, in the limit where the thickness is much less than 

the microwave wavelength. It only depends on the permittivity of the layers, exactly as one would 

expect for such quasi-static analysis.  Layers 1 to 9 are water, and the other 7 layers have random 

thickness and complex permittivity values, the lowest value of permittivity being for layer 6. 

An important property of spores can be noted: the low permittivity layers of the spore will, by 

definition, give rise to the greatest electric field magnitude E . All field-induced processes 

will be enhanced in such layers, be they a direct result of the electric field, or a result of heating, 

where the power dissipated per unit volume is proportional to 
2

2 E , where 2  is the

imaginary (i.e. lossy) part of the complex permittivity. Referring to the spore model, the core 

is therefore partially shielded from the electric field, and the model suggests the field strength 

at this point is only 75% of that of the applied electric field. By contrast, the dielectric layers 

will have higher field values, rising to more than a factor of 5 in the sections of the membrane 

layer perpendicular to the applied field direction. 

The low water content layers (spore coat and membrane) are dielectrics separating two 

conductive layers: the aqueous solution containing the spores, and the spore core. This means 

they can function effectively as capacitors, storing electrical energy (and, indeed, also 

dissipating energy as heat if the layer allows) when exposed to microwaves. Such a build-up 

of energy could have consequences on the spore, such as structure degradation, which could 

lead to DNA release. 

In conclusion, the spore model provides a possible insight into the disruption of spores. The 

spore surface is well hydrated and therefore with high relative permittivity closer to that of 

water. This layer will be subjected to a lower electric field and thus is unlikely to be damaged 

in a manner that will be visible under an SEM (scanning electron microscope). By contrast, the 

inner dehydrated layers of the coat and membrane will experience a higher level of electric 

field, so may be disrupted due to realignment of charged groups leading to membrane damage 

and subsequent DNA release. 

3.3 Validation of the model 
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The model described above predicts nanoparticles are able to focus the microwave electric field 

in the vicinity of spores. To validate this model experimentally, spores were exposed to 

microwaves in the presence of different nanoparticle suspensions in order to compare the 

observations with the model’s predictions. 

3.3.1 DNA release by microwaved spores 

To evaluate the potential additional contribution of nanoparticles, the concentration of 

microwave-mediated DNA release in the absence of nanoparticles was first determined. As can 

be seen in Figure 7, the release of DNA was very small, with the highest value of 35 pg/μl. 

This level of DNA was not statistically significant (p = 0.35 with a hypothesis of no release).  

Figure 7. ssDNA release from C. difficile spores following a 0.3% duty cycle, 30 second microwave 

exposure (n=3). Overall, the change in the ssDNA signal was not statistically significant (compared to 

zero release). Error bars indicate the standard deviation of results. 

Next, the effect of different nanoparticles on the microwave-induced DNA release was 

determined. The results in Figure 8 show an increase in DNA release in the presence of 

nanoparticles for each test combination.  

Figure 8. The effect of different nanoparticle suspensions on DNA release following microwave 

exposure. The results show the change in DNA release, compared to a control sample which has been 

microwaved without nanoparticles (n = 3, see Figure 6). Stars indicate the degree of significance in the 

deviation from all the groups, using the Bonferroni post-test; one star for p < 0.05, 2 stars for p < 0.01, 

three stars for p < 0.001. Error bars indicate the standard deviation of results. 

The degree of DNA release following microwave exposure varied depending on the clinical 

isolate and nanoparticle used. Overall the differences in the DNA release were statistically 

significant (ANOVA p<0.0001), demonstrating that nanoparticles improve spore disruption 

compared to the samples without nanoparticles (Figure 7). In the case of the R20291 strain, all 

nanoparticles had a statistically significant increase in DNA levels. In the case of the DS1813 

strain, all nanoparticles except the 100 nm gold and 30 nm gold had a statistically significant 

effect on increasing DNA release. Regarding the CD630 strain and DS1748 strains, there were 

increases in the DNA release, but these were deemed to be statistically insignificant. 
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3.3.2 Characterisation of spores exposed to nanoparticles 

In order to better understand the reasons of the increased DNA release in the presence of 

nanoparticles, the microwaved spore suspensions from the samples that were used in the 

previous section were examined by using SEM for any visual signs of spore disruption.  

