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ABSTRACT The increasing penetration of uncontrollable distributed generators (NDGs) exacerbates the risk
of voltage violations in active distribution networks (ADNs). It is difficult for a centralized control strategy
to meet the requirements of fast voltage and reactive power control because of the heavy computational and
communication burdens. Local voltage control based on real-time measurements can respond quickly to the
frequent fluctuations of distributed generators (DGs). In this paper, a local voltage control strategy of DGs
with reactive power optimization based on a kriging metamodel is proposed. First, to build the metamodel for
local voltage control, the steps for determining the input variables are presented in detail, and the effects of
different variables on the accuracy of themetamodel are analyzed. Then, takingminimum network losses and
voltage deviations as the objective function, we construct the metamodel for local voltage control based on
kriging methods. Finally, operation strategies for DGs are developed by calculating the optimally weighted
vector based on real-time measurements, and the operation strategies for DGs will be added into the original
sample set to improve the accuracy of the metamodel. The proposed local voltage control strategy based on
only the local measurements can quickly respond to the frequent DG fluctuations, reduce the communication
burden for large networks and improve the adaptability of local voltage control in ADNs. Case studies under
different scenarios on the IEEE 33-node system and the IEEE 123-node system are conducted to verify the
effectiveness of the proposed method, and the results show that the proposed method can effectively solve
the problems of voltage deviation and voltage fluctuation caused by the high penetration of DGs.

INDEX TERMS Active distribution networks (ADNs), distributed generator (DG), local voltage control,
metamodel.

I. INTRODUCTION
In recent years, the increasing number of distributed
generators (DGs) integrated into electrical distribution sys-
tems [1], [2] has brought significant changes in both the con-
struction and operation of distribution networks to transform
from passive to active distribution networks (ADNs) [3]. The
integration of numerous DGs in distribution networks has
many benefits, such as decreased system losses, improved
reliability of the power supply and reduced environmental
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pollution [4]. However, the problems of voltage viola-
tion [5] and voltage fluctuation are exacerbated in ADNs
due to the presence of the uncontrollable distributed gener-
ators (NDGs), such as photovoltaic (PV) and wind turbine
(WT) [6], making operation of ADNs relatively complex and
challenging [7], [8].

Voltage control is an effective means of ensuring the rate
of qualified voltage and reducing network losses. The main
voltage control methods are the centralized control method,
distributed method and local control method. The central-
ized control method must collect measurement information
on the entire network and allocate controllable resources to
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achieve global optimization of the system [9]. However, with
increasing DG penetration, it is difficult for the traditional
centralized control methods to adapt to the distribution net-
work because of the limitations of traditional dispatching
methods, such as the large scale of communication infor-
mation and the high cost of investment [10], [11]. Besides,
centralized control strategy usually need to collect and pro-
cess the measurement information of the whole system [12],
however, many customers will prefer not to share their private
information in real-time with a central control unit [13], and
the parameters of grids, and sometimes even the topology of
the grid, are only partially known [14], [15], which also make
it difficult for centralized control methods to adapt to ADNs.
The distributed method [16], [17] holds promise for address-
ing these issues of the centralized method by improving the
voltage regulation capability and reducing the investment
cost through coordination among nodes [18]. However, this
method also requires communication among the controllers
in each area, and many are required iterations to obtain an
acceptable optimal solution [19], thus inspiring the local con-
trol method. Compared with the centralized control method
and distributed method, the local control strategy based only
on local measurements has significant advantages of non-
communication, high computation efficiency and strong reli-
ability [20] and can provide a fast response to the frequent
fluctuations of DGs [21]. The local voltage control method
is suitable for supplying real-time power adjustment of DG
inverters [22].

Different local voltage control strategies for DGs have been
widely proposed, including supplying reactive power com-
pensation [23] and providing active power curtailment [24]
based on local voltage measurements, adjusting the power
factor based on the active power output of DGs [21], or a com-
bination of these strategies [25]. The Italian LVCEI 0-21 [26]
and German’s BDEWMVguideline [27] presented theQ−V
curve, where the reactive power is defined by local voltage
measurements. Considering the potential for accommodating
the increased capacities of DGs in ADNs, the optimal power
flow has been used to compare the local control with the cen-
tralized control [20]. A local voltage control strategy based
on the Q − V curve was proposed [23] where the reactive
power compensation and active power curtailment of DGs are
adjusted based on local measurements to solve the problem
of voltage violation. To solve the problem of overvoltage
caused by the high penetration of DGs, the use of droop-based
active power curtailment methods has been proposed [28].
The P − Q standard curve has been used to determine the
amount of local reactive compensation based on the voltage
sensitivity matrix and quasi static analysis [29]. In addition,
a centralized parameter tuning model of control curves has
been built to determine the local voltage control strategies
for DGs [30], where the Q − V and Pcurt − V curves of DG
inverters are mathematically formulated based on piecewise
linearization.

