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Abstract

Time-critical applications, such as early warning systems or live event broad-
casting, present particular challenges. They have hard limits on Quality of
Service constraints that must be maintained, despite network fluctuations
and varying peaks of load. Consequently, such applications must adapt elas-
tically on-demand, and so must be capable of reconfiguring themselves, along
with the underlying cloud infrastructure, to satisfy their constraints. Soft-
ware engineering tools and methodologies currently do not support such a
paradigm. In this paper, we describe a framework that has been designed
to meet these objectives, as part of the EU SWITCH project. SWITCH
offers a flexible co-programming architecture that provides an abstraction
layer and an underlying infrastructure environment, which can help to both
specify and support the life cycle of time-critical cloud native applications.
We describe the architecture, design and implementation of the SWITCH
components and describe how such tools are applied to three time-critical
real-world use cases.
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1. Introduction

Many industrial time-critical applications, such as disaster early warning
systems, video conferencing, online gaming or live event broadcasting have
highly time-critical requirements for their performance and present particular
challenges for successful development, deployment and maintenance. They
can only achieve their expected business value and outstanding social impact
if they meet time-critical requirements, such as high performance, portabil-
ity, availability, resilience and responsiveness. Furthermore, they must pre-
dict and cope with (unpredicted) peaks of load and offer rapid elasticity of
on-demand computing resources and reconfigurability of underlying cloud in-
frastructure in order to meet the desired Quality of Service (QoS) (e.g. low
response time and jitter) and Quality of Experience (QoE) (e.g. delivery of
ultra-high definition television feeds) constraints.

Time-critical applications often involve distributed components and in-
tensive data communication and may include remotely deployed field sensors
in various geographical locations. However, the design, development and
deployment of such applications are usually difficult and costly due to de-
manding requirements for the virtual runtime environment and sophisticated
optimisation mechanisms needed for integrating the system components and
provisioning the entire application. The cloud ecosystem provides elastic,
controllable and on-demand services which can support complex time-critical
applications. However, there is a lack of software engineering tools and meth-
ods for development, deployment and execution of such applications that
would include programmability and controllability provided by the Clouds.
Consequently, time-critical applications cannot get the full potential bene-
fits from cloud-based technologies. Therefore, it is necessary to introduce
novel software tools and approaches able to support fully the entire life cy-
cle of time-critical applications for enhanced and optimised QoS by offering
controllable and programmable features, such as (graphical) modelling of an
application logic and workflow, infrastructure planning and provisioning, etc.

The aim of our research was therefore to assure self-adaptation, scalabil-
ity, service availability and resilience by devising an application-infrastructure

2



co-programming model and architecture that will provide a controllable and
programmable environment for the creation of the application logic and work-
flow, enable reconfigurability of on-demand computing resources and under-
lying virtual runtime infrastructure, according to application needs.

The application-infrastructure co-programming model uses a unique ar-
chitecture supported by three subsystems: SWITCH Interactive development
Environment (SIDE), Dynamic Real-time Infrastructure Planner (DRIP) and
Autonomous System Adaptation Platform (ASAP). SIDE provides a Graphi-
cal User Interface (GUI) for creation of software components and composition
of an application’s logic and workflow, and for monitoring and control of ap-
plications. Furthermore, it allows mapping application logic and workflow
into TOSCA (OASIS Topology and Orchestration Specification for Cloud
Applications) [1], direct manipulation of TOSCA fragments, and graphical
modelling of docker compose files. The DRIP subsystem is responsible for
infrastructure planning, provisioning, deployment and execution of applica-
tions in the virtual cloud infrastructure. ASAP provides monitoring services
and facilitates scaling of applications, alarm triggers and self-adaptation.

The rest of this paper is organised as follows. Section 2 provides an
overview of the related work. Section 3 presents the application-infrastructure
co-programming model. In Section 4 we introduce the general SWITCH ar-
chitecture with its subsystems, TOSCA orchestration standard and software
engineering workflow in SWITCH. The example time-critical industrial cloud
applications that implement SWITCH are described in section 5. We reveal
the results of the evaluation in Section 6 and finally, we discuss future re-
search options and conclude the paper with Section 7.

