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A novel framework to measure executive function in Down syndrome, with applications for 

early clinical diagnosis of dementia 

 

Abstract 

Executive function (EF) decline is a consistent early sign of Alzheimer’s disease (AD) among 

adults with Down syndrome (DS); baseline measures of EF for individuals with DS are vital to 

allow detection of meaningful decline. We developed a framework to extract measures of three 

core components of EF (memory updating, inhibitory, and temporal components) within one 

task. Increases in memory load, inhibitory load, and temporal demands led to significant 

increases in reaction times and significant decreases in accuracy among eighteen adults with 

DS and 18 typically developing matched individuals; thus the expected effects of all three 

manipulations were detected. Good test-retest reliability indicated that this framework has the 

potential to provide a simple, baseline EF measure for individuals with DS. 
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Down syndrome (DS) is caused by an extra 21st chromosome (either partial or 

complete). This results in various complications; one of which is a greatly increased risk of 

developing dementia, specifically early onset Alzheimer’s disease (AD) (Cork, 1990; Crayton 

et al., 1998; Hartley et al., 2015). Indeed in rare cases the onset of dementia can occur 

exceptionally early among individuals with Down syndrome, with signs of cognitive decline 

emerging in some individuals in their 30’s (Ballard, Mobley, Hardy, Williams & Corbett, 2016; 

Holland et al., 1998; Prasher & Krishnan, 1993). Accumulation of amyloid-b in the brain 

appears to be related to early AD related cognitive decline among individuals with Down 

syndrome (Hartley et al., 2017). The characteristic neuropathological signs of AD, such as 

neurofibrillary tangles and amyloid plaques, are thought to be present in the brains of all 

individuals with Down syndrome beyond the age of 40 (Cork, 1990), however, the clinical 

signs of AD are present in only a proportion of these individuals (Krinsky-McHale et al., 2008; 

Tyrrell et al., 2001). We currently lack reliable measures of key cognitive processes in Down 

syndrome (Keeling et al., 2017) which could be used to detect the decline in 

cognitive/behavioral functioning over time that may signify the need for clinical assessment. 

Here, we present our initial findings from a novel task developed for this purpose.  

Executive function as a potential window to dementia related cognitive decline in Down 

syndrome 

The pre-existing cognitive difficulties associated with Down syndrome (e.g., Baddeley 

& Jarrold, 2007; Chapman 1997; Martin, Klusek, Estigarribia & Roberts, 2009) pose particular 

challenges to the diagnosis of AD in the population with Down syndrome (Stanton & Coetzee, 

2004). At present, the diagnostic tools that clinicians use to assess AD symptomatology among 

individuals with intellectual difficulties are the same as those used among typically developing 

populations (e.g., DSM-5, APA, 2013; and the ICD-10, WHO, 2011). However, the 

appropriateness of these tools to assess individuals with learning difficulties is debateable (see 



Strydom, Livingston, King & Hassiotis, 2007; Westphal, 2013), as self-report of decline may 

be difficult for individuals with learning difficulties to communicate (Roberts, Price, & Malkin, 

2007).  

In addition, AD presentation appears atypical in the early stages among individuals with 

Down syndrome; the earliest stage of AD in those with Down syndrome tends to be 

characterised by decline in frontal lobe functions (Ball et al., 2006; Ball et al., 2008; Fonseca, 

Yokomizo, Bottino & Fuentes, 2016), with Das et al. (1995) suggesting that there may be 

particularly strong links between planning and attention problems and the presence of dementia 

in the population with Down syndrome. A recent review carried out by Lautarescu, Holland 

and Zaman (2017) also strongly supports the notion that decline in executive function (i.e., 

frontal lobe functions) is a key early indicator of dementia in adults with Down syndrome. It is 

therefore important that deterioration in executive function is detected among adults with 

Down syndrome. However, due to large variability in cognitive function from one individual 

to the next in the population with Down syndrome (Nieuwenhuis-Mark, 2009), detecting 

deterioration in performance (e.g., in executive function tasks) among individuals with Down 

syndrome is problematic. For example, Carr (1988) gave the Leiter International Performance 

Scale (Leiter, 1980) to a sample of 21-year-olds with Down syndrome, and found IQs ranging 

from 8-67 (mean = 42); this translates to a mental age range of 1-8 years. Thus, it is difficult 

to compare an individual’s cognitive or behavioral performance (e.g., executive functions) to 

that which one would expect for an individual with Down syndrome in the ‘normal range’ on 

a given task, as this expected level could be very different from one individual with Down 

syndrome to another.  Given the consistent evidence that executive function is a key area of 

decline in the early stages of AD it is essential that reliable baseline performance measures of 

executive function are developed for individuals with Down syndrome to allow for accurate 

measurement of any cognitive decline. 



Components of executive function 

There is an array of components under the umbrella term of executive/frontal functions, 

and a number of different tasks are used to test these different functions in the literature. 

Existing research measuring executive function among individuals with Down syndrome tends 

to involve multiple tasks to tap various different functions (Costanzo et al., 2013; Lanfranchi 

et al., 2010; Pennington et al., 2003; Will, Fidler, Daunhaurer & Gerlach-McDonald, 2017), 

such as separate tasks to assess working memory (e.g., backward digit span), inhibition (e.g., 

Stroop-type tasks, Stroop, 1935; and go/no-go tasks), planning tasks (e.g., tower of London 

type tasks, Shallice, 1982), shifting (e.g., rule shifting such as card sorting tasks, Nelson, 1976), 

and verbal fluency (e.g., saying as many words as possible starting with a particular letter, 

Newcombe, 1969). However, measuring separate core functions with separate tasks can be 

very time consuming. Alternatively, parent and caregiver report measures have also been used 

to assess executive functions among individuals with Down syndrome, specifically the 

Behavior Rating Inventory of Executive Function (BRIEF; Gioia, Isquith, Guy & Kenworthy, 

2000), and its preschool version (BRIEF-P; Gioia, Espy & Isquith, 2003) (e.g., Daunhauer et 

al. 2014; Lee et al., 2011; Loveall, Conners, Tungate, Hahn & Osso, 2017). 

The findings regarding executive function in the Down syndrome population have been 

mixed, with many studies suggesting impairment in executive functioning relative to 

individuals’ other mental abilities (Borella, Carretti, & Lanfranchi, 2013; Lanfranchi et al., 

2010; Reid et al., 2017; Rowe, Lavender & Turk, 2006), but some indicating that executive 

function is not impaired relative to mental age (Pennington et al., 2003). However, a profile of 

strengths and weaknesses in executive function has been suggested to be associated with Down 

syndrome, with areas of executive function such as inhibition often suggested to be less 

impaired, relative to other aspects such as shifting (Costanzo et al., 2013; Lee et al., 2015; 

Loveall et al., 2017), and working memory and planning (Daunhauer et al., 2014).   



