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Abstract

Big data production in industrial Internet of Things (IIoT) is evident due to the massive deploy-

ment of sensors and Internet of Things (IoT) devices. However, big data processing is chal-

lenging due to limited computational, networking and storage resources at IoT device-end. Big

data analytics (BDA) is expected to provide operational- and customer-level intelligence in IIoT

systems. Although numerous studies on IIoT and BDA exist, only a few studies have explored

the convergence of the two paradigms. In this study, we investigate the recent BDA technolo-

gies, algorithms and techniques that can lead to the development of intelligent IIoT systems. We

devise a taxonomy by classifying and categorising the literature on the basis of important param-

eters (e.g. data sources, analytics tools, analytics techniques, requirements, industrial analytics

applications and analytics types). We present the frameworks and case studies of the various

enterprises that have benefited from BDA. We also enumerate the considerable opportunities in-

troduced by BDA in IIoT. We identify and discuss the indispensable challenges that remain to be

addressed as future research directions as well.

Keywords: Internet of Things, cyber-physical systems, cloud computing, analytics, big data.

1. Introduction1

Industrial Internet of Things (IIoT) (also known as Industry 4.0), which was initially con-2

ceived as a vision by the German government, is currently attributed as the fourth industrial rev-3

olution. The technology ecosystem underpinning IIoT is mainly the integration of cyberphysical4

systems (CPS) [1], Internet of Things (IoT), cloud computing [2–4], automation (e.g. intelligent5
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robots in product assembly lines) [5], Internet of services [6], wireless technologies, augmented6

reality [7] and concentric computing [8], amongst others. Advances in such related areas as IoT,7

big data analytics (BDA), cloud computing and CPS have fuelled the formation of IIoT activities8

to deliver unprecedented flexibility, precision and efficiency to manufacturing processes [9, 10].9

Given this cross-platform integration, IIoT systems need to ensure interoperability, virtualisa-10

tion, decentralisation, real-time capability, service orientation, modularity and security across all11

verticals [11]. However, these systems are perceived to have qualities, such as self-awareness,12

self-prediction, self-comparison, self-configuration, self-maintenance and self-organisation [12].13

BDA is a related area that enables IIoT systems to deliver value for data captured from cross-14

platform integration. BDA refers to the process of collecting, managing, processing, analysing15

and visualising continuously evolving data in terms of volume, velocity, value, variety and ve-16

racity [13]. Big data in IIoT systems arise due to unbounded internal and external activities17

relevant to customers, business operations, production and machines [14]. BDA processes in18

IIoT systems manage the collected data using multiple transient and persistent storage systems19

that provide on-board, in-memory, in-network and large-scale distributed storage facilities across20

IIoT systems [15, 16]. The granularity of data processing facilities for BDA processes in IIoT21

systems vary from resource-constrained IoT devices to resourceful large-scale distributed cloud22

computing systems [17]. Similarly, analytic operations differ in terms of descriptive, prescrip-23

tive, predictive and preventive procedures [14]. In addition, BDA processes must ensure real-time24

knowledge visualisation across multiple IIoT systems. A proper integration of BDA processes25

into IIoT systems is perceived to maximise value creation to evolve business models for profit26

maximisation [14, 18].27

1.1. Motivation28

Although IIoT [19–24] and BDA [13, 25–31] have been widely studied separately, only a29

few studies including [32] have explored the convergence of the two domains.30

Big data production in IIoT is evident due to large-scale deployment of sensing devices and31

systems in pervasive and ubiquitous industrial networks. Given that the concept of IIoT systems32

is still evolving, complete integration and implementation of BDA processes in IIoT systems are33

unavailable yet [32, 33]. Existing surveys on IIoT systems focus on concepts related to adoption34

of IIoTs [34, 35], the integration of IIoTs and edge cloud computing systems [36], industrial35
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marketplaces for IIoTs [4], big data and virtualisation technologies for IIoT systems [37], tech-36

nological advancements relevant to CPS in IIoT systems [38], smart manufacturing [39] and big37

data applications for business operations [40–42]. We introduced the concept of the concentric38

computing model (CCM) for BDA in IIoT in our previous work [32] whereby we outlined the39

discussion on different layers of CCM and discussed the relevant research challenges that must40

be addressed to fully enable CCM for BDA in IIoT. However, to the best of our knowledge, a41

detailed review on BDA implementation for IIoTs is still lacking in the existing literature. Thus,42

the current study presents the key operations of BDA for value creation in IIoT systems. On the43

basis of BDA concepts, this study surveys earlier contributions relevant to data analysis in IIoT44

systems.45

1.2. Contributions46

The main contributions of this study are listed as follows.47

• We build a case of BDA for IIoT systems whereby the role and entire process of BDA48

are discussed. The study sets a theoretical ground to understand modern automated data49

pipelines for enriching intelligence in IIoT systems.50

• We investigate existing state-of-the-art research studies on IIoT in terms of BDA. In this51

context, we categorise and classify the literature by devising a taxonomy.52

• We present frameworks and case studies whereby BDA processes are adopted to improve53

the overall performance of IIoT systems.54

• We present several research opportunities, challenges and future technologies to minimise55

the research gaps between state of the art (i.e. proposed in the literature) and state of the56

practice (i.e. adopted by industries in practice).57

The rest of the paper is organised as follows. Section 2 discusses the key concepts relevant58

to BDA in IIoT systems, followed by a detailed survey of existing technologies and algorithms59

in Section 3. Section 4 presents the taxonomy, and Section 5 highlights a few frameworks and60

relevant case studies. Section 6 presents the opportunities, open challenges and future directions.61