2. Related Work

SWITCH is not an isolated project; there are several other groups working
on related problems, dealing with application composition, orchestration,
deployment and adaptation of systems and workflows. However, SWITCH
is unique since it is focused on time-critical applications, which are arguably
the hardest to support in the current cloud ecosystem.

2.1. Cloud-based frameworks and methodologies

The ARCADIA methodology [2] offers deployment to multi-clouds and
automatic real-time reconfiguration of applications. It relies on the modelling
of software components in order to compose applications. Although the
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framework provides orchestration, Multi-Cloud deployment and a drag and
drop service graph manager, it does not allow additional QoS properties to
be attached to the components (e.g. QoS constraints, hardware requirements
etc.); neither does it offer TOSCA manipulation.

Two service modelling tools exist for creation of Cloud applications and
services. Juju [3] is a component-based graphical modelling tool for service-
oriented architectures and application deployments, offering sets of prede-
fined software assets and the relationships between them that contain knowl-
edge of how to properly deploy and configure selected services in the Cloud.
The other tool is Fabric81, a platform using Docker and Kubernetes as vir-
tualisation and orchestration technologies respectively. It supports creation,
deployment and continuous integration of microservices. However, these two
service modelling tools do not have specific provisioning for time-critical ap-
plications, and do not offer infrastructure planning and provisioning.

On the other hand, the MODAClouds [4] methodology supports devel-
opment of time-critical applications in the cloud but lacks support for soft-
ware defined networking as a means of allowing programming and control-
ling the cloud infrastructure for performance optimisation; also it does not
offer TOSCA manipulation and mapping. Finally, the CloudWave [5] and
SSICLOPS [6] methodologies focus on tools for runtime monitoring of appli-
cations and services whereby Cloud services may accommodate changes in
their requirements and context and meet their expected quality constraints.
The CloudWave methodology proposes an architecture and implementation
of Cloud benchmarking web services, however, it only measures and compares
the disk speeds of different instances and storage types in Amazon EC2 and
does not take into consideration the dynamic nature of the incoming data
streams to deployed VMs or containers, which is one of the requirements of
the SWITCH project.

Pegasus [7] encompasses an architecture and a set of technologies for ex-
ecution of workflow-based applications in a variety of environments, such as
clouds and grids, by automatically mapping pre-created high-level scientific
workflows from the scientific domain to their execution environment. Simi-
larly, Apache Airavata [8] enables composition, execution and monitoring of
large-scale applications and workflows on distributed computing resources.
It supports long running application workflows on distributed computational

1http://fabric8.io/guide/overview.html
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resources. However, in terms of flexibility Pegasus and Airavata do not offer
modification of any orchestration specification standards (e.g. TOSCA) nor
do they support containerisation. The lack of support for programmability
and controllabillity of application composition and the underlying architec-
ture mean they are not suitable for time-critical applications.

The MiCADO [9] cloud orchestration framework investigates how auto-
matic orchestration can be applied to cloud applications. As an orchestration
standard TOSCA is used. However, this framework does not support map-
ping QoS notations into TOSCA, e.g. component-based hardware require-
ments, environment variables (an important requirement for SWITCH).

2.2. Cloud Infrastructure related provisioning approaches

Ensuring high QoS for real-time Cloud systems requires specialised in-
frastructure [10]. Infrastructure programmability and advanced virtualisa-
tion technologies, such as Software Defined Networking (SDN) [11] and Net-
work Functions Virtualisation (NFV) [12], provide good flexibility in how
infrastructure is managed and functions are deployed [13]. Time-critical re-
quirements may be concerned simply with speed, e.g. minimising latency, or
jitter, e.g. ensuring latency is kept consistent [14]. For custom infrastruc-
ture planning and optimisation, techniques such as multi-objective optimi-
sation [15, 16] can map application requirements to infrastructure resources
more effectively. This can then be used to identify violations of Service Level
Agreements (SLA) [17]. For example, deadlines on the critical paths through
media application workflows can be used to select virtual machines [18], au-
tomatically provisioning them even across multiple sites [19]. Transfer of
application data can then be scheduled efficiently to the best sites [20, 21].