Existing executive function tasks used with adults with Down syndrome 

Using separate tasks is not ideal when it comes to drawing comparisons across the 

different components of executive function. As noted by Miyake (2000): ‘Any executive task 

strongly implicates other cognitive processes that are not directly relevant to the target 

executive function’ (p. 52).  The different types of cognitive demands imposed by different 

tasks may lead to better or worse performance among individuals with Down syndrome. For 

example, specific difficulties have been reported in verbally mediated shifting tasks (Landry et 

al., 2012) and some studies find impairment on verbal but not visual inhibition tasks (Costanzo 

et al., 2013; Cornish, Scerif & Karmiloff-Smith, 2007); these patterns could be related to the 

specific verbal difficulties associated with Down syndrome (e.g., Brock & Jarrold, 2005; 

Jarrold, Baddeley & Phillips, 1999) rather than reflecting fundamental executive problems. 

Existing measures often lack reliability, can be insensitive to change among individuals 

with Down syndrome, and may not be suitable for repeated assessment (See Edgin et al., 2017; 

Esbensen et al., 2017, & Keeling et al., 2017 for overviews). Esbensen et al. (2017) suggested 

that the BRIEF (parent/caregiver report measure) has adequate test-retest reliability among 

individuals with Down syndrome (see also D’Ardhuy et al., 2015). However, given the 

potentially subjective nature of third party report, it is important that report-based measures are 

supplemented by adequate direct tests of behavior. 

A novel measure of executive function for adults with Down syndrome  

Perhaps for the reasons outlined above, many of the commonly used tasks that are each 

assumed to reflect a particular component of executive functioning do not tend to correlate well 

with one another (Hedge, Powell & Sumner, 2018; Rabbit, 1997). A first aim of the current 

study was to take a novel approach and to extract measures of core components of executive 

function within one simple framework; a subsidiary objective was to assess whether these three 



measures were independent. A second main aim was to then assess the reliability of this 

framework among the Down syndrome population, as it is important that any task used as a 

regular, repeated baseline assessment is reliable. 

The ability to extract multiple independent measures within the same single task allows 

for controlled comparisons across these different key functions, e.g., participants’ level of 

attention and motivation are the same across the measures. The task format and demands are 

also controlled across the different executive function measures. In addition, the use of a single 

task to simultaneously extract multiple components is efficient; for example, extracting one 

level of each measure on every trial would substantially reduce the time required to measure 

multiple components of executive function. This is particularly important given the 

motivational difficulties reported among the population with Down syndrome (Fidler, 

Philofsky, Hepburn & Rogers, 2005; Ruskin, Mundy, Kasari & Sigman, 1994; Wishart, 2001).  

In a theoretical context, the essence of executive control is the ability to maintain task 

goals in order to prevent inappropriate responses to external stimuli (e.g., Norman & Shallice, 

1986); this statement provides a clear a priori model of the interplay between working memory 

and prepotent response inhibition. More recently, theorists have begun to distinguish typically 

developing children’s reactive and proactive control: the former reflecting control functions 

that follow the onset of a change in the environment, the latter reflecting those that anticipate 

such a change (Bravier, Gray & Burgess, 2007; Chatham, Frank & Munakata, 2009; Chevalier, 

Huber, Wiebe & Espy, 2013). In a task switching paradigm, participants show faster reaction 

times when they are pre-cued to the stimulus dimension that will be relevant on the upcoming 

trial (see Chevalier et al., 2014; & Monsell, 2003). Note that this is not reducible to the 

influence of basic speed of processing, rather it depends on higher-level executive factors to 

engage in preparation for the upcoming task. We therefore propose a theoretically driven 

framework in which we have an a priori starting point, focussing on working memory and 



inhibition, but in addition accommodate the distinction between reactive vs. proactive control 

by manipulating temporal parameters. We therefore explored the interplay between: i) working 

memory, and ii) response inhibition, which iii) unfolds over time due to the need to exert 

executive control in response preparation. 

Summary 

To summarize, the aims of this study are first to assess whether the expected effects of 

all three previously outlined measures of executive function are found when assessed 

simultaneously using a single task, with a subsidiary objective of assessing whether these 

effects are independent of one another. Second, the study aims to determine whether each of 

the three measures are reliable among individuals with Down syndrome. This proof of concept 

study is an important first step. If found to be valid and reliable, implying that practice effects 

do not confound performance, this novel task has the potential to provide a simple, efficient 

approach to measuring baseline executive function among individuals with Down syndrome, 

and could be incorporated into annual health checks. 

Method 

Participants: 

Participants were 18 individuals with Down syndrome (mean age = 30.3 years, SD = 

6.9 years, range = 20-49 years, 5 females), and 34 typically developing (TD) individuals (mean 

age = 7.6 years, SD = 2.0 years, range = 5-10 years, 21 females). The 18 individuals with Down 

syndrome were recruited in XXXX, UK, and the surrounding area. Four of the individuals with 

Down syndrome lived at home with parent/s, 9 individuals lived in shared supported 

accommodation, 3 individuals lived in their own home/flat, and for 2 individuals their living 

situation was not reported. None of the individuals reported a diagnosis of AD. The 34 TD 

children were recruited from schools in XXXX, UK, and participated in a quiet room at their 



school. The 18 individuals with DS and the 34 TD individuals each completed the children’s 

version of the Raven’s Coloured Progressive Matrices (Raven, Raven & Court, 1998) to assess 

their nonverbal mental ability, and completed the main task within the same session for 

practicality. Prior to analyses of the data, 18 of the TD children were matched to the individuals 

with Down syndrome on an individual basis for nonverbal mental ability raw scores (DS mean 

raw score: 19.61, (SD = 5.54, raw score range = 9-30) TD mean raw score: 19.78 (SD = 6.08, 

raw score range = 7-30), t = -.086, p = .93)), (Nonverbal mental age matched TD sample: mean 

chronological age = 7.1 years, SD = 1.4 years, range = 5-10 years, 11 females). The analyses 

were focussed on the matched groups, however the data set for the entire sample of 34 TD 

children is provided online via the Open Science Framework (osf.io/z3gxp). 

Design 

Our study was designed to address two primary aims. First, we sought to verify whether 

our task could be used to successfully extract measures of the three components of executive 

functioning described above. We administered the task to individuals with Down syndrome 

and typically developing individuals and assessed accuracy and reaction times to determine 

whether the effects of each manipulation were found. Second, we sought to determine the 

reliability of this framework for use among the population with Down syndrome. All 

individuals with Down syndrome were re-tested approximately 4 weeks following their initial 

session.  

Executive functioning task: 

The executive function task was a new task designed and programmed by the authors. 

