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Abstract 

Background 

Assortative mating is a non-random mating system in which individuals with similar 

genotypes and/or phenotypes mate with one another more frequently than would be 

expected in a random mating system. Assortative mating has been hypothesised to 

play a role in Autism Spectrum Disorder (ASD) in an attempt to explain some of the 

increase in the prevalence of ASD that has recently been observed. ASD is considered 

to be a heritable neurodevelopmental disorder but there is limited understanding of its 

causes. Assortative mating can be explored through both phenotypic and genotypic 

data, but up until now, has never been investigated through genotypic measures in 

ASD.  

Methods 

We investigated genotypically similar mating pairs using genome-wide Single 

Nucleotide Polymorphism (SNP) data on trio families (Autism Genome Project 

(AGP) data and Simons Simplex Collection (SSC) data). To determine whether or not 

an excess in genetic similarity was present we employed kinship coefficients and 

examined spousal correlation between the principal components in both the AGP and 

SSC datasets. We also examined assortative mating using phenotype data on the 

parents to detect any correlation between ASD traits. 

Results 

We found significant evidence of genetic similarity between the parents of ASD 

offspring using both methods in the AGP dataset.  In the SSC, there was also 

significant evidence of genetic similarity between the parents when explored through 

spousal correlation.  

Conclusions 
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This gives further support to the hypothesis that positive assortative mating plays a 

role in ASD. 

Key words: Autism Spectrum Disorder (ASD), assortative mating, genetic assortative 

mating, ancestral assortative mating, random mating, kinship.  

Introduction 

Assortative mating occurs when similar males and females mate with each other 

more (or less) often than expected by chance [1]. This similarity can be trait specific 

and/or genotype specific [2]. When the trait has a genetic component (phenotype) and 

assortative mating occurs, then both genetic and phenotypic assortative mating takes 

place. Ancestral assortative mating occurs when spouse pairs are more (or less) likely 

to share genes of common ancestry [3]. Studies have largely focused on phenotypic 

assortative mating, with fewer studies investigating genetic assortative mating [3–8]. 

Here, we are interested in investigating genetic and phenotypic assortative mating in 

the complex disorder: Autism Spectrum Disorder (ASD).  

ASD is considered to be a heritable [9] neurodevelopmental disorder, 

characterised by patterns of repetitive behaviours and deficits in language and social 

behaviour, but there is limited understanding of its causes. Assortative mating has 

been hypothesised in ASD as parents can often display characteristics of ASD. Baron-

Cohen [10] noted estimates of prevalence in 2006 (0.2% [11] and 0.44% [12]) were 

much higher than the traditional estimate of 0.04% and proposed the hypothesis that 

this change in prevalence could be due to individuals with ASD-like traits (high-

systemisers) mating. A more recent estimate of the prevalence of ASD was much 

higher with 1 in 68 children aged 8 years having an ASD diagnosis (1.47%) [13]. 

Peyrot et al. [14] found that, in general, assortative mating could lead to a 
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considerable increase in prevalence for disorders that are less common and are highly 

heritability.  

Assortative mating has previously been investigated in ASD using a variety of 

approaches. One such approach has been to look at the educational and occupational 

phenotypes of parents and family members to see if logical and systematic 

professions lead to an increase of ASD in the families or an increase in severity of 

ASD traits among the members of the family [15–19]. A recent study showed that 

systemising traits were found to be genetically correlated with ASD [20]. Nordsletten 

et al. [21] found evidence of non-random mating within and across 11 psychiatric 

disorders including ASD in a Swedish population that examined correlation in 

diagnostic status. Additionally, studies have also investigated the presence of ASD-

like traits in parents of ASD offspring [22–25]. It has been noted by many studies that 

parents of ASD offspring often present with ASD-like characteristics more so than 

expected (especially in multiplex (more than one affected individual per family) ASD 

families) [24,26-29].  

There is evidence that assortative mating influences genotype frequencies that are 

associated with complex traits [24]. If assortative mating is present in a trait, and is 

not accounted for in a genetic study, it can confound heritability estimates [14,24,30]. 

Evidence from Klei et al. [31] also supports this as they found an elevated level of 

heritability in pseudo-controls (non-transmitted alleles which would be expected to 

behave as unaffected offspring) from multiplex ASD families. If parents are more 

genetically similar at casual variants for ASD (i.e. positive assortative mating is 

taking place) then the untransmitted alleles from the parents at these loci are more 

likely to be risk alleles and increase heritability estimates in pseudo-controls. 