A taxonomy of (federated) Cloud computing environments is provided
by Toosi et al. [22]. The semantic modelling of infrastructure and network
may be needed for more intelligent infrastructure planning and monitoring.
For example, MADL [23] uses an ontology to describe infrastructure for the
storage, transportation and display of high-definition media; INDL provides
ontologies for programmable network and infrastructure [24]. Such mod-
els might be used to extend cloud system specification standards such as
TOSCA [25]. NDL-OWL [26] provides a Semantic Web model for networked
cloud orchestration modelling network topologies, layers, utilities and tech-
nologies; it extends the Network Description Language upon which INDL is
based and uses OWL. Efficient provisioning is crucial for the enhanced QoS of
running applications. Therefore various optimisation approaches are highly
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desired, such as Multi-criteria optimisation approach for the management of
Non-Functional Requirements [16].

2.3. Adaptation and monitoring related approaches

Most adaptation research has focused on finding solutions for systems
that use heterogeneous infrastructure but homogeneous components. For
instance, A. Llanes et al. [27] developed a system to balance ant colony
optimisation tasks on heterogeneous infrastructure. P. Jamshidi et al. [28]
presented a system based on fuzzy logic and the vPerfGuard [29] team de-
veloped a system that can predict performance based on low-level metrics.

Cloud applications are affected by more than just performance of the in-
frastructure. Network characteristics between subsystems also play a crucial
role, as noted by D. Kliazovich et al. [30] with their CA-DAG model. In that
work, the authors present Communication Aware Directed Acyclic Graphs
(CA-DAG) used to model not only the performance of components but also
the communications between the components.

2.4. Gap analysis

SWITCH focuses on application composition using modelling graphs and
reconfiguration of underlying cloud infrastructure – by describing the func-
tional and Non-Functional Requirements. The application-infrastructure Co-
programming concept is predicated upon rapid infrastructure provisioning,
deployment and reconfigurability, according to network and cloud environ-
ment circumstances. In addition to application composition, an application
must be monitored, adapting it according to criteria specified by the software
developer. Although some elements of the SWITCH approach appear in prior
work and systems, SWITCH brings these together and provides an integrated
architecture and environment for application-infrastructure co-programming
of an applications with time-critical constraints.

3. The concept of application-infrastructure Co-Programming

Several participants are involved in developing modern complex systems.
The component developer is the person that creates or modifies application
components, for instance a database. (S)he can add monitoring to these
components in the form of prefabricated probes or special application-level
metrics. Once a component has been created it can be added to the repos-
itory and its requirements and functionality described in SIDE. Note that a
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component developer can use a preexisting component and simply make it a
SWITCH component by describing it in SIDE.

The application developer binds these prefabricated components together
into an application while deciding different properties, such as what network
they are part of or what port they are using, and sets up additional param-
eters such as the Alarm Trigger, etc. The application user uses the final
application. (S)he can monitor the application and trigger adaptation, if the
system was set up in this manner.

The application-infrastructure co-programming model (see Figure 1) pro-
vides abstractions and mechanisms to support QoS throughout the time-
critical cloud application life cycle, by means of programmability and con-
trollability of application logic and reconfigurability of the underlying infras-
tructure.

Figure 1: The concept of the application-infrastructure co-programming model which,
through programmability and controllability, considers both the creation of the application
logic and workflow and manipulation of the underlying (cloud) infrastructure.

Programmability of a system is its ability to be changed or manipulated,
using instructions (e.g. from the software developer) that alter its behaviour.
Controllability is a system property that denotes measuring its state, manip-
ulating its outputs and monitoring/controlling its behaviour.

In the SWITCH workbench programmability is supported as follows: (1)
application logic can be programmed using graphical modelling graphs with
the consideration of an application’s QoS parameters; (2) a virtual run-
time environment for executing the application can be programmed using
DRIP middleware services for the manipulation and reconfigurability of the
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underlying infrastructure (e.g. Software Defined Network) and on-demand
resources; (3) programmable mechanisms are provided for deployment and
adaptation of time-critical cloud applications; (4) QoS properties to be at-
tached to components can be created programmatically as well. In con-
trast, controllability is achieved by (1) monitoring the behaviour of time-
critical cloud applications and the underlying infrastructure at runtime (e.g.
monitoring various metrics related to the application and its present state
at runtime and offering possibilities to influence/reconfigure infrastructure
properties if QoS is affected), and (2) controlling the workflow of component
creation and application logic (e.g. by applying verification mechanisms to
verify the correctness of application logic and also the correctness of TOSCA
in which application logic is mapped). SWITCH checks that all constraints
the component needs are provided and that the YAML description is valid.