The task was presented on a tablet device (Microsoft Surface Pro; 10.6 inch screen). The 

general structure of the task was as follows. On each trial a single coloured alien appeared on 

screen. The participant’s task was to assign the alien to one of two ‘spaceships’, presented on 

the left and right of the screen, according to a rule that they were given at the start of each 



block. The participant was instructed to respond as quickly and accurately as possible by 

touching one of two response buttons (one button corresponding to the right spaceship, and one 

corresponding to the left spaceship). 

The task was divided into 6 blocks, each containing 4 practice trials followed by 24 

experimental trials. Participants were given 4000ms within which to respond on each trial; if 

the participant did not respond within this time frame then the trial was skipped. Upon a 

participant pressing their response they moved onto an inter-trial screen displaying a large 

‘ready’ button and the two squares outlining where the response buttons were located (see 

Figure 1); the large size of the ready button was to aid accessibility. After pressing the ready 

button the next trial was presented after 2000ms; participants were instructed to place their 

index fingers over each of the placeholders (white squares) so that they were ready to respond 

to the next trial. At the start of each block the participant was introduced to the memory load 

rule for that block.  The instructions were shown to the participant pictorially (as shown in 

Figure 1). The blocks were completed in a counterbalanced order.  

On each trial participants received accuracy feedback. Feedback was also given at the 

end of each block. To motivate the participants, they received ‘slime’ to feed to the aliens at 

the end of the block. Completing the task took approximately 20-25 minutes. 

To manipulate the different components of executive functioning, we manipulated the 

complexity of the response rule that had to be maintained in each block (memory), the location 

of the alien stimulus on each trial (inhibition), and the time window available for the response 

on each trial (reactive vs. proactive control), as described in detail below. One level of each of 

the three variables was extracted on each trial. See Figure 1 for an overview of the task 

progression, and Figure 2 for an illustration of each manipulation. 

[Insert Figure 1 here]  

Memory Load 



We varied the memory load across blocks by manipulating the complexity of the rule 

by which participants assigned the alien stimuli to the correct spaceship across three levels (no 

memory load, low memory load, high memory load). Participants were informed of the rule at 

the start of each block. In the no memory load blocks, the participant was simply required to 

visually match the stimulus to the spaceship of the same colour (blue alien = blue spaceship, 

green alien = green spaceship). In the low memory load blocks, the participant was required to 

remember a one-to-one association between the stimuli and response options based on non-

matching colours (pink alien = blue spaceship, orange alien = green spaceship). In the high 

memory load blocks, the participant was required to remember a two-to-one association 

(yellow OR grey alien = blue spaceship, red OR brown alien = green spaceship). Each stimulus 

(alien colour) was presented an equal number of times within each block (e.g., no memory load 

block: 50% blue stimuli, 50% green stimuli). 

Inhibition 

Inhibition was simultaneously but independently manipulated by varying the 

presentation location of the stimulus (left or right) on a trial by trial basis. This inhibition 

manipulation was based on the Simon task (e.g., Simon, 1969); the Simon task rests on the 

assumption that the spatial location of the stimulus automatically activates the corresponding 

response option. For example, a stimulus presented on the left side of the screen would 

automatically activate the left-hand response option. Participants are typically slower and less 

accurate on trials where the stimulus is presented on the opposite side to the correct response 

option (incongruent trials) compared to when the stimulus is presented on the same side as the 

correct response option (congruent trials) (see Simon, 1969) We implemented this by 

presenting the alien on either the left or right of the screen on each trial in a pseudo-random 

order. Across the block as a whole, half of the trials involved the stimuli appearing next to the 



correct response button (congruent), and half involved the stimuli appearing next to the 

incorrect button (incongruent). 

Reactive and proactive control. 

We manipulated the extent to which participants were able to exert proactive control 

by varying the delay between stimulus onset and the appearance of the response buttons within 

each block. The response buttons were the two spaceship buttons. Two white squares on either 

side of the screen functioned as placeholders to indicate where the spaceship buttons would 

show up. These placeholders were on the screen constantly until replaced by the spaceship 

buttons (see Figure 1). For half of the trials in each block there was a delay of 1000ms between 

the onset of the stimuli and the appearance of the response buttons, and for the other half of 

trials the response buttons were available immediately; trials of each type were interleaved and 

presented in a pseudo-random order to prevent participants anticipating the format of the next 

trial. The logic of this manipulation followed from findings from task switching studies, where 

individuals show reduced performance costs when they receive a cue before each trial to alert 

them to the relevant stimulus feature (Monsell, 2003). Here, we assumed that when a 

participant was immediately presented with the response options, that they would respond more 

‘reactively’. By delaying the onset of the response options, participants have the opportunity 

to use the time to prepare their response set, which would lead to faster reaction times (see e.g., 

Chevalier, 2015). 

[Insert Figure 2 here] 

Practice trials 

Prior to the main trials of the executive function task all participants were shown how 

to play the game on the tablet and completed practice trials; there were 24 initial practice trials 

(8 for each memory load set). In the practice trials all stimuli were presented in the centre of 

the screen to allow participants to get used to the task and the memory rules without having to 



attend to the other manipulations. Participants were subsequently shown that the stimuli 

(aliens) would sometimes pop up closer to the green spaceship button or closer to the blue 

spaceship button; they were told to ignore the location of the stimuli and instead always follow 

the memory rules. Participants were also shown examples of proactive and reactive trials and 

were told that they were able to respond as soon as the spaceship buttons appeared. Any 

participants struggling on the practice trials were given the opportunity to repeat these practice 

trials. However, if participants were unable to grasp the task after more than three rounds of 

the practice trials, or if they were unable to attend to the task they were excluded from the main 

experiment (n = 3; 2 DS, 1 TD). In addition, the first four trials of each block (6 blocks) were 

also practice trials; on these trials stimuli were again presented centrally to ensure that the 

participant was maintaining the given memory rule, prior to the introduction of the congruency 

manipulation. 

Data Analyses:  

Accuracy cut off: 

We first assessed accuracy at the level of each of the six blocks. If the average accuracy 

within a block was below 60% across all experimental trials, we discarded those trials from our 

analysis. The accuracy cut off was used to exclude blocks in which we assumed that 

participants were not attending to the task, and were guessing (i.e., responding randomly); 

guessing would be indicated by scores close to chance. It is common practice in cognitive 

control studies to apply an accuracy cut off for this reason (e.g., De Simoni & von Bastian, 

2018; Kane, Poole, Tuholski & Engle, 2006; Rey-Mermet, Gade & Oberauer, 2018; Zwaan et 

al., 2017). The 60% accuracy cut off in the current study resulted in four participants in the 

group with DS and two participants in the TD group missing data from either the low or high 

memory load conditions. However, participants’ data remained in the analysis for the blocks 



in which they were at or above the accuracy cut off; this was to minimize the loss of data given 

the modest sample size.  

