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5School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AAQ, Wales, UK

Accepted 2017 December 27. Received 2017 November 28; in original form 2017 August 3

ABSTRACT
We describe an OctTree algorithm for the MPI parallel, adaptive mesh refinement code FLASH,
which can be used to calculate the gas self-gravity, and also the angle-averaged local optical
depth, for treating ambient diffuse radiation. The algorithm communicates to the different
processors only those parts of the tree that are needed to perform the tree-walk locally. The
advantage of this approach is a relatively low memory requirement, important in particular
for the optical depth calculation, which needs to process information from many differ-
ent directions. This feature also enables a general tree-based radiation transport algorithm
that will be described in a subsequent paper, and delivers excellent scaling up to at least
1500 cores. Boundary conditions for gravity can be either isolated or periodic, and they
can be specified in each direction independently, using a newly developed generalization of
the Ewald method. The gravity calculation can be accelerated with the adaptive block up-
date technique by partially re-using the solution from the previous time-step. Comparison
with the FLASH internal multigrid gravity solver shows that tree-based methods provide a com-
petitive alternative, particularly for problems with isolated or mixed boundary conditions. We
evaluate several multipole acceptance criteria (MACs) and identify a relatively simple approx-
imate partial error MAC which provides high accuracy at low computational cost. The optical
depth estimates are found to agree very well with those of the RADMC-3D radiation transport
code, with the tree-solver being much faster. Our algorithm is available in the standard release
of the FLASH code in version 4.0 and later.

Key words: gravitation – hydrodynamics – radiative transfer – ISM: evolution – galaxies:
ISM.

1 IN T RO D U C T I O N

Solving Poisson’s equation for general mass distributions is a com-
mon problem in numerical astrophysics. Grid-based hydrodynamic
codes frequently use iterative multigrid or spectral methods for that
purpose. On the other hand, particle codes often use tree-based algo-
rithms. The extensive experience with tree gravity solvers in particle
codes can be transferred to the domain of grid-based codes. Here,
we describe an implementation of the tree-based gravity solver for
the adaptive mesh refinement (AMR) code FLASH (Fryxell et al.
2000) and show that its efficiency is comparable to the FLASH intrin-
sic multigrid solver (Ricker 2008). An advantage of this approach
is that the tree code can be used for more general calculations
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performed in parallel with the gravity; in particular, calculation of
the optical depth in every cell of the computational domain with
the algorithm developed by Clark, Glover & Klessen (2012) and
general radiation transport with the TreeRay algorithm (described
in Paper II; Wünsch et al., in preparation).

Hierarchically structured, tree-based algorithms represent a well-
established technique for solving the gravitational N-body prob-
lem at reduced computational cost (Barnes & Hut 1986, hereafter
BH86). Many Lagrangian codes implement trees to compute the
self-gravity of both collisionless (stars or dark matter) and colli-
sional (gas) particles, e.g. GADGET-2 (Springel 2005), VINE (Wetzstein
et al. 2009; Nelson, Wetzstein & Naab 2009), EVOL (Merlin et al.
2010), SEREN, (Hubber et al. 2011) and GANDALF (Hubber, Rosotti &
Booth 2018). The three most important characteristics of the tree
algorithm are the tree structure (also called the grouping strategy),
the multipole acceptance criterion (MAC) deciding whether to open
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a child-node or not, and the order of approximation of the integrated
quantity within nodes (e.g. mass distribution).

Tree structure: each node on the tree represents a part of the
computational domain, hereafter a volume, and the child-nodes of
a given parent node collectively represent the same volume as the
parent node. The most common ‘OctTree’ structure is built by a
recursive subdivision of the computational domain, where every
parent node is split into eight equal-volume child-nodes, until we
reach the last generation. The nodes of the last generation are called
leaf-nodes and they cover the whole computational domain.

Tree structures other than the OctTree are also often used.
Bentley (1979) constructs a balanced ‘k-d’ binary tree by recursively
dividing parent nodes so that each of the resulting child-nodes con-
tains half (±1) of the particles in the parent node; this tree structure
is used in the codes PKDGRAV (Stadel 2001) and GASOLINE (Wad-
sley, Stadel & Quinn 2004). In contrast, Press (1986) constructs
a binary tree, from the bottom up, by successively amalgamating
nearest neighbour particles or nodes into parent nodes. This ‘Press-
tree’ has been further improved by Jernigan & Porter (1989), and is
used, for instance, by Benz et al. (1990) and Nelson et al. (2009).
More complex structures have been suggested. For example, Ahn
& Lee (2008) describe the ‘k-means’ algorithm, in which a par-
ent node is adaptively divided into k child-nodes according to the
particle distribution in the parent-node.

There seems to be no unequivocally superior tree structure. Waltz
et al. (2002) compare OctTrees with binary trees, and find that Oct-
Trees provide slightly better performance with the same accuracy.
On the other hand, Anderson (1999) argues, on the basis of an
analytical study, that certain types of binary trees should provide
better performance than OctTrees. Makino (1990) points out that
differences in performance are mainly in the tree construction part,
and that the tree-walk takes a comparable amount of time in either
type of tree structure. Therefore, the choice of tree structure should
be informed by more technical issues, like the architecture of the
computer to be used, other software to which the tree will be linked,
and so on.

Multipole acceptance criterion: another essential part of a tree
code is the criterion, or criteria, used to decide whether a given
node can be used to calculate the gravitational field, or whether
its child-nodes should be considered instead. This is a key factor
determining the accuracy and performance of the code. Since this
criterion often reduces to deciding whether the multipole expansion
representing the contribution from the node in question provides a
sufficiently accurate approximation for the calculation of the gravi-
tational potential, it is commonly referred to as the MAC. We retain
this terminology even though nodes in the code presented here may
possess more general properties than just a multipole expansion.

The original BH86 geometric MAC uses a simple criterion, which
is purely based on the ratio of the angular size of a given node and
its distance to the cell at which the gravitational potential should
be computed. More elaborate methods also take into account the
mass distribution within a particular node or even constrain the
allowed total acceleration error (Salmon & Warren 1994, SW94;
see Section 2.2.1).

Order of approximation: Springel, Yoshida & White (2001) sug-
gest that if the gravitational acceleration is computed using multi-
pole moments up to order p, then the maximum error is of the order
of the contribution from the (p + 1)th multipole moment. There
is no consensus on where to terminate the multipole expansion of
the mass distribution in a node. The original BH86 tree code uses
moments up to second order (p = 2), i.e. quadrupoles, and many
authors follow this choice. Wadsley et al. (2004) find the highest

efficiency using p = 4 in the GASOLINE code. On the other hand,
SW94 find that their code using the SumSquare MAC is most effi-
cient with p = 1, i.e. just monopole moments. This suggests that the
optimal choice of p may depend strongly on other properties of
the code and its implementation, and possibly also on the architec-
ture of the computer. Springel (2005) advocates using just monopole
moments on the basis of memory and cache usage efficiency. We
follow this approach and consider only monopole moments, i.e.
p = 1 for all implemented MACs.

Further improvements: tree codes have often been extended with
new features or modified to improve their behaviour. Barnes (1990)
noted that neighbouring particles interact with essentially the same
nodes, and introduced interaction lists that save time during a tree-
walk. This idea was further extended by Dehnen (2000, 2002) who
describes a tree with mutual node–node interactions. This greatly
reduces the number of interactions that have to be calculated, lead-
ing – in theory – to an O(N ) CPU time dependence on the number
of particles, N . Dehnen’s implementation also symmetrizes the
gravitational interactions to ensure accurate momentum conserva-
tion, which is in general not guaranteed with tree codes. Recently,
Potter, Stadel & Teyssier (2017) develop this so-called fast multipole
method further and implement it into massively parallel cosmolog-
ical N-body code PKDGRAV3.

Hybrid codes: tree codes are also sometimes combined with other
algorithms into ‘hybrid’ codes. For example, Xu (1995) describes
a TREEPM code which uses a tree to calculate short-range interac-
tions, and a particle-mesh method (Hockney & Eastwood 1981)
to calculate long-range interactions. The TREEPM code has been de-
veloped further by Bode, Ostriker & Xu (2000), Bagla (2002),
Bode & Ostriker (2003), Bagla & Khandai (2009) and Khandai &
Bagla (2009). There are also general purpose tree codes available,
which can work with both N-body and grid-based codes, e.g. the
MPI parallel tree gravity solver FLY (Becciani et al. 2007).

In this paper, we describe a newly developed, cost-efficient, tree-
based solver for self-gravity and diffuse radiation that has been
implemented into the AMR code FLASH. This code has been developed
since 2008, and since FLASH version 4.0, it is a part of the official
release. The GPU accelerated tree gravity solver, based on the early
version of the presented code, has been developed by Lukat &
Banerjee (2016). The paper is organized as follows: in Section 2,
we describe the implemented algorithm, which splits up into the
tree-solver (Section 2.1), the gravity module (Section 2.2) and the
optical depth module (Section 2.3). Accuracy and performance for
several static and dynamic tests are discussed in Section 3, and
we conclude in Section 4. In Appendix A, we provide formulae
for acceleration in computational domains with periodic and mixed
boundary conditions (BCs), and in Appendix B we give runtime
parameters of the code.

2 TH E A L G O R I T H M

The FLASH code (Fryxell et al. 2000) is a complex framework con-
sisting of many inter-operable modules that can be combined to
solve a specific problem. The tree code described here can only
be used with a subset of the possible FLASH configurations. The
basic requirement is usage of the PARAMESH-based grid unit (see
MacNeice et al. 2000 for a description of the PARAMESH library);
support for other grid units (uniform grid, Chombo) can be added
in future. Furthermore, the grid geometry must be 3D Cartesian.

The PARAMESH library defines the computational domain as a col-
lection of blocks organized into a tree data structure which we refer

MNRAS 475, 3393–3418 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/475/3/3393/4795314 by C
ardiff U

niversity user on 23 April 2019



Tree-based solvers for AMR code FLASH – I 3395

to as the amr-tree. Each node on the amr-tree represents a block. The
block at the top of the amr-tree, corresponding to the entire compu-
tational domain, is called the root block and represents refinement
level � = 1. The root block is divided into eight equal-volume blocks
having the same shape and orientation as the root block, and these
blocks represent refinement level � = 2. This process of block di-
vision is then repeated recursively until the blocks created satisfy
an AMR criterion. The blocks at the bottom of the tree, which are
not divided, are called leaf-blocks, and the refinement level of a
leaf-block is labelled �lb. In regions where the AMR criterion re-
quires higher spatial resolution, the leaf-blocks are smaller and their
refinement level, �lb, is larger (i.e. they are further down the tree).

The number of grid cells in a block (a logically cuboidal collection
of cells; see below) must be the same in each direction and equal to
2�bt where �bt is an arbitrary integer number. In practice, it should
be �bt ≥ 3, because most hydrodynamic solvers do not allow blocks
containing fewer than 83 cells, in order to avoid overlapping of ghost
cells. Note that the above requirements do not exclude non-cubic
computational domains, because such domains can be created either
by setting up blocks with different physical sizes in each direction
or by using more than one root block1 in each direction (Walch et al.
2015).

Within each leaf-block is a local block-tree which extends the
amr-tree down to the level of individual grid cells. All block-trees
have the same number of levels, �bt (≥3). The nodes on a block-tree
represent refinement levels �lb + 1 (8 nodes here), �lb + 2 (82 = 64
nodes here), �lb + 3 (83 = 512 nodes here) and so on. The nodes at
the bottom of the block-tree are leaf-nodes, and represent the grid
cells on which the equations of hydrodynamics are solved.

Each node – both the nodes on the amr-tree, and the nodes on
the local block-trees – stores collective information about the set of
grid cells that it contains, e.g. their total mass, the position of the
centre of mass, etc.

Our algorithm consists of a general tree-solver implementing
the tree construction, communication and tree-walk, and modules
which include the calculations of specific physical equations, e.g.
gravitational accelerations or optical depths. The tree-solver com-
municates with the physical modules by means of interface subrou-
tines which allow physical modules, on the one hand to store various
quantities on the nodes, and on the other hand to walk the tree ac-
cessing the quantities stored on the nodes. When walking the tree,
physical modules may use different MACs that reflect the nature
of the quantity they are seeking to evaluate. An advantage of this
approach is that it makes code maintenance more straightforward
and efficient. Moreover, new functionality can be added easily by
writing new physical modules or extending existing ones, without
needing to change the relatively complex tree-solver algorithm.

The BCs can be either isolated or periodic, and they can be
specified in each direction independently, i.e. mixed BCs with one
or two directions periodic and the remaining one(s) isolated are
allowed (see Section 2.2).

In the following Section 2.1, we describe the tree-solver, and in
Sections 2.2 and 2.3, respectively, we give descriptions of the grav-
ity module and the module (called OPTICALDEPTH) which calculates
heating by the interstellar radiation field (ISRF).

1 If there is more than one root block, the single tree structure becomes a
forest. This decreases the efficiency of the gravity solver, and therefore the
number of root blocks should be kept as small as possible.

2.1 Tree-solver

The tree-solver creates and utilizes the tree data structure described
above. Maintaining a copy of the whole tree on each processor
would incur prohibitively large memory requirements. Therefore,
only the amr-tree (i.e. the top part of the tree, between the root-block
node and the leaf-block nodes) is communicated to all processors.
The block-tree within a leaf-block is held on the processor whose
domain contains that leaf-block, and communicated wholly or par-
tially to another processor only if it will be needed by that processor
during a subsequent tree-walk. The tree-solver itself stores in each
tree-node – with the exception of the leaf-nodes – the total mass
of the node and the position of its centre of mass, i.e. four floating
point numbers. For leaf-nodes (the nodes corresponding to individ-
ual grid cells) only their masses are stored, because the positions of
their centres of mass are identical to their geometrical centres and
are already known. Additionally, each physical module can store
any other required quantity on the tree-nodes.

The tree-solver consists of three steps: tree-build, communication
and tree-walk. In the tree-build step, the tree is built from bottom up
by collecting information from the individual grid cells, summing
it, and propagating it to the parent tree-nodes. The initial stages
of this step, those that involve the block-trees within individual
leaf-blocks, are performed locally. However, as soon as the leaf-
block nodes are reached, information has to be exchanged between
processors because parent nodes are not necessarily located on the
same processor. At the end of this step, each processor possesses
a copy of the amr-tree plus all the block-trees corresponding to
leaf-blocks that are located on that processor.

The communication step ensures that each processor imports
from all other processors all the information that it will need for
the tree-walks, which are subsequently called by the physical mod-
ules. To this end, the code considers all pairs of processors, and
determines what tree information the one processor (say CPU0; see
Fig. 1) needs to export to the other processor (say CPU1). To do this,
the code walks the block-trees of all the leaf-blocks on CPU0, and
applies a suite of MACs (required by the tree-solver itself and the
used physical modules) in relation to all the leaf-blocks on CPU1.
This suite of MACs determines for each leaf-block on CPU0, the
level of its block-tree that delivers sufficient detail to CPU1 to sat-
isfy the resolution requirements of all the physical modules that will
be called before the tree is rebuilt. Thus, a leaf-block on CPU0 that
has very little physical influence on any of the leaf-blocks on CPU1
(for example by virtue of being very distant or of low mass) may
only need to send CPU1 the information stored on its lowest (i.e.
coarsest resolution) level, �lb. Conversely, a leaf-block on CPU0
that has a strong influence on at least one of the leaf-blocks on
CPU1 (for example by virtue of being very close or very massive)
may need to send the information stored on its highest (finest res-
olution) level, �lb + �bt. In order to simplify communication, the
required nodes of each block-tree on CPU0 are then stored in a 1D
array, ordered by level, starting at � = �lb and proceeding to higher
levels (see Fig. 2). Finally, the arrays from all the block-trees on
CPU0 are collated into a single message and sent to CPU1. This
minimizes the number of messages sent, thereby ensuring efficient
communication, even on networks with high latency.