3.1. Co-programming in comparison to DevOps and Software Defined Net-
work

DevOps [31] is the combination of cultural philosophies, practices, and
tools that increases the speed of application delivery. It automates the pro-
cesses between software development and IT teams for faster building, test-
ing, and releasing of software. The typical life cycle of an application in
the DevOps process encompasses planning, building, continuous integration,
deployment and operation. There are concrete tools and frameworks that
support DevOps, such as Chef2 and Jenkins3. On the other hand, Software
Defined Network (SDN) offers abstraction of the network domain, and pro-
vides programmability of the network configuration. This means the network
should therefore be more flexible and suitable for rapid changes. However,
neither approach offers programmability of the application logic or workflow
throughout the entire application life cycle.

The application-infrastructure co-programming model, however, offers
both programmability and controllability in the application logic design and
development, and in the planning and provisioning of the virtual cloud infras-
tructure across the entire life cycle of time-critical applications. The unique
abstraction of the co-programming model, supported by the SWITCH archi-
tecture, is designed to provide increased productivity of application design

2https://www.chef.io/
3https://jenkins.io/
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and development, improved planning and provisioning and deployment effi-
ciency, and improved QoS control efficiency. Co-programming gives the con-
trol over the application workflow and infrastructure to the developer, pro-
viding the ability to specify the constraints of the containerised microservice-
based components or system during development, thus making sure that the
developed components act in the manner they were intended. This minimises
the chance of errors during creation, provisioning and deployment.

4. SWITCH architecture

In this section, the architecture of SWITCH and its three subsystems
(SIDE, DRIP, ASAP) is presented (see Figure 2). The idea behind SWITCH
is that the SWITCH subsystems are deployed in a shared environment for
use in development of multiple applications.

Virtual 
Machines

Monitoring 
Server

Alarm 
Trigger

TSDB

Monitoring 
Adapter

Monitoring 
Probe

ASAP

Information
Service

Performance 
Diagnoser

Self 
Adapter

KB

DRIP

DRIP
Manager

Provisioner

Planner

Control
Agent

Deployment
Agent

DB
SIDE

Backend Frontend

Monitoring 
Probe

Cloud
Application
component

Application
component

YAML
</>

Figure 2: Overall architecture of SWITCH. The main components of the system, SIDE,
DRIP and ASAP are colour-coded. Technologies used are identified by their icons or logos.
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4.1. SWITCH Interactive Development Environment (SIDE)

SIDE is the interactive GUI of the SWITCH workbench. It offers inter-
active service modelling graphs for the design of the application workflow
for containerised microservice-based cloud-native applications, and supports
tasks including the following: component creation, application composition,
application validation, infrastructure planning, provisioning, deployment and
monitoring (see Figure 3). SIDE captures the application-infrastructure co-
programming concept by giving the developer options for describing the re-
quirements, constraints and underlying infrastructure of a system.

The SIDE frontend4 is a GUI implemented using EmberJS technology
which comprises several views, such as a component creation view and an
application composition view. For the actual creation of modelling graphs
the JointJS library is used and the Ember models are built on top of this.

The SIDE backend5 uses the Django framework. It interacts with Ember
Models, which provide the information on how to present the application
modelling graphs. The description of an application’s logic and workflow is
mapped into TOSCA YAML format. The Django-based code validates the
application as well. It checks if QoS parameters attached to the components
are composed correctly, i.e. if they are generated into a valid YAML file, and
if all mandatory parameters (e.g. hardware requirements, such as number of
CPUs, amount of memory, etc.) for the specific component are defined. The
backend communicates with other SWITCH subsystems by calling the APIs
of DRIP and ASAP and provides generated TOSCA in which application
logic and workflow are mapped. Furthermore, the SIDE backend receives
the returned TOSCA for planning and provisioning and presents it to the
software developer or DevOps engineer.