Although it has been argued that assortative mating may only lead to a modest 
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increase of heritability estimates for a disorder [14]. 

Another concern is the assumption of random mating that is used when 

investigating genetic associations in ASD, which may be violated if assortative 

mating is taking place. Understanding the genetic aetiology of ASD may be 

completely entwined with the understanding of assortative mating [32]. 

To examine genetic assortative mating in ASD, we investigated the genetic 

similarity of the parents (spouses) compared to the genetic similarity of non-spouse 

pairings (we created) restricted to male/female pairings from the same ancestral 

population using kinship coefficients. The investigation of the genetic similarity 

between ASD parents was carried out using Single Nucleotide Polymorphism (SNP) 

data from Genome-Wide Association Studies (GWASs This approach has previously 

been used to examine assortative mating for traits such as height, BMI, education 

[5,7], but not to our knowledge in the context of ASD. An approach that has some 

similarity was used to investigate genetic assortative mating in ASD using pairwise 

genetic distance, in contrast to kinship coefficients, to investigate if spouses were 

more related than randomly mated parents [33]. Population stratification was not 

accounted for when estimating pairwise genetic distance but comparisons were within 

a small subset of the data obtained from one population.  Another study also 

examined ASD genetic assortative mating using summary statistics from an ASD 

GWAS study but found no significant evidence due to sample size and limitations of 

ASD known variants [8].  

We also investigated ancestral assortative mating using Principal Components 

Analysis (PCA) and phenotypic assortative mating using ASD trait data of the 

parents. We carried out our analyses on two ASD GWAS datasets, the Autism 

Genome Project (AGP) dataset [34,35] and the Simons Simplex Collection (SSC) 
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dataset [36].  

Methods and Materials 

Data 

The AGP GWAS trio family dataset was collected at sites across Europe and 

North America and is described elsewhere [34,35]. Here we considered the Stage 2 

dataset consisting of 2,931 multiplex (multiple affected individuals per family) and 

simplex (only one affected individual per family) families.  

The SSC GWAS consists of data on 2,591 simplex North American families See 

[36-38] for further details on the SSC data. The majority of AGP and the SSC 

samples are of European ethnicity, see Figures S17 and S18 in Supplementary 

Information (SI) for PCA plots of the offspring. 

The AGP GWAS data includes families grouped into two nested diagnostic 

categories, Strict ASD (autism diagnoses on both ADI and ADOS instruments 

[39,40]) and Spectrum ASD (autism-spectrum diagnoses on either the ADI or ADOS 

instruments), as defined in [35]. We applied the same ASD phenotype criteria as was 

used in the AGP [35] to define a Strict ASD phenotype within the SSC data. The 

Strict phenotype would be expected to have less clinical heterogeneity and therefore, 

have the potential to increase the power of identifying robust findings when compared 

to a broader autism diagnosis [41]. 

We also examined genetic assortative mating in a smaller sample comprising of 

the Autism Genetic Resource Exchange (AGRE) [42]. Due to the size of the dataset 

that was available for analysis and that we were unable to filter families on ASD 

diagnostic criteria details of the analysis of this dataset are available in the SI. 

Quality Control Procedures 
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The Quality Control (QC) procedures follow a standard approach to trio GWAS 

QC, with individuals and SNPs removed when missingness > 0.05, Hardy Weinberg 

Equilibrium (HWE) p-value < 0.00001, and Minor Allele Frequency (MAF) < 0.05, 

see Table S1 in SI. We removed families that were related, and individuals with 

extreme levels of heterozygosity (greater than 2 standard deviations). We also 

excluded certain Linkage Disequilibrium (LD) ranges that can result in confounding 

in certain analyses such as PCA when examining population stratification [43]. We 

limited our analyses to complete trios as we needed both parents of the affected 

offspring for our analyses. After QC, the AGP with a Strict phenotype contained 

1,590 trios and 712,319 SNPs and the SSC with a Strict phenotype contained 1,962 

trios and 417,809 SNPs. 