Section 7 provides the concluding remarks.62
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2. BDA in IIoT Systems63

This section presents a detailed discussion on different aspects of big data adoption in IIoT64

systems. To this end, several design principles, which should be considered prior to configuring65

and deploying IIoT systems, are highlighted. The role of BDA and its life cycle is discussed in66

detail to deliver end-to-end intelligence in IIoT systems.67

2.1. Design Principles for IIoT Systems68

The designs of IIoT systems involve seven principles [11], as depicted in Fig. 1. Firstly,69

interoperability must be ensured amongst different technologies, such as CPS, IoT devices and70

concentric computing systems. Wireless data communication technologies play an unparalleled71

role to realise an interoperable system. Secondly, virtualisation technologies at all levels must72

be considered for efficient service provisioning and delivery across IIoT systems. Virtualisation73

varies in terms of platforms, networks, data, operating systems and applications. Thirdly, decen-74

tralisation must be conducted to ensure highly distributed IIoT systems. Decentralisation varies75

in terms of system-wide data processing and data storage. Fourthly, IIoT systems must provide76

real-time feedback to all stakeholders. Fifthly, service-orientation must be guaranteed whereby77

all system functions are implemented in the form of service-oriented architecture (SOA). Sixthly,78

modular approach must be adopted for system implementation. Lastly, system-wide security79

must be considered as core principle. The BDA process for IIoT systems must be designed in80

consideration of the above-mentioned principles.81

2.2. Rise of Big Data in IIoT Systems82

Big data in IIoT systems emerge from a plethora of technologies. CPS refers to the integration83

of physical machine components with on-board computations and networking facilities [38, 43].84

CPS and IoT devices act as the backbone of IIoT systems and thus generate massive amount of85

raw data streams, which result in big data [44]. Therefore, real-time analysis of these data can86

improve machine health and lead to defect-free product manufacturing [1, 34, 45].87

IoT devices in IIoT systems refer to devices that can remotely sense and actuate in industrial88

environments [46]. IoT devices either work as stand-alone devices that roam around industrial89

environments or are attached with existing CPS to perform certain predefined actions [47]. The90

on-board sensing facilities in IoT devices lead the generation of big data, which may become91
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Figure 1: Seven design implementation principles for Industry 4.0 systems.

useful for value creation in enterprises. The integration of CPS and IoT devices results in massive92

back-end cloud service utilisation for the execution of BDA processes [48]. To achieve massively93

customised production, the number of cloud services can be grown immensely. Thus, BDA can94

facilitate in-service selection, service orchestration and real-time service provisioning [49].95

2.3. Concentric Computing Model for BDA in IIoT96

Recent evolution in sensing and computing technologies has opened new avenues for big97

data processing. Concentric computing refers to the large-scale highly distributed comput-98

ing systems based on a wide range of devices and computing facilities in different form fac-99

tors [8]. Concentric computing offers big data processing at sensors levels, endpoints in IIoT100

systems, edge servers, and centralised and decentralised cloud computing systems, as illustrated101

in Fig. 2 [14, 36, 50]. Despite their small size and limited computational power, sensors and102

IoT devices have the ability to filter and reduce raw data streams by using on-board smart data103

reduction strategies [51]. However, edge servers at gateways and centralised computing clusters104

have the ability to distribute the computing load for BDA applications [52, 53]. Multistage exe-105
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cution, automating, and management of BDA processes (i.e., data engineering, data preparation106

and data analytics) are necessary in concentric computing environments (such as sensors and107

wearable devices as endpoints, IoT devices, edge servers, and cloud computing servers) [54].108

2.4. Big Data Analytics for Delivering Intelligence in IIoT Systems109

BDA processes are executed as a result of multistage highly interdependent application com-110

ponents (Fig. 3). These components are categorised as follows.111

2.4.1. Data Engineering112

Data engineers build computing and storage infrastructure to ingest [55], clean [56], con-113

form [57], shape [58] and transform [59] data. IIoT systems produce and ingest big data from114

inbound enterprise operations and outbound customer activities. The raw data at the earliest115

stage need further processing to improve the quality and establish the relevance with IIoT ap-116

plications. Therefore, data wrangling and cleaning methodologies help select relevant datasets117

in case of historical data or data streams in case of streaming data. Data conformity procedures118

are applied to ensure relevant, correctly collected big data. Data shaping and transformation119

Industrial Internet of Things

Outer Edge Servers

Inner Edge Servers

Core Cloud Services

Server

Figure 2: Industrial IoTs and Multilayer Computing Resources
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Figure 3: Multistage execution, automating, and management of BDA processes (i.e., data engineering, data preparation

and data analytics) in concentric computing environments (such as sensors and wearable devices as endpoints, IoT

devices, edge servers, and cloud computing servers) [32].

methodologies help improve data quality by reducing the number of attributes and converting120

data formats for uniform data processing.121

2.4.2. Data Preparation122

Big data emerge in raw form with large volume and enormous speed, and data scientists spend123