The reactive power compensation of DGs can be adjusted
based on local measurements using the local control curves

in these control strategies. However, these control strate-
gies have complex solution processes, and their performance
depends on the tuning of the control parameters. To lighten
the computational burden with large networks and reduce the
dependence of control strategies on parameters, a local volt-
age control strategy based on kriging metamodel is proposed
in this paper. A metamodel between the local measurements
and the reactive power outputs of DGs is built using an intel-
ligent algorithm through continuous learning and training.
The method proposed in this paper can determine the control
strategies of DG inverters by calculating the optimal weighted
vector based on real-time measurements, thereby achieving
the goal of reducing system losses and improving the voltage
profile.

The metamodel is a modelling method that replaces the
complex calculation model in the analysis and optimization
process. The introduction of the metamodel can reduce the
difficulty of the optimization problem. Various metamodel
techniques are widely used in the engineering field, including
the quadratic response surface, radial basis function, kriging
model, multivariate adaptive regression splines, and support
vector regression model [31]. Based on its accurate predic-
tions of highly nonlinear or irregular behaviors, the kriging
model is selected to build the metamodel in this paper. The
major contributions of this paper are as follows.

1) To build a metamodel for local voltage control, the steps
for determining the input variables are presented in detail, and
the effects of different control variables on the accuracy of the
metamodel are analyzed.

2) Taking minimum network losses and voltage deviations
of ADNs as the objective function, we build a metamodel
between the local measurements and the reactive power out-
put of DGs based on the kriging metamodel to realize local
voltage control of ADNs.

The remainder of the paper is organized as follows.
Section II presents the method for building the metamodel
for local voltage control based on the selection of control
variables and establishment of the metamodel. The method
for solving the local voltage control strategy is presented
in Section III. Case studies are presented in Section IV to
illustrate the effectiveness of the proposed method using the
modified IEEE 33-node system and IEEE 123-node system.
Finally, conclusions are drawn in Section V.

II. BUILDING OF A METAMODEL FOR LOCAL
VOLTAGE CONTROL
In this section, the method for building the metamodel for
local voltage control is presented in terms of the selection of
control variables and the establishment of the metamodel.

A. KRIGING METAMODEL
The kriging metamodel is an interpolation method based
on statistical theory. It consists of a regression model and
a non-parametric stochastic process [32]. For the set of
sample points X = [x1, x2, · · · , xh, · · · xm]T (xh is a row
vector with n elements) and the set of objective functions
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Y =
[
y1, y2, · · · , yh, · · · ym

]T (yh is a row vector with q ele-
ments), the kriging metamodel can be expressed as follows:

Y = f Tβ + z (X) (1)

where f is the basis function matrix with order p×m and β

is the coefficient matrix with order p × q. p is the order of
the regression model. The commonly used basis functions are
the constant function, linear function, and quadratic function.
Since the choice of the basis function has little effect on the
accuracy of the metamodel, the constant function is selected
as the basis function of the regression model in this paper, i.e.,
p = 1, f |1×m = [1, 1, · · · , 1]. z (X) is a random process with
zero mean and variance σ 2.