Statistical Methods 

We used kinship coefficients to examine assortative mating in ASD. A kinship 

coefficient is the probability that two alleles sampled at random from two individuals 

are Identical-By-Descent (IBD occurs when two DNA sequences are inherited from a 

common ancestor). We compared the distribution of the kinship coefficients for 

spouses (mother/father pairings) with the distribution of all other possible non-spouse 

pairings restricted to male/female pairings from the same ancestral background, which 

we will refer to as all Non-Spouse Pairs. This is similar to the approach in [5] 

although we take into account population stratification using a different method. The 

Non-Spouse Pairs were restricted to male/female pairings as this is an investigation of 

genetic assortative mating between parents of offspring with ASD and genetic 

assortative mating may be different for same sex couples [5]. We filtered the Non-

Spouse Pairs on ancestral population as creating non-spouse pairings across different 

ethnicities will result in individuals that look less genetically similar when comparing 
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them to spouses from the same ethnicity. This will lead to false positive findings for 

genetic assortative mating, see [44] and Section S1 in the SI. 

The first step in our approach was to use the ADMIXTURE software [45] to 

estimate the amount of admixture (when individuals from genetically different 

populations mate and produce offspring) in the samples with the 11 populations in the 

HapMap3 dataset [46] as a reference (–supervised). Note the HapMap3 dataset  used 

has had individuals removed due to cryptic relatedness (see [47] for further details). 

This allows us to identify the different populations that are contained within the ASD 

datasets. We then removed spouses that did not mate within the same ancestral 

population and only spouse pairs that had similar proportions of ancestry to each other 

and to others in their population remained (within 2 standard deviations of the mean 

of the proportion for each ancestral population).  

In the second step, within these ancestral populations, we compared the 

distribution of the spouses’ kinship coefficients, to the distribution of the Non-Spouse 

Pairs’ kinship coefficients, where all kinship coefficients were estimated using the 

King software [48] (see Section S1 in SI). In this software, the kinship calculation 

accounts for heterogeneity between samples (for both the spouses and Non-Spouse 

Pairs see S1 in the SI). The quantiles (from 0.001 to 0.999 in increments of 0.001) for 

the spouse pairs’ kinship coefficients calculated and then mapped to the kinship 

coefficients for the Non-Spouse Pairs, results were plotted in the same manner as 

Domingue et al. [5]. The 45° line indicates the null hypothesis that the genetic 

similarity among spouse pairs matches the genetic similarity among Non-Spouse 

Pairs. If the genetic similarity among spouses differs from the genetic similarity of 

Non-Spouse Pairs, then this is captured by departure from the 45° line and we 

calculate the area (and 95% Cis using 1,500 bootstrap replications) between this curve 
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and the 45° line. . 

Before analysing the ASD datasets, we tested this approach in a subset of the 

HapMap dataset [49] which contains 101 spouse pairs from 3 different populations, 

HapMap Spouse dataset (see Section S1 in the SI). For this dataset, when fully 

accounting for the population stratification, we found no significant evidence of 

genetic similarity among the spouses as would be expected, see Section S1 in the SI. 

The next approach investigated ancestral assortative mating using the method of 

Sebro et al. [3]: examining the correlation between the Principal Components (PCs) 

from the PCA of the genetic datasets. The PCs reflect the population structure within 

a dataset due to ancestry [50] and the estimation of correlation between the spouses’ 

PCs reflects the degree to which the spouses are mating within their ancestral 

populations [3]. PCAs were carried out using Eigenstrat [51] on pruned sets of SNPs 

(using PLINK software with a window size of 50 SNPs, with the window shift set to 5 

and R2 threshold of 0.25) with high call rates greater than 0.999 (AGP dataset 124,547 

SNPs and SSC dataset 115,734 SNPs after pruning).  

We also investigated assortative mating among the parents using ASD trait 

information obtained from the Broad Autism Phenotype Questionnaire (BAPQ) 

(specifically subscales:  Aloof, Rigid, Pragmatic Language and Total BAPQ) [52] and 

Social Responsive Scale - Adult version (SRS-A) (specifically subscales: Awareness, 

Cognition, Mannerisms, Motivation, and Communication, and the combined Total 

SRS score) [53]. The BAPQ includes both self and informant report versions which 

can be combined to give a more accurate result (Best Score), whereas the SRS-A is 

generally an informant report for the spouse or partner. For the SSC dataset, BAPQ 

data is available for 1,946 (99.2%) and SRS-A data is available for 1,958 (99.8%) of 

the spouses. Unfortunately, for the AGP data only 275 (17.3%) spouses have 
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complete BAPQ data and 428 (26.9%) spouses have SRS-A data.  