70% − 80% of their time in data preparation activities [60]. Big data are refined using statistical124

methods to handle unstructured, unbalanced and nonstandardised data points efficiently [61]. In125

addition, data refinement helps summarise voluminous data to reduce overall complexity. As a126

result, the spatiotemporal attributes of big data in IIoT systems vary. Ultimately, data locality is127

necessary to reduce in-network traffic and latency in big-data applications [61]. Location-aware128

highly virtualised data infrastructure can address these issues. However, data blending, which is129

the process of combining data from multiple sources, becomes complex. Accordingly, further130
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involvement by data scientists [62] is required to perform data cleaning and noise removal [63].131

Detection methods for outliers and anomalies are also needed to prepare big data for further132

analysis [64, 65].133

2.4.3. Data Analytics134

The analytic processes in IIoT systems are executed in multiple phases [66]. Data scientists135

generate learning models from high-quality well-prepared data. After the model is developed,136

model scoring operations are performed by giving sample datasets and finding and ranking the137

attributes in datasets/data streams. The correctly tuned models are deployed in production envi-138

ronments to find the knowledge patterns from future data.139

2.4.4. Managing and Automating the Data Pipeline140

Although existing literature still lacks the concept of automated data pipelines in IIoT sys-141

tems, BDA processes are executed as a sequence of operations during data engineering, prepa-142

ration and analytics. Therefore, a holistic approach is needed to execute and administer BDA143

processes across all layers of concentric computing systems. Life cycle management is needed144

for full process execution from raw data acquisition to knowledge visualisation and actuation.145

Data provenance, that is, designating ownership of data to different stack holders, also needs146

serious attention to ensure system-wide control on data [67]. The continuous evolution in data147

streams results in knowledge shift that enforces data pipelines to adaptively reconfigure analytic148

processes. The data pipelines need to be continuously monitored for change detection, and the149

entire BDA process needs to be re-executed to produce high-quality results [68]. In security150

perspective, the cross-platform execution of BDA processes demands secure operations at IoT151

device, CPS and big data levels [69].152

3. Technologies and Algorithms for BDA in IIoT systems153

A common example of IIoT systems is the concept of a smart factory system (SFS) [36]. The154

key attributes of SFS and its subsystems are self-awareness, self-organisation, self-maintenance,155

self-prediction, self-configuration and self-comparison [12]. This section presents the review of156

early studies that presented BDA in the context of SFS and IIoT systems [12] in consideration of157

the aforementioned autonomy related attributes (Table 1).158
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3.1. Mass Product Customization towards IIoT Lean Manufacturing159

Although the main objective of IIoT systems is to maximise production considering massive160

customisation in accordance with customer requirements, the existing literature still lacks an161

end-to-end predictive analytics framework. Computational intelligence-based methods, such as162

self-organising map (SOM) algorithms, are used to optimise big data for feeding in the produc-163

tion systems and enable massively customised product manufacturing [70]. The neural network-164

based SOM algorithm effectively enables smart production cycle in SFS. The cycle is based on165

a close loop within a sequence of operations, including smart design, manufacturing, produc-166

tion and services whereby feedback is collected after each cycle and subsequent operations at167

each stage are improved. Clustering-based big data optimisation is another approach whereby k-168

means clustering algorithms are used to cluster the attributes from customer data. The produced169

clusters are used to intelligently improve the design process in the product life cycle [71]. An-170

other alternate for massive product customisation is the adoption of cloud-based manufacturing171

systems whereby big data integration is performed in cloud computing systems [72]. However,172

the resultant big data are integrated from multiple sources, such as social media data streams173

relevant to customer behaviour and IIoT data streams from manufacturing systems. This type174

of cloud-based manufacturing benefits from open innovation and cross-continent physically iso-175

lated product manufacturing.176

3.2. Industrial Time Series Modeling177

The achievement of zero-defect in SFS is a major challenge. In SFS, all manufacturing178

components are perceived to be highly connected to ensure high-quality production. The term179

zero-defect refers to ensuring high-quality production during the execution of a complete manu-180

facturing process [45]. To this end, industrial time series modelling ensures the proper monitor-181

ing of all manufacturing components during operations. However, data collection from multiple182

components results in high-dimensional data streams. The neo-fuzzy neuron (NFN) time series183

modelling method is adopted by IIoT systems. NFN can collaboratively connect the input data184

streams with the final outputs. NFN benefits from the convergence of input data, which results185

in decreased data streams and thus less iteration for learning model generation [73].186
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3.3. Intelligent Shop Floor Monitoring187

The term physical Internet (PI) refers to the integration of cloud manufacturing with wireless188

and networking technologies. PI in IIoT systems provides the backbone to IIoTs and smart189

manufacturing object tracking systems based on radio-frequency identification. These smart190

manufacturing objects represent different forms of products during manufacturing after each191

process [47]. However, IIoT systems need to track these smart objects during production to192

ensure that analytic processes provide intelligent shop monitoring. Researchers have proposed193

a BDA-based approach for the trajectory clustering of moving objects in shop floors. Although194

initial findings have been previously presented, a component-based BDA architecture is still195

necessary to develop highly optimised and intelligent smart object tracking systems for shop196

floor monitoring [47]. Performance analysis and exception diagnosis model have been proposed197

and tested using Petri nets and decision tree algorithms [47]. The model shows feasibility, and198

its real implementation in IIoT systems may help correctly quantify the results.199