B. SELECTION OF CONTROL VARIABLES
The effects of multiple different variables on the design target
are often considered because of the complex design object in
the engineering problem. Therefore, the effects of different
control variables on the accuracy of the metamodel are con-
sidered in this paper. The accuracy of the kriging metamodel
is related to the variance σ 2: a smaller σ 2 corresponds to
higher accuracy of the metamodel. The control variables are
selected in the following process [33].
Step 1: Select control variables from local measurements.
Step 2: Build metamodels based on the sample data, where

1QNDG
h is used as the output variable, and the control vari-

ables selected in Step 1 are used as the input variables.
Step 3: Calculate the variances of the metamodels built in

Step 2.
Step 4: Sort the variances by value in increasing order.
Step 5: Build the metamodels using different numbers of

control variables, where the control variables are individually
added into the input variables following the order of Step 4.
Step 6: Calculate the variances of the metamodels built in

Step 5.
Step 7: Determine the number of input variables according

to the trend of variances obtained in Step 6.
In this paper, the control variables are selected from

local voltage measurements and local power measurements.
In addition, since the loads of the same area are strongly
related to time, the control variables are also selected around
time. Twelve variables are considered the input variables to
build the metamodel for local voltage control: th, UNDG

h−2 ,
UNDG
h−1 , w, dm,1UNDG

h−1 , QNDG
h−2 , QNDG

h−1 ,1QNDG
h−1 , PNDGh , PNDGh−1

and 1PNDGh .

C. METAMODEL FOR LOCAL VOLTAGE CONTROL
1) OBJECTIVE FUNCTION
To simultaneously consider the economic efficiency and volt-
age profile of ADNs, this paper takes the minimum net-
work losses and voltage deviations of ADNs as the objective
function [34].

f = min
{∑T

t=1

[
ω1

∑
ij∈�b

Rij
(
It,ij
)2

+ω2

∑NN

i=1

∣∣∣U2
t,i − 1

∣∣∣]} (2)

The metamodel for local voltage control is built based
on model (1). Y = [1QNDG

1 ,1QNDG
2 , · · · ,1QNDG

h , · · · ,

1QNDG
m ]T is the output and is a column vector composed

of the reactive power variation of DG. m is the number of
samples used to build themetamodel for local voltage control.
X = [x1, x2, · · · , xh, · · · xm]T is the input matrix, which is
composed of historical data of local measurements. xh is a
row vector composed of the control variables selected in the
last part.

The voltage variables and power variables should satisfy
the following constraints.

2) SYSTEM POWER FLOW CONSTRAINTS
The DistFlow branch model is used to model the distribution
network [35]. It is mathematically described by the following
constraints:∑

ik∈�b
Pt,ik =

∑
ji∈�b

(Pt,ji − RjiI2t,ji)+ Pt,i (3)∑
ik∈�b

Qt,ik =
∑

ji∈�b
(Qt,ji − XjiI2t,ji)+ Qt,i (4)

U2
t,j = U2

t,i − 2
(
RijPt,ij+XijQt,ij

)
+

(
R2ij+X

2
ij

)
I2t,ji
(5)

Pt,i = PNDGt,i − P
L
t,i (6)

Qt,i = QNDG
t,i − Q

L
t,i (7)

I2t,ij =
P2t,ij + Q

2
t,ij

U2
t,i

(8)

Constraints (3) and (4) represent the active and reactive power
balance of node i at period t . Ohm’s law over branch ij at
period t is expressed as (5). Constraints (6) and (7) indi-
cate the total active and reactive power injection of node i
at period t . The current magnitude of each line can be
determined by (8)

3) SYSTEM SECURITY CONSTRAINTS
The operation constraints of ADNs are expressed as follows:

Umin
i ≤ Ut,i≤Umax

i (9)

−Imax
ij ≤ It,ij ≤ Imax

ij (10)

4) DG OPERATION CONSTRAINTS

PNDGt,i ≤ PNDG,max
t,i (11)

−

PNDGt,i

√
1− (κmin

i )2

κmin
i

≤ QNDG
t,i ≤

PNDGt,i

√
1− (κmin

i )2

κmin
i

(12)√
(PNDGt,i )

2
+(QNDG

t,i )2 ≤ SNDGi (13)

Based on the sample data, a multivariate normal distri-
bution likelihood function defined by parameters

{
β, σ 2

}
is

built.

L
({
β, σ 2

}
|Y
)
=

1√(
2πσ 2

)m det [R (X)]

×e
−

{(
Y−f Tβ

)T
R(X)−1

(
Y−f Tβ

)}
/2σ 2

(14)
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where det [R (X)] denotes the determinant of R (X). R (X)
denotes the correlation matrix and can be expressed by

R (X) =

 R (x1, x1) · · · R (x1, xm)
...

. . .
...

R (x1, xm) · · · R (xm, xm)

 (15)

The Gaussian function used as the correlation function in
this paper can be expressed as follows.