From the software developer’s perspective, SIDE supports creation of
the detailed specification of a system with dependency modelling graphs by
dragging and dropping components (e.g. containerised software created from
images pulled from DockerHub) onto a canvas, setting values for properties
and linking them to specific components (see Figure 3). Moreover, using
modelling graphs, created components can be suitably linked to one another
to define the entire application logic and workflow and therefore describe the

4https://github.com/switch-project/SWITCH-version-2/tree/master/SIDE/side-
ember

5https://github.com/switch-project/SWITCH-version-2/tree/master/SIDE/side api
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Figure 3: Example of an application composition in the SWITCH workbench. In the
magnifying glass all properties that can be linked to the component and set as constraints
are shown. The entire modelling graph presents the application composition of the BEIA
use case. It is made up of various components to which properties are attached.

entire cloud native application. The specification of the system and underly-
ing infrastructure can be added as well. Before mapping the application logic
into TOSCA, application composition is verified and validated for errors (e.g.
missing QoS parameters or incompatible components linked to one another).

An additional novelty that goes beyond the project’s objectives is the no-
tion of Qualitative Metadata Markers (QMM). These are suitable for mod-
elling software components and were integrated into SIDE as a proof-of-
concept. They give insight into which time-critical requirements have the
greatest impact on the QoS. A QMM provides probabilities, showing which
parameters have the greatest correlation with the QoS of a particular soft-
ware component [32]. According to this information, time-critical require-
ments can be considered for further analysis since they are crucial for the
application’s QoS. The time-critical requirements with the greatest (positive
or negative) influence on the QoS of the entire Cloud application can be ex-
changed between middleware services and are sent to a Multi-criteria decision
making module. Time-critical requirements are usually mutually conflicting:
altering one parameter usually has profound effects on the others. For ex-
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ample, increasing the availability of an application requires increased system
redundancy, which can mean high operational costs. Selecting the most op-
timal trade-offs between multiple application runtime parameters can be a
time-consuming and error-prone process, especially if considering complex
Multi-Cloud environments. Our novel approach can help software engineers
in the decision-making process to narrow down the number of virtual machine
instances to an optimal number according to defined conflicting objectives
(e.g. response time, monetary cost, etc.) [16]. Application components can
then be deployed to these instances.

4.2. The Dynamic Real-time Infrastructure Planner (DRIP)

DRIP6 is an open source service suite for automatically planning and
provisioning networked virtual machines (VMs), deploying an application
components and managing the resulting infrastructures at runtime. DRIP
provides a holistic approach to the optimisation of resources and the satis-
faction of application-level constraints such as deadlines or SLAs. DRIP can
provision a virtual infrastructure across several cloud providers, and can be
used to start, stop and resume execution of application components on de-
mand. In particular, use of Open Cloud Computing Interface (OCCI) enables
provisioning on multiple clouds and it supports various orchestration systems,
such as Docker Swarm and Kubernetes. These functionalities are essential
application-infrastructure co-programming, providing application developer
with the ability to create systems that will meet their requirements.

The DRIP services (as shown in Figure 2) include:

• An infrastructure planner,
• An infrastructure provisioner,
• A deployment agent,
• Infrastructure control agents,

• A knowledge base,

• The DRIP manager,

• An internal message broker.

The infrastructure planner uses an adapted partial critical path algorithm
to produce efficient infrastructure topologies based on application workflows
and constraints by selecting cost-effective VMs [18], customising the network
topology across VMs. The infrastructure provisioner can automate the pro-
visioning of infrastructure plans produced by the planner onto the underlying
infrastructure; it can decompose the infrastructure description and provision

6https://github.com/switch-project/SWITCH-version-2/tree/master/DRIP
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it across multiple data centres (possibly from different providers) with trans-
parent network configuration [19]. The deployment agent installs application
components onto provisioned infrastructure. The deployment agent is able to
schedule the deployment sequence taking network bottlenecks into account,
and to maximise the fulfilment of deployment deadlines [21]. The infrastruc-
ture control agents are sets of APIs that DRIP provides to applications to
control the scaling of containers or VMs and for adapting network flows. The
DRIP manager is a Web service that allows DRIP functions to be invoked by
external clients. Each request is directed to the appropriate component by
the manager, which coordinates the components and scales them up if neces-
sary. Resource information, credentials, performance profiles and application
workflows are all internally managed via an internal knowledge base.