Note that this communication strategy in which tree-nodes are
communicated differs from a commonly used one in which particles
(equivalents of grid cells) are communicated instead (e.g. GADGET,
Springel 2005). In this way, the communication is completed before
the tree-walk is executed and the tree-walk runs locally, i.e. sepa-
rately on each processor. The communication strategy adopted in
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Figure 1. Determining the block-tree levels that need to be exported from
the leaf-blocks in the spatial domain of processor CPU0 to processor CPU1.
In this case, the spatial domains of the two processors are adjacent, and are
separated by the thick dotted line. For each leaf-block on CPU0 (for example,
the one enclosed by a thick dashed line), its block-tree is traversed and the
MAC is evaluated in relation to all the leaf-blocks on processor CPU1; for
this purpose, the code uses the distance from the centre of mass of a node
of the block-tree on CPU0, to the closest point of a leaf-block on CPU1,
as illustrated by the coloured arrows. The level of detail communicated to
CPU1 is then set by the finest level reached during this procedure. In the
case illustrated, the leaf-block on CPU0 that is furthest from the leaf-blocks
on CPU1 (the one enclosed by a thick dashed line) exports only the first
two levels of its block-tree, i.e. from level �lb to �lb + 1. In contrast, the
leaf-blocks on CPU0 that are closest to the leaf-blocks on CPU1 export their
full block-trees, i.e. from level �lb to level �lb + 3.

this work provides a significant benefit for the OPTICALDEPTH and the
TreeRay modules as they work with a large amount of additional
information per grid cell (or particle), which does not have to be
stored and communicated (see Section 2.3).

The final step is a tree-walk, in which the whole tree is traversed
in a depth-first manner for each grid cell or in general for an arbitrary
target point (e.g. the position of a sink particle). During the process,
the suite of MACs is evaluated recursively for each node and if it is
acceptable for the calculation, subroutines of physical modules that
do the calculation are called, otherwise its child-nodes are opened.

The tree-solver itself only implements a simple geometric MAC
(Barnes & Hut 1986), which accepts a node if its angular size, as
seen from the target point, r, is smaller than a user-set limit, θ lim.
Specifically, if h is the linear size of the node and ra is the position
of the centre of mass of the node, the node is accepted (and so its
child-nodes need not be considered) if

h

|r − ra| < θlim. (1)

It has been shown by Salmon & Warren (1994, hereafter SW94)
that the BH86 MAC can lead to unexpectedly large errors when
the target point is relatively far from the centre of mass of the
node but very close to its edge. Several alternative geometric MACs
were suggested to mitigate this problem (Salmon & Warren 1994;
Dubinski 1996). Following Springel (2005), we extend the geo-
metric MAC by setting the parameter ηSB such that a node is only
accepted if the target point lies outside a cuboid ηSB times larger
than the node (with the default value ηSB = 1.2). Additional MACs
specific to the physical modules are implemented by those modules
(see Section 2.2).

The tree-walk is the most time-consuming part of the tree-solver.
Typically, it takes more than 90 per cent of the computational time
spent by the whole tree-solver. We stress that the tree-walk does
not include any communication; the tree is traversed in parallel
independently on each processor for all the grid cells in the spatial
domain of that processor. The tree-solver exhibits very good scaling,
with speed-up increasing almost linearly up to at least 1500 CPU
cores (see Section 3.5).

2.2 GRAVITY module

This module calculates the gravitational potential and/or the gravi-
tational acceleration. We use the same approach as Springel (2005)
and store only monopole moments in the tree, because this sub-
stantially reduces memory requirements and communication costs.
Since masses and centres of mass are already stored on the
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Figure 2. Organization of a block-tree within a block in memory. It is a 1D array sorted by levels, starting from � = �lb.
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tree-nodes by the tree-solver, the gravity module does not contribute
any extra quantities to the tree.

In Section 2.2.1, we describe three data-dependent MACs which
can be used instead of the geometric MACs of the tree-solver: max-
imum partial error (MPE), approximate partial error (APE) and the
(experimental) implementation of the SumSquare MAC. Further-
more, the code features three different types of gravity BCs. These
are isolated (see Section 2.2.2), fully periodic (Section 2.2.3) and
mixed BCs (Section 2.2.4). Finally in Section 2.2.6, we describe a
technique called the adaptive block update (ABU) to save computa-
tional time by re-using the solution from previous time-step when
possible.

2.2.1 Data-dependent MACs

A general weakness of the purely geometric MACs is that they
do not take into account the amount and internal distribution of
mass in a node. This can make the code inefficient if the density is
highly non-uniform. For example, if the code calculates the gravi-
tational potential of the multiphase interstellar medium (ISM), the
contribution from nodes in the hot rarefied gas is very small, but it is
calculated with the same opening angle as the much more important
contribution from nodes in dense molecular cores.

MPE MAC: to compensate for the above problem, SW94 propose
an MAC based on evaluating the maximum possible error in the
contribution to the gravitational acceleration at the target point, r,
that could derive from calculating it using the multipole expansion
of the node up to order p (instead of adding directly the contributions
from all the constituent grid cells)

�amax
(p) = G

d2

1

(1 − bmax/d)2

×
{

(p+2)

(
B(p+1)

dp+1

)
−(p+1)

(
B(p+2)

dp+2

)}
, (2)

B(p) =
∑

i

|mi||r i − ra|p. (3)

Here, ra is the mass centre of the node, d ≡ |r − ra| is the distance
from ra to the target point, bmax is the distance from ra to the furthest
point in the node, B(p) is the pth-order multipole moment, obtained
by summing contributions from all the grid cells i in the node and
mi and ri are the masses and positions of these grid cells. The
node is then accepted only if �amax

(p) is smaller than some specified
maximum allowable acceleration error. This threshold can either be
set by the user as a constant value, alim, in the physical units used
by the simulation

�amax
(p) < alim, (4)

or it can be set as a relative value, εlim, with respect to the accelera-
tion from the previous time-step aold

�amax
(p) < εlimaold. (5)

APE MAC: an alternative way to estimate the partial error of a
node contribution was suggested by Springel et al. (2001). It takes
into account the node total mass, but it ignores the internal node mass
distribution. It is therefore faster, but less accurate. Using multipole
moments up to order p, the error of the gravitational acceleration is
of order the contribution from the (p + 1)th multipole moment

�amax
(p) � GM

d2

(
h

d

)p+1

, (6)

where M is the mass in the node and p = 1 in our case, since we only
store monopole moments. Similar to the MPE MAC, the APE error
limit can be either set absolutely as alim (equation 4), or relatively
through εlim (equation 5).

SumSquare MAC: SW94 argue that it is unsafe to constrain the
error using the contribution of a single node only, since it is not
known a priori how these contributions combine. They suggest an
alternative procedure, which limits the error in the total acceleration
at the target point; one variant of this procedure is the SumSquare
MAC which sums up squares of amax

(p) given by equation (2) over all
nodes considered for the calculation of the potential/acceleration
at a given target point. In this way, the SumSquare MAC controls
the total error in acceleration resulting from the contribution of all
tree-nodes. This MAC requires a special tree-walk which does not
proceed in the depth-first manner. Instead it uses a priority queue,
which on-the-fly reorders a list of nodes waiting for evaluation
according to the estimated error resulting from their contribution.
This feature is still experimental in our implementation, neverthe-
less we evaluate its accuracy and performance and compare it to
other MACs in Section 3.4.

2.2.2 Isolated boundary conditions

In case of isolated BCs, the gravitational potential in a target point
given by position vector r is

�(r) = −
N∑

a=1

GMa

|r − ra| (7)

where index a runs over all nodes accepted by the MAC during the
tree-walk, Ma and ra are the node mass and position. The gravi-
tational acceleration is then obtained either by differentiating the
potential numerically, or it is calculated, as

a(r) = −
N∑

a=1

GMa(r − ra)

|r − ra|3 . (8)

The first approach needs less memory and is slightly faster. The sec-
ond approach results in less noise, because numerical differentiation
is not needed.

2.2.3 Periodic boundary conditions

In case of periodic BCs in all three directions, the gravitational
potential is determined by the Ewald method (Ewald 1921; Klessen
1997), which is designed to mitigate the very slow convergence in
case one evaluates contributions to the potential, essentially 1/d
where d = |r − ra|, over an infinite number of periodic copies, by
brute force. This is achieved by splitting it into two parts

1/d = erfc(αd)

d
+ erf(αd)

d
(9)

and summing the term erf(αd)/d in Fourier space; α is an arbitrary
constant controlling the number of nearby and distant terms which
have to be taken into consideration. In this section, we present
formulae only for the potential. The expressions for acceleration
are straightforward to derive, and we list them in Appendix A.

The computational domain is assumed to be a rectangular cuboid,
with sides Lx, Ly = bLx and Lz = cLx where b and c are arbitrary
real numbers. The gravitational potential � at the target point, r , is
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then

�(r) = −G

N∑
a=1

Ma (φS(r − ra) + φL(r − ra)) (10)

= −G

N∑
a=1

Ma

⎧⎨⎩∑
i1,i2,i3

erfc(α|r−ra−i1exLx−i2eybLx−i3ezcLx|)
|r−ra−i1exLx−i2eybLx−i3ezcLx|

+ 1

bcL3
x

∑
k1,k2,k3,|k|�=0

4π

k2
exp

(
− k2

4α2

)
cos(k · (r−ra))

⎫⎬⎭ . (11)

Here, the first inner sum corresponds to short-range contributions,
φS(r − ra), from the nearest domains in physical space, and the
second sum constitutes long-range contributions, φL(r − ra). The
outer sum runs over all accepted nodes in the computational domain
Ma is the mass of a node, and ra is its centre of mass2. Indices i1,
i2, and i3 are integer numbers; ex, ey, and ez are unit vectors in the
corresponding directions; and k is a wavevector with components
k1 = 2πl1/Lx, k2 = 2πl2/bLx, and k3 = 2πl3/cLx, where l1, l2,
and l3 are integer numbers. By virtue of the Ewald method, both
inner sums converge very fast. We follow Hernquist, Bouchet &
Suto (1991) in setting

i2
1 + (bi2)2 + (ci3)2 ≤ 15 (12)

l2
1 + (l2/b)2 + (l3/c)2 ≤ 10 (13)

and α = 2/Lx.

2.2.4 Mixed boundary conditions

We generalize the Ewald method, which was developed for compu-
tational domains with periodic BCs in all spatial directions, to com-
putational domains with mixed BCs. In 3D space, mixed BCs can
be of two types: periodic BCs in two directions (without loss of gen-
erality we choose x- and y-directions), and isolated BCs in the third
(z-) direction; and periodic BCs in one direction (we choose x), and
isolated BCs in the other two directions. We abbreviate the former
case of mixed BCs as 2P1I, and the latter case as 1P2I. Configuration
2P1I has planar symmetry with axis ez, while configuration 1P2I
has an axial symmetry along axis ex. These configurations might be
convenient for studying systems with the symmetry (i.e. layers or
filaments). We note that directions that can be defined as periodic
are given by computational domain boundaries and thus they can
only be parallel with one or more of the Cartesian coordinate axes.

We find the expression for �(r) for mixed BCs of 2P1I type by
taking a limit of equation (11). Consider a computational domain
with side lengths Lx, Ly = bLx, Lz = cLx and with periodic BC in
all three directions, for which the gravitational potential is given by
equation (11). Next we shift periodic copies of this domain in the
z-direction so that the periodicity in the z-direction is n times larger,
i.e. Lz = nLz0, where n is an integer number and Lz0 is the extent
in the z-direction of the original computational domain (Fig. 3).
Since the copies are shifted and not stretched, the mass distribution
between z = 0 and Lz0 is unaltered, and the density is zero between
z = Lz0 and nLz0, leaving all mass concentrated in plane-parallel
layers of thickness z = Lz0 and with normals pointing in direction
ez. As n increases, the layers move away from one another, but

2 Note that the corresponding formula in Klessen (1997; their equation 6)
has an incorrect sign before the φL(r − ra) term.

Figure 3. An illustration of the limiting process which transforms a con-
figuration with periodic BCs to a configuration with mixed BCs. The com-
putational domain and its periodic copies are shown on slices of constant
y, the orientation of unit vectors ex and ez is indicated at the bottom left.
From left to right: (a) configuration with periodic BCs (i.e. n = 1); (b) the
material inside the periodic copies is displaced by distance Lz0 in direction
ez, and the density in the computational domain at Lz0 < z < 2Lz0 is set to
zero (i.e. n = 2); (c) the material in the periodic copies is displaced further
(n = 4). The box to the left of the computational domain shows the short-
est wavelength in the direction ez fulfilling condition (13). The number of
horizontal oscillations is proportional to the value of index l3 for given n.

equation (11) still holds. In the limit n → ∞, the periodic copies
of the computational domain are touching one another in x- and
y-directions, however, neighbouring layers in the z-direction are at
infinite distance and hence they do not contribute to the gravitational
field in the original computational domain.

As n increases, the short-range contributions are zero for all
i3 �= 0, because the argument of the complementary error function
in equation (11) tends to infinity. The long-range term φL(r − ra)
in the limit n → ∞ becomes

φL(r − ra)= 1

πLxb

∑
l1,l2

exp

[
− π2

α2L2
x

(
l2
1 + (l2/b)2

)]

× lim
n→∞

1

n

∑
l3

exp[−π2l2
3/(αcLxn)2]

c
[
l2
1 + (l2/b)2 + (l3/(c n))2

]
× cos

(
2πl1(x − xa)

Lx
+ 2πl2(y − ya)

bLx

+ 2πl3(z − za)

cLxn

)
. (14)

The condition (13), which is now l2
1 + (l2/b)2 + (l3/cn)2 ≤ 10

requires us to conserve resolution in the z-direction in Fourier
space, i.e. to increase the range of l3 with n linearly (see Fig. 3).
Note that 2π(z − za)/(cLx) is independent of n, because we re-
strict all mass in the computational domain to interval (0, Lz0),
(i.e. |z − za| ≤ cLx = Lz0 for any target point at r and node
at ra). Bearing this in mind, the term after the limit sign in
equation (14) corresponds to a Riemann sum over interval
(−√

10,
√

10) with equally spaced partitions of size 1/nc. Using
the identity cos (A + B) = cos (A)cos (B) − sin (A)sin (B) where
B = 2πl3(z − za)/(cLxn), the limit becomes

cos

(
2πl1(x − xa)

Lx
+ 2πl2(y − ya)

Lxb

)
I (l1, l2, z − za), (15)
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where

I (l1, l2, z − za) = 2
∫ ∞

0

exp(−ζu2) cos(γ u)

l2
1 + (l2/b)2 + u2

du. (16)

To keep the notation compact, we introduce γ = 2π(z − za)/Lx and
ζ = π2/(αLx)2. In order to evaluate the integral analytically, we
extend the interval of integration to infinity (this extension means
that we evaluate the sum even slightly more accurately than by
condition 13) If |l1| + |l2| �= 0, we have

I (l1, l2, z − za) = π exp[−γ 2/(4ζ )]

2
√

l2
1 + (l2/b)2

×
⎧⎨⎩erfcx

[
ζ
√

l2
1 + (l2/b)2 − γ /2√

ζ

]

+ erfcx

[
ζ
√

l2
1 + (l2/b)2 + γ /2√

ζ

]⎫⎬⎭, (17)

where erfcx(A) = exp (A2)erfc(A). When l1 = l2 = 0, integral (16)
is infinite, but this property can be circumvented. With the help of
cos (γ u) = 1 − 2sin 2(γ u/2), we get two integrals corresponding to
these two terms. The former one is infinite, but independent of the
spatial coordinates and we set it to zero. The latter one can easily
be integrated

I (0, 0, z − za) = −π

{
γ erf

(
γ

2
√

ζ

)
+ 2

√
ζ

π
exp(−γ 2/4ζ )

}
+ 2
√

πζ . (18)

Now we can write the potential as 3

�(r) = −G

N∑
a=1

ma{ ∑
i1,i2,i2

1 +(bi2)2≤10

erfc(α|r − ra − i1exLx − i2eybLx|)
|r − ra − i1exLx − i2eybLx|

+ 1

πLxb

∑
l1,l2,l21+(l2/b)2≤10

exp(−ζ (l2
1 + (l2/b)2))

× cos

(
2πl1(x − xa)

Lx
+ 2πl2(y − ya)

Lxb

)
I (l1, l2, z − za)

}
.