3.4. Industrial Microgrids200

Massive data production in IIoT systems is evident due to feature-rich sensory and large-scale201

deployment of IIoTs in SFS [74]. Therefore, manufacturing and environmental data, along with202

energy consumption data, can lead towards optimised energy utilisation in SFS. The application203

of BDA processes on these data silos can help improve planning, managing and utilising energy.204

Researchers have proposed BDA analytics methods for industrial-level microgrid planning in205

SFS. However, quantifiable studies that can lead towards efficient microgrid planning in IIoT206

systems are still required [74].207

3.5. Monitoring Machine Health208

Prognostic health monitoring (PHM) helps find the machine behaviour for value creation209

during mechanical operations and facilitate machine data collection and management for the210

early diagnoses and prediction of machine faults. Several studies have performed analysis of211

PHM data [75–77]. In accordance with multiple International Standards Organisation and In-212

ternational Electrotechnical Commission and Society of Automotive Engineering standards, the213

authors of [76] analysed ontological models developed from PHM data. These ontological mod-214

els represent the hierarchical and semantic relationships amongst different machine components.215

The remaining useful life of machine components, faults, errors and failures during machine216
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operations has also been explored. Studies have also presented dependency and failure mode217

analyses of different machine components. The analysis of PHM data helps plan and schedule218

machinery maintenance activities, thereby supporting in finding maintainable machine compo-219

nents before total failure. However, finding the relationship amongst different attributes and the220

failure impact of understudied machine components on other components in large-scale manu-221

facturing environments is a challenging task [77].222

3.6. Intelligent Predictive and Preventive Maintenance223

Predictive and preventive maintenance are the key requirements of large-scale IIoT sys-224

tems [11]. The BDA process can help in off-line prediction (i.e., performing prediction on the225

basis of historical data) and online maintenance (i.e., maintaining machines without shutting226

down the manufacturing units). Researchers have integrated Hadoop and Storm technologies for227

big data processing and used neural network-based methods for prediction [78]. The concept of228

adopting BDA for intelligent predictive maintenance is novel. However, new avenues need to be229

explored to fully realise a real-time prediction system.230

4. Taxonomy231

Figure 4 presents the taxonomy that is devised on the basis of data sources, analytics tools,232

analytics techniques, requirements, industrial analytics applications and analytics types.233

4.1. Data Sources234

In an industrial environment, numerous sources of data production, such as sensors, enter-235

prise resource planning (ERP) systems, manufacturing execution systems (MES), supervisory236

control and data acquisition (SCADA) systems, customer relationship management (CRM) sys-237

tems and machine/IoT devices. ERP systems enable organisations to employ a system that is238

composed of multiple integrated applications for managing business needs and automating many239

back-office functions related to technology, services and human resources. MES helps keep240

the track record of all manufacturing information in real time and receive up-to-date data from241

robots, machine and IoT devices [79]. SCADA systems are used to monitor and control a plant242

or equipment in industries (e.g. telecommunications, water and waste control, energy, oil and gas243

refining and transportation). CRM systems are commonly used to manage a businesscustomer244
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relationship. Machines and IoT devices are also deployed in industries to perform specific tasks,245

which generate an enormous amount of data on a daily basis. Applying analytics solutions to the246

collected data through all the above-mentioned systems, machines and IoT devices can extract247

valuable information that can help in decision-making purposes.248

4.2. Analytics Tools249

Several analytics tools are required to gain insights into a large amount of industrial data.250

These tools include analytics software, algorithm repository, visualisation tools, modelling tools251

and online analytics packages. Analytics software helps make predictions about unknown events.252

An algorithm repository is a crowd-sourced repository of algorithms that is designed by analysts253

using a common set of languages and a common interface. Visualisation tools help present data254

in advanced formats (e.g. infographics, dials and gauges, geographic maps, sparklines, heat255

maps and detailed bar, pie and fever charts). Modelling tools are used to define and analyse data256

requirements for supporting business processes within the scope of corresponding information257

systems in industries. Online analytics packages help keep track of and analyse data about web258

traffic.259
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Table 1: BDA Implementations in IIoT Systems

Ref. Problem(s) Objective(s) Analytic Compo-

nent(s)

Mode Strengths Limitations Potential Solutions

[71] Finding accurate cus-

tomers’ attributes for

mass customization.

Self-prediction Genetic Algorithm

k-means clustering

Historical data Smart product development

Rapid response to customer

needs

Needs to be implemented

for real-time, Lacks large-

scale validation in BDA en-

vironments

Deep Learning for

BDA

[70] Finding accurate cus-

tomers’ attributes for

mass customization.