R (xl, xh) =
∏nθ

µ=1
e−θµd

2
µ (16)

where nθ is the number of input variables used to build the
metamodel. θµ is the unknown correlation parameters used
to fit the metamodel. dµ = xhµ − xlµ denotes the distance
between xhµ and xlµ , where xhµ and xlµ are the µth compo-
nents of sample points xh and xl .
β and σ 2 can be obtained by using the weighted least

squares method and the maximum likelihood estimation,
respectively:

β =
(
f R (X)−1f T

)−1
f R (X)−1Y (17)

σ 2
=

1
m

(
Y − f Tβ

)T
R (X)−1

(
Y − f Tβ

)
(18)

The estimated values of β and σ 2 are related to the corre-
lation parameter θ , where θ =

[
θ1, θ2, · · · , θnθ

]
. An uncon-

strained optimization model can be obtained by maximum
likelihood estimation based on the likelihood function (14).

min
{
det [R (X)]

1
m σ 2

}
(19)

The correlation function parameters are determined by
solving the above optimization model. Then, the estimated
values of β and σ 2 can be obtained.

III. APPLICATION OF THE LOCAL VOLTAGE CONTROL
STRATEGY OF DGS
In this section, the local voltage control strategy of DGs can
be obtained by calculating the optimal weighted vector based
on local measurements, which can help to reduce the network
losses and improve the voltage profile.

Based on the metamodel in Section II,1QNDG
t∗ is given by:

1QNDG
t∗ = β + z

(
x∗
)

(20)

where1QNDG
t∗ is the reactive power output of theDGbetween

sampling times t∗ and t∗ − 1 and x∗ is the row vector
composed of control variables at t∗.
1QNDG

t∗ can also be expressed by the column vector com-
posed of the reactive power variation of the DG:

1QNDG
t∗ = cTY (21)

where c is the weighted coefficient vector.
Due to the unbiased constraints, the mean-square error

(MSE) of equations (20) and (21) should be minimized, and

TABLE 1. Basic installation parameters of DGs.

the expectation of difference between (20) and (21) must be
zero: {

min〈E[(cTY )2 − {β + z(x∗}2]〉
E
[
cTY − {β + z (x∗)}

]
= 0

(22)

The weighted optimal coefficient vector c is obtained by
calculating the optimization model (22). Then, the reactive
power variation of the DG between t∗ and t∗− 1 is obtained.

1QNDG
t∗ = β + r

(
x∗,X

)TR (X)−1 (Y − f Tβ) (23)

where r (x∗,X) is the correlation vector between x∗ and X :

r
(
x∗,X

)
=
[
R
(
x1, x∗

)
,R
(
x2, x∗

)
, · · · ,R

(
xm, x∗

)]T
(24)

The operation strategy of the DG at t∗ can be expressed by:

QNDG
t∗ =β + r

(
x∗,X

)TR (X)−1 (Y−f Tβ)+ QNDG
t∗−1

(25)

In the control strategy proposed in this paper, the accuracy
of the metamodel is critical and determines the performance
of the control strategy. In the optimization process, the objec-
tive function and constraints are calculated based on the initial
metamodel. Therefore, after the operation strategies of the
DGs at t∗ are determined, the control strategies of DGs at t∗

will be added to the original sample set, and the metamodel
will be updated accordingly to improve its accuracy. The
schematic of the local voltage control strategy of DGs in
ADNs based on the kriging metamodel is shown in Fig. 1.

IV. CASE STUDIES AND ANALYSIS
In this section, the effectiveness of the proposed local voltage
control strategy is verified on the modified IEEE 33-node
system [36] and IEEE 123-node system [37]. The numerical
experiments were conducted on a computer with an Intel (R)
Core (TM) i5-3470 CPU running at 3.70 GHz with 8 GB of
RAM.

A. MODIFIED IEEE 33-NODE SYSTEM
The IEEE 33-node system includes 37 lines with a voltage
level of 12.66 kV. The base power is 1.0 MW. The total active
power and reactive power demands are 3715 kW and 2300
kVAr, respectively. The test case is shown in Fig. 2.

To fully consider the impact of high penetration of DG
integration on power losses and voltage deviation, two PVs
and two WTs are integrated into the networks. It is assumed
that the capacity is equal to the rated real power of DGs.
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t

t t

t T

Building of the metemodel

Application of the metemodel

FIGURE 1. Schematic of the proposed control strategy.