(20)

Note that the ratio c is not contained in �(r) as we may expect,
because it is of no physical significance when the BCs are isolated
in this direction.

The modification of the Ewald method for a computational do-
main with mixed BCs of type 1P2I can be derived in a similar way
to the previous case. However, the integration is more demanding
here, because the result of the limiting process is a double integral

3 In this section, we emphasize the way how the equations are derived. For
an implementation to a code, the form of equation (17) possesses problems
for numerical evaluation. We recommend to implement the potential in the
form of

φL(r − ra) = 1

πLxb

∑
l1,l2,l21+(l2/b)2≤10

cos

(
2πl1(x − xa)

Lx
+ 2πl2(y − ya)

Lxb

)

× Ĩ (l1, l2, z − za), (19)

where function Ĩ (l1, l2, z − za) is defined by equation (A12).

[we integrate equation (16) along l2/b instead of equations (17) and
(18)]. Applying a substitution which corresponds to a rotation, this
integral can be transformed into a 1D integral, but we have not been
able to express it in a closed form. In this case (1P2I), we arrive at

�(r) = −G

N∑
a=1

ma

{ ∑
i1,i2

1 ≤10

erfc(α|r − ra − i1exLx|)
|r − ra − i1exLx|

+ 2

Lx

∑
l1,l21≤10

exp(−ζ l2
1 ) cos

(
2πl1(x − xa)

Lx

)

× K(l1, y − ya, z − za)

}
, (21)

where function K(l1, y − ya, z − za) is given by

K(l1, y − ya, z − za) =
∫ ∞

0

J0(ηq) exp(−ζq2)

l2
1 + q2

q dq, (22)

and η = 2π
√

(y − ya)2 + (z − za)2/Lx. Function J0 is the Bessel
function of the first kind and zeroth order.

Formulae for accelerations corresponding to potentials equations
(11), (20) and (21) are listed in Appendix A.

2.2.5 Look-up table for the Ewald array

Since the explicit evaluation of φS(r − ra) and φL(r − ra) at each
time-step would be prohibitively time-consuming, these functions
are pre-calculated before the first hydrodynamical time-step, and
their values are stored in a look-up table. We experiment with two
approaches to approximate the above functions from the look-up
table at the time when the gravitational potential is evaluated.

In the first approach, the function φ(r − ra) = φS(r − ra) +
φL(r − ra) is pre-calculated on a set of nested grids, and partic-
ular values are then found by trilinear interpolation on these grids.
Coverage of the grids increases towards the singularity at the origin
(|r−ra| → 0). The gravitational potential at target point r is then
calculated as

�(r) = −
N∑

a=1

GMaφ(r − ra). (23)

In the second approach, we avoid the singularity of φ(r − ra)
by subtracting the term 1/|r−ra| from φ(r − ra). This enables
us to use only one interpolating grid with uniform coverage
for the whole computational domain. Moreover, for mixed BCs,
φ(r − ra) can be approximated at some parts of the computa-
tional domain by analytic functions. The function φ(r − ra) con-
verges to 2π|z − za|/(bL2

x) with increasing (z − za)/Lx for config-
uration 2P1I, and it converges to 2ln(

√
(y − ya)2 + (z − za)2)/Lx

with increasing
√

(y − ya)2 + (z − za)2/Lx for configuration 1P2I.
The convergence is exponential and the relative error in accel-
eration is always smaller than 10−4 if (z − za) > 2Lx and√

(y − ya)2 + (z − za)2 > 2Lx for configuration 2P1I and 1P2I, re-
spectively. Accordingly, we use the analytic expression in these
regions and pre-calculate φ(r − ra) only at the region where
(z − za) < 2Lx or

√
(y − ya)2 + (z − za)2 < 2Lx, so the grid covers

only a fraction of the computational domain if the computational
domain is elongated. In combination with using only one interpolat-
ing grid, this results in smaller demands on memory while it retains
the same accuracy as in the first approach.

In the second approach, we pre-calculate not only φ(r − ra) but
also its gradient. The actual value of φ(r − ra) at a given location is
then estimated by a Taylor expansion to the first order. This is faster
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than the trilinear interpolation used in the first approach, and leads
to a speed up in the GRAVITY module by a factor of � 1.4 to � 1.9
depending on the shape of the computational domain, the adopted
BCs, and whether the potential or acceleration is used. Thus, the
second approach appears to be superior to the first one. In each
approach, if gravitational accelerations rather than the potential are
required, we adopt an analogous procedure for each of its Cartesian
components.

Note that in a very elongated computational domain, the eval-
uation of φ(r − ra) can be accelerated by adjusting the parameter
α = 2/Lx. Since φ(r − ra) is pre-calculated, the choice of α is of
little importance in our implementation and we do not discuss it
further in this paper.

2.2.6 Adaptive block update

Often, it is not necessary to calculate the gravitational poten-
tial/acceleration at each grid cell in each time-step. Since the FLASH

code uses a global time-step controlled by the Courant–Friedrichs–
Lewy (CFL) condition, there may be large regions of the com-
putational domain where the mass distribution almost does not
change during one time-step. In such regions, the gravitational po-
tential/acceleration from the previous time-step may be accurate
enough to be used also in the current time-step. Therefore, to save
the computational time, we implement a technique called the ABU.
If activated, the tree-walk is modified as follows. For each block,
the tree-walk is at first executed only for the eight corner grid cells
of the current block. Then, the gravitational potential or acceler-
ation (or any other quantity calculated by the tree-solver, e.g. the
optical depth) in those eight grid cells is compared to the values
from the previous time-step. If all the differences are smaller than
the required accuracy (given e.g. by equation 4 or 5), the previous
time-step values are adopted for all grid cells of the block.

For some applications, the eight test cells in the block corners may
not be sufficient. For instance, if the gas changes its configuration
in a spherically symmetric way within a block, the gravitational
acceleration at the block corners does not change, even though the
acceleration may change substantially in the block interior. Such
situation is more probable if larger blocks than default 83 cells
are used. Therefore, it is easily possible to add more test cells
by editing array gr_bhTestCells in file gr_bhData.F90,
where test cells are listed using cell indices within a block, i.e. in a
form (1,1,1), (1,1,8)... (8,8,8).

ABU can save a substantial amount of the computational time,
however, on large numbers of processors it works well only if a
proper load balancing among processors is ensured, i.e. each pro-
cessor should be assigned with a task of approximately the same
computational cost. FLASH is parallelized using a domain decomposi-
tion scheme and individual blocks are distributed among processors
using the space filling Morton curve (see Fryxell et al. 2000, for de-
tails). Each processor receives a number of blocks estimated so that
their total expected computational time measured by a workload
weight is approximately the same as the one for the other pro-
cessors. By default, FLASH assumes that processing each leaf-block
takes approximately the same amount of time to compute, and it
assigns workload weight 2 to each leaf-block (because it includes
active grid cells) and workload weights 1 to all other blocks (they
are used only for interpolations between different AMR levels).

The assumption of the same workload per leaf-block cannot be
used with ABU, because if the full tree-walk is executed for a
given block less often, the average computational time spent on it

is substantially lower in comparison with more frequently updated
blocks. It is generally hard to predict whether a given block will
be fully updated in the next time-step or not without additional
information about the calculated problem. Therefore, we implement
a simple block workload estimate that leads in most cases to better
performance than using the uniform workload, even though it may
not be optimal. It is based on the assumption that the probability that
the block will be updated is proportional to the amount of work done
on the block during several previous time-steps. This assumption
is motivated by considering that a typical simulation includes on
one hand regions where the density and the acceleration change
rapidly (e.g. close to fast moving dense massive objects), and on
the other hand, regions where the acceleration changes slowly (e.g.
large volumes filled with hot rarefied gas). Consequently, the past
workload of a given block provides an approximate estimate its
current workload. However, this information is valid only until
the density field evolves enough to change the above property of
the region. The time at which this happens can be approximately
estimated as the gas crossing time of a single block. Due to the CFL
condition, the corresponding number of time-steps is approximately
a number of grid cells in a block along one direction. Specifically,
the block workload estimate works as follows. For each leaf-block,
a total number of node contributions during the tree-walk to all its
grid cells, Nint, is determined. Then, the workload weight, W

(n)
b , of

that block is calculated as

W
(n)
b = W

(n−1)
b exp

(
− 1

τwl

)
+
[

1 − exp

(
− 1

τwl

)](
2 + ωwl

Nint

Nmax

)
(24)

where W
(n−1)
b is the workload weight from the previous time-step,

τwl is a characteristic number of time-steps on which the workload
changes, ωwl is a dimensionless number limiting the maximum
workload weight, and Nmax is the maximum Nint taken over all leaf-
blocks in the simulation. In this way, the block workload weight
depends on its tree-solver computational cost during the last several
(∼τwl) time-steps and is between 2 (zero cost) and 2 + ωwl (maxi-
mum cost). By default, we set two global parameters τwl = 10 and
ωwl = 8. The workload weight of non-leaf-blocks remains equal
to 1.

2.3 Optical depth module

The OPTICALDEPTH module is used to evaluate the simplified solution
to the radiative transfer equation

Iν = Iν,0 e−τν , (25)

where Iν is the specific intensity at frequency ν, Iν, 0 is the specific
intensity at the source location, and τ ν is the optical depth along a
given path through the computational domain at frequency ν. In this
form, the problem of evaluating what radiation intensity reaches a
given point in the computational domain, i.e. a given target point,
is reduced to computing the optical depth in between a radiation
source and the target point. The optical depth is proportional to the
absorption cross-section and the column density along the path.

Hence, the OPTICALDEPTH module calculates the total and/or spe-
cific column densities (e.g. of molecular hydrogen) for each cell in
the computational domain, and can therefore be used to compute
the local attenuation of an arbitrary external radiation field. The im-
plementation presented here follows the idea of the TREECOL method
(Clark et al. 2012), which has been implemented in the GADGET
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code (Springel et al. 2001). It has been established as a fast but
accurate enough approximative radiative transfer scheme to treat
the (self-)shielding of molecules – on-the-fly – in simulations of
molecular cloud formation (e.g. Clark & Glover 2014). Recently,
the method has also been applied in larger scale simulations of
Milky Way-like galaxies (Smith, Glover & Klessen 2014) with the
AREPO code (Springel 2010). The implementation presented here has
been successfully used in several recent works on the evolution of
the multiphase ISM in galactic discs (Walch et al. 2015; Girichidis
et al. 2016; Gatto et al. 2017; Peters et al. 2017).

In principle, the OPTICALDEPTH module adds another dimension
to the accumulation of the node masses during the tree-walk. For
each grid cell, the module constructs a HEALPIX sphere (Górski et al.
2005) with a given number of pixels, NPIX , each representing a
sphere surface element with index iPIX corresponding to polar and
azimuth angles θ and φ, respectively. This temporary map is filled
while walking the tree, as only the tree-nodes in the line of sight of
a given pixel contribute to it, and are added accordingly. At the end
of the tree-walk, one has acquired a column density map of a given
quantity, e.g. total mass.

Since the tree-walk in FLASH is executed on a block-by-block
basis, the additional memory requirement for the local pixel maps
is 2lbt × NPIX × lq, where lq is the number of quantities that are
mapped and stored. For this paper, we map lq = 3 variables: (1)
the total mass giving the total hydrogen column density, NH,iPIX ; (2)
the H2 column of molecular hydrogen, which is used to compute its
self-shielding and which contributes to the shielding of CO; and (3)
the CO column of carbon monoxide, which is necessary to compute
the self-shielding of CO. We store three separate maps because
we actually follow the relative mass fractions of multiple species
in the simulation using the FLASH MULTISPECIES module. After the
tree-walk for a given block has finished, the local maps are erased
and the arrays can be re-used for the next block. This approach is
only possible because the tree-walk is computed locally on each
processor (see Section 2.1).

When using the OPTICALDEPTH module, there are two major mod-
ifications with respect to the usual tree-walk (as described above).
First, the intersection of a given tree-node with the line of sight of
each pixel has to be evaluated during the tree-walk. Second, at the
end of the tree-walk for a given block, the acquired column density
maps have to be evaluated for each cell.

Node-ray intersection: the mapping of tree-nodes on to the in-
dividual pixels represents the core of all additional numerical op-
erations that have to be carried out when running OPTICALDEPTH

in addition to the gravity calculation. It has to be computation-
ally efficient in order to minimize additional costs. At this point,
we do not follow the implementation of Clark et al. (2012), who
make a number of assumptions about the shape of the nodes and
their projection on to the pixels, which are necessary to reduce
the computational cost. Instead, we pre-compute the number of in-
tersecting HEALPIX rays and their respective, relative weight for a
large set of nodes at different angular positions (θ , φ) and differ-
ent angular sizes ψ . These values are stored in a look-up table,
which is accessed during the tree-walk. In this way, the mapping
of the nodes is highly efficient. Since θ , φ, and ψ are known,
we can easily compute the contribution of a node to all intersect-
ing pixels by simply multiplying the mass (or any other quantity
that should be mapped) of the node with the corresponding weight
for each pixel and adding this contribution to the pixel map. For
better accuracy, we oversample the HEALPIX tessellation and con-
struct the table for four times more rays than actually used in the
simulation.