Results  

The Autism Genome Project 

We investigated the genetic similarity of the parents in the AGP data by 

comparing the kinship coefficients of the spouses with the kinship coefficients of all 

other possible Non-Spouse Pairs. We required that both individuals in each spouse 

pair and Non-Spouse Pair were from the same ancestral population to avoid spurious 

results of assortative mating. We removed spouses that did not mate within the same 

ancestral population, resulting in 1,092 spouse pairs that belonged to one of six 

populations (see Figure S10 in SI). 

The genetic similarity between spouse pairs compared to Non-Spouse Pairs is 

shown in Figure 1. Here the intersection of the vertical and horizontal lines represents 

where the median value (vertical line) of genetic similarity among spouses 

corresponds to the 0.52996 quantile (horizontal line) of all other possible Non-Spouse 

Pairs (within ancestral populations). The interpretation of this is that spouses are more 

genetically similar than all possible Non-Spouse Pairs. To calculate the degree of this 

increase in similarity among spouses, we calculated the area of the shaded region 

above the 45° line (0.0251, 95% CI = (0.0114, 0.0384). As this 95% CI does not 

contain 0 (the null hypothesis is that the area is 0, i.e. no assortative mating), this 

shows significant evidence that positive genetic assortative mating could be taking 

place in the AGP dataset. 

INSERT FIGURE 1 ABOUT HERE  

Collection site information was available for the AGP spouses, and we undertook 

an additional analysis where we compared spouses to Non-Spouse Pairs within the 

same site and ancestral population, see Figure 2. Here the genetic relatedness estimate 
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at the 0.5 quantile (vertical line) of spousal pairs corresponds to the 0.5576 quantile 

(horizontal line) of all Non-Spouse Pairs within site and ancestral population. The 

shaded area gives an estimate of assortative mating and is equal to 0.0451 here (95% 

CI = (0.0310, 0.0603)). This also indicates that the spouses are more genetically 

similar than would be expected. 

INSERT FIGURE 2 ABOUT HERE 

We also examined ancestral assortative mating in the AGP dataset by estimating 

the correlation between the spouses’ PCs [3]. Figure 3 shows strong correlations 

between mothers and fathers for PC1 (this PC separates the Europeans from the Non-

Europeans, see Figure S17 in SI for a PCA plot of the offspring) at 0.843 (p-value < 

0.0001). This shows significant evidence for spouse pairs mating within their 

ancestral populations and hence, showing evidence of ancestral assortative mating. 

INSERT FIGURE 3 ABOUT HERE 

When investigating the correlation between mothers and fathers for ASD traits 

using the BAPQ and SRS-A, we found significant correlations between the parents on 

all ASD subscales for the AGP data apart from the Aloof subscale from the BAPQ and 

the Motivation subscale from the SRS (see Table ST2 and ST3 in the SI). 

The Simons Simplex Collection 

The same procedures carried out on the AGP dataset were carried out on the SSC 

dataset. As we wanted to compare spouses to all possible Non-Spouse Pairs in the 

SSC dataset, we again removed spouses that did not mate within the same population, 

resulting in 1,221 spouse pairs that belonged to one of six populations (see Figure S11 

in SI). We used the kinship coefficients to estimate the genetic similarity between 

spouse pairs compared to all Non-Spouse Pairs, see Figure 4. The genetic relatedness 

estimate at the 0.5 quantile (vertical line) of spousal pairs corresponds to the 0.5032 
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quantile (horizontal line) of all Non-Spouse Pairs. The shaded area gives an estimate 

of assortative mating and is equal to -0.0062 (95% CI = (-0.0180, 0.0061)). Unlike for 

the AGP data, we see a negative value for the area indicating that the spouses are less 

similar than the Non-Spouse Pairs but this is not significant, therefore there is no 

evidence of assortative mating in the SSC dataset using this method. There was no 

site data available for the SSC to conduct any site related analyses. 

INSERT FIGURE 4 ABOUT HERE 

We examined ancestral assortative mating in the SSC by analysing the correlation 

between PC1 for the mothers and PC1 for the fathers (again, as for the AGP dataset, 

this PC separates the Europeans from the Non-Europeans, see Figure S18 in SI for 

PCA of the offspring). Figure 5 displays a strong correlation of 0.802 (p-value < 

0.0001) between the mothers and fathers. This shows significant evidence of ancestral 

assortative mating, similar to the results for the AGP dataset. 