Analysis: 

Data were analysed with linear mixed effects models using the lme4 (Bates, Maechler, 

Bolker & Walker, 2015) package in R (R core team, 2016). To obtain p-values for main effects 

and interactions analogous to traditional repeated measures ANOVA, denominator degrees of 

freedom were calculated using Satterthwaite’s approximation implemented in the lmerTest 

package (Kuznetsova, Brockhoff & Christensen, 2016). Test-retest reliability was assessed 

separately for the effects of inhibition, memory load and delay in the group of individuals with 

Down syndrome. Reliability was calculated using intraclass correlation coefficients (ICC) 

using a two-way random effects model for absolute agreement. 

Results 

Descriptive statistics for the Down syndrome group (N = 18) and the subset of matched 

typically developing children (N = 18) are shown in Table 1. These descriptive data were 

calculated after excluding blocks in which accuracy was below 60%, in line with the main 

analyses.  

[Insert Table 1 here] 

Individuals with Down syndrome were compared to the subset of mental age matched 

TD children to explore whether those with Down syndrome were affected by the three 

manipulations as expected, and to determine how their level of performance compared to that 

of this matched TD group. Analyses are presented first for reaction times, and second for 

accuracy, with the same analysis carried out for both dependent measures.  

Reaction Time:  



A linear mixed effects model was carried out with three within subjects factors (3 x 2 

x 2): memory load (No memory load, low memory load, high memory load), temporal load 

(Immediate vs. proactive), and inhibitory load (Low load: congruent vs high load: 

Incongruent), and one between subjects factor: population (Down syndrome vs. typically 

developing).  

The main effect of population was not significant, F(1, 33) = 0.75, p = .39. The main 

effect of memory load was significant, F(1, 351) = 30.99, p < .001, with post-hoc comparison 

showing that the difference between no load (M = 1114ms, SD = 303ms) and low load (M = 

1233ms, SD = 272ms) conditions was significant (t = -5.03, p < .001), as was the difference 

between no load and high load conditions (M = 1341ms, SD = 335ms), (t = -7.7, p < .001), and 

low load and high load conditions (t = -2.72, p = .01). The main effect of temporal load was 

also significant, F(1, 349) = 570.78, p < .001, reflecting faster reaction times in the delay 

condition (M = 881ms, SD = 242ms) relative to the no delay condition (M = 1432ms, SD = 

260ms). The final main effect of inhibitory load was marginally significant, F(1, 349) = 3.02, 

p = .08, reflecting faster reaction times on the congruent trials (M = 1136ms, SD = 247ms) 

relative to the incongruent trials (M = 1177ms, SD = 247ms). There was a significant interaction 

of memory load x temporal load, F(2, 349) = 4.78, p = .01, with post-hoc comparison showing 

that the effect of temporal load (the difference between RT’s for immediate vs. delayed 

responses) increased under greater memory loads (temporal effect under no memory load: 

mean difference = 490ms, t(35) = 11.88, p < .001; low memory load: mean difference = 595ms, 

t(35) = 13.99, p < .001; high memory load: mean difference = 675ms, t(35) = 15.42, p < .001) 

as can be seen in figure 3; In other words the difference between no load, low load, and high 

load RT’s was more pronounced in the immediate (no delay) condition (F(2, 158) = 28.29, p < 

.001) relative to the delay condition (F(2, 158) = 5.90, p = .003). All remaining interactions 



were non-significant, with all F values < 2.48, and all p values > .10; this included all 

interactions with population. 

[Insert Figure 3 here] 

Accuracy:  

The same linear mixed effects model as used in the reaction time analysis was also 

carried out with the accuracy data. To be consistent with the reaction time data this analysis 

also applied the 60% accuracy cut off. Thus, the overall accuracy levels in this analysis are 

slightly overestimated.  

The main effect of population was not significant, F(1, 33) < .01, p = .96. The main 

effect of memory load was significant, F(1, 354) = 60.31, p < .001, with post-hoc comparisons 

showing that the difference between no load (M = 96.0, SD = 7.0) and low load conditions (M 

= 87.4, SD = 11.2) was significant (t = 6.11, p < .001), as was the difference between no load 

and high load conditions (M = 80.1, SD = 13.3), (t = 10.92, p < .001), and low load and high 

load conditions (t = 4.83, p < .001). The main effect of temporal load was also significant, F(1, 

349) = 5.06, p = .03, reflecting higher accuracy in the delay condition (M = 84.5, SD = 14.5) 

relative to the no delay condition (M = 82.0, SD = 15.6). The final main effect of inhibitory 

load was marginally significant, F(1, 349) = 3.45, p = .06, reflecting higher accuracy on 

congruent trials (M = 84.1, SD = 13.6) relative to the incongruent trials (M = 82.3, SD = 16.6). 

There were no significant interactions among these factors for accuracy; all F values < 2.06, 

all p values > .13, again including all interactions involving population. 

Test-retest reliability: 

Typical interpretations of ICC values are: excellent (.8), good/substantial (.6), and 

moderate (.4) levels of reliability (Cicchetti & Sparrow, 1981; Fleiss, 1981; Landis & Koch, 



1977). Negative ICCs are reported as zero (Giraudeau, 1996). In our analysis the participants’ 

‘costs’ of each manipulation at time 1 were correlated with their costs of that manipulation at 

time 2. The memory load cost referred to the difference between participants’ overall 

performance in the high memory load condition relative to the low memory load condition, as 

we were primarily interested in the cost of high vs. low memory load, rather than the presence 

vs. absence of memory load. The temporal cost was the difference between participants’ overall 

performance in the no delay condition relative to overall performance in the delay condition. 

Finally, the inhibition cost was the difference between participants’ overall performance in the 

incongruent condition relative to their overall performance in the congruent condition. Costs 

were calculated for each of these three factors, for participants’ reaction times and accuracy.  

Reaction times: 

The overall RT inhibitory cost had excellent test-retest reliability from time 1 to time 2 

(single measures ICC = .688, average measures ICC = .815, p = .001). For the overall RT 

memory load cost there were five participants excluded from the correlation due to missing 

data at either time 1 or time 2 for either the low or high memory load conditions. However, the 

memory cost also had good test-retest reliability from time 1 to time 2 (single measures ICC = 

.438, average measures ICC = .609, p = .059). The RT temporal cost had slightly poorer test-

retest reliability from time 1 to time 2 (single measures ICC = .240, average measures ICC = 

.387, p = .149). The correlations between time 1 and time 2 for each factor are shown 

diagrammatically in Figure 4.  

[Insert Figure 4 here] 

Accuracy:  



The overall accuracy inhibition cost was associated with moderate test-retest reliability 

from time 1 to time 2 (single measures ICC = .306, average measures ICC = .469, p = .090). 

In contrast, the overall accuracy memory load cost had poor test-retest reliability from time 1 

to time 2 (single measures ICC= .025, average measures ICC = .049, p = .469). Finally, the 

accuracy temporal cost had poor test-retest reliability from time 1 to time 2 (single measures 

ICC = 0, average measures ICC = 0, p = .664). The correlations between time 1 and time 2 are 

shown in Figure 5.  