Radiative heating and molecule formation: the information that
is obtained by the OPTICALDEPTH module is necessary to compute the
local heating rates and the formation and dissociation rates of H2

and CO. At the end of the tree-walk for a given block, the mean
physical quantities needed by the CHEMISTRY module calculating the
interaction of the radiation with the gas are determined. For instance,
the mean visual extinction in a given grid cell is

AV = − 1

2.5
ln

⎡⎣ 1

NPIX

NPIX∑
iPIX=1

exp

(
−2.5

NH,iPIX

1.87 × 1021 cm−2

)⎤⎦ (26)

where the constant 1.87 × 1021 cm−2 comes from the standard
relation between the hydrogen column density, NH,iPIX , and the
visual extinction in a given direction (Draine & Bertoldi 1996).
The weighted mean is calculated in this fashion, because the pho-
todissociation rates of molecules such as CO and the photoelectric
heating rate of the gas all depend on exponential functions of the
visual extinction (see Clark et al. 2012, for details). Additionally,
the shielding coefficients, fshield,H2 and fshield, CO (Glover & Mac
Low 2007; Glover et al. 2010), as well as the dust attenuation, χdust

(Glover & Clark 2012; Clark et al. 2012), are computed by aver-
aging over the HEALPIX maps in a similar way. These quantities are
stored as globally accessible variables and can be used by other
modules. In particular, we access them in the CHEMISTRY module,
which locally (in every cell) evaluates a small chemical network
(Glover et al. 2010) on the basis of its current density and internal
energy and recomputes the relative mass fractions of the different
chemical species. The evaluation of the chemical network is opera-
tor split and employs the DVODE solver (Brown, Byrne & Hindmarsh
1989) to solve a system of coupled ordinary differential equations
(ODEs) that describes the chemically reactive flow for the given
species, i.e. their creation and destruction within a given time-step.
Here, we explicitly follow the evolution of five species, i.e. the dif-
ferent forms of hydrogen (ionized, H+, atomic, H, and molecular,
H2) as well as ionized carbon (C+) and carbon monoxide (CO).
Details about the chemical network, e.g. the considered reactions
and the employed rate coefficients in the current implementation
can be found in Glover et al. (2010) and Walch et al. (2015).

Parameters: the main parameters controlling both the accuracy
and the speed of the calculation are the number of pixels per map
NPIX , and the opening angle, θ lim, with which the tree is walked
[see equation (1)]. Both should be varied at the same time. A high
number of NPIX used with a relatively large opening angle will
not improve the directional information since the nodes that are
mapped into each solid angle will not be opened and thus, a spatial
resolution that is sufficient for a fine-grained map cannot not be
achieved. Therefore we vary both NPIX and θ lim at the same time.

The number of HEALPIX pixels is directly related to the solid angle
of each element on the unit sphere

�PIX = 4π

NPIX

[sr]. (27)

Tests in Section 3.3.1 show, in agreement with Clark et al. (2012),
that the code efficiency is optimal if θ lim is approximately the same
as the angular size HEALPIX elements, i.e.

θlim =√�PIX . (28)

Therefore, for NPIX = 12, 48, and 192 pixels we recommend to use
θ lim ≈ 1.0, 0.5, 0.25.
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Figure 4. Error in the gravitational acceleration for the Bonnor–Ebert sphere as a function of radius. At a given radius, r, the error ea, r is calculated as
a maximum over all angular directions φ and θ . The vertical black line shows the BE sphere edge. The solid black line shows the difference between the
acceleration obtained analytically and the reference solution calculated using the N2 summation. Left-hand panel shows tests where the acceleration was
calculated directly using equation (8), the green, blue, and red lines show errors of runs (a), (b), and (c), respectively, with parameters given in Table 1.
Right-hand panel displays tests where the tree-solver calculates the gravitational potential using equation (7) and the acceleration is obtained by numerical
differentiation. The green, blue, and red lines denote models (d), (e), and (f). The magenta lines show tests calculated with the multigrid solver using mmp = 0
(dashed) and mmp = 15 (dotted), respectively.

3 AC C U R AC Y A N D P E R F O R M A N C E

Since more computational time is needed to reach higher accuracy
when solving numerical problems, accuracy and performance are
connected and therefore, these two properties should always be eval-
uated at the same time. However, they are often highly dependent
on the specific type of the problem and finding a test that allows
one to objectively measure both accuracy and performance is hard.
Another complication is that the tree-solver saves time by using the
information from the previous time-step (if ABU is switched on),
and thus any realistic estimate of the performance must be measured
by running a simulation in which the mass moves in a similar way
as in real applications and by integrating the computational time
over a number of time-steps. Unfortunately, such simulations are
unavoidably too complex to have an analytic solution against which
the accuracy could be easily evaluated.

Therefore, we perform two types of tests: static tests that measure
accuracy using simple problems and dynamic tests that evaluate ac-
curacy and performance together. The static tests need substantially
less CPU time and thus allow for a higher number of parameter sets
to be tested. Furthermore, analytic or semi-analytic solutions are
known and the results can be compared to them. On the other hand,
the dynamic tests represent more complex simulations which are
more similar to problems that one would actually want to solve with
the presented code. They also show how well the tree-solver is cou-
pled with the hydrodynamic evolution (where we use the standard
piecewise parabolic method (PPM) Riemann solver of the FLASH

code) and how the error accumulates during the evolution. In this
section, we describe four static and two dynamic tests of the GRAVITY

module and one test of the OPTICALDEPTH module.
When possible, i.e. for fully periodic of fully isolated BCs, we

compare the results obtained with the new tree-solver to the results
obtained with the default multigrid Poisson solver of FLASH (Ricker
2008). The multigrid solver is an iterative solver and the accuracy
is controlled by checking the convergence of the L2 norm of the
Poisson equation residual R(r) ≡ 4πGρ(r) − ∇�(r). The iteration
process is stopped when ||Rn||/||Rn − 1|| < εmg, lim, where ||Rn|| is
the residual norm in the nth iteration and εmg, lim is the limit set

Figure 5. Error in the gravitational acceleration, ea, displayed in the z = 0
plane for the Bonnor–Ebert sphere test. The four panels show four selected
runs with parameters given in Table 1: top left corresponds to model (b)
using the tree-solver calculating the grav. acceleration directly; top right
shows model (e) where the tree-solver calculated the potential; bottom left
is model (g) calculated using the multigrid solver with mmp = 0; and bottom
right is model (h) calculated using the multigrid solver with mmp = 15. The
grid geometry (borders of 83 blocks) is shown in the top right panel.

by user. If isolated BCs are used, the gravitational potential at the
boundary is calculated by a multipole Poisson solver expanding the
density and potential field into a series up to a multipole of order
mmp. By default mmp = 0 in FLASH version 4.4. However, using
this value we found unexpectedly high errors close the boundaries
(see test Section 3.1.1 and Figs 4 and 5), and therefore we use
mmp = 15 (the highest value allowed for technical reasons) in most
tests because it yields the smallest error.
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In general, the calculated gravitational acceleration deviates from
the exact analytical solution due to two effects. The first one is the
inherent inaccuracy of the gravity solver (either the tree gravity
solver or the multigrid solver), and the second one is caused by
an imperfect discretization of the density field on the grid. Since
we are mainly interested in evaluating the first effect, we measure
the error by comparing the calculated accelerations to the reference
solution obtained by direct ‘N2’ summation of all interactions of
each grid cell with all the other grid cells in the computational
domain. We additionally give the difference between the analytical
and the ‘N2-integrated’ acceleration when possible.

We define the relative error ea of the gravitational acceleration a
at the point r as

ea(r) ≡ |a(r) − aref (r)|
aref,max

, (29)

where aref is the acceleration of the reference solution and aref, max

is its maximum taken over the whole computational domain.
In most of the gravity module tests, we control the error by setting

the absolute limit alim on the acceleration, which is calculated from
the initial maximum acceleration in the computational domain, amax,
as alim = εlim × amax; typically, εlim = 10−2 or 10−3. The difference4

between using the absolute or the relative error control is discussed
in Section 3.4.

Most of the tests were carried out on cluster Salomon of the
Czech National Supercomputing Centre IT4I 5. A few static tests
that do not need larger computational power have been run on a
workstation equipped with a 4-core Intel Core i7-2600 processor.

3.1 Static tests of gravity module

In order to test all combinations of the BCs implemented in the
GRAVITY module, we present four static tests. A marginally stable
Bonnor–Ebert sphere is used to test the code with isolated BCs
(see Section 3.1.1) and a density field perturbed by a sine wave
not aligned with any coordinate axis is used to test setups with
fully periodic BCs (Section 3.1.2). For mixed BCs, periodic in
two directions and isolated in a third one, or periodic in a single
direction and isolated in the remaining two, we use an isothermal
layer in hydrostatic equilibrium (Section 3.1.3) and an isothermal
cylinder in hydrostatic equilibrium, respectively (Section 3.1.4).
Finally, in Section 3.1.5, we test how the code accuracy depends on
the alignment or non-alignment of the gas structures with the grid
axes using a set of parallel cylinders lying in the xy-plane inclined
at various angles with respect to the x-axis.

3.1.1 Bonnor–Ebert sphere

We calculate the radial gravitational acceleration of a marginally
stable Bonnor–Ebert sphere (Ebert 1955; Bonnor 1956, BES) with
mass MBE = 1 M�, temperature TBE = 10 K and dimensionless
radius ξ = 6. The resulting BES radius is RBE = 0.043 pc and the
central density is ρ0 = 1.0 × 10−18 g cm−3. The sphere is embedded
in a warm rarefied medium with temperature Tamb = 104 K and
density ρamb = 8.5 × 10−23 g cm−3, which ensures that the gas
pressure across the BES edge is continuous. We use an AMR grid

4 Note that εlim is only a device to set alim and it differs from the code
parameter εlim, which sets the limit on the acceleration error ‘on-the-fly’
with respect to the previous time-step acceleration.
5 http://www.it4i.cz/?lang=en

Table 1. Results of the marginally stable Bonnor–Ebert sphere test.

Model solver quan. MAC εlim θ lim mmp ea, max tgrv

(a) tree accel. APE 10−3 – – 0.0009 83
(b) tree accel. APE 10−2 – – 0.0057 35
(c) tree accel. BH – 0.5 – 0.0008 110
(d) tree pot. APE 10−3 – – 0.0085 80
(e) tree pot. APE 10−2 – – 0.031 38
(f) tree pot. BH – 0.5 – 0.0095 106
(g) mg pot. – – – 0 0.058 21
(h) mg pot. – – – 15 0.077 20

Notes. We give the model name in column 1. The following columns are:

(i) solver: indicates whether the tree-solver or the multigrid solver (mg)
is used

(ii) quan.: quantity calculated by the gravity solver (acceleration or po-
tential which is then differentiated)

(iii) MAC: Multipole Acceptance Criterion (Barnes–Hut or APE)
(iv) εlim: requested accuracy of the solver as given by equation (4)

(alim = εlim × amax where amax is the maximum gravitational accelera-
tion in the computational domain)

(v) θ lim: maximum opening angle when the Barnes–Hut MAC is used
(vi) ea, max: maximum relative error in the computational domain given

by equation (29)
(vii) tgrv: time (in seconds) to calculate a single time-step on eight cores.

controlled by the Jeans criterion – the Jeans length has to be resolved
by at least by 64 cells and at most by 128 cells. It results in an
effective resolution of 5123 in the centre of the BES.

Fig. 4 shows the relative error in the gravitational accelera-
tion, ea, r, as a function of radial coordinate, r, and Table 1 lists
all models, their maximum relative error, ea, max, and the time to
calculate one time-step, tgrv. We compare the solutions calculated
with the tree gravity solver using the geometric (BH) MAC with
θ lim = 0.5 (red curves) to the ones calculated using the APE MAC
with εlim = 10−2 (green lines) and εlim = 10−3 (blue lines), re-
spectively. The APE MAC and εlim = 10−3 as well as the geometric
MAC with θ lim = 0.5 always give a maximum relative error which is
smaller than 0.1 per cent. In case of the APE MAC and εlim = 10−2,
the maximum relative error reaches ∼1 per cent. Note that the error
due to the discretization of the density field is also of the order of
1 per cent (black line; the jumps are due to changes in the refinement
level in the AMR grid).

With the tree gravity solver, the user may choose to directly com-
pute the gravitational accelerations (left-hand panel of Fig. 4) or
to calculate them by numerical differentiation of the gravitational
potential (right-hand panel of Fig. 4). Usually, the latter is the stan-
dard practice in grid-based 3D simulations, also because only one
field variable, the potential, has to be stored instead of three, the ac-
celerations in three spatial directions. However, for the tree-solver
we generally find that the error in the gravitational accelerations is
significantly smaller (about a factor of 10 in the test presented here)
if they are computed directly. This is independent of the used MAC.

For comparison, we also show the results obtained with the multi-
grid solver (magenta lines) using εmg, lim = 10−6 and mmp = 0 (solid
lines) or mmp = 15 (dotted lines), respectively. Although the mass
distribution is spherically symmetric, the order of the multipole
expansion of the BC affects the accuracy of the multigrid solver
relatively far away from boundaries, even inside the BES. The error
of the multigrid solver is very low in the central region, it reaches
∼1 per cent in regions where the refinement level changes (due to
numerical differentiation of the potential), and increases to relatively
high values at the border of the computational domain (∼1 per cent
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Figure 6. Maximum relative error of the gravitational acceleration for the
Jeans test. Solid lines show acceleration calculated directly, while dashed
lines show acceleration calculated by numerically differentiating the poten-
tial. The acceptance criteria are the same as in Fig. 4.

for mmp = 15 and ∼5 per cent for mmp = 0), due to inaccuracy of
the BCs calculated by the multipole solver. We note that a direct
calculation of the gravitational acceleration is not possible with the
multigrid solver.

The distribution of the relative error ea in the z = 0 plane through
the centre of the BES is depicted in Fig. 5. The results show that
the acceleration obtained with the tree gravity solver using the APE
MAC with εlim = 10−2 has a substantially smaller error if it is
calculated directly [top left panel; see Table 1, model (b)] instead of
by numerical differentiation of the potential [top right panel; model
(e)]. The bottom panels show the results for the multigrid solver
with mmp = 0 [model (g)] and mmp = 15 [model (h)], respectively.
The default setting of mmp = 0 gives errors of ∼5 per cent near the
domain boundaries due to the low accuracy of the multipole solver.
This error propagates into a large fraction of the computational
domain.

3.1.2 Sine-wave perturbation (Jeans test)

In a computational domain with fully periodic BCs, we calculate the
gravitational acceleration of a smooth density field with a harmonic
perturbation,

ρ(r) = ρ0 + ρ1 cos(k · r), (30)

where ρ0 = 1.66 × 10−24 is the mean density and ρ1 = 0.99ρ0 is
the amplitude of the perturbation. The computational domain is a
cube of size 500 pc with 128 grid cells in each direction. The wave
vector k = 6π(3, 2, 1)/L was chosen such that it is not aligned
with any of the coordinate axes. The gravitational acceleration can
be obtained analytically with the help of the Jeans swindle (Jeans
1902; Kiessling 1999)

g(r) = −4πGρ1
k
k2

sin(k · r). (31)

Fig. 6 shows the maximum relative error ea, k as a function of
the position xk on a line parallel to the perturbation wave vector
k. The maximum error is computed from all points projected to a
given position on the line. It can be seen that the error of the multi-
grid solver (magenta curve) is very small, almost the same as the
difference between the analytical solution and the reference solu-
tion (black line). This is because without the need to calculate the

Table 2. Results of the second static test: sine-wave perturbation. The
meaning of the columns is the same as in Table 1.