Self-prediction Self-organizing

map

Historical data Smart product development

Rapid response to customer

needs

Needs to be implemented

for real-time, Lacks large-

scale validation in BDA

Re-enforcement learn-

ing algorithms

[72] Enabling product cus-

tomization and person-

alisation

Self-

configuration

Self-

organization

Highlighted, but no

real implementa-

tion discussed

Streaming data An end-to-end model for

massive production and

personalisation

No real implementation Use-case implementa-

tion

[73] Achieving zero-defect

problem

Self-

configuration

Neo-Fuzzy Neuron Batch data Performs industrial process

monitoring and modelling

Accuracy needs to be im-

plemented

Using alternate ML al-

gorithms

[47] implementing Physical

Internet concept in

manufacturing shop

floors

Self-prediction Decision trees Batch data The implementation results

in better prediction rate

Performance values for dif-

ferent workers needs to be

well-defined to control the

rate of overestimation

Using alternate ML al-

gorithms

[74] Developing a proactive

and sustainable micro-

grid

Self-prediction A generic frame-

work for knowl-

edge discovery

Batch Data An end-to-end approach for

microgrid data analysis

Efforts are needed to ex-

plore analytics for full

value chain level knowl-

edge discovery in industrial

microgrids

BDA Platform for full

value chain Analytics

[78] Active preventive main-

tenance

Self-

maintenance

Neural Networks Batch data Real-time active mainte-

nance

Need to be investigated

with real-time streaming

data

Real-time BDA plat-

form
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4.3. Analytics Techniques260

Various analytics techniques that can help obtain value from big industrial data are available,261

thereby leading to making fast and better decisions. These analytics techniques include text262

analytics, machine learning, data mining and statistical and natural language processing (NLP)263

techniques. Text analytics helps derive high-quality information by unveiling patterns and trends264

using statistical pattern learning. Machine learning techniques enable industrial devices and265

machines to enter into a self-learning mode without being explicitly programmed. Data mining266

solutions enable enterprises to transform raw data into knowledge. Statistical tools help collect,267

summarise, analyse and interpret large amounts of industrial data, which lead to knowledge268

discovery. In an industrial environment, NLP tools are used to extract and analyse unstructured269

data.270

4.4. Requirements271

Certain requirements should be incorporated whilst developing new analytics systems for272

IIoT. These requirements include maturity models, functional architecture, infrastructure archi-273

tecture and integrated analysis. Maturity models help measure and monitor the capabilities of274

analytics systems. They also help measure the effort required to complete a specific development275

stage. In summary, these models help monitor the health of an organisations big data programs.276

Functional architecture is an architectural model that helps identify the functions of analytics277

systems and their interactions. In addition, it defines how system functions work together to278

perform a specified system mission. In an industrial environment, analytics systems must be279

developed such that they can handle an enormous amount of data in real time. In this context,280

big data infrastructure requires experienced scientists to design the infrastructure from existing281

equipment in an industrial paradigm. One of the key requirements for analytics systems is that282

they should support the integrated analysis of multiple types of industrial IoT data.283

4.5. Industrial Analytics Applications284

Typical industrial analytics applications across the industrial value chain are as follows: man-285

ufacturing/operations, logistics/supply chain, marketing/sales and research and development.286

The use of predictive analytics in manufacturing can lead to rescheduling a maintenance plan287

prior to machine failure by considering past machine performance history. Moreover, it can help288

develop decision support systems for industrial processes. The appropriate use of analytics can289
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play an important role in the logistics/supply chain (e.g. condition monitoring, supply chain op-290

timisation, fleet management and strategic supplier management). Analytics can help identify291

failing parts during product usage through sensor readings and gradually improve product char-292

acteristics (research and development). In the marketing field, analytics tools enable enterprises293

to predict and enhance future sales (e.g. help in determining seasonal trends that can lead to294

developing an adaptive marketing strategy).295

4.6. Analytics Types296

Analytics has four types: descriptive, real-time, predictive and prescriptive analytics. De-297

scriptive analytics helps gain insights into historical data (e.g. number of defective items in the298

past and the reason for the defects). Meanwhile, real-time analytics enables enterprises to be-299

come aware of current situations (e.g., current status and location of a product and detection300

of a faulty machine). By contrast, predictive analytics helps identify potential issues that can301

occur in advance by using statistical and machine learning techniques (e.g. expected inventory302

levels, anticipated demand levels, and prediction of equipment failure). Lastly, prescriptive ana-303

lytics provides advice or suggestion on the best possible action that an end user should take (e.g.304

whether a machine is receiving the right raw materials in the correct amount).305

5. Frameworks and Case Studies306

Value creation is a major sustainability factor in modern enterprises whereby BDA processes307

are becoming the primary driver in creating values for customers and enterprises [80]. IIoT308

systems are no exception. BDA processes can facilitate the amalgamation of customer and enter-309

prise data to ensure massively customised production with zero defects. IIoT systems essentially310

integrate historical and real-time stored and streaming data at various levels. This multisource311

data integration leads to highly effective designs for new business models. Enterprises focus312

on different aspects of industry-wide value creation mechanisms, such as defining value propo-313

sitions, value capturing mechanisms, value networks and value communication strategies for314

internal and external stakeholders [18]. Ideally, BDA processes can facilitate enterprise-level315

value creation whereby inbound intelligence is obtained by creating value for internal enterprise316

operations. Alternatively, outbound intelligence leads towards value creation for customers. De-317

spite these opportunities, unlocking the perceived value from BDA technologies is challenging.318

The existing literature presents only a few such frameworks and use cases as follows.319
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5.1. SnappyData320