[Insert Figure 5 here]  

Reliability of Raven’s Coloured Progressive Matrices: 

The Raven’s Coloured Progressive Matrices was found to have excellent test-retest 

reliability among the adults with Down syndrome (single measures ICC = .811, average 

measures ICC = .895, p < .001). 

Discussion 

The first aim of this study was to test the feasibility of using a single task to extract 

measures of three components of executive function, with adults who have Down syndrome 

and a TD comparison group, with a subsidiary objective to assess whether the three components 

were independent. A second aim was to assess the reliability of this task for the group of adults 

with Down syndrome, to test whether such a task would have potential to be further developed 

as a baseline measure for this population in future. Both of these aims were met; the single task 

was effective in extracting each of the three components in both populations, and the reasonable 

reliability of the task among adults with Down syndrome indicates that the task shows promise 

as a potential novel baseline measure of executive function for this population.  

Suitability of the novel executive function task for individuals with Down syndrome 



For the above aims to be realised it was essential that individuals with Down syndrome 

in the target age range were able to complete this task. The developmental level of the group 

with Down syndrome was between age 5-10 years (based on their nonverbal mental age 

scores), and these participants had relatively few missing cells of data (i.e., below the accuracy 

cut off). There were four individuals who were below the 60% accuracy cut off for either the 

low or high memory load conditions, and we interpreted these individuals as not attending to 

the task rules and simply guessing/responding randomly in these blocks. Therefore, some 

individuals with Down syndrome may have difficulty with some aspects of the task. However, 

as there are three levels of memory load it would be possible to use the no memory load 

performance in the memory load cost calculation (rather than high memory load minus low 

memory load) for these individuals. Indeed the overall levels of accuracy were very high. There 

were two participants that were excluded as they were unable to do the task after the practice 

trials. We do not have mental age information for these individuals. However, for individuals 

with a mental age equivalent of 5-10 years this task tends to be appropriate. It is common for 

adults with Down syndrome to have a mental age within this range (see e.g., Carr, 2000; Vakil 

& Lifshitz-Zehavi, 2012).  

Executive functions in Down syndrome and mental age matched controls 

Overall, the difference in performance, either in terms of task accuracy or reaction 

times, between those with Down syndrome and those without Down syndrome matched for 

nonverbal mental ability did not reach significance. Thus, the executive functions measured 

here (working memory, inhibition and reactive vs. proactive control) were not significantly 

impaired relative to nonverbal mental ability in individuals with Down syndrome in this age 

range; this is in line with the findings of Pennington et al. (2003). However, this finding is in 

contrast to various other studies that have reported impairment on tasks of executive function 

among individuals with Down syndrome relative to their mental age (Costanzo et al., 2013; 



Lanfranchi et al., 2004; 2009; 2010; Rowe et al., 2006). Note that our aim was to develop a 

task that can be used to track executive functioning over time, not to detect group differences. 

For this, it was critical that individuals with Down syndrome could perform the task adequately 

at baseline. However, it is worth considering whether the absence of significant group 

differences is surprising.  

One possible reason for conflicting evidence in previous research is the employment of 

different tasks and matching procedures across studies. For example, in the study by Rowe et 

al. (2006), participants were matched for age and vocabulary, and showed differences in a 

number of tests including Raven’s progressive matrices (the matching measure used in the 

current study). Thus, in the current study, particularly given the potential association between 

measures of fluid intelligence such as the Ravens matrices and executive functioning (Duncan, 

Burgess & Emslie, 1995; Friedman et al., 2006), it could be argued that the matching measure 

(Ravens matrices) plays a role in the close similarities in performance in executive function in 

the Down syndrome group and the TD group. However, Friedman et al. (2006) found that 

inhibition and shifting, in contrast to memory updating, were very weakly related to traditional 

measures of fluid intelligence (here including Raven’s matrices and block design). It is 

important to keep in mind that performance on measures such as vocabulary may be more 

influenced by continued experience into adulthood, compared to fluid abilities.  

There were also no significant interactions between any of the within-subjects 

manipulation factors and population in the current study, for either reaction times or accuracy 

data, indicating that both groups were affected by these manipulations in a similar way. The 

group with Down syndrome did tend to have slightly slower overall reaction times relative to 

the matched TD group, as well as slightly lower accuracy overall, but these differences did not 

approach significance. Task modality may have also played a role in the performance of the 

individuals with Down syndrome in the current study. It is perhaps worth noting that 



impairment in domains such as visuo-spatial working memory relative to mental age has been 

found in previous research but only when the task was highly demanding (e.g., Lanfranchi, 

Carretti, Spanò & Cornoldi, 2009; Lanfranchi, Cornoldi & Vianello, 2004), for example when 

items were presented simultaneously (more demanding) rather than one at a time. This is in 

contrast to verbal working memory where the same group of individuals with Down syndrome 

were impaired regardless of the task demands (Lanfranchi et al., 2009; 2004). We designed our 

task to limit verbal demands; and our findings indicate that this was effective, making the task 

well suited for use with individuals with Down syndrome.  

Measurement and independence of executive functions 

Increases in memory load, inhibitory load, and temporal demands, did lead to 

significant increases in RT and significant decreases in accuracy for both populations. Thus, 

the expected effects of each of these manipulations can be detected with this simple 

experimental framework, both in TD individuals, as well as among individuals with Down 

syndrome. It should be acknowledged that the inhibitory load effect was marginal, however the 

effect of inhibition was in the expected direction for both populations. The reliability analysis 

highlighted that there were large individual differences in the inhibition effect for the 

individuals with Down syndrome, that may have reduced the overall group level effect. 

Nonetheless, the size of this inhibition effect is a limitation of the current framework, and it 

may be appropriate to adapt this aspect of the design in future research to tap into larger 

congruency effects across individuals.  

The temporal delay led to a very large decrease in RT’s and large increase in accuracy, 

indicating that both populations were able to prepare for their subsequent responses when given 

a one second delay. The one second delay does not force participants to use proactive control, 

in that the participant does not have to use the available time to be proactive and anticipate 

their response. For example, in studies using the cued task switching paradigm, when children 



are given a cue that a task switch is about to happen they have the opportunity to be proactive 

and prepare for the switch, however, young children (e.g., age 3 or 4) do not tend to be proactive 

in these circumstances. Instead they rely on reactive control, while older children (age 7+) 

show the expected tendency to engage proactive control (Chatham, Frank, & Munakata, 2009; 

Chevalier et al., 2014; Chevalier, Martis, Curran & Munakata, 2015; Killikelly & Szűcs, 2013). 

In the current study participants’ preparation to respond prior to the availability of the response 

buttons appears to indicate the engagement of proactive control, as would broadly be expected 

based on the developmental level (5-10 years) of the individuals in this study. 