As can be seen from Figure 9A and Figure 9B, microwave exposure in the presence of 100 nm 

spherical gold nanoparticles had no visible effect on the spore architectures. Similar results 

were observed in all four clinical isolates, including R20291 (Figure 9B), where the 100 nm 

gold nanoparticles have been shown to have a statistically significant increase in DNA release. 

Figure 9. SEM of C. difficile spores exposed to microwaves in the presence of spherical gold 

nanoparticles. A: DS1748 strain, 100 nm particles. B: R20291strain, 100 nm particles. C: DS1748 strain, 

30 nm particles. D: DS1748, 90 nm urchin-shaped particles. The magnification was ×25,000. These 

images are representative of 10 fields of view for each sample. 

Neither the 30 nm spherical (Figure 9C) or 90 nm urchin gold nanoparticles (Figure 9D) had 

any visible effect on the surface architectures of the spores of all four clinical isolates. By 

contrast, spores microwaved in the presence of germanium nanoparticles were heavily 

disrupted, with collapsed and partially collapsed spores observed. Similar disruption was seen 

in all four clinical isolates, even though it did not lead to a statistically significant increase in 

DNA release from the DS1748 and CD630 strains. 

Figure 10. SEM of C. difficile spores of the DS1748 strain spores exposed to microwaves in the presence 

of 30 nm germanium nanoparticles. The magnification was ×25,000. The spores appear damaged and 

collapsed in on themselves (highlighted), in contrast to the intact spores with other nanoparticles (Figure 

9). These images are representative of 10 fields of view.  

Overall, these results show that DNA release from spores microwaved in the presence of gold 

spherical and urchin-shaped nanoparticles is not associated with any visible structural damage 

of the spores, indicating that the disruption mechanism is non-destructive in nature. The method 

of using germanium nanoparticles is associated with significant spore damage, suggesting a 

different mechanism of action. 

A  B 

C  D 
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4. Discussion

The heating simulation of the individual nanoparticles suggests that in aqueous solutions 

semiconductor particles theoretically reach very high temperatures, providing there is 

sufficient electric field (of order of 106 V/m). However, due to the high surface area to volume 

ratio, this is likely to be very inefficient and will only work with semiconductor materials like 

germanium. Under the existing setup and an electric field of order of 104 V/m, the heating will 

be of the order of 0.01 °C per pulse and will be completely negated by the surrounding aqueous 

solution. 

The electric field model in COMSOL indicates that nanoparticles will focus the electric field, 

as expected theoretically, and angled nanoparticles (i.e. urchin-shaped), will create small zones 

of very focused field, while spherical nanoparticles create larger high field areas, but with less 

field focusing. This means that when a nanoparticle comes in contact with the spore, only a 

very small area (and thus point volume) will be subjected to the higher electric fields. With 

angled nanoparticles, the field at the contact points will be higher and therefore a larger 

proportion of the spore will be exposed to these high fields. As was previously stated, the 

electric field effects scale quadratically since it is the field intensity that is important, so a field 

focusing factor of 2 will have 4-fold enhanced effect. Likewise, with a field focusing factor of 

7.5, as was predicted for the urchin model, the electric field effects will be 56-fold enhanced. 

In addition, the urchin shape has multiple focused field hotspots, allowing each particle to 

affect several locations on the spore simultaneously. In contrast, a spherical nanoparticle has 

only two hotspots at opposite poles, making it much less effective. 

The electric field model of the spore indicates that the electric field is focused in the membrane 

and spore coat, but not on the spore surface. This field enhancement affects most of the 

membrane and coat layer, except for the two polar areas of the spores which are aligned with 

the electric field. This presents a potential model for nanoparticle-mediated DNA release 

enhancement. Without nanoparticles, the outermost layer is intact, therefore DNA release is 

limited even if the inner coat and membrane layers are heavily disrupted. Our hypothesis is that 

nanoparticles create small zones of disruption in the outer spore layers due to the electric field 

hotspots, giving a route for DNA to the be released. Due to the size of these hotspots, they may 

not be visible under SEM and the spore will still appear intact. 
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The results from these preliminary experiments show that microwave-mediated DNA release 

from spores of the R20291 and DS1813 strains can be enhanced by the addition of 

nanoparticles, particularly the gold urchin-shaped nanoparticles and germanium nanoparticles. 