The provisioner’s default provisioning interface is OCCI; it currently sup-
ports the Amazon EC27, EGI FedCloud8 and ExoGeni9 clouds. The deploy-
ment agent can deploy over Docker clusters (e.g. Docker Swarm, Kuber-
netes), and can deploy customised applications based on Ansible playbooks10.

DRIP requires an application description from the software developer,
identifying the specific components to be deployed along with their require-
ments, dependencies and constraints. This must be complemented by infor-
mation about infrastructure resources (e.g. VM types and network band-
width) obtained from the cloud providers. When a planning request arrives
from SIDE (initiated by the software developer) the infrastructure planner
generates a plan, which is sent from DRIP to SIDE and presented to the
software developer for confirmation. A confirmed plan can then be given to
the provisioner, along with necessary cloud credentials on behalf of the user if
not already present in DRIP’s knowledge base. DRIP provisions the planned
infrastructure via interfaces offered by the selected cloud providers. The de-
ployment agent then deploys all necessary application components onto the
provisioned infrastructure from designated repositories and sets up control
interfaces needed for runtime control of both application and infrastructure.

7https://aws.amazon.com/cn/ec2
8https://www.egi.eu/federation/egi-federated-cloud/
9http://www.exogeni.net/

10https://www.ansible.com/
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4.3. Autonomous System Adaptation Platform (ASAP)

ASAP provides runtime adaptation and as such requires a stable and
modifiable monitoring system that can be extended with additional func-
tionalities enabling it to change system characteristics on the fly, by adding
additional components, visualising system state and changing the infrastruc-
ture of the system. ASAP focuses on auto-scaling and allows for geographic
orchestration (in multi-cloud environments), and multi-instance and multi-
tenant operations. The ASAP subsystem (see Figure 2) comprises:

• Monitoring Probes,
• Monitoring Agents,
• Monitoring Server,
• Alarm Trigger,
• Time Series Database,

• Knowledge Base,
• Information Service,
• Performance Diagnoser,
• Self-Adapter, and
• Control Agent.

Figure 4 shows the adaptation sequence, from capturing the monitoring
data on probes and agents to the final usage of this information.

Figure 4: The dataflow of an ASAP adaptation solution.

At the first step, the purpose of Monitoring Probes and Agents is to collect
the data that represents the current state of the application and infrastruc-
ture, and then aggregate and transfer the measured values to the Monitor-
ing Server and the Alarm Trigger. The Monitoring Probes are lightweight,
extensible and inherently decentralised. They have the ability to collect un-
structured data from advanced probes, such as request process time through
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multiple components. The Monitoring Server receives the collected data and
stores it in the Time Series Database (TSDB) to build a comprehensive repre-
sentation of the system state. The Performance Diagnoser uses the informa-
tion stored in the TSDB to construct a model for assessing the performance.
This model is designed so that any problems that need corrective action can
be identified. Concurrently, the Alarm Trigger investigates whether the mea-
sured values of monitored parameters exceed associated thresholds. When
problems are detected, the Self-Adapter is invoked to propose suitable adap-
tation strategies. This component specifies a set of adaptation actions for the
Control Agent allowing the transition of the whole system from its current
state to the desired state. The Control Agent, which has the full control of
application configurations and infrastructure resources (e.g. VMs/containers
and network bandwidth), finally performs the adaptation actions [33]. These
can be automated to restart a non-functioning component or set of compo-
nents, adding a new instance of a component or moving the component to a
different, potentially new VM.

In order to simplify development, an adapter was created to communi-
cate the JCatascopia [34] messages to the Monitoring Server, without using
the native Monitoring Agents. The adapter uses StatsD11 to collect met-
rics from the infrastructure and feeds them to the JCatascopia Server. The
infrastructure-level metrics are collected by ASAP and processed in the same
way as application-level metrics. Information such as CPU, disk and mem-
ory usage is collected by the probes, and published in metric groups (e.g.
’CPUProbe’, ’DiskStatsProbe’ and ’MemoryProbe’).