SnappyData is an open-source BDA framework that integrates Apaches Spark and GemFire321

technologies [81]. Apaches Spark is adopted for big data processing, whereas GemFire facil-322

itates highly scalable in-memory transactional data storage. The strength of SnappyData is its323

unified BDA engine that facilitates the performance of different types of analytical operation,324

such as online transaction processing, online analytical processing and streaming the data an-325

alytics of operational data. Despite its high performance, SnappyData still underperforms in326

cases with highly streaming data, which causes a bottleneck in real-time interactive visualisation327

performance.328

5.2. Ipanera329

Soilless food production systems, such as Ipanera, are being aligned with IIoT systems [82].330

Ipanera continuously monitors water level and fertilizer quality in a field and generates insights331

for self-configuration. Although researchers have presented the concept, the Ipanera architecture332

involves multiple layers of physical devices and systems. It includes sensor nodes at the end333

points that actively collect data streams and transfer them to nearby IIoT clusters. These clusters334

are responsible for end point management, communication and configuration in a field. In addi-335

tion, IIoT clusters provide feedback to end points to reconfigure their data collection behaviour.336

IIoT clusters transfer data streams to distributed analytics servers that run Apaches Hadoop [83],337

MapReduce [84] and Spark [85] technologies for data processing and BDA. Ipanera provides338

support for streaming analytics that is used to trigger alerts for end points in case a new event is339

detected. Persistent storage and on-the-air configurations are two innovative features of the Ipan-340

era architecture. This architecture is currently under development; hence, the complete design of341

the proposed architecture is still unavailable.342

5.3. Fault Detection Classification343

Large-scale distributed cyber manufacturing systems are based on multiple interconnected344

but geographically dispersed manufacturing units [86]. The fault detection and classification345

(FDC) framework finds manufacturing faults in products. The core of the FDC architecture346

is the integration of IoT devices into CPS and cloud computing technologies. IoT devices in347

production facilities continuously collect and analyse data streams to detect various signals that348

are transferred to back-end cloud servers. These cloud servers execute BDA processes to detect349
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and classify faulty products using deep belief networks based on deep learning methods [87, 88].350

FDC was analysed by deploying it in a car headlight manufacturing unit that produced reliable351

results.352

5.4. BDA Architecture for Cleaner Production353

The term cleaner production refers to ensuring reduced environmental impacts during the354

execution of the entire product life cycle. It is based on three phases [89]. The first phase is355

about product design and manufacturing. The second phase involves product use, service pro-356

visioning and maintenance. The third phase is concerned with product remanufacturing, reuse357

and recycling. Considering the importance of such clean technologies, researchers have pro-358

posed a four-stage BDA architecture. In the first stage, the architecture considers value creation359

objectives during a products life cycle, such as improving product designs and ensuring energy360

efficiency, proactive maintenance and environmental efficiency. In the second stage, big data361

acquisition and integration are performed using IoT devices. In the third stage, big data are pro-362

cessed using Apaches Hadoop and Storm technologies. Finally, BDA processes are executed363

in the fourth stage whereby the architecture provides clustering, classification, association rule364

mining and prediction-related algorithms. The proposed architecture was evaluated and tested365

on an axial compressor manufacturing unit. The annual reports of the production unit show that366

the proposed architecture realises all the value creation objectives for cleaner production.367

5.5. Smart Maintenance Initiative: Railway Case Study368

Apart from SFS, Japan is attempting to upgrade its railway system to a new level by adopting369

IIoT systems for the smart maintenance of railway tracks [90]. To achieve its smart maintenance370

vision, Japans railway is adopting IIoT, BDA and automation technologies. The smart mainte-371

nance vision will provide a solution to four challenges: 1) ensuring condition-based maintenance,372

2) providing work support through artificial intelligence (AI), 3) managing railway assets and 4)373

performing database integration. The progress details of Japans railway towards this vision are374

available in this report [90] for interested readers.375

6. Opportunities, Research Challenges, and Future Technologies376

Considering the vision of IIoT systems, BDA will evidently help enterprises in the value377

creation process. BDA processes will maximise operational efficiency, reduce product develop-378
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ment cost, ensure massively customised production and streamline the supply chain management.379

However, this review shows that the existing literature is considerably lagging behind this vision.380

Table 2 presents the summary of research challenges and their perceived solutions to fully adopt381

IIoT systems in BDA.382

6.1. Opportunities383

The adoption of BDA processes in IIoT systems results in multidimensional research oppor-384

tunities.385

6.1.1. Automation and AI386

The enrichment of intelligent features can lead towards highly optimised and automated in-387

dustrial processes [91, 92]. Therefore, AI will be the core component of big data optimisation388

and analytics, which will result in highly efficient industrial processes [93]. Future IIoT systems389

will integrate and ingest big data from various online and off-line and inbound and outbound op-390

erations. The integration of customer and enterprise data will result in high-dimensional, multi-391

million variable datasets. AI methods will help optimise and analyse such big datasets [94, 95].392