To determine the effect of shape and size on DNA release, the interaction of R20291 and 

DS1813 spores with gold spherical (30 and 100 nm) and urchin shaped (90 nm) nanoparticles 

was examined. A different pattern of response for the two strains was seen with regards to 

DNA release, which suggested that spore structure may have a major impact on how they 

interact with nanoparticles. Only the urchin-shaped nanoparticles caused a significant increase 

in DNA release from both strains, which supports the data from the electric field COMSOL 

model and the prediction that the hotspots generated by the urchin-shaped nanoparticles 

enhance DNA release. While the urchin nanoparticles mediated DNA release from both strains, 

it was less effective than spherical gold nanoparticles for R20291 spores, suggesting that 

factors other than shape may be important. 

Finally, the effect of germanium nanoparticles was also analysed. Germanium nanoparticles 

increased spore DNA release in the DS1813 and R20291 strains and were associated with 

visible destructive spore disruption. This disruption, however, did not correlate with 

significantly higher DNA release compared with the non-destructive disruption of gold 

nanoparticles. The visual signs of disruption do indicate a different mechanism may be 

responsible for the spore disruption. The modelling results rule out a heating-based effect, as 

the electric field strength in in the cavity is insufficient to cause any heating in the test 

conditions used. It may, however, be due to a chemical effect from the surfactant. The 

germanium nanoparticles came from a different supplier (US-Nano) to the gold nanoparticles 

(Sigma-Aldrich), and were supplied with a proprietary surfactant. This means the attachment 

of these nanoparticles to spores could be different to that of other nanoparticles dispersions. 

The irregular shape of the nanoparticle could also be a factor, generating hotspots similar to 

the urchin-shaped nanoparticles. 

The CD630 strain was the least affected. Only the 90 nm urchins had an average improvement 

of over 50 nm/μl of DNA release. A possible explanation is a low DNA content in the outer 

spore surface. This strain lacks the “pineapple” outer layer of the DS1813 and DS1748, or the 

large baggy outer layer of the R20291 strain. If the DNA is trapped in the spore layer as 

hypothesised, there may simply be less areas for the DNA to be trapped in the CD630 strain 

compared to others. 
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Attachment of nanoparticles to spores due to different surface properties may also play a major 

role in spore disruption. This attachment could potentially be enhanced by functionalisation. 

The nanoparticles used in the study were citrate-stabilised, and therefore had a partial negative 

charge on the surface (Zhao et al., 2013). This could cause the nanoparticles to repel each other, 

resulting in poor interaction with hydrophobic spores such as the DS1748 and DS1813 strains. 

Functionalised nanoparticles could contain positive charge groups on the surface and therefore 

bind more easily. 

One of the limitations preventing higher statistical significance of experimental results for 

DNA release was the Qubit assay itself. The issues with spore clumping and nanoparticle 

clumping did lead to a larger variation in results, which led to higher p values.  

Based on the electric field model, due to water having a very high dielectric loss for a 2.45 

GHz frequency, it inevitably absorbs much of the power that goes into the sample. This means 

that water interferes with spore disruption and the power absorbed by the water is effectively 

wasted. For a more effective spore disruption it may be better to redesign the system to work 

with dry samples, where water is only added after microwaving, as a solvent for the DNA. 

Such a system will need much less power, as the sample mass and total heat capacity will be 

much smaller. Doing this also eliminates the sources of systematic error from dispersants as 

well as nanoparticle and spore clumping interference in Qubit or other fluorescence assays. 

In conclusion, nanoparticles were found to significantly enhance spore disruption, with gold 

urchin shaped and germanium irregular shaped particles showing the greatest effect. The model 

of nanoparticle and spore interactions indicates that the urchin and irregular shaped 

nanoparticles produce localised areas of concentrated field on the spore surface where spore 

disruption enhanced. This data can be used to enhance the design of microwave-based 

diagnostic systems for bacterial spores in a rapid and specific manner. 
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