The effect of memory load was also large, with both populations responding more 

slowly and less accurately with increasing memory load. In turn the RT benefit in the delay 

condition relative to the immediate condition was greater with increasing memory load, as 

highlighted by the significant memory load x temporal load interaction.  Our interpretation of 

this interaction is that participants’ use of the delay period (which we attribute to proactive 

control) absorbs the extra processing time required for higher memory loads. Given that the 

memory rule and the location of the response buttons remain consistent in a block in our 

framework, the preparation time can be used to select the appropriate response, and therefore 

respond faster when the response buttons subsequently become available. When the rules place 

greater demands on memory, participants may require more response preparation, i.e., thinking 

through the more complicated response mappings. It is therefore possible that in the delay 

condition, participants’ reliance on the additional time to prepare their response in the low or 

high memory load conditions makes the difference in no, low and high memory load 

performance less pronounced (though note the effect of memory load was still highly 

significant in both the immediate and the delay condition). We should note that processing 

speed is a key element in the extent to which participants might benefit from the delay period 

in the different load conditions, in that we assume that at least some participants are able to 



process the stimulus and prepare a response in less than 1 second (the duration of the delay) on 

some trials. However, it is the spontaneous choice to engage in processing during this delay 

period that we attribute to the engagement of proactive control.  

Thus, the temporal manipulation was not independent from the memory load 

manipulation. In contrast, there were no significant interactions involving inhibitory load, 

hence this appears to be an independent component of executive function. The notion of 

independence of different executive function components fits with the findings of Miyake et 

al. (2000) and may reflect specific genetic influences unique to the separate components of 

executive function (Friedman et al., 2008).  

Importantly, a crucial finding in the current study, was that the tested framework 

appeared to capture relatively reliable individual differences among individuals with Down 

syndrome for each measure extracted in terms of reaction times and accuracy (as shown in 

Figures 4 & 5). The reliability for each component in the current study was greater for reaction 

times relative to accuracy. One possibility is that RT’s allow greater sensitivity because they 

are continuous, however RT’s may also be subject to greater noise. Another possibility is that 

the greater reliability for RT’s relative to accuracy may in part be due to the accuracy cut off, 

where scores were excluded if they fell below 60%. With two buttons to choose from there is 

a floor of 50% to all accuracy data.  Additionally, scores cannot be above 100% for accuracy, 

whereas RT’s are not constrained in the same way.  Improved reliability for participants’ 

accuracy should be an aim for future development of such a framework if it is to be used as a 

diagnostic indicator in combination with or instead of reaction time.  

The current work therefore represents a successful proof-of-concept study, indicating 

that a framework such as this could be further adapted in order to provide a simple, fast, and 

effective baseline screening measure against which decline in executive functions in those with 

Down syndrome can be benchmarked. Task impurity issues have traditionally made measuring 



executive functions problematic (see Miyake, 2000; Karr et al., 2018). Although our current 

approach does not eliminate the impurity issue, by extracting executive subcomponents from a 

single task we are able to keep some of these sources of variance constant across the 

subcomponents of interest. If different tasks were used for each subcomponent, we would not 

know whether a decline in performance on one of those tasks was due to a change in the 

executive subcomponent of interest, or whether it was due to other processes unique to that 

task. 

We should note that a degree of normal age-related decline in executive function over 

long periods of times would also be expected among individuals with Down syndrome, as it 

would among individuals without Down syndrome (Devenny, Silverman, Hill, Jenkins, Sersen 

& Wisniewski, 1996). However, decline in executive function related to AD can potentially 

occur at a much earlier age and be much more significant than what would be expected in 

normal ageing among adults with Down syndrome. Establishing baseline performance would 

therefore be important to flag such instances and prompt individuals to seek further clinical 

assessment to determine if the changes reflect early onset AD.  

Future directions 

One way to improve the task in the future could be to incorporate both RT and accuracy 

into a single measure. RT and accuracy measures do not always correlate with each other, and 

can be confounded by, for example, speed-accuracy trade-offs (Hedge et al. 2018). 

Incorporating measures that account for both speed and accuracy could enhance the validity of 

executive function measures in the future (for an overview, see Verhaeghen, 2013). Indeed we 

reanalysed our data with a recently proposed ‘balanced integration score’; a composite of both 

RT and accuracy (Liesefeld & Janczyk, 2018), and the results of this were consistent with our 

main analyses (see Appendix 3). In future research it would also be informative to assess the 



convergent validity of each of the measures extracted within this single task relative to other 

measures of executive functioning.  

Given the consistency of findings reporting changes in executive function as the earliest 

indicator of dementia related decline among individuals with Down syndrome (e.g., Ball et al., 

2006; Das et al., 1995; Holland, Hon, Huppert & Stevens, 2000; Lautarescu, Holland & Zaman, 

2017), the potential to adapt the framework tested in the current study has important 

implications. Having a reliable baseline measure against which to track potential decline of 

executive functions in the Down syndrome population is an extremely valuable goal. Burt and 

Aylward (2000) have previously suggested that baseline measures should be obtained annually 

in the adult Down syndrome population. Individuals could complete a task such as that used in 

the current study at home to track progress, with the supervision of parents or carers if required. 

We emphasise that we do not expect performance on such a task to be the basis of a diagnosis 

of cognitive status (e.g., AD) in itself. Rather, our aim is to develop a reliable and valid tool 

that is easily administered without clinical supervision, but can be used to identify individuals 

for appropriate clinical assessment. We should note that the sample size in the current study 

was relatively small, nonetheless the expected effects of each measure were found, and 

reasonable reliability was observed.  

Conclusion 

In conclusion, the current proof-of-concept study shows that a task such as the one used in the 

current study can be used to obtain multiple components of executive function within a single, 

fast computerized assessment; such a task could be suitable for many individuals with Down 

syndrome given the overall high levels of accuracy observed in this group in the current study. 

In addition, these measures appear to be relatively well suited to tracking abilities over time. 

The framework used here therefore offers a means of capturing individual changes over time 

in executive function in individuals with Down syndrome. Future research using an adapted 



version of this framework with large samples is warranted, and would have considerable 

potential for improving clinical practice.  
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Table 1. Means and standard deviations for participants. 