The basic installation parameters are presented in Table 1.
The weight coefficients ω1 and ω2 are set at 0.83 and 0.17 by
the analytic hierarchy process (AHP) [38]. The lower and
upper bounds of the system voltage are set to 0.95 p.u. and
1.05 p.u., respectively.

1) METAMODEL FOR LOCAL VOLTAGE CONTROL
To obtain accurate local measurements, the historical oper-
ation data are selected to generate data used to build

FIGURE 2. Structure of the modified IEEE 33-node system.

FIGURE 3. Annual operation curves. (a) Operation curves of WT.
(b) Operation curves of PV. (c) Curves of the load.

the metamodel. The operation curves of the load, PV andWT
are presented in Fig. 3.

The DACE toolbox [39] is used to build the metamodel
in MATLAB. The metamodel for local voltage control is
built for each DG based on the sample data. The first step
is to calculate the variances of the metamodels, which are
built by using the different control variables described in
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TABLE 2. Variances under different control variables.

FIGURE 4. Relationship between the variance and the number of input
variable in modified IEEE 33-node system.

Section II. The values of the variances under the different
control variables are shown in Table 2.

The second step is to determine the best number of input
variables to achieve the highest accuracy. Fig. 4 shows the
relationship between the variances and the number of input
variables in modified IEEE 33-node system.

As shown in Fig. 4, the accuracy of the metamodel
increases with the number of input variables. Starting at
5 input variables, variances of metamodel of DG1 and
DG3 remain unchanged. As the number of input vari-
ables increases, more time is consumed, and the computing
resources increase. Therefore, 1UNDG

h−1 , 1PNDGh , th, 1QNDG
h−1

and QNDG
h−1 are selected as the input variables to build the

metamodel for DG1 and DG3. Until the last variable is added
into the input variables, variances of metamodel of DG2 and
DG4 tend to 0. Thus, all of the variables shown in Table 2 are
selected as the input variables to build the metamodels for
DG2 and DG4.

After the input variables are determined, themetamodel for
local voltage control is built for each DG. The parameters of
the metamodel at nodes 9, 18, 27 and 33 are shown in Table 3.

TABLE 3. Parameters of the metamodel at nodes 9, 18, 27 and 33.

FIGURE 5. Daily operation curve of DGs and loads.

TABLE 4. Optimization results for the three scenarios.

2) RESULTS ANALYSIS
By locally controlling the reactive power and outputs of
DGs, the proposed strategy is expected to effectively mitigate
voltage fluctuation and reduce power losses. Time period
between 8h and 16h is selected to verify that the proposed
control strategy can effectively solve the problems of voltage
deviation and voltage fluctuation caused by the high penetra-
tion of DGs. Taking 15 minutes as the time period, the oper-
ation curves of the DGs and loads are presented in Fig. 5.
Three scenarios are adopted to verify the effectiveness of the
proposed control strategy in ADNs.
Scenario I: No control strategy is conducted for the DGs.
Scenario II: The centralized control strategy based on

second-order cone programming [38] is conducted for
the DGs.
Scenario III: The proposed local control strategy is

conducted for the DGs.
The optimization results for the three scenarios are shown

in Table 4. Compared with Scenario I, the proposed control
strategy in Scenario III can effectively mitigate the voltage
deviation and reduce the power losses of the entire net-
work. The performances of the control strategy proposed
in this paper are similar to that of the centralized control
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FIGURE 6. Voltage profiles at the nodes connecting the DGs in the three
scenarios. (a) Voltage profile at node 9. (b) Voltage profile at node 18.
(c) Voltage profile at node 27. (d) Voltage profile at node 33.

strategy in Scenario II, which has the most optimal use of
reactive power of DGs. Because the proposed method is

FIGURE 7. Operation strategies of the DGs in Scenarios II and III.
(a) Reactive power compensation of DG at node 9. (b) Reactive power
compensation of DG at node 18. (c) Reactive power compensation of DG
at node 27. (d) Reactive power compensation of DG at node 33.

based on less measurement information, it can reduce the
computational burden and achieve a nearly globally optimal
solution.
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TABLE 5. Updated variances of the metamodels.

FIGURE 8. Structure of the modified IEEE 123-node system.