Model solver quan. MAC εlim θ lim ea, max tgrv

(a) tree accel. APE 10−3 – 0.0009 480
(b) tree accel. APE 10−2 – 0.0062 210
(c) tree accel. BH – 0.5 0.0029 250
(d) tree pot. APE 10−3 – 0.0180 330
(e) tree pot. APE 10−2 – 0.0270 130
(f) tree pot. BH – 0.5 0.15 150
(g) mg pot. – – – 0.0016 9

BCs separately, and on a uniform grid, the fast Fourier transform
(FFT) accelerated multigrid method is extremely efficient. Again,
the results for the tree-solver simulations show that direct calcula-
tion of the acceleration (solid curves) leads to a much lower error
than the calculation of the potential and subsequent differentiation
(dashed lines). In particular, the calculation of the potential with
the geometric MAC that does not take into account the different
mass density in the tree-nodes leads to a relative error greater than
10 per cent. However, a direct calculation of the acceleration gives
very accurate results for both, the geometric MAC and the APE
MAC with εlim = 10−3. In Table 2, we list all models with their
respective ea, max and tgrv.

3.1.3 Isothermal layer in hydrostatic equilibrium

In order to test the accuracy of the tree gravity module with mixed
BCs (periodic in two directions and isolated in the third one), we
calculate the gravitational acceleration of an isothermal layer in
hydrostatic equilibrium. The vertical density distribution of the layer
is (Spitzer 1942)

ρ(z) = ρ0sech2

(√
2πGρ0

c2
s

z

)
(32)

where ρ0 = 1.6 × 10−24 g cm−3 is the mid-plane density and
cs = 11.7 km s−1 is the isothermal sound speed. The corresponding
vertical component of the gravitational acceleration is

gz(z) = 2
√

2πGρ0c2
s tanh

(√
2πGρ0

c2
s

z

)
. (33)

The computational domain is a cube of side length L = 1000 pc and
a uniform resolution of 128 grid cells in each direction.

Fig. 7 shows the maximum relative error ea, z in the acceleration
as a function of the z-coordinate, where the maximum is taken over
all cells with the same z-coordinate. It can be seen that the error
is almost independent of z and there is only a small difference
between the cases where the gravitational acceleration is calculated
directly (solid lines) or where it is obtained by differentiation of
the potential (dashed lines). The reason is that the density field in
this test has relatively shallow gradients (e.g. compared to the Jeans
test discussed in the previous section) and numerical differentiation
leads to particularly severe errors for steep gradients. We find the
largest error for runs with APE MAC and εlim = 10−2. All other
runs have small errors, which are comparable to the difference
between the analytical and the reference solution, resulting from
the discretization of the density field. The results are summarized
in Table 3.
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Figure 7. Maximum relative error of the gravitational acceleration for the
isothermal layer. Meaning of line types is the same as in Fig. 4.

Table 3. Results of the second static test: isothermal layer in hydrostatic
equilibrium. The meaning of columns is the same as in Table 1.

Model solver quan. MAC εlim θ lim ea, max tgrv

(a) tree accel. APE 10−3 – 0.00017 170
(b) tree accel. APE 10−2 – 0.0035 106
(c) tree accel. BH – 0.5 9.0 × 10−5 180
(d) tree pot. APE 10−3 – 0.00029 99
(e) tree pot. APE 10−2 – 0.0028 45
(f) tree pot. BH – 0.5 0.00043 107

3.1.4 Isothermal cylinder in hydrostatic equilibrium

In the next static test, we evaluate the accuracy of the tree grav-
ity module for mixed BCs, which are isolated in two directions
and periodic in the third one. We calculate the gravitational ac-
celeration of an isothermal cylinder in hydrostatic equilibrium.
The long axis of the cylinder is parallel to x-coordinate and
the radius is given as R =

√
y2 + z2. The density distribution is

(Ostriker 1964)

ρ(R) = ρ0

(
1 + πGρ0R

2

2c2
s

)−2

(34)

where ρ0 = 3.69 × 10−23 g cm−3 is the central density and
cs = 0.2 km s−1 is the isothermal sound speed. The density dis-
tribution is cut-off at radius Rcyl = 1.62 pc and embedded in an
ambient gas with cs, amb = 10 km s−1 and the same pressure as the
pressure at the cylinder boundary. The corresponding gravitational
acceleration is

g(R) = 2πGρ0R

(
1 + πGρ0R

2

2c2
s

)−1

. (35)

The computational domain has dimensions 3.6pc × 1.8pc × 1.8pc
and contains 256 × 128 × 128 grid cells.

Fig. 8 shows the maximum relative error ea, R of the gravitational
acceleration in radial direction, where the maximum error is calcu-
lated for all grid cells at the same distance R to the cylinder axis.
In all runs, the error is a very weak function of R. If numerical
differentiation of the potential is used, it is the dominant source of
the error, which is as large as 1 per cent in these cases (see dashed
lines). The results are summarized in Table 4.
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Figure 8. Maximum relative error of the gravitational acceleration for the
isothermal cylinder. Meaning of line types is the same as in Fig. 4. The black
vertical line denotes the edge of the cylinder.

Table 4. Results of the fourth static test: isothermal cylinder in hydrostatic
equilibrium. The meaning of columns is the same as in Table 1.

Model solver quan. MAC εlim θ lim ea, max tgrv

(a) tree accel. APE 10−3 – 0.00082 270
(b) tree accel. APE 10−2 – 0.0053 110
(c) tree accel. BH – 0.5 0.0011 280
(d) tree pot. APE 10−3 – 0.0095 180
(e) tree pot. APE 10−2 – 0.015 73
(f) tree pot. BH – 0.5 0.010 175

3.1.5 Inclined cylinders

In order to test whether the alignment of gas structures with the
coordinate axes has an impact on the code accuracy, i.e. whether the
algorithm is sensitive to any grid effects, we calculate gravitational
field of the set of parallel cylinders in the 2P1I geometry. The
axes of all cylinders lie in the xy-plane and they are inclined at
angle β incl with respect to the x-axis. The computational domain
has an extent 48 pc in the isolated z-direction and approximately
16 pc in the periodic x- and y-directions. The exact extents in the
latter two directions are chosen so that the computational domain
composes a periodic cell of the infinite plane of cylinders, i.e. the
cylinders connect contiguously to each other at the x and y periodic
boundaries. Each cylinder has the same radius and density profile
as the cylinder described in Section 3.1.4, the distance between the
cylinder axes is 4 pc. We have calculated seven models with β incl

increasing from 0 ◦ to 90 ◦ with a step 15 ◦. For all models, the
gravity tree-solver was running with the BH MAC and maximum
opening angle θ lim = 0.5.

Fig. 9 shows the relative error of the gravitational accelera-
tion, ea, xy, calculated in the xy-plane using equation (29). The
reference acceleration, aref , is either obtained numerically by the
N2-integration (four panels on the left for β incl = 0◦–45◦), or ana-
lytically by summing up potential of 1000 parallel cylinders (four
panels on the right). The error with respect to the N2-integration is
always smaller than 1 per cent. The error with respect to the analyt-
ical acceleration is of order 1 per cent and is always slightly higher
than the former error, as it includes contribution from the imper-
fect discretization of the density field reaching the highest values
along the cylinder edges where the density field has a discontinuity.
The bottom panel show the maximum ea, xy as a function of β incl
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Figure 9. Relative error of the gravitational acceleration in the xy-plane,
ea, xy, for the set of inclined cylinders. Left-hand panels show the logarithm of
the error measured with respect to the direct N2 integration, and right-hand
panels show the error with respect to analytically obtained accelerations.
Each of the top four rows show the calculation with different inclination
angle of the cylinders: 0◦, 15◦, 30◦, and 45◦ from top to bottom. The
panel at the very bottom shows the logarithm of the maximum error in the
acceleration ea, xy as a function of the cylinder inclination angle, β incl.

demonstrating that the code accuracy is almost independent of the
inclination of the gaseous structures with respect to coordinate axes.

3.2 Dynamic tests of gravity module

We run two dynamic tests of the gravity module. The first one (de-
scribed in Section 3.2.1) is a collapse of a cold adiabatic sphere
suggested by Evrard (1988) and it tests how well the energy is con-
served during the gravitational collapse. The second one, describes
the evolution of a turbulent sphere (Section 3.2.2). Both test the ac-
curacy of the gravity module and its coupling to the hydrodynamic
solver.

3.2.1 Evrard test

The Evrard test (Evrard 1988) describes the gravitational collapse
and a subsequent re-bounce of an adiabatic, initially cold sphere.
It is often used to verify energy conservation in smoothed particle
hydrodynamics (SPH) codes (e.g. Springel et al. 2001; Wetzstein
et al. 2009), its application on grid-based codes is unfortunately less
common. The initial conditions consist of a gaseous sphere of mass
M, radius R, and density profile

ρ(r) = M

2πR2r
. (36)

The initial, spatially constant temperature is set so that the internal
energy per unit mass is

u = 0.05
GM

R
, (37)

where G is the gravitational constant. The standard values of the
above parameters, used also in this work, are M = R = G = 1.

In Fig. 10, we show the time evolution of the total mass as well
as the gravitational, kinetic, internal, and total energy. On the top
panel, we compare the results obtained with the tree gravity solver
and the multigrid solver, both computed on a uniform grid of size
1283 corresponding to a constant refinement level equal to 5. The
tree-solver run uses the Barnes–Hut MAC with θ lim = 0.5, the multi-
grid run was calculated with the default accuracy εmg, lim = 10−6 and
mmp = 0. The two runs are practically indistinguishable, however,
the total energy (that should stay constant) rises by approximately
0.1 during the period of maximum compression. Since the distribu-
tion of the error in the gravitational acceleration calculated by the
two solvers is very different, the same results indicate that the error
in the energy conservation is not caused by the calculation of the
gravitational acceleration and that the acceleration errors are below
the sensitivity of this test.

The bottom panel of Fig. 10 compares runs calculated with the
tree-solver at different resolutions. It includes three runs with uni-
form grids of sizes 643, 1283, and 2563 (corresponding to constant
refinement levels of 4, 5, and 6) and three runs calculated on adap-
tive grids, which are refined such that the Jeans length is resolved
by at least 2, 4, and 8 grid cells, respectively.

We find that low resolution leads to a higher numerical dissipa-
tion and artificial heating of the gas. Furthermore, lower resolution
does not allow high compression of the sphere centre leading to
less pronounced peaks of the internal and gravitational energies.
Consequently, the results of this test show that high resolution is
needed only in the centre of the sphere where the highest density is
reached.
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Figure 10. Time evolution of the total mass and thermal, kinetic, gravita-
tional, and total energy for the Evrard test. Top panel compares calculation
with the tree gravity solver (green lines) and the multigrid solver (magenta
lines) at the same grid with uniform resolution 1283. The two runs are almost
indistinguishable. Bottom panel compares calculations with the tree-solver
at different resolution. The red, green, and blue lines show calculations done
on a uniform grid with constant refinement levels 4, 5, and 6, correspond-
ing to grid sizes 643, 1283, and 2563, respectively. The magenta, cyan, and
black lines show runs with the AMR grid where the resolution was set so
that the Jeans length is always resolved at least by 2, 4, and 8 grid cells,
respectively. It resulted in the maximum refinement levels reached 6, 7, and
9, respectively.

3.2.2 Turbulent sphere

The turbulent sphere represents a prototypical star formation test.
We set up a turbulent, isothermal sphere with a total mass of
103 M�, radius 3 pc, and temperature 10 K. The initial density pro-
file is Gaussian with a central density of ρ0 = 1.1 × 10−21 g cm−3

and the density at the edge is ρ0/3. It is embedded in a cubic box with
side length L = 10 pc, which is filled with a rarefied ambient medium
of density ρamb = 10−23 g cm−3 and temperature 100 K. We add an
initial turbulent velocity field to the sphere with a Kolmogorov spec-
trum on all modes with wave numbers between kmin = 2 × (2π/L)
and kmax = 32 × (2π/L). The magnitude of velocity perturbations
is scaled so that the total kinetic energy is 0.7 times the absolute
value of the total potential energy.

The sphere is evolved under the influence of self-gravity and
hydrodynamics, and since it is gravitationally bound it collapses
towards the centre and forms stars. We use isolated gravity BCs,
while the hydrodynamic BCs are set to ‘outflow’. The spatial reso-
lution on the base grid is 1283 (refinement level 5) and with AMR
we allow for a maximum effective resolution of 10243 (refinement
level 8). All calculations were carried out on the IT4I/Salomon
supercomputer running on 96 processor cores.

To model the star formation process, we introduce sink particles
according to a Jeans criterion if the gas density is above a threshold
density of ρ thres = 10−18 g cm−3 and other criteria are fulfilled (see
Federrath et al. 2010, for a description of the sink particles in FLASH).
All sink particles live on the maximum allowed refinement level
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Figure 11. Evolution of the mass column density in the turbulent sphere
test (shown run a). Individual panels show different stages of the evolution
at 0.2, 2, 4, and 6 Myr. Sink particles are shown as white circles.

and the gravitational forces among all sink particles and between
the particles and the gas are computed by direct summation. They
are evolved using a Leapfrog integrator.

In Fig. 11, we show the evolving column density in the xy-plane at
times 0.2, 2.0, 4.0, and 6.0 Myr. Although the simulation is interest-
ing in itself, we only focus on the error in the resulting gravitational
acceleration. Therefore, we compute the same initial conditions six
times with different gravity settings and measure the resulting error
of the gravitational acceleration, where the supposedly accurate re-
sult compared to which we calculate the error is obtained using N2

integration. The results of our analysis are shown in Fig. 12, which
depicts the error in the xy-plane at t = 2 Myr. The maximum and
average errors ea, max and ea, avg, respectively, and mean times per
gravity and hydrodynamic time-step computations tgrv and thydro,
respectively, are given in Table 5. The runs are also shown in the
tgrv-ea, max plane in Fig. 13.

The top two panels of Fig. 12 show calculations with the tree-
solver calculating directly the gravitational acceleration using the
geometric MAC with θ lim = 0.5. The left-hand panel (Fig. 12a) was
calculated without the ABU off. The relative error is very small ev-
erywhere, with sudden changes at constant distances from massive
concentrations of gas, resulting from switching tree-node sizes as
prescribed by the geometric MAC criterion. The maximum error is
approximately 2 per cent, the average error is even an order of mag-
nitude smaller. One iteration of the tree-solver took approximately
20 s, i.e. it was the slowest run. The right-hand panel (Fig. 12b)
shows the same calculation, but the ABU was switched on in this
case. The relative error exhibits a rectangular pattern, because some
blocks, in particular in the outer regions, were not updated in a
given time-step and the error in them is larger. The maximum error
is approximately 3 per cent, i.e. 1.5 times more than in the run with
ABU off, and at the same time, the ABU makes the calculation
approximately two times faster.

Panel in Fig. 12(c) shows a run with the tree-solver using the
APE MAC with εlim = 10−2. The results are very similar to the one
in run (Fig. 12b), with a maximum relative error of approximately
4.5 per cent (∼1.5 larger) and the mean time per gravity time-step is
7 s (slightly smaller). Panel (Fig. 12d) shows the run with the same
tree-solver parameters, but instead of calculating the acceleration
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3408 R. Wünsch et al.

Figure 12. Error in the gravitational acceleration in the xy-plane of the
turbulent sphere at t = 2 Myr. The panels show: (a) tree gravity solver calcu-
lating the acceleration with BH MAC, θ lim = 0.5, and ABU switched off, (b)
tree gravity solver calculating the acceleration with BH MAC, θ lim = 0.5,
and ABU on, (c) tree gravity solver calculating the acceleration with APE
MAC, εlim = 10−2 and ABU on, (d) tree gravity solver calculating the po-
tential with APE MAC, εlim = 10−2 and ABU on, (e) tree gravity solver
calculating the potential with APE MAC, εlim = 10−1 and ABU on, and (f)
multigrid solver calculating the potential with εmg, lim = 10−6 and mmp = 10.