 Reaction times (milliseconds) Accuracy (percentages) 

 DS  

(N = 18) 

M (SD) 

 

TD matched 

(N = 18) 

M (SD) 

Grand Mean DS  

(N = 18) 

M (SD) 

TD matched 

(N = 18) 

M (SD) 

Grand Mean 

No memory load       

No delay       

Congruent 1330     

(256) 

1363    

(284) 

1347 99.5      

(2.0) 

90.3     

(11.2) 

94.9 

Incongruent 1364    

(338) 

1379    

(290) 

1372 96.3    

(13.8) 

93.5     

(11.6) 

94.9 

Delay         

Congruent 925      

(418) 

791      

(273) 

858 98.2      

(3.6) 

96.3      

(8.7) 

97.2 

Incongruent 976      

(494) 

782      

(243) 

879 96.3     

(11.9) 

97.7      

(3.8) 

97.0 

Low memory 

load 

        

No delay         

Congruent 1536    

(421) 

1462    

(273) 

1499 89.1    

(14.8) 

86.1    

(16.4) 

87.6 

Incongruent 1520    

(217) 

1603    

(324) 

1562 84.9     

(15.6) 

87.0    

(16.7) 

86.0 

Delay         

Congruent 909      

(224) 

884      

(302) 

897 89.1    

(11.7) 

87.5    

(10.4) 

88.3 

Incongruent 961      

(249) 

986      

(472) 

974 87.5     

(17.5) 

88.4     

(11.8) 

88.0 

High memory 

load 

        

No delay         

Congruent 1784  

(0494) 

1568  

(0271) 

1676 77.6    

(20.1) 

82.8    

(17.6) 

80.2 



Incongruent 1757  

(0497) 

1605  

(0317) 

1681 75.0     

(19.5) 

75.5     

(23.5) 

75.3 

Delay         

Congruent 1117  

(0355) 

0823  

(0312) 

970 84.9    

(15.6) 

86.5    

(13.6) 

85.7 

Incongruent 1047  

(0346) 

1025  

(0469) 

1036 75.0    

(21.1) 

83.3     

(14.9) 

79.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Screen display. Stimuli presented sequentially 

next to either the blue spaceship (left) or the green spaceship  

(right). Example shown here is a no memory load block

Until ready 

button pressed 

Congruent x 

immediate trial 

4000ms to respond 

2000ms  

Incongruent x 

delay trial 

Until ready 

button pressed 

2000ms  

1000ms delay 

4000ms to respond 

Start of block: 

These are the 4 aliens we will be seeing 
pop up next: 

Ready 

Ready 



 

 

 

 

 

 

 

 

 

 

Figure 2. The three levels of memory load, two levels of inhibition and two levels of 

temporal load. The memory load rule was presented visually at the beginning of a block. No 

verbal labels were used to describe the memory rules, and, no verbal instructions for any of 

the three manipulations were given during the main task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Memory Load (48 trials per memory load) Temporal component: 

Immediate (reactive response): 

Inhibition: Simon task 

Low Inhibition: congruent location: 

 

No Load: 

Low Load: 

High Load: 

High Inhibition: Incongruent location: 1 second delay (proactive response): 



 

 

 

 

 

 

 

Figure 3. Graph showing memory load RT x temporal load RT across both populations. Error 

bars represent +/- 1 standard error. In the immediate (no delay) condition the significant effect 

of memory load was more pronounced, relative to the significant effect of memory load in the 

delay condition. 
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Inhibitory load cost:                                                             Memory load cost: 
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Figure 4. Scatterplots showing correlation of RT cost at time 1 x time 2 for each factor. Note. 

The range is different in each graph due to the different range of costs for each factor. 
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Inhibitory load cost:                                            Memory load cost: 

 

 

 

 

 

Temporal load cost:  

 

 

 

 

 

Figure 5. Scatterplots showing correlation of accuracy cost at time 1 x time 2 for each factor. 

Note. The range is different in each graph due to the different range of costs for each factor. 
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Appendix 1. Results with full data set (not applying accuracy cut off). 

Reaction times 

Descriptive data: 

Mean RTs 

    

     No load      Low load    High load 

DS 1.148696 1.340448 1.470766 

TD 1.074703 1.223341 1.265424 

    

    

  No delay Delay  
DS 1.586335 1.053605  
TD 1.495693 0.879953  

    

  Congruent Incongruent  
DS 1.295958 1.343982  
TD 1.150806 1.22484  

 

Linear mixed effects model output: 

 df F p 

Group 1, 34 1.85 .182 

Memory load 2, 374 35.21 .000 

Delay 1, 374 511.47 .000 

Congruency 1, 374 5.78 .017 

Memory load x delay 2, 374 3.03 .0497 

 

Note. All remaining interactions were non-significant, with all F values < 2.67, and all p values > .10. 

 

 

 

 

 

 

 

 

 

 

 



Accuracy 

Descriptive data: 

Mean Accuracy 

    

      No load      Low load    High load 

DS 97.56945 81.71297 72.56945 

TD 93.86574 85.64815 74.18982 

    

    

  No delay Delay  
DS 82.79321 85.10803  
TD 82.79321 86.34259  

    

  Congruent Incongruent  
DS 85.64815 82.25309  
TD 84.5679 84.5679  

 

Linear mixed effects model output: 

 df F p 

Group 1, 34 0.026 .872 

Memory load 2, 374 100.723 .000 

Delay 1, 374 5.196 .023 

Congruency 1, 374 1.742 .188 

Group x memory load 2, 374 3.091 .047 

 

Note. All remaining interactions were non-significant, with all F values < 1.74, and all p values > 

.188. 

 

 

 

 

 

 

 

 

 

 

 



Appendix 2. Descriptive data for time 2 

Means and standard deviations for the Down syndrome group at time 2 (Accuracy cut off not 

performed): 

 
 Reaction times 

(milliseconds) 

Accuracy 

(percentages) 

 DS Time 2 

M (SD) 

DS Time 2 

M (SD) 

No memory load   

No delay   

Congruent 1227  

(214) 

99.1  

(2.7) 

Incongruent 1289  

(226) 

98.6  

(3.2) 

Delay   

Congruent 822  

(159) 

99.1  

(2.7) 

Incongruent 880  

(223) 

100  

(0) 

Low memory 

load 

  

No delay   

Congruent 1469  

(319) 

86.6  

(13.7) 

Incongruent 1608  

(494) 

82.9  

(18.0) 

Delay   

Congruent 982  

(358) 

91.7  

(9.5) 

Incongruent 1015  

(542) 

86.6  

(17.4) 

High memory 

load 

  

No delay   

Congruent 1584  

(523) 

73.6  

(20.7) 

Incongruent 1606  

(379) 

73.1  

(25.2) 

Delay   



Congruent 1080  

(384) 

75.9  

(17.6) 

Incongruent 1075  

(524) 

74.1  

(18.7) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 3. Composite scores 

Here, we report the results of an analysis using the balanced integration score (BIS; Liesefeld & 

Janczyk, 2018). The BIS incorporates both reaction time and accuracy in to a single measure, and was 

shown to control well for speed-accuracy trade-offs compared to other measures. 