Fig. 6 shows the voltage profiles at the nodes that connect
the DGs in the three scenarios. High penetration of DGs
causes frequent voltage fluctuation and severe voltage devi-
ation of the nodes in Scenario I. Node 18 is taken as an
example; the high active power outputs of the DGs lead to
an obvious increase in the voltage level at t = 15. Com-
pared with Scenario I, the voltage profiles are significantly
improved in Scenarios II and III. The fluctuation range of the
voltage amplitude is controlled at 0.9867-1.0083 in Scenario
III. By applying the proposed local voltage control strategy,
the DG inverters can adjust the reactive power compensa-
tion in real time, which effectively eliminates the voltage
fluctuation and reduces the voltage deviation. Although the
control strategy proposed in this paper is based only on local
measurements, it can effectively reduce the voltage deviation
and promote the voltage profile.

Fig. 7 shows the operation strategies of DGs in Scenarios
II and III. The results for the two scenarios show that the
DGs in Scenarios III and II have basically equal reactive
power compensation. In Scenario III, the DG inverters adjust
the reactive power in real time based on the local voltage
measurements.

Table 5 is the updated variances of metamodels at nodes 9,
18, 27 and 33. Comparing variances of Table 3 and Table 5,
it can be seen that since the optimization results are added into
the original sample set, the variance of the metamodel at node
18 is reduced, which means the accuracy of the metamodel at
node 18 is improved.

B. MODIFIED IEEE 123-NODE SYSTEM
In this part, a larger scale system of the modified IEEE
123-node system is selected to further verify the effective-
ness of the proposed local voltage control strategy. The
test case is shown in Fig. 8. The IEEE 123-node system

TABLE 6. Basic installation parameters of DGs.

FIGURE 9. Relationship between the variance and the number of input
variables in modified IEEE 123-node system.

includes 122 lines, and the base power is 1.0 MW. The total
active power and reactive power demands are 3490 kW and
1920 kVAr, respectively. Five PVs and seven WTs are inte-
grated into the networks, and the basic installation parameters
are presented in Table 6.

The values of the variances under the different control
variables are shown in Table 7. The relationship between
the variance and the number of input variables in mod-
ified IEEE 123-node system. is shown in Fig. 9. From
Fig.9 and Table 7, we can determine that 1UNDG

h−1 , 1PNDGh ,
th, 1QNDG

h−1 and QNDG
h−2 are selected as the input variables

of metamodels at DG1 to DG5, and 1UNDG
h−1 , UNDG

h−1 ,
UNDG
h−2 , 1PNDGh , PNDGh , PNDGh−1 , 1QNDG

h−1 , QNDG
h−1 , QNDG

h−2 , th
and dm are selected as the input variables of metamodels at
DG6 to DG12. The parameters of metamodels are shown
in Table 8.

To highlight the performance of the proposed local voltage
control strategy in ADNs, Q− V local control strategy [30],
where the reactive power is defined by local voltage mea-
surements, is selected as a comparison. Taking the operation
curves shown in Fig. 5 as an example again, the optimization
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TABLE 7. Variances under different control variables.

TABLE 8. Parameters of metamodels.

period is one day. The optimization results of local control
curves for DG3 and DG6 are shown in Fig. 10. It can be seen
from the Fig.10 that the DG connected at node 67 provides
reactive power compensation even the node voltage level
reaches 1.03 p.u. The Q− V curve at node 31 does not have
dead-zone, which means that Q − V curve becomes 5-point
control mode.

Optimization results of the two local control strategies are
listed in Table 9. Compared with the Q − V local control
strategy, the proposed control strategy effectively mitigates

voltage deviation and reduces power losses of the whole
network, guaranteeing the secure and economic operation of
ADNs.

Fig. 11 shows the minimum voltage of each time period
under the two different local control strategies, and the volt-
age profile under the proposed local control strategy is better
than that under the Q− V control strategy.
To verify the robustness of the proposed method under

uncertain conditions, Monte Carlo simulations are conducted
for the centralized control strategy, the Q − V control
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TABLE 9. Optimization results of the two local control strategies.

FIGURE 10. Local control curves for DG3 and DG6. (a) Local control curve
at node31. (b) Local control curve at node 67.