Figure 13. Results of the turbulent sphere plotted in the plane of the gravity
calculation duration in seconds, tgrv (x-axis) versus the maximum relative
error in the gravitational acceleration, ea, max (y-axis). The error is deter-
mined at t = 2 Myr and the maximum is taken over the whole computational
domain. The thin dashed lines are isolines of constant tgrv × ea,max assessing
the code efficiency. Parameters of the displayed runs are given in Table 5.

directly, the tree-solver calculates the potential and differentiates
it numerically. The relative error exhibits a similar pattern to run
(a), however, instead of sudden changes it includes high peaks of
the error resulting from a numerical differentiation. Even though
the mean error is comparable to runs (b) and (c), the maximum
error is much higher, reaching 80 per cent. The time of the gravity
calculation is slightly higher than in run (c), even though calculating
the potential is cheaper than the acceleration for a single target cell.
It is because a higher number of blocks must be updated in each
time-step due to the higher error.

Panel (Fig. 12e) includes the run with a reduced accuracy of
εlim = 10−1 made to test the limits of the tree-solver usability. The
relative error is high, in particular in the outer regions where the
blocks are updated less often, reaching a maximum of 20 per cent,
however, it is still a factor of 2 smaller than the error at the bound-
aries of the computational domain found in the run with the multi-
grid solver (see below). On the other hand, the calculation is very

Table 5. Accuracy and performance of the turbulent sphere test.

Model solver quan. MAC ABU εlim θ lim ea, max ea, avg tgrv thydro

(a) tree accel. BH off – 0.5 0.021 0.0020 19.9 7.5
(b) tree accel. BH on – 0.5 0.032 0.0061 9.7 5.3
(c) tree accel. APE on 10−2 – 0.045 0.0056 7.0 4.5
(d) tree pot. APE on 10−2 – 0.801 0.0062 7.7 4.0
(e) tree accel. APE on 10−1 – 0.200 0.0472 2.5 4.8
(f) mg pot. – – – – 0.416 0.0447 12.2 4.7

Notes. Column 1 gives the model name. The following columns list:

(i) solver: indicates whether the tree-solver or the multigrid solver (mg) is used
(ii) quan.: quantity calculated by the gravity solver (acceleration or potential which is then differentiated)
(iii) MAC: Multipole acceptance Criterion (Barnes–Hut or APE)
(iv) ABU: Adaptive Block Update (on or off)
(v) εlim: requested accuracy of the solver as given by equation (4) (alim = εlim × amax where amax is the maximum gravitational acceleration in the domain)
(vi) θ lim: maximum opening angle when the Barnes–Hut MAC is used
(vii) ea, max: maximum relative error in the computational domain given by equation (29) measured at t = 2 Myr
(viii) ea, avg: average relative error in the computational domain given by equation (29) measured at t = 2 Myr
(ix) tgrv: time per time-step (in seconds) to calculate the gravitational acceleration on 96 cores
(x) thydro: time per time-step spent in the hydrodynamic solver on 96 cores.
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Tree-based solvers for AMR code FLASH – I 3409

Figure 14. Number of updated blocks, i.e. blocks for which the tree-walk
was executed for all grid cells in a given time-step, as a function of time (top
x-axis) or time-step number (bottom x-axis). The figure shows first 2 Myr of
the evolution of the turbulent sphere test. Individual curves represent models
(a)–(e) as given in the legend (see also Table 5 for model parameters). Note
that blue and magenta lines [models (b) and (c)] are on the top of each other.

fast with a mean time per gravity time-step of 3.5 s, which is
∼70 per cent of the time needed by the hydro solver.

Panel (Fig. 12f) displays the calculation with the multigrid solver
and as in Section 3.1.1 it shows that the largest error (reaching
∼40 per cent) is along the boundaries of the computational domain
where the potential is influenced by the boundary values obtained
by the multipole expansion. The error in the central region is of
the order of several percent, comparable to the runs in panels of
Figs 12 (b) and (c). The run with the multigrid solver is 20 per cent–
30 per cent slower.

In order to evaluate the efficiency of the ABU, we show in
Fig. 14 a number of updated blocks in each time-step as a func-
tion of time/time-step number. The red curve corresponds to model
(a) where ABU was switched off, i.e. it shows the number of all
blocks in the simulation. It grows from 4096 to almost 6000, as the
AMR creates more blocks in regions of high density formed by the
gravitational collapse. The number of all blocks is the same for all
simulations, as they run the identical model. For model (b) (blue
curve), the number of updated blocks stays very small for the first
∼10 time-steps, because the initial time-step is very low and the
density and gravitational acceleration fields almost do not change.
As soon as the time-step reaches a value given by the CFL condition,
the number of updated blocks quickly rises up to 1000 and then it
increases slowly to almost 2000 at 2 Myr. Throughout the evolution,
the number of updated blocks is approximately three times lower
than in model (a) with ABU off. As a result, model (b) runs more
than twice as fast as model (a) and the maximum error in the accel-
eration is approximately 1.5 times larger (see Table 5 and Figs 12
and 13). For model (c), the fraction of updated blocks is almost
the same as for model (b). However, the model runs ∼30 per cent
faster as the APE MAC needs less interaction than the BH MAC
of model (b) and consequently, the maximum error is ∼1.5 larger.
Model (e) with larger error limit updates less than 10 per cent of
blocks in each time-step and as a result it runs 8× faster than model
(a) and its maximum error is almost 10× larger. Model (d) calcu-
lating the potential instead of the acceleration behaves in a different
way. The number of updated blocks exceeds 3000 shortly after the
start of the simulation, their fraction stays above 50 per cent and
reaches 100 per cent in the last quarter of the time. It is because the

numerical differentiation of the potential at the border between up-
dated and not-updated blocks tends to give high error in the accel-
eration. Therefore, we do not recommend the use of ABU together
with calculating the potential.

Note that the efficiency of the ABU test is highly problem depen-
dent. In this regard, the used turbulent sphere setup is a relatively
hard one, because the sphere quickly forms dense filaments with
large-density gradients and they move supersonically as the whole
structure collapses (i.e. the time-step is given mainly by the gas
velocity, not the sound speed). On the other hand, there are still
regions where the gravitational acceleration changes slowly, e.g. in
the computational domain corners, and these regions can be updated
less often making the ABU efficient. If the volume with fast moving
dense objects is larger, the ABU can be less efficient and vice versa.

3.3 Test of the optical depth module

In order to evaluate the accuracy of the OPTICALDEPTH module, we
perform two tests. For both of them, we repeat the calculation of
the turbulent sphere described in Section 3.2.2, using an adiabatic
equation of state with γ = 5/3 (instead of the isothermal equation of
state used previously). Additionally, we switch on the OPTICALDEPTH

and CHEMISTRY modules calculating the gas cooling and heating, and
the mass fractions of various species. The sphere is heated from
the outside assuming a typical ISRF of strength G0 = 1.7 times the
Habing field. This causes the low ambient density gas to heat up to
a few× 103 K, while the interior of the sphere is cold and thus it col-
lapses to form stars as in runs with the isothermal equation of state
in Section 3.2.2. A detailed description of the chemical network, the
heating and cooling processes it includes, the dust temperature it
calculates, and how the OPTICALDEPTH module is coupled to it can be
found in Walch et al. (2015). Here, we are only concerned with the
workings of the OPTICALDEPTH module and with the column density
(or optical depth) it delivers.

In the first test, we evaluate how accurately the OPTICALDEPTH

module determines the column density depending on the chosen
angular resolution; and in the second test, we compare the resulting
optical depth with the optical depth computed using the Monte
Carlo radiative transfer code RADMC-3D6.

3.3.1 Column density with increasing NPIX

We perform a test similar to the one by Clark et al. (2012, their
section 3.2), and calculate the ‘sky map’ of hydrogen column den-
sity, NH, as seen from the centre of the computational domain, for
the turbulent sphere simulation at time t = 2 Myr (see the top right
panel of Fig. 11). The hydrogen column density determined by
the OPTICALDEPTH module, NH,iPIX , is compared to the ‘actual’ ref-
erence hydrogen column density, NH(θ , φ), obtained using a direct
integration over individual grid cells of the simulation and very
high HEALPIX resolution NPIX = 3072. The angular resolution of the
OPTICALDEPTH module is controlled by two parameters: number of
HEALPIX elements NPIX and tree maximum opening angle θ lim deter-
mining the maximum angular size of tree-nodes. We calculate five
models with NPIX = 12, 48, and 192, and two maximum opening
angles θ lim = 0.5 and 0.25 (see Table 6). We define a relative error
in the hydrogen column density

eNH,iPIX = |NH,iPIX − 〈NH(θ, φ)〉iPIX |
〈NH(θ, φ)〉iPIX

(38)

6 See http://www.ita.uni-heidelberg.de/∼dullemond/software/radmc-3d/
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Table 6. Results of the OPTICALDEPTH module test studying the dependency
of the column density accuracy on the resolution.

Model NPIX θ lim eNH,max eAV ttree NversusH

(a) 12 0.5 0.16 0.19 41 N < H
(b) 48 0.5 0.18 0.07 44 N ≈ H
(c) 48 0.25 0.14 0.08 256 N < H
(d) 192 0.5 0.48 0.01 48 N > H
(e) 192 0.25 0.30 0.002 286 N ≈ H

Notes. We give the model name in column 1. The following columns are:

(i) NPIX : number HEALPIX pixels corresponding to the angular resolution
(ii) θ lim: maximum opening angle (Barnes–Hut MAC is used in all tests)
(iii) eNH,max: maximum relative error in the hydrogen column density

(equation 38); maximum is taken over all HEALPIXpixels
(iv) eAV : relative error in the mean visual extinction (equation 39)
(v) ttree: time per time-step (in seconds) spent in the tree-solver on 96

cores
(vi) NversusH ; indicates the relative size of tree-nodes (N) and HEALPIX

elements (H).

where 〈NH(θ, φ)〉iPIX is the mean value of reference hydrogen col-
umn density, NH, in element iPIX. In Table 6, we give for each model
the maximum error eNH,max ≡ max(eNH,iPIX ), where the maximum
is taken over the whole sphere.

However, directionally dependent NH,iPIX does not directly enter
calculations of the gas-radiation interaction. Instead, the CHEMISTRY

module uses quantities averaged over all directions, e.g. the mean
visual extinction, AV, given by equation (26). Therefore, we further
define a relative error in the mean visual extinction

eAV = |AV − AV,ref |
AV,ref

(39)

where AV is the mean visual extinction calculated by the OPTI-
CALDEPTH module and AV, ref is the reference value obtained by aver-
aging the high-resolution reference hydrogen column density NH(θ ,
φ) using equation (26). Values of eAV for the five calculated runs are
also given in Table 6 and in top right corners of right-hand panels
in Fig. 15.

The results are summarized in Fig. 15 showing, in the Hammer
projection, the reference hydrogen column density NH(θ , φ) (top
panel), values of NH,iPIX calculated by the OPTICALDEPTH module (left-
hand panels), and relative errors, eNH,iPIX (right-hand panels). Our
findings are generally in agreement with those of Clark et al. (2012).
Even run (a) with NPIX = 12 recovers approximately the overall
structure of the cloud and results in eNH,max = 0.16 and eAV = 0.19.
Increasing the HEALPIX angular resolution to NPIX = 48 [run (b) with
the approximately same size of tree-nodes and HEALPIX elements,
see the last column in Table 6] leads to a smaller error in AV while
keeping eNH,max approximately the same. Since runs (a) and (b) take
nearly the same time to calculate, their comparison shows that it
is not worth to degrade the HEALPIX resolution (by decreasing NPIX )
below the tree-solver resolution (given by θ lim). Similarly, run (c)
with better tree-solver resolution (θ lim = 0.25) and the same HEALPIX

resolution results in the approximately same eNH,max and eAV as run
(b), even though the computational costs are much higher. Run
(d) with HEALPIX elements smaller than the tree-node size leads
to smaller eAV = 0.01, however, eNH,max = 0.48 is very high. It is
because the approximations adopted when the mass of relatively
large tree-nodes is distributed to HEALPIX elements sometimes result
in the assignment of the mass to a different element. This problem
is diminished in run (e), which has again the approximately same
angular size of tree-nodes and HEALPIX elements, and in which the

visual extinction error drops to a very small value, eAV = 0.002 and
eNH,max also decreases in comparison with run (d), even though it is
still higher than in runs (a)–(c).

3.3.2 Comparison to RADMC-3D

Here, we compare the spatial distribution of the optical depth, τ F,
calculated by the OPTICALDEPTH module to the optical depth, τR,
computed using the RADMC-3D code7. We use a snapshot at t = 2 Myr
from a turbulent sphere simulation similar to the one discussed in
Sections 3.2.2 and 3.3.1, but calculated on a uniform grid 1283 to
make the RADMC-3D calculation feasible. We use NPIX = 48 pixels
and a geometric MAC with θ lim = 0.5 (see Section 2.3 for details
on the OPTICALDEPTH module). Here, we assume a constant dust-
to-gas ratio of 0.01. We select an ultraviolet (UV) wavelength,
λ0 = 9.36 × 10−2 μm, because scattering effects in the UV are
minimal, and we can easily relate the dust column density to the
optical depth using the dust opacity at this wavelength, κabs(λ).
This approach neglects possible variations of κabs(λ) along the line
of sight, e.g. due to temperature variations or changes in the dust
properties. Using a typical Milky Way dust opacity provided by
Weingartner & Draine (2001) (table for MW_R_V_4.0), we have
κabs(λ0) = 6.555 × 104 cm2 g−1. We obtain

τF = κabs(λ0) × Ndust,F. (40)

Using the dust density field and dust temperature provided by the
simulation, we compute the optical depth at the same wavelength
using the RADMC-3D code, τR. With RADMC-3D, it is possible to pro-
vide an external radiation field, in which case the photon packages
are launched from the borders of the computational domain and
pass through the grid in random directions. In each cell, they inter-
act with the present dust according to its opacity. We use the same
dust opacity table for RADMC-3D as described above. For the incom-
ing radiation, we use the intensities of a typical ISRF as provided
by Evans et al. (2001). The incoming intensity at wavelength λ0 is
I0 = 9.547 × 10−21 erg s−1cm−2 Hz−1sr−1. We run RADMC-3D in the
mode mcmono to compute the intensity field at λ0 in every cell of
the computational domain. Then, we convert this intensity, Icell, to
τR using

τR = ln

(
I0

Icell

)
. (41)

It is necessary to use a large number of photon packages in order to
reduce the noise in the RADMC-3D calculation to an acceptable level.
Specifically, we use 200 million photon packages and therefore it
takes ∼53 min on one 10-core Intel-Xeon E5-2650 CPU to simulate
one wavelength on the given uniform grid with 1283 resolution,
while the calculation with the OPTICALDEPTH module took 24 s on
4-core Intel i7-2600, i.e. it was ∼330× faster when normalizing
both calculations by number of cores.

In Fig. 16, we show a slice at z = 0 of the resulting optical
depths (shown in logarithmic scale), τ F from the FLASH calculation
(top left panel) and τR from the RADMC-3D calculation (top right
panel), as well as the difference between the two, normalized to
the maximum τ F, max, of the FLASH optical depth in the xy-plane
(bottom right panel). The resulting gas temperature calculated by
FLASH in displayed in the bottom left panel. The overall agreement

7 Note that the index F in τF refers to FLASH, i.e. calculation by the
OPTICALDEPTH module, and R in τR refers to RADMC-3D.