6.1.2. Human Machine Interaction393

Wearable computing and augmented reality technologies are leading towards new human-394

machine interaction models and interfaces [96, 97]. The enrichment of such interaction models395

with real-time knowledge patterns from big data systems will result in highly productive and rich396

user interfaces. In addition, robotics technologies (for physical and virtual robots) will be widely397

adopted by future IIoT systems. Therefore, BDA processes will enrich intelligence to produce398

highly autonomous and self-sustaining non-obtrusive systems.399

6.1.3. Cybersecurity, Privacy, and Ethics400

Cybersecurity will become an essential requirement due to connected intelligence in IIoT401

systems. BDA processes will help provide real-time cyber threat intelligence by analysing se-402

curity attacks, privacy leaks, unauthorised data access and unethical data collection [98]. In403

addition, BDA processes will help analyse network and information security-related enterprise404

data to find anomalies, outliers, threats, attacks and vulnerabilities across IIoT systems [99].405
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6.1.4. Universal Standards406

The adoption of BDA processes is still in its initial stage; thus, existing systems may not407

be compliant with universal standards across all or multiple industries [2, 100]. New universal408

standards are required to define the type of big data that the industries can collect from customers,409

determine how data should be secured, preserved and shared and identify the stakeholders who410

will benefit from the data. In addition, standards must also ensure the perceived benefits to411

customers in exchange for their personal data. These universal standards will help address ethical412

issues in big data systems and create value for customers by providing personalised products and413

services.414

6.1.5. Protocols for Interoperability415

Practically, multiple industries are involved in the entire processfrom customer data acqui-416

sition to finished product/service and supply chain management [2]. Interoperability is a major417

consideration among different industries; however, new protocols are required to realise fully418

interoperable IIoT systems. These protocols can lead towards value creation for enterprises, al-419

though a few questions must be addressed, such as what are the interoperability parameters, how420

will BDA processes be executed in cross-industry systems and how will heterogeneity in data,421

computing technologies and industrial production systems be handled. A well-defined interop-422

erability protocol can help answer these questions.423

6.1.6. End-to-end Industrial Analytics424

Big data in IIoT systems evolves from multiple inbound and outbound data sources, such as425

customer data and operational data from finance, marketing, human resources, IoT devices, CPS426

and manufacturing systems [101]. Nevertheless, existing systems manage all these data sources427

separately to execute BDA processes. An opportunity exists to develop an end-to-end industrial428

analytics pipeline that can handle big data from various data sources in parallel and find highly429

correlated knowledge patterns that emerge across entire IIoT systems [102].430

6.1.7. Precision Manufacturing431

BDA processes can help enrich precision manufacturing systems [103]. The classification432

and categorisation of customers needs and behaviour-related data can lead towards innovative433

product designs. Enterprises will be able to offer the right products and services to the right cus-434
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tomers. Precision manufacturing will considerably help in equal value creation for customers and435

enterprises. Early examples of precision manufacturing systems are available in the healthcare436

industry [104]. However, these systems should be integrated into IIoT systems [103].437

6.2. Research Challenges and Future Technologies438

Considering the opportunities, research efforts are required to improve the entire technology439

ecosystem for IIoT systems.440

6.2.1. Big Data Process Integration into IIoT Systems441

Ideally, IIoT systems should execute real-time highly interactive big data applications. In442

practice, however, considerable effort is required for planning, creating, deploying, maintaining443

and continuously improving domain-specific big data processes for each industry. Future BDA444

processes should be able to provide real-time knowledge patterns and industry-wide intelligence445

through single dashboard applications. In this regard, all legacy and state-of-the art data sources446

should be vertically aligned such that enterprises can easily analyse and correlate different indus-447

trial processes and operations.448

6.2.2. Orchestrating BDA Applications Using Concentric Computing449

Concentric computing systems provide computational and storage support through different450

devices and systems [8]. Thus, massive heterogeneity should be addressed in terms of processing451

capabilities, in-memory and disk-based storage systems, battery-powered and fully powered de-452

vices and systems and multiple communication channels with varying bandwidth capacities [17].453

Big data applications on top of concentric computing systems should be designed by considering454

efficiency objectives in terms of storage, in-network data movement, energy consumption, pri-455

vacy, security and real-time knowledge availability [105, 106]. In this regard, priority should be456

given to devices and systems near data sources. This approach can help maximise value creation457

for enterprises in terms of operating cost for big data systems. Given that maximum data collec-458

tion, filtration and processing are performed before data arrive in cloud computing systems, the459

operational costs for data storage and cloud service utilisation will therefore be minimised [80].460

Another benefit of concentric computing systems is their ability to ensure real-time or near real-461

time intelligence near end points, IoT devices and other data sources in IIoT systems [36].462
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6.2.3. Emerging and Complimentary Technologies for IIoT Systems463

On the one hand, BDA adoption is increasing in IIoT systems. On the other hand, IIoT sys-464

tems should address massive heterogeneity without compromising overall operational efficiency465

due to emerging, complementary technologies, such as IoT. Considering this condition, a few466

technologies will become integral parts of future IIoT systems.467

Virtualisation is the essence of distributed systems, such as cloud computing systems and468

concentric computing systems. Virtualisation is traditionally performed at multiple levels, such469

as operating systems, networks, storage, applications and hardware. Operating system-level vir-470

tualisation is the most common whereby operating system kernels and functions are virtualised471

as virtual machines (VMs). However, the mobility of IoT devices requires continuous VM mi-472

gration among different computer servers [2, 107]. Containerisation is the emerging technology473

that is gradually replacing VMs by sharing a single kernel among different applications on the474

same type of operating systems. Containerisation technologies offers more secure and faster pro-475

cessing; hence, they have become highly beneficial for addressing timeliness and latency issues476

when BDA processes are executed using VMs [108].477

Large enterprises traditionally adopt highly coupled SOAs, which are difficult to test and re-478

sult in high maintenance cost. Microservices are emerging alternatives to SOAs whereby highly479

scalable and loosely coupled cloud services are orchestrated [109]. The microservice architec-480

ture can be adopted best for BDA processes because these processes should be executed across481

multiple platforms and devices in IIoT systems [110]. The details of microservice architectures482

implementation are available in [111] for interested readers.483

The multipoint, multisite and high-dimensional data production in IIoT systems results in484

complex big datasets. Graph and network theories can help reduce this massive complexity [112].485