FIGURE 11. Minimum voltage of each time period.

strategy and the proposed local control strategy, in which
500 stochastic scenarios are generated randomly. It is
assumed that the actual DG outputs are random variables fol-
lowing normal distributions with ±20% fluctuation ranges.

The voltage distributions in Monte Carlo simulation for
the three control strategies are shown in Fig. 12. The red
line represents the average voltage distribution, and the

FIGURE 12. Voltage distributions of the three control strategies in Monte
Carlo simulation. (a) Voltage distributions of the centralized control
strategy in Monte Carlo simulation. (b) Voltage distributions of the Q-V
control strategy in Monte Carlo simulation. (c) Voltage distributions of the
proposed local control strategy in Monte Carlosimulation.

grey line is the voltage distribution of the nodes at each
optimization period. Test results of the three control strategies
in the Monte Carlo simulation are shown in Table 10. Com-
pared to the other two strategies, the problems of voltage vio-
lation are less likely to happen for the proposed local control
strategy. Considering the uncertainties of DGs, the proposed
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TABLE 10. Test results of the three control strategies in Monte Carlo
simulation.

control strategies are more robust and can effectively ensure
the secure operation of ADNs.

The simulation results demonstrate that the proposed strat-
egy can effectively solve the voltage problem caused by the
high penetration of DGs. In conclusion, the proposed local
voltage control strategy can quickly respond to the frequent
DG fluctuations and effectively reduce the voltage deviation
without neither the measurement information of whole sys-
tem nor the parameters of grids, which is suitable for the local
voltage control of large-scale ADNs with high penetration of
DGs.

V. CONCLUSIONS
In this paper, a metamodel-based method to determine the
local voltage control strategies for DGs is proposed. To real-
ize the local voltage control of ADNs, a metamodel is built
in which different variables are selected as the input variables
and the reactive power variation of the DG at the next sam-
pling time is taken as the output. To improve accuracy of the
metamodel, the operation strategies for DGs developed by
calculating the optimal weighted vector based on real-time
measurement will be added into the original sample set. Using
only local measurements, the metamodel can be built using
the kriging method through training. The proposed method
is expected to lighten communication burdens with large
network scale and improve the adaptability of local voltage
control in ADNs. The tests on the IEEE 33-node system and
IEEE 123-node system show that the proposed control strat-
egy significantly improves the voltage profile while reducing
network losses. Based on these improvements, the proposed
control method has great economic value.

APPENDIX
A. SETS
T Set of periods of the controlling time horizon
NN Set of all nodes
�b Set of all branches

B. INDICES
i, j Indices of nodes
t Indices of time periods
ij Indexes of branches
h Indexes of samples

C. VARIABLES
th Sampling time of the hth sample
UNDG
h−2 Voltage of the DG access point at

sampling time th − 2

UNDG
h−1 Voltage of the DG access point at

sampling time th − 1
w Sign of weekend; if the day is a

weekend, w = 1; otherwise, w = 0
dm Sampling day in a month
1UNDG

h−1 Voltage variation of the DG access
point between sampling times th − 1
and th − 2

QNDG
h−2 Reactive power of the DG at sampling time

th − 2
QNDG
h−1 Reactive power of the DG at sampling time

th − 1
1QNDG

h−1 Reactive power variation of the DG
between sampling times th − 1 and
th − 2

PNDGh Predicted value of the active power
output of the DG at sampling time th

PNDGh−1 Active power of the DG at sampling
time th − 1

1PNDGh Active power variation of the DG
between sampling times th and th − 1

Pt,ij,Qt,ij Active/reactive power flow of branch
ij in period t

Pt,i,Qt,i Total active/reactive power injection
at node i in period t

PNDGt,i ,QNDG
t,i Active/reactive power injection by

the NDG at node i in period t
Ut,i Voltage magnitude of node i at period t
It,ij Current magnitude of branch ij at period t

D. PARAMETERS
Umax,Umin Upper/lower limit of the system voltage
Imax, Imin Upper/lower limit of the current magnitude
PLt,i,Q

L
t,i Active/reactive power consumption at node

i in period t
PNDG,maxt,i Upper limit of the active power

provided by the NDG at node i in period t
SNDGi Capacity of the NDG at node i
κmini Lower limit of the power factor of the

NDG at node i
Rij,Xij Resistance/reactance of branch ij
ω1, ω2 Weight coefficients in the objective

function
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