INSERT FIGURE 5 ABOUT HERE 

When investigating the correlation between mothers and fathers for ASD traits 

using the BAPQ in the SSC dataset, there was no evidence of a correlation, see Figure 

S24 in SI. With the SRS-A, we found significant correlations between the parents on 

all subscales bar the Awareness and Motivation subscales for the SSC data although 

the correlation values are lower than the AGP’s SRS-A results. See Table ST4 in the 

SI. 

 

Discussion 
Assortative mating has been hypothesised to play a role in ASD, suggesting that 

people with ASD-like traits mate with one another more frequently than would be 
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expected. There has been evidence to suggest assortative mating in ASD can affect 

the prevalence and the heritability estimates [14, 31].  

We also tested this kinship coefficient approach on the HapMap Spouse dataset, 

to assess whether we could account for population structure and avoid finding false 

evidence of assortative mating. We found no significant results for assortative mating 

in the HapMap Spouse dataset when restricting the non-spouse pairings to 

male/female pairings within their ancestral population (see Section S1 in the SI). If 

we did not take into account the population substructure correctly in this dataset, this 

led to very strong findings of assortative mating in the HapMap Spouse dataset (see 

Section S1 in the SI).  [44]. We do note that this dataset is relatively smaller than the 

two ASD datasets analysed here and hence would be expected to have lower power to 

detect such effects. In addition, the ancestral populations are known in the HapMap 

Spouse dataset unlike in the AGP and SSC datasets.  

We examined kinship coefficients to investigate genetic assortative mating in the 

AGP and the SSC datasets. We found significant evidence that the kinship 

coefficients for spouses were more similar when compared to those of Non-Spouse 

Pairs within the same ancestral population in the AGP data. Although we did not find 

any evidence of this in the SSC data.  

Due to the spouse pairs and the Non-Spouse Pairs needing to be from the same 

ancestral population for our analyses, retaining only spouse pairs that had similar 

proportions of ancestry to each other and to others in their population, reducing our 

sample size. In particular, in the SSC dataset, 741 spouse pairs were removed 

(compared to 498 in the AGP). This, we suspect, will have reduced the power to 

detect the genetic similarity among the spouse pairs in the SSC dataset. Having stated 

this, when assortative mating is detected, as in the AGP dataset, it is less likely to be 
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confounded with population stratification, although we cannot fully rule this out.  

Other populations have shown evidence of ancestral assortative mating when 

spousal correlation of the PCs on the genetic data has been investigated [3,28,54]. We 

also present evidence of this in the two ASD datasets by identifying a significant 

correlation between the spouses’ PCs.  

When investigating the ancestral assortative mating, it is impossible to try and 

tease apart how much of the spousal correlation is attributed to proximity of the 

spouses with each other. For instance in the AGP dataset, which is collected at many 

sites across Europe and North America, some countries will have less admixture than 

others and it is more likely that individuals from these populations will mate with 

other individuals from the same ancestral background based on proximity. The SSC 

data, on the other hand, was only collected at sites in North America, which has more 

admixture between different ethnicities, yet we still see strong spousal correlations on 

the PCs.  

For the AGP dataset (where collection site data was available, not available for 

the SSC data), we randomly paired the spouses within ancestral population and 

collection site, as a proxy for proximity, obtaining significant findings here also (see 

Figure 3). This gives us more confidence that we are accounting for as much of the 

population stratification as possible, but we acknowledge that subtle population 

stratification may still be present.  

We found no significant evidence of assortative mating in the SSC dataset using 

the kinship coefficients approach. In addition, for the phenotypic analyses, examining 

the ASD traits in the parents through the BAPQ and SRS-A, the findings in the SSC 

were not as strong as for the AGP dataset. These findings could be due to the 

differences in the ascertainment for the AGP and the SSC datasets. It is worth noting 
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that the SSC dataset had strict recruitment criteria, only including simplex families 

(only one individual with ASD per family) in the study. Furthermore, the parents of 

these families were additionally screened in the recruitment process for ASD traits, a 

design which inherently enriches for rare and de novo mutations [36]. The AGP had 

no such criteria and contains both multiplex and simplex families (approximately 38% 

of families are simplex [31]). Previous studies have investigated the correlation 

between ASD parents for ASD traits using these instruments and our results for the 

AGP data show similar correlations of 0.4 [25]. This is in contrast to results obtained 

for the SSC, where the SRS-A correlation values were much lower and there was no 

sign of a linear relationship between the parents for the BAPQ data (see Figure S24 in 

the SI). 

