

CARDIFF Effects of mechanical load on cytoskeletal protein arrangement in scleral fibroblasts

¹School of Biosciences, Cardiff University; ²School of Optometry and Vision Sciences, Cardiff University; ³School of Engineering, Cardiff University; ⁴Department of Biomedical Engineering, National University of Singapore

Purpose

- Glaucoma: Second most prevalent cause of blindness, with nearly 80 million affected and expected to reach 112 million by 2040¹:
- Peripapillary sclera (PPS): Main contributor of force transfer from fluid intraocular pressure (IOP) and eye movements to the optic nerve head – implying a role in glaucoma².
- Cytoskeleton: Composed of 3 different protein networks, which provide biomechanical stability and signal transduction to the cell.
- Previous research: Extensive study of the extracellular component of the PPS connective tissue, while the cellular biomechanics require further elucidation.
- This study: We investigated the effects of cyclic tensile strain (CTS), mimicking IOP, on cultured scleral fibroblasts and associated alterations in the cytoskeletal fiber architecture.

Methods

- Cells: Scleral fibroblasts from PPS explants from young adult cattle.
- Seeding: 0.4x10⁶/well onto type I collagen coated **BioFlex™(FlexCell International)** 6-well culture plates.
- Load: Equibiaxial CTS mimicking physiological IOP (0.26-1.8%, 1Hz), pathological IOP (0.6-4%, 1Hz) or unloaded state, applied to the cells for 1h using an FX 3000 tensile system (FlexCell International):

pr	$\sigma = \text{in-wall stress} (18.2 \text{kPa}); p = \text{IOP} (3.6 \text{kPa})^3;$
$0 = \frac{1}{2t}$	r = eye radius (16.2mm);
σ	<i>t</i> = eye tunic thickness (1.6mm).
$\mathfrak{E} = \frac{1}{F}$	<mark>ε = strain; <i>E</i> = Young'</mark> s modulus (1-7MPa) ⁴ .

- Fixation: 2% Paraformaldehyde for 15min, 1h, 6h or 24h after CTS.
- Immunocytochemistry:

F-Actin – Alexa-488[®] phalloidin (1:40; Sigma-Aldrich). • β-Tubulin – Primary mouse E7 antibody (1:500; DSHB); Secondary goat anti-mouse IgG Alexa-594[®] antibody (1:400; Invitrogen). • Vimentin – Primary mouse V9 antibody (1:100; Sigma-Aldrich); Secondary goat anti-mouse IgG

Alexa-594[®] antibody (1:400; Invitrogen).

- Imaging: Zeiss LSM 880 confocal microscope with Airyscan in Fast mode.
- Image analysis: ImageJ (FibrilTool).

Statistics:

- Distribution: Anderson-Darling test.
- Location: One-way ANOVA.
- Dispersion: Two-sample F-test.
- Post-hoc: Tukey's test.

24h

Table1: Effects of physiological (normal) and pathological (glaucomatous) cyclic tensile strain (CTS) on bovine scleral fibroblasts. Comparison of changes of fiber alignment, cell eccentricity (width/length) and area against unloaded group.

Note: Arrow size correlates the amount of alterations. – Increase; – Decrease; – No Significant Change.

Unloaded: Low alignment, high eccentricity, small area. No exhibited changes as time progresses.

Petar Markov^{1,2,3}, Craig Boote^{2,4}, Hanxing Zhu³, Emma Blain¹

Figure 1: F-Actin cytoskeleton remodels 1h after physiological cyclic tensile strain (CTS) and at 24h after pathological CTS. Box plots of cytoskeletal fiber anisotropy assessed by FibrilTool. Results are grouped by applied CTS and relaxation time.

Study Outcomes

Figure 2: Vimentin cytoskeleton remodels 1h after physiological cyclic tensile strain (CTS). Box plots of cytoskeletal fiber anisotropy assessed by FibrilTool. Results are grouped by applied CTS and relaxation time.

						T	
	Eccentricity [a.u.] Area [µm ²]						
Time	Phys	Path	Unl	Phys	Path	Unl	
1h	0.441	0.553	0.586	4430	3966	2021	
	±0.131	±0.121	±0.157	±1476	±1336	±934	
6h	0.495	0.561	0.648	3994	4529	2129	
	±0.166	±0.148	±0.129	±1872	±1641	±967	
24h	0.604	0.492	0.633	3554	4840	1944	
	±0.154	±0.168	±0.149	±1589	±2331	±883	
Table ²	Cell ecce	ontricity (width/he	pight) and	d area of	bovine	
scloral f	ibroblast		iromonto	takon w	ith Imag		
SCIEIALI	וטוטטומאנ	\mathbf{S} . IVICASU	11 511151113		1111 1111021		
Doculto	aro grouu	and by a	oplied CT	S and ro	lavation	timo	F
Results	are grou	oed by a	pplied CT	S and re	laxation	time.	F
Results	are grou	oed by a	pplied CT	S and re	laxation	time.	
Results	are grou	oed by an	oplied CT	S and re	laxation tS	time.	1. g ;
Results	are grou	oed by an	pplied CT wledg	S and re	laxation T	time.	1. gl: m
Results EPSR	are grou	oed by an	oplied CT wledg	S and re ement	laxation IS Cardiff Sch	bol of Biosciences	1. gl m 2.
Results Results Engineering and Pr Research Council	are grou	oed by an	oplied CT wledg	S and reement	laxation ts Cardiff Scho BIOIN	bol of Biosciences	1. gl m 2. Bo
Results	are grou	oed by an Acknow	oplied CT wledg	S and re ement	laxation ts Cardiff Scho 8 IOIN H	bol of Biosciences	1. gl; m 2. Bo gl;
Results	are grou	oed by a Acknow	pplied CT wledg	S and re ement	laxation ts	bol of Biosciences	1. gl m 2. Bo gl 3. <i>Ve</i>
Results	are grou	oed by a Acknow (2) Di	oplied CT wledg	S and reement	laxation ts Cardiff Scho Bioin H	time.	1. gl; m 2. Bo gl; 3. <i>Ve</i> 4.

Figure 3: β-Tubulin cytoskeleton remodels 1h after physiological cyclic tensile strain (CTS). Box plots of cytoskeletal fiber anisotropy assessed by FibrilTool. Results are grouped by applied CTS and relaxation time.

Conclusions

hysiological CTS/IOP: Causes high alignment of the ytoskeleton, specifically the actin stress fibers. 24h after TS the effect has not completely disappeared.

athological CTS/IOP: Inhibitory influence on protein rientation. 24h the fibers reorganize to the initial hysiological phenotype.

uture work: Incorporation of cytoskeletal protein rganization in finite element models to study glaucoma.

References

Im Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y (2014). Global prevalence of oma and projections of glaucoma burden through 2040: A systematic review and analysis. Ophthalmology 121(11): 2081-2090.

inka JK, Coudrillier B, Ziegler K, Sorensen T, Meek KM, Nhugyen TD, Quigley HA, C (2012). Quantitative mapping of collagen fiber orientation in non-glaucoma and oma posterior human sclerae. *Invest Ophthalmol Vis Sci* 53(9): 5258-5270.

m G, Gelatt K, Miller D, Mackay E (1998). Intraocular pressure in normal dairy cattle. ohthalmol **1**: 159-161.

viller DV, Lee SJ, Kolipaka A, Mariappan YK, Glaser KJ, Pulido JS, Ehman RL (2010). MR graphy of the ex vivo bovine globe. J Magn Reson Imaging 32: 44-51.