The BIS is applied to participants’ mean percentage correct (PC) and mean RT measures. First, for 

each condition and participant, PC and RT are separately z-scored by subtracting the overall mean 

(across all participants and conditions) and dividing by the overall standard deviation, e.g. for RT: 

 

zRTij =
RTij − RT̅̅̅̅

SRT
 

 

The i and j subscripts refer to participant and condition respectively. To calculate the BIS for each 

condition, the standardised RT score is subtracted from the standardised accuracy 

BISij = zPCij − zRTij 

Note that, because the BIS consists of standardising the scores using the sample mean and standard 

deviation, it gives participants a value relative to other individuals in the sample, rather than an 

absolute performance score. This is not appropriate for all purposes, though is sufficient for assessing 

whether speed-accuracy trade-offs contaminate the sample effects reported in the main text. 

Supplementary Table 1 below displays the results from a linear mixed effects analysis (as conducted 

in the main text on RT and accuracy separately) performed on the BIS. We applied these to the data 

after removing blocks in which participants were below 60% accuracy 

The results were generally consistent with our main analyses. We observed main effects of Memory 

Load, Delay and Congruency. The effect of group was not significant, nor were any of the 

interactions. 



Supplementary Table 1: Results of linear mixed effects model conducted on balanced integration 

scores. 

Effect 
Sum of 

squares 

Mean 

square 
Num. DF Denom. DF F p 

Group 0.33 0.33 1.00 32.99 0.33 0.57 

Memory Load 163.21 81.61 2.00 351.78 80.96 <.001*** 

Delay 209.64 209.64 1.00 348.98 207.98 <.001*** 

Congruency 5.68 5.68 1.00 348.98 5.63 0.02* 

Group: x Memory Load 3.65 1.82 2.00 351.78 1.81 0.17 

Group x Delay 2.10 2.10 1.00 348.98 2.08 0.15 

Memory Load x Delay 5.40 2.70 2.00 348.98 2.68 0.07 

Group x Congruency 0.03 0.03 1.00 348.98 0.03 0.85 

Memory Load x Congruency 2.51 1.26 2.00 348.98 1.25 0.29 

Delay x Congruency 0.09 0.09 1.00 348.98 0.09 0.76 

Group x Memory Load x Delay 3.11 1.56 2.00 348.98 1.54 0.22 

Group x Memory Load x Congruency 2.02 1.01 2.00 348.98 1.00 0.37 

Group x Delay x Congruency 0.03 0.03 1.00 348.98 0.03 0.85 

Memory Load x Delay x Congruency 0.37 0.18 2.00 348.98 0.18 0.83 

Group x Memory Load x Delay x Congruency 0.16 0.08 2.00 348.98 0.08 0.92 

Note: *p<.05, ***p<.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 4. Parameter estimates from linear mixed effects models. 

Supplementary Table 2. Estimates for linear mixed effects model of reaction time performance. Group 

(Down syndrome vs. typically developing) is a between subjects factor, all other factors are within-

subjects.  

Note. Model estimated using restricted maximum likelihood. Degrees of freedom and p-values are 

calculated using Satterthwaite’s approximation. Effects are relative to the reference categories 

(Down syndrome group, no memory load condition, no delay, congruent). 

 

 

 

Parameter Estimate Std. Error DF p 

Fixed effects     
Intercept (DS group, no memory load, no delay, 

congruent) 1.33 0.09 94.25 <0.001 

Group (typically developing) 0.03 0.12 94.25 0.782 

Low memory load 0.27 0.09 349.53 0.002 

High memory load 0.43 0.09 349.53 <0.001 

Delay -0.4 0.08 349.02 <0.001 

Incongruent 0.03 0.08 349.02 0.675 

Group * low memory load -0.17 0.12 349.28 0.155 

Group * high memory load -0.19 0.12 349.52 0.117 

Group * delay -0.17 0.12 349.02 0.152 

Low memory load * delay -0.22 0.12 349.02 0.065 

High memory load * delay -0.26 0.12 349.02 0.030 

Group * incongruent -0.02 0.12 349.02 0.872 

Low memory load *incongruent -0.05 0.12 349.02 0.675 

High memory load * incongruent -0.06 0.12 349.02 0.607 

Delay * incongruent 0.02 0.12 349.02 0.892 

Group * low memory load * delay 0.22 0.17 349.02 0.197 

Group * high memory load * delay 0.09 0.17 349.02 0.601 

Group * low memory load * incongruent 0.18 0.17 349.02 0.296 

Group * high memory load * incongruent 0.08 0.17 349.02 0.627 

Group * delay * incongruent -0.04 0.17 349.02 0.805 

Low memory load * delay * incongruent 0.05 0.17 349.02 0.757 

High memory load * delay * incongruent -0.06 0.17 349.02 0.730 

Group * low memory load * delay * incongruent -0.07 0.24 349.02 0.780 

Group * high memory load * delay * incongruent 0.25 0.24 349.02 3.013 

     

Random effects (variance)     

Participant (intercept) 0.071    

Residual 0.061       



Supplementary Table 3. Estimates for linear mixed effects model of accuracy performance. Group 

(Down syndrome vs. typically developing) is a between subjects factor, all other factors are within-

subjects.  

Note. Model estimated using restricted maximum likelihood. Degrees of freedom and p-values are 

calculated using Satterthwaite’s approximation. Effects are relative to the reference categories 

(Down syndrome group, no memory load condition, no delay, congruent). 

 

 

 

 

 

Parameter Estimate Std. Error DF p 

Fixed effects     
Intercept (DS group, no memory load, no delay, 

congruent) 99.54 3.42 210.96 <0.001 

Group (typically developing) -9.27 4.83 210.96 0.057 

Low memory load -11.49 4.24 350.62 0.007 

High memory load -22.03 4.24 350.62 <0.001 

Delay -1.38 4.11 349.42 0.736 

Incongruent -3.24 4.11 349.42 0.431 

Group * low memory load 7.33 5.91 350.04 0.216 

Group * high memory load 13.46 6 350.61 0.026 

Group * delay 7.41 5.81 349.42 0.203 

Low memory load * delay 1.38 5.99 349.42 0.817 

High memory load * delay 8.68 5.99 349.42 0.148 

Group * incongruent 6.48 5.81 349.42 0.265 

Low memory load *incongruent -0.93 5.99 349.42 0.877 

High memory load * incongruent 0.64 5.99 349.42 0.915 

Delay * incongruent 1.38 5.81 349.42 0.812 

Group * low memory load * delay -6.02 8.34 349.42 0.471 

Group * high memory load * delay -11.05 8.46 349.42 0.192 

Group * low memory load * incongruent -1.39 8.34 349.42 0.867 

Group * high memory load * incongruent -11.17 8.46 349.42 0.188 

Group * delay * incongruent -3.23 8.21 349.42 0.694 

Low memory load * delay * incongruent 1.22 8.46 349.42 0.885 

High memory load * delay * incongruent -8.68 8.46 349.42 0.306 

Group * low memory load * delay * incongruent 0.63 11.79 349.42 0.957 

Group * high memory load * delay * incongruent 14.69 11.97 349.42 0.221 

     
Random effects      
Participant (intercept) 58.53    
Residual 151.74       