4.4. TOSCA as a SWITCH Co-Programming language

A range of data must be exchanged between the three SWITCH subsys-
tems (SIDE, DRIP and ASAP) such as the user’s specifications, application
logic, time-critical constraints during an application’s deployment, execution
and runtime, etc. Therefore, SWITCH needs a suitable language to define
and serialise such information concepts. The role of the TOSCA orchestra-
tion specification standard as an application-infrastructure co-programming
language in SWITCH is to provide a format for storing programmable logic,
such as dependency modelling graphs, along with the associated metadata,
such as information on the quality constraints of applications, and require-

11https://www.librato.com/docs/kb/collect/collection agents/stastd/
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ments and dependencies among containerised software components.
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Figure 5: The TOSCA orchestration standard with its templates, application and provi-
sioning plan description as they are mapped to TOSCA and used in the SWITCH work-
bench.

The core of the application logic description and workflow in TOSCA
is the Service Template, which consists of a Topology Template and Man-
agement Plans, as can be seen in Figure 5. The topology template de-
fines the structure of the application, whereas the management plans define
the processes that are used to store the creation and termination informa-
tion of the application during its runtime. The topology template is a di-
rected graph containing node templates (vertices) and relationship templates
(edges). Node templates contain descriptions of all (containerised) software
components which are part of the application. Links, dependencies and re-
lations between the node templates are defined by relationship templates.
Node and relationship templates are typed by Node Types and Relation-
ship Types, respectively. Types define the semantics of the templates, as
well as their properties, their available management operations, and so on.
As TOSCA is based on YAML, its types can be refined or extended easily.
In SIDE the data is edited in a similar fashion, with the data mapping to
the TOSCA (Figure 6 (B,C)). An example of QoS constraints that can be
monitored and alarms set on them are presented in Figure 6 (A).

When mapping the application logic and workflow from modelling graphs
into TOSCA, containerised software components with attached information
on QoS parameters, such as hardware requirements (CPU, memory, . . . ), QoS
constraints (response time), port mapping, environment variables, etc. [35]
are mapped into Node Types. Programmable and required QoS parameters
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Figure 6: An example of TOSCA containing the Alarm trigger definition (A), an exam-
ple of UI describing hardware requirements (B), and the corresponding entry in TOSCA
(under TOSCA→ Node template→ Constraints (C)).

linked to specific components and dependencies among software components
that build cloud-native application are stored into Relationship Types.

Furthermore, the directed graph between the different node templates
represented in the topology template alongside the properties and constraints
(e.g. deadlines) defined for each node template, are used as input for the
DRIP planner and provisioner to obtain the underlying virtual infrastruc-
ture on which the application is deployed. The specification planning and
provisioning information, runtime characteristics and management of the ap-
plication throughout its entire life cycle are defined using management plans.

4.5. Workflow in the SWITCH workbench

The sequence diagram in Figure 7 illustrates the workflow in SWITCH.
After the user (e.g. software engineer) is successfully (1) registered and logged
into the SWITCH workbench (s)he gets redirected to the dashboard where
it is possible to choose between two main functionalities, such as component
creation and application composition.

When creating the component, first (2) a docker image is pulled from
DockerHub and stored into an internal SIDE repository (e.g. database). In
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Figure 7: The sequence diagram presents workflow in SWITCH workbench among all
three subsystems (SIDE, DRIP, ASAP).
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order to access advanced SWITCH functionalities a certain level of monitor-
ing either through the Monitoring Adaptor or by including a JCatascopia
probe must be added. Further on, (3) the application description is cre-
ated using dynamic modelling graphs. Firstly, in the component creation
phase a containerised component is taken from SIDE’s internal repository
and dragged and dropped onto the canvas. A unique and distinctive novelty
in the SIDE workbench is the way additional properties (e.g. QoS con-
straints, hardware requirements, environmental variables, volumes, etc.) can
be attached and manipulated to these containerised components using a com-
ponent creation modelling graph. As can be seen in the magnified part of
Figure 3 the component (dark blue rectangle) and various properties (circles
and diamonds), which can be dragged onto the canvas as well, are linked
to the component. With a right click on a specific property values can be
set manually for that property which are mapped into TOSCA. A variety of
properties can be attached to the components, such as (i) QoS constraints
(e.g. response time, jitter), (ii) Hardware requirements (CPU frequency,