Graph data structures and big graph analytics methods can be adopted to separate, map and486

analyse big data in different graph formats. The adoption of big graph analytics can lead towards487

efficient and highly optimised execution of BDA processes across IIoT systems.488
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Table 2: Summary of Research Challenges and their Perceived Solutions

Type Issues Causes Solutions

Cybersecurity - Internal Attacks

- External Attacks

- Security Vulnerabilities

- Openness of Systems

- Intelligent Monitoring Tools Needed

- Deployment of End-to-End Security Models is Es-

sential

- System-wide Forensic Analysis should be per-

formed periodically

Privacy - Identity Breaches

- Personal Data Theft

- Business Data Leakage

- Bad Security Models

- Absence of Standard Operating Procedures

- Weak Data and Information Sharing Policies

- Using Data Anonymisation Protocols

- Privacy preserving interaction models for users,

devices, and systems

Big Data Processing - Bad Data Integration

- Missing Data Streams

- High Latency

Heterogeneous Data Sources

- Mobility and Connectivity Issues

- Data overloading and Bandwidth Limitations

- Intelligent Real time Data Fusion

- Device-centric big data processing architectures

- Concentric Computing Models

Standardization - Difficulty in Interoperability and and Sys-

tem Integration

- Absence of Global Standardization Body - Developing Local, Regional, Industry-specific,

and Global Standards

Connectivity and Commu-

nication

- Bad and Inaccurate Data Transfer

- Data Loss

- High Latency

- High Mobility

- Large Data Streams

- Congestion

- Need to create always-on, ultra-high available and

reliable communication protocols

Scalability - Resource Discovery

- Data offloading

- Data Management

- Low Processing Power at device-end

- Massive Data Production

- Realtime Actuation

- Near-device data processing, In-memory Data

Processing, Edge Computing

System management - Difficult to deploy, configure, monitor, and

control large scale IIoT networks

- Cloud-centric - Device-centric

Efficiency - High Energy Utilization

- Resources-constraints

- Device-overloading

- Always-on IIoT Devices and Systems

- Massive and Continuous Data Generation and De-

vice Operations

- On-device Data Management and Analytics

- Enabling Energy, memory, and computation-

efficient algorithms and processes for big data pro-

cessing, management and analytics in IIOTs
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Emerging technologies, such as fog computing and blockchain, can play a pivotal role in489

BDA for IIoT [113]. Fog computing has been widely used in IoT devices [114], particularly490

those for IIoT and smart manufacturing, for localised and timely data processing and storage,491

and primarily to offset long delays that can be incurred in a cloud environment [115]. Blockchain492

is the underlying technology for bitcoins; however, it has been foreseen as a distributed ledger493

that can provide decentralised storage for data generated by IoT devices. Data are stored in a494

blockchain ledger with high integrity, authenticity, resiliency and trust [116]. All transactions495

are cryptographically signed by IIoT devices and validated in a decentralised manner without496

an intermediary. The data origin is validated before being recorded on the ledger. Moreover,497

blockchain smart contracts can be used to provide decentralised authentication, management and498

control access to data generated by IIoT devices. Smart contracts are basically codes that are499

executed by all blockchain miners, and the execution outcome is verified and agreed upon by500

all mining nodes. Furthermore, given the limited computing, networking and storage capacities501

of IIoT devices, fog nodes are envisioned to be equipped with cloud and blockchain interfaces502

in the future to communicate and interface with the cloud environment and the blockchain net-503

work [116].504

7. Conclusions505

The vision of Industry 4.0 to connect manufacturing systems with distributors and consumers506

can only be achieved by adopting IIoT and BDA processes as core components for value creation.507

This paper discusses the rise of big data in IIoT systems and presents a detailed survey of related508

technologies, algorithms, frameworks and case studies. A detailed taxonomy is provided to509

classify the key concepts in this important research area. Several indispensable frameworks510

and case studies are outlined and discussed. Furthermore, we present a detailed discussion of511

future opportunities, technologies and research challenges. We conclude that the adoption of512

BDA in IIoT systems is still in its early stage. Research on complementary components of IIoT513

systems, such as IoT devices, augmented reality and CPS, is also in its infancy. Current BDA514

systems provide generic frameworks for data engineering, preparation and analysis. However,515

considerable effort is required to alter existing BDA processes to meet the demands of IIoT516

systems. Future research should be conducted to devise new standards for interoperability among517

cross-Industry 4.0 BDA platforms and to provide capability for end-to-end reliable application518
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processing by considering the anatomy of concentric computing systems.519
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