MNRAS 475, 3393–3418 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/475/3/3393/4795314 by C
ardiff U

niversity user on 23 April 2019



Tree-based solvers for AMR code FLASH – I 3411

Figure 15. Results of the OPTICALDEPTH module test evaluating the accuracy of the hydrogen column density calculation as seen from the centre of the turbulent
sphere, as a function of the used angular resolution. Top panel shows the reference hydrogen column density, NH(θ , φ), displayed in the Hammer projection.
Left panels below: show NH,iPIX determined by the OPTICALDEPTH module with NPIX = 12, 48, and 192, and θ lim = 0.5 and 0.25 as denoted in the top left corner
of each panel. Right panels below show the relative error in the column density, eNH,iPIX , calculated using equation (38). The relative error in the mean visual
extinction, eAV , is given in top right corners of the panels.

is very good and on the level of the remaining noise of the RADMC-
3D calculation of a few per cent. Although there is a tendency for
the OPTICALDEPTH module to slightly overestimate the optical depth
in the densest regions, the difference is always <10 per cent and
is ∼1 per cent for most cells in the computational domain. The
result improves slightly if we use NPIX = 192 and θ lim = 0.25, but
the additional expense of the calculation is generally not worth the
effort.

3.4 Comparison of various MACs

We compare all available MACs with their typical parameters for
a simple calculation similar to the static Bonnor–Ebert sphere test
described in Section 3.1.1, however, carried out on a uniform 1283

grid. The aim is to provide an approximate measure of the code
behaviour. A rigorous analysis of the efficiency of individual MACs,
which would need many more tests, since it is highly problem
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Figure 16. Test of the OPTICALDEPTH module showing the calculated optical
depths in a slice at z = 0 through the turbulent sphere at time t = 2 Myr. Top
left: logarithm of the optical depth, τF, at wavelength λ0 = 9.36 × 10−2 μm
computed live during the FLASH simulation by the OPTICALDEPTH module with
θ lim = 0.5 and NPIX = 48; top right: logarithm of the optical depth, τR, at
the same wavelength computed using RADMC-3D with 200 million photon
packages; bottom left: gas temperature in the FLASH simulation resulting
from the radiative heating taking the optical depth as an input; and bottom
right: relative difference between the two optical depths, (τF − τR)/τF. The
difference is always <10 per cent and typically on the level of a few per
cent, where most of it is caused by the noise in the RADMC-3D data.

dependent, is beyond the scope of this paper. The time of the gravity
calculation, tgrv, was measured on a single processor core, and since
it is a single time-step calculation, the time is meaningful only
for a mutual comparison between individual MACs (as is also the
case for all the static tests in Section 3.1). For each calculation,
we determine the relative error in the gravitational acceleration and
find its maximum in the computational domain, ea, max. The tested
MACs are: the geometric (BH) MAC with three maximum opening
angles, θ lim, the APE MAC with both absolute and relative error
limit, the MPE MAC, and the experimental SumSquare MAC with
two different error limits. The results are shown in Fig. 17 which
plots the runs in the tgrv − ea, max plane.

In general, the results show an anticorrelation between the com-
putational time tgrv and the error ea, max resulting from the expected
trade-off between computational costs and accuracy. One way how
to estimate the efficiency of the tested MACs is to consider lines
of constant tgrv × ea, max. Then, we find that the three most efficient
among the tested MACs are the BH MAC with θ lim = 0.2, BH MAC
with θ lim = 0.5, and the MPE MAC with εlim = 0.01, the first one
being the slowest and most accurate, the last one being the fastest of
the three. The APE MAC with εlim = 0.01 is also amongst the most
efficient ones while its relative error is smaller than ea, max = 10−2.
Such an accuracy is generally acceptable and therefore we consider
this MAC to be an optimal choice. Of course, we note that the final
decision about the required accuracy is highly problem dependent

Figure 17. Comparison of available MACs for a single time-step calcula-
tion of the Bonnor–Ebert sphere on a uniform grid 1283. Each calculation
with a different MAC is plotted in the plane of the gravity calculation
duration in seconds (x-axis) versus the maximum relative error in the gravi-
tational acceleration, ea, max (y-axis). The maximum is taken over the whole
computational domain. The tested MACs are: three geometric (BH) MACs
with fixed maximum opening angles θ lim = 1.0 (red plus), θ lim = 0.5
(olive x), θ lim = 0.2 (blue star); two APE MACS with absolute error limit
alim = εlimamax = 0.01amax (magenta empty square), and relative error limit
εlim = 0.01 (dark cyan filled square); an MPE MAC with absolute error limit
given by ε = 0.01 (dark green empty triangle); and two SumSquare MACs
with absolute error limits εlim = 0.01 (black filled circle) and εlim = 0.1
(orange empty circle). The violet filled triangle shows the calculation by the
multigrid solver. The thin dashed lines are isolines of constant tgrv × ea,max

assessing the code efficiency.

and must be made by the user on the basis of the knowledge of the
physical configuration that is being treated.

The comparison between the two APE MACs, one using the
absolute error limit εlim = 0.01, and the second one using the relative
error limit εlim = 0.01, shows an interesting, yet not dramatic,
difference: the APE with absolute error limit seems to be more
efficient by being both faster and more accurate. This result seems
to support claims by SW94 that setting the absolute error limit is
more appropriate, even though it requires more effort by the user.

The two SumSquare MACs are not among the most efficient,
however, they provide an additional advantage of guaranteeing that
the error will not exceed the pre-set accuracy limit. It also seems
that increasing εlim to values as high as 0.1 and above does not result
in substantially lower tgrv.

The multigrid solver is among the fastest calculations and also
among the least accurate. However, the error is high only in the
vicinity of the computational domain boundaries caused by an in-
accurate multipole solver used to calculate boundary values of the
gravitational potential (mmp = 10). In practice, the high accuracy
is often not needed close to the boundaries and if the region of
size ∼20 per cent around boundaries is excluded from the error
calculation, the error ea, max drops by approximately one order of
magnitude. Then, the multigrid solver is comparable to the most
efficient and fast APE and MPE MACs.

3.5 Scaling tests

We perform both strong scaling and weak scaling tests. For that we
use the setup of the turbulent sphere from Sections 3.2.2 and 3.3.2.
The strong scaling tests are done for the GRAVITY module only, the
weak scaling is done for both GRAVITY and OPTICALDEPTH modules.

MNRAS 475, 3393–3418 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/475/3/3393/4795314 by C
ardiff U

niversity user on 23 April 2019



Tree-based solvers for AMR code FLASH – I 3413

 24

 48

 96

 192

 384

 768

 1536

 24  48  96  192  384  768  1536

S
n

n

(a)   BH, θlim = 0.5, no ABU

(c) APE, εlim = 0.01,    ABU

(f) mg

hydro

Figure 18. Strong scaling test. Speed-up as a function of the number of
processor cores measured for the turbulent sphere test (see Section 3.2.2)
running for 10 time-steps. It compares scaling of the tree-solver with the
BH MAC, θ lim = 0.5 with ABU switched off (red squares), the tree-solver
with the APE MAC, εlim = 0.01 and ABU switched on (green circles), the
multigrid solver with εmg, lim = 10−6 and mmp = 15 (magenta triangles), and
the PPM hydrodynamic solver measured at the test with the BH MAC tree-
solver (blue crosses). The solid black line shows the (ideal) linear scaling
Sn ∼ n.

For the strong scaling tests, we use three code configurations:
tree-solver with BH MAC and ABU off (model (a) from Table 5),
tree-solver with APE MAC and ABU on [model (c)], and multigrid
solver with default parameters [model (f)]. We also show the scaling
of the FLASH PPM hydrodynamic solver with default parameters.
All tests have been run for 10 time-steps on the IT4I/Salomon
supercomputer using 48–1536 cores. The speed-up on n processor
cores, Sn is determined with respect to the run with 48 cores

Sn = t48

tn
(42)

where t48 is the time spent by the evaluated module on 48 cores and
tn is the time spent by the same module on n cores.

We see that the run with the tree-solver and BH MAC gives the
best behaviour (speed-up closest to linear). On the other hand, this
model is also the slowest one out of the three on 96 cores (see
Table 5 and Fig. 18). This can be understood by noting that most
of the computational time is spent in the tree-walk, which runs
completely in parallel without any communication. Additionally,
without ABU there is no problem with load balancing, because
the computational time is more or less directly proportional to the
number of leaf-blocks, and thus each core receives the same number
of leaf-blocks. The run with the APE MAC and ABU exhibits
slightly worse scaling, however, the test in Section 3.2.2 shows that
on 96 cores, it is almost three times faster than the BH MAC run.
This is partially because, due to its more efficient MAC the code
spends less time in fully parallel parts and partially because the
ABU does not save the time equally on each processor core. The
APE MAC scaling is still very good, comparable to the scaling of
the hydrodynamic solver, which is highly parallel and needs only
to communicate information at the boundaries between domains
belonging to different processor cores. The multigrid solver is very
fast on 96 cores, comparable to the tree-solver with APE MAC and
ABU, however, its efficiency decreases on higher number of cores.

The weak scaling test have been done for two configurations:
(i) the tree-solver with the gravity only runs using the APE MAC,
εlim = 0.01 and ABU switched on, and (ii) runs calculating the

 1
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Figure 19. Weak scaling test. Time per time-step as a function of number
of cores, n, for the setup where the size of the problem (number of blocks or
grid cells – see top x-axis) is proportional to n. Measurements were done for
the turbulent sphere test (see Sections 3.2.2 and 3.3.2) running for 10 time-
steps, the grid was uniform using the following resolutions: 643 running on
3 cores, 1283 on 24 cores, 2563 on 192 cores, and 5123 on 1536 cores. The
red curve shows times for the tree-solver with the gravity module only using
the APE MAC with εlim = 0.01 and ABU switched on. The green curve
shows scaling for the tree-solver using both the gravity and OPTICALDEPTH

modules and BH MAC with θ lim = 0.5 with ABU switched off. The blue
curve shows the weak scaling of the FLASH internal hydrodynamic module
on the given problem. The black solid, dashed, and dotted lines show power
laws with indices 0.33, 0.15, and 0.09, respectively.

gravitational acceleration and column densities of the three com-
ponents (total, H2 and CO; see Section 2.3) using the BH MAC,
θ lim = 0.5 with ABU switched off. Each configuration is run for
four different grid resolution ranging from 643 to 5123, with the
number of cores, n, proportional to the number of grid cells (n = 3,
24, 192, 1536).

Results of the weak scaling tests are shown in Fig. 19, where a
single time-step runtimes of the two configurations are compared
with each other and with runtimes of the FLASH internal hydrody-
namic solver. The hydrodynamic solver times (blue curve) follow
approximately the n0.09 power law, which is slightly worse than the
‘ideal’ constant scaling. The tree-solver using both the GRAVITY and
OPTICALDEPTH modules (green curve) exhibits a similar n0.15 scal-
ing. On the other hand, runs with only the GRAVITY module (red
curve) show the n0.15 scaling only between 3 and 24 cores, and for
higher number of cores the scaling gets worse approaching n0.33.
This is due to two reasons. First, the gravity only runs are cheaper
and the communication making the scaling worse is relatively more
important. Note that the communication is negligible for runs on
up to 24 cores, since a node on the Solomon computer comprises
24 cores with shared memory. Secondly, the load balancing needed
by the ABU becomes worse on a high number of cores. We can
also see that the additional calculations of column densities in the
OPTICALDEPTH module make the code approximately 10 times slower
than the calculation of the gravity on a small number of cores, but it
becomes only a factor of ∼3.5 for 1536 cores due to better scaling
of the more expensive runs with the OPTICALDEPTH module.

4 SU M M A RY

We have developed an MPI parallel, general purpose tree-solver for
the AMR hydrodynamic code FLASH, that can be used to calculate the
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gas gravitational acceleration (or potential), optical depths enabling
inclusion of the ambient diffuse radiation, and in future also general
radiation transport (Paper II). The code uses an efficient commu-
nication strategy predicting which parts of the tree need to be sent
to different processors allowing the whole tree-walk to be executed
locally. The advantage of this approach is a relatively low memory
requirement, important in particular for the optical depth calcula-
tion, which needs to process information from different directions.
This also makes the implementation of the general tree-based ra-
diation transport possible. In addition to commonly implemented,
fully isolated and fully periodic BCs, the code can handle mixed
(i.e. isolated in some directions and periodic in others) BCs using a
newly developed generalization of the Ewald method. The gravity
module implements several MACs that increase the code efficiency
by selecting which tree-nodes are acceptable for the calculation
on the basis of the mass distribution within them. Using the ABU
technique, the code is able to re-use information from the previous
time-step and thus further save computational time.

We have run a series of tests evaluating the code accuracy and
performance, and compared them to the in-built multigrid gravity
solver of FLASH. The simpler ‘static’ tests of the gravity module show
that the code provides good accuracy for all combinations of BCs.
Comparison with the FLASH default multigrid solver suggests that
the tree-solver provides better accuracy for the same computational
costs in case of fully isolated BCs, while with fully periodic BCs
the multigrid solver seems to be more efficient.

Further, we run two more complex dynamical tests. The Evrard
test (gravitational collapse and rebounce of the adiabatic, initially
cold gaseous sphere) shows that it is critical to resolve well the
dense centre, in order to ensure energy conservation. We found that
in order to limit the error in the total energy to less than a few
percent, it is necessary to resolve the Jeans length with at least four
grid cells, a result similar to that of Truelove et al. (1997) where
the same resolution is needed to prevent artificial fragmentation.
In general, the Evrard test turns out to be harder for grid codes in
comparison with Lagrangian (e.g. SPH) hydrodynamic codes which
reach almost perfect energy conservation with very small numbers
of particles.

In the second dynamical test, we simulate a turbulent sphere
which collapses, fragments and forms sink particles (representing
newly formed stars). We find the tree-solver performs well and runs
with accuracy of order several percent if it calculates the acceler-
ations directly, and if it is used with the BH or APE MAC with
typical parameters. Calculating the gravitational potential instead
of the acceleration results in high (up to 80 per cent) errors due
to numerical discretization, and may result in numerical artefacts.
The ABU accelerates the calculation by a factor of several (∼2)
for a given test. The multigrid solver exhibits relatively high error
(∼20 per cent) close to computational domain boundaries, resulting
from an inaccurate multipole solver. If the boundary regions are
excluded, the accuracy of the tree-solver and multigrid solver are
comparable, while the tree-solver is approximately two times faster
for the given test.

We run two tests of the OPTICALDEPTH module. In the first one,
we measure the direction-dependent optical depths as a function
of the angular resolution, and we find [in agreement with Clark,
Glover & Klessen (2012)] that the code runs most efficiently if the
angular resolution given by the number of HEALPIX rays is similar
to the opening angle used by the tree-solver. In the second test,
we compare the optical depth calculated with the tree-solver with
those calculated with the accurate radiation transport code RADMC-3D

and we find an excellent agreement even for relatively low angular
resolution – 48 HEALPIX rays.