Evidence has been shown that differences in the heritability estimates for ASD 

between multiplex and simplex families exist [31]. The results from Klei et al. and the 

stronger evidence of assortative mating in the AGP datasets that we have shown here, 

indicate that the genetic mechanisms differ between multiplex families and simplex 

families [31,55,56]. Understanding these differences, and the effects of the broader 

autism phenotypes present in parents of ASD offspring, will be imperative for 

understanding the etiology of ASD [28]. 

We acknowledge that the methods used here are not the only possible approaches 

to investigate assortative mating in a population. Other methods such as Polygene 

Risk Scores (PRS) could offer a means of exploring assortative mating among the 

parents for ASD risk variants. However, due to currently still relatively small sample 

sizes being available for ASD genotype studies, evidence for genetic variants 

associated with ASD is limited. For instance, the largest GWAS to date in ASD 

identified few additional findings [57]. This, coupled with the nature of this complex 
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disorder having many variants with small effect sizes [35], suggests that an approach 

using PRS would currently lack the power needed to find significant evidence. A 

previous study encountered these issues when trying to use such an approach in ASD 

[8]. However, such an approach may, in the future, offer another avenue for exploring 

assortative mating in ASD.  

In conclusion, we found evidence to suggest genetic assortative mating is taking 

place in the AGP datasets and that there is no evidence of this when investigating a 

simplex family cohort, the SSC dataset. We have also identified significant evidence 

of correlations between parents with certain ASD traits in both the AGP and SSC 

datasets. Although this evidence of phenotype assortative mating is weaker in the SSC 

dataset. Further investigations are warranted into assortative mating in ASD as it can 

confound heritability estimates and increase prevalence estimates of the disorder. This 

study also further emphasises the different etiology that may be taking place between 

simplex and multiplex ASD families. It would certainly be of interest to investigate 

assortative mating at SNPs associated with ASD traits, although due to the complexity 

of ASD, the literature is not yet available to support this work, but we anticipate that 

this will be possible in the near future. 
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Figure Legends 

Figure 1: Assortative Mating in AGP dataset. The x-axis represents the quantiles 

of the distribution of kinship coefficients between spouse pairs. The y-axis represents 

quantiles of the distribution of kinship coefficients between all other Non-Spouse 

Pairs. The shaded area gives an estimate of assortative mating and is equal to 0.0251 

here (95% CI = (0.0114, 0.0384)). The genetic relatedness estimate at the 0.5 quantile 

(vertical line) of spousal pairs corresponds to the 0.52996 quantile (horizontal line) of 

all other Non-Spouse Pairs. 

 

Figure 2: Assortative Mating in AGP dataset within site. The x-axis represents the 

quantiles of the distribution of kinship coefficients between spouse pairs. The yaxis 

represents quantiles of the distribution of kinship coefficients between all other Non-

Spouse Pairs within the same site and ancestral population. The shaded area gives an 

estimate of assortative mating and is equal to 0.0451 here (95% CI = (0.0310, 

0.0603)). The genetic relatedness estimate at the 0.5 quantile (vertical line) of spousal 

pairs corresponds to the 0.5576 quantile (horizontal line) of all other Non-Spouse 

Pairs. 

 

Figure 3: The PC 1 of Mothers versus Fathers in the AGP dataset. The spousal 

correlation for PC 1 is 0.843. 
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Figure 4: Assortative Mating in SSC dataset. The x-axis represents quantiles of the 

distribution of kinship coefficients between spouse pairs. The y-axis represents 

quantiles of the distribution of kinship coefficients between all other Non-Spouse 

Pairs. The shaded area gives an estimate of assortative mating and is equal to -

0.00622 here (95% CI = (-0.0180, 0.0061)). The genetic relatedness estimate at the 

0.5 quantile (vertical line) of spousal pairs corresponds to the 0.5032 quantile 

(horizontal line) of all Non-Spouse Pairs. 

 

Figure 5: The PC 1 of Mothers versus Fathers in the SSC dataset. The spousal 

correlation for PC 1 is 0.802. 
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