Further, using a simplified turbulent sphere test with uniform res-
olution, we compare the efficiency of all available MACs with their
typical parameters. Generally, the BH MAC provides better accu-
racy for higher computational costs, while APE and MPE MACs
result in lower (but often still acceptable) accuracy and are substan-
tially faster. For applications, where an accuracy of order 10−2 is
sufficient, the fastest choice seems to be the APE MAC with the
absolute limit on the error.

Finally, we run strong scaling tests and show that the code scales
up very well up to at least 1536 processor cores. We conclude that the
presented tree-solver is a viable method for calculating self-gravity
and other processes in astrophysics and that it is competitive with
more commonly used iterative multigrid methods.
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A P P E N D I X A : EQUATI O N S F O R AC C E L E R AT I O N IN C O M P U TAT I O NA L D O M A I N S W I T H
P E R I O D I C A N D M I X E D BO U N DA RY C O N D I T I O N S

In this appendix, we provide formulae for acceleration in computational domains with periodic and mixed BCs. These formulae might be
interesting particularly for the reader who intends to implement the Ewald method or its modification to a computational domain with mixed
BCs 8. The orientation of symmetric axes is the same as in Section 2.2.

In analogue to the equation for potential (23), we write acceleration a(r) at target point r as

a(r) = −G

N∑
a=1

ma A(r − ra), (A1)

where

A = −∇φ. (A2)

A1 Periodic boundary conditions

Defining

el1,l2,l3 = exp (−ζ (l2
1 + (l2/b)2 + (l3/c)2))

l2
1 + (l2/b)2 + (l3/c)2

, (A3)

ui1,i2,i3 = (x − xa − i1Lx)2 + (y − ya − i2bLx)2

+ (z − za − i3cLx)2, (A4)

vl1,l2,l3 = 2πl1(x − xa)

Lx
+ 2πl2(y − ya)

bLx
+ 2πl3(z − za)

cLx
, (A5)

one obtains by differencing equation (11), the components of function A in the form of

Ax =
∑

i1 ,i2 ,i3
i2
1 +(bi2)2+(ci3)2≤10

⎧⎨⎩
⎛⎝ 2α√

π

exp(−α2ui1,i2,i3 )

ui1,i2,i3

+ erfc(α
√

ui1,i2,i3 )

u
3/2
i1,i2,i3

⎞⎠(x − xa − i1Lx)

⎫⎬⎭ + 2

bcL2
x

∑
l1 ,l2 ,l3

l21+(l2/b)2+(l3/c)2≤10

l1 el1,l2,l3 sin (vl1,l2,l3 ),

(A6)

8 The formulae are organized so as to avoid problems with floating point representation.
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Ay =
∑

i1 ,i2 ,i3
i2
1 +(bi2)2+(ci3)2≤10

⎧⎨⎩
⎛⎝ 2α√

π

exp(−α2ui1,i2,i3 )

ui1,i2,i3

+ erfc(α
√

ui1,i2,i3 )

u
3/2
i1,i2,i3

⎞⎠(y − ya − i2bLx)

⎫⎬⎭+ 2

b2cL2
x

∑
l1 ,l2 ,l3

l21+(l2/b)2+(l3/c)2≤10

l2 el1,l2,l3 sin (vl1,l2,l3 ),

(A7)

Ax =
∑

i1 ,i2 ,i3
i2
1 +(bi2)2+(ci3)2≤10

⎧⎨⎩
⎛⎝ 2α√

π

exp(−α2ui1,i2,i3 )

ui1,i2,i3

+ erfc(α
√

ui1,i2,i3 )

u
3/2
i1,i2,i3

⎞⎠(z − za − i3cLx)

⎫⎬⎭+ 2

bc2L2
x

∑
l1 ,l2 ,l3

l21+(l2/b)2+(l3/c)2≤10

l3 el1,l2,l3 sin (vl1,l2,l3 ).

(A8)

A2 Mixed boundary conditions of type 2P1I

To simplify the formulae below, we define

ui1,i2 = (x − xa − i1Lx)2 + (y − ya − i2bLx)2 + (z − za)2, (A9)

vl1,l2 = 2πl1(x − xa)

Lx
+ 2πl2(y − ya)

bLx
, (A10)

and

Ĩ (l1, l2, z − za) ≡ I (l1, l2, z − za) exp (−ζ (l2
1 + (l2/b)2))

= π

2
√

l2
1 + (l2/b)2

⎧⎨⎩ exp

(
−γ 2

4ζ

)
exp(−ζ (l2

1 + (l2/b)2))erfcx

(
ζ
√

l2
1 + (l2/b)2 + γ /2√

ζ

)

+ exp(−γ

√
l2
1 + (l2/b)2)erfc

(
ζ
√

l2
1 + (l2/b)2 − γ /2√

ζ

)⎫⎬⎭, (A11)

I ′(l1, l2, z − za) ≡ dĨ (l1, l2, γ )/dγ

= π

2

⎧⎨⎩ exp(−γ 2

4ζ
) exp(−ζ (l2

1 + (l2/b)2))erfcx

(
ζ
√

l2
1 + (l2/b)2 + γ /2√

ζ

)

− exp(−γ

√
l2
1 + (l2/b)2)erfc

(
ζ
√

l2
1 + (l2/b)2 − γ /2√

ζ

)⎫⎬⎭, (A12)

where I(l1, l2, z − za) is defined by equation (17).
Function A then takes the form

Ax =
∑
i1 ,i2

i2
1 +(bi2)2≤10

{
2α√
π

exp(−α2ui1,i2 )

ui1,i2

+ erfc(α
√

ui1,i2 )

u
3/2
i1,i2

}
(x − xa − i1Lx) + 2

bL2
x

∑
l1 ,l2

l21+(l2/b)2≤10

l1 sin(vl1,l2 )Ĩ (l1, l2, z − za), (A13)

Ay =
∑
i1 ,i2

i2
1 +(bi2)2≤10

{
2α√
π

exp(−α2ui1,i2 )

ui1,i2

+ erfc(α
√

ui1,i2 )

u
3/2
i1,i2

}
(y − ya − i2bLx) + 2

b2L2
x

∑
l1 ,l2

l21+(l2/b)2≤10

l2 sin(vl1,l2 )Ĩ (l1, l2, z − za), (A14)

Az =
∑
i1 ,i2

i2
1 +(bi2)2≤10

{
2α√
π

exp(−α2ui1,i2 )

ui1,i2

+ erfc(α
√

ui1,i2 )

u
3/2
i1,i2

}
(z − za) − 2

bL2
x

∑
l1,l2

l21+(l2/b)2≤10

cos(vl1,l2 )I ′(l1, l2, z − za). (A15)

A3 Mixed boundary conditions of type 1P2I

Here, we introduce

ui1 = (x − xa − i1Lx)2 + (y − ya)2 + (z − za)2, (A16)

vl1 = 2πl1(x − xa)

Lx
, (A17)

which simplifies the formula for function A to

Ax =
∑

i1,i2
1 ≤10

{
2α√
π

exp(−α2ui1 )

ui1

+ erfc(α
√

ui1 )

u
3/2
i1

}
(x − xa − i1Lx) + 4π

L2
x

∑
l1,l21≤10

l1 exp (−ζ l2
1 ) sin(vl1 )K(l1, y − ya, z − za), (A18)
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Ay =
∑

i1,i2
1 ≤10

{
2α√
π

exp(−α2ui1 )

ui1

+ erfc(α
√

ui1 )

u
3/2
i1

}
(y − ya) + 4π

L2
x

y − ya√
(y − ya)2 + (z − za)2

∑
l1,l21≤10

exp (−ζ l2
1 ) cos(vl1 )M(l1, y − ya, z − za),

(A19)

Az =
∑

i1,i2
1 ≤10

{
2α√
π

exp(−α2ui1 )

ui1

+ erfc(α
√

ui1 )

u
3/2
i1

}
(z − za) + 4π

L2
x

z − za√
(y − ya)2 + (z − za)2

∑
l1,l21≤10

exp (−ζ l2
1 ) cos(vl1 )M(l1, y − ya, z − za),

(A20)

where K(l1, y − ya, z − za) is given by equation (22), and function M(l1, y − ya, z − za) ≡ −dK(l1, η(y − ya, z − za))/dη is

M(l1, y − ya, z − za) =
∫ ∞

0

J1(ηq) exp(−ζq2)q2

l2
1 + q2

dq, (A21)

where J1 is the Bessel function of the first kind and first order. Note that variables ζ , γ , and η are defined in Section 2.2.4.

A P P E N D I X B: C O D E RU N T I M E PA R A M E T E R S

Here, we list runtime parameters of the tree-solver and GRAVITY and OPTICALDEPTH modules that can be set in the flash.par configuration
file. Apart from parameters discussed in the main body of this work (e.g. MAC selection and accuracy limit), the code should work well with
the default parameters. Additional information is provided in the Flash Users Guide and directly in the source code as comments.

B1 Tree-solver parameters

gr_bhPhysMACTW– indicates whether MACs of physical modules (e.g. GRAVITY) are used during tree-walks; if false, the geometric BH
MAC is used instead (type: logical, default: false)

gr_bhPhysMACComm– indicates whether MACs of physical modules (e.g. GRAVITY) are used for communication of block-trees; if false,
the geometric BH MAC is used instead (type: logical, default: false)

gr_bhTreeLimAngle– maximum opening angle, θ lim, of the geometric BH MAC (type: real, default: 0.5)
gr_bhTreeSafeBox– relative (with respect to the block size) size of a cube around each block, ηSB, in which the target point cannot

be located (type: real, default: 1.2)
gr_bhUseUnifiedTW– obsolete, will be deleted in future versions
gr_bhTWMaxQueueSize: maximum number of elements in the priority queue (type: integer, default: 10000)
gr_bhAcceptAccurateOld– indicates whether ABU (see Section 2.2.6) is active; will be renamed to gr_bhABU in future versions

(type: logical, default: false)
gr_bhLoadBalancing– indicates whether Load Balancing (see Section 2.2.6) is active (type: logical, default: false)
gr_bhMaxBlkWeight– maximum workload weight, ωwl (type: real, default: 10)

B2 GRAVITY module parameters

grv_bhNewton– Newton’s constant of gravity; if negative, the value is obtained from the Flash internal data base of physical constants
(type: real, default: -1)

grv_bhMAC– type of MAC calculated by the GRAVITY module if gr_bhPhysMACTW or gr_bhPhysMACComm is set true; currently
accepted values are: ‘ApproxPartialErr’, ‘MaxPartialErr’, and ‘SumSquare’ (experimental) (type: string, default: ‘ApproxPartialErr’)

grv_bhMPDegree– degree of multipole expansion used to estimate the error of a single-node contribution with APE and MPE MACs;
grv_bhMPDegree corresponds to p + 1 used in equations (2) and (6); (type: integer, default: 2)

grv_bhUseRelAccErr– indicates whether the grv_bhAccErr parameter (below) should be interpreted as a relative error limit, εlim

(true), or an absolute error limit, alim (false); see equations (4) and (5); (type: logical, default: false)
grv_bhAccErr– maximum allowed error set either relatively with respect to the acceleration from the previous time-step, εlim, or

absolutely, alim; (type: real, default: 0.1)
grav_boundary_type– type of BCs for gravity for all directions; the accepted values are: ‘isolated’, ‘periodic’, and ‘mixed’; if set to

‘mixed’, BCs in individual directions are set by the parameters below (type: string, default: ‘mixed’)
grav_boundary_type_x– type of gravity BCs in the x-direction; the accepted values are: ‘isolated’ and ‘periodic’ (type: string,

default: ’isolated’)
grav_boundary_type_y– same as grav_boundary_type_x but in the y-direction
grav_boundary_type_z– same as grav_boundary_type_x but in the z-direction
grv_bhEwaldSeriesN– number of terms used in the expansion given by equation (11) to calculate the Ewald field (type: integer,

default: 10)
grv_bhEwaldAlwaysGenerate– indicates whether the Ewald field should be regenerated at the simulation start; if false, it is read

from file with name given by parameters grv_bhEwaldFName or grv_bhEwaldFNameAccV42 and grv_bhEwaldFNamePosV42
(type: logical, default: true)
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grv_bhEwaldFieldNxV42– number of points of the Ewald field lookup table in the x-direction when the first approach described in
Section 2.2.5 is used (default in FLASH versions up to 4.2); (type: integer, default: 32)

grv_bhEwaldFieldNyV42– same as the preceeding parameter but for the y-direction
grv_bhEwaldFieldNzV42– same as the preceeding parameter but for the z-direction
grv_bhEwaldNRefV42– number of nested grid levels of the Ewald field when the first approach described in Section 2.2.5 is used; if

negative, the number of nested grid levels is calculated automatically from the minimum cell size (type: integer, default: −1)
grv_bhLinearInterpolOnlyV42– indicates whether the linear interpolation in the Ewald field is used (with the first approach

described in Section 2.2.5); if false, then the more expensive and accurate quadratic interpolation is used for some calculations (type: logical,
default: true)

grv_bhEwaldFNameAccV42– name of file to store the Ewald field accelerations when the first approach described in Section 2.2.5 is
used (type: string, default: ‘ewald_field_acc’)

grv_bhEwaldFNamePotV42– name of file to store the Ewald field potential when the first approach described in Section 2.2.5 is used
(type: string, default: ‘ewald_field_pot’)

grv_bhEwaldNPer– number of points in each direction of the Ewald field coefficients when the second approach described in
Section 2.2.5 is used (type: integer, default: 32)

grv_bhEwaldFName– name of file to store the Ewald field coefficients in the case the second approach described in Section 2.2.5 is
used (type: string, default: ‘ewald_coeffs’)

grv_useExternalPotential– indicates whether the external time-independent gravitational potential read from file is used (type:
logical, default: false)

grv_usePoissonPotential– indicates whether the potential (or accelerations) computed by the (tree) Poisson solver is used (type:
logical, default: true)

grv_bhExtrnPotFile– name of file with the external gravitational potential (type: string, default: ‘external_potential.dat’
grv_bhExtrnPotType– symmetry of the external gravitational potential; currently, two options are available: ‘spherical’ and ‘planez’

(plane parallel, varying along the z-direction); (type: string, default: ‘planez’)
grv_bhExtrnPotCenterX– centre of the external potential x-coordinate given in the FLASH internal coordinates (type: real, default:

0)
grv_bhExtrnPotCenterY– same as the preceeding parameter but for the y-direction
grv_bhExtrnPotCenterZ– same as the preceeding parameter but for the z-direction

B3 Optical depth module parameters

tr_nSide– level of the HEALPIX grid; number of pixels is NPIX = 12 × 4(tr nSide−1) (type: integer, default: 1)
tr_ilNR– number of points in the radial direction for the calculation of the fraction of node that intersects with a given ray (type: integer,

default: 50)
tr_ilNTheta– number of points in the θ -direction of the table recording a fraction of the node that intersects with a ray at a given θ

(type: integer, default: 25)
tr_ilNPhi– number of points in the φ-direction of the node-ray intersection table (type: integer, default: 50)
tr_ilNNS– number of points describing the angular node size in the node-ray intersection table (type: integer, default: 25)
tr_ilFinePix– number of additional pixels in each angular directions used to calculate the node-ray intersection table (type: integer,

default: 4)
tr_bhMaxDist– maximum distance from a target point up to which the optical depth is calculated (type: real, default: 1099)
tr_odCDTOIndex– exponent relating the gas density to the absorption coefficient used during the calculation of the optical depth in a

given direction (type: real, default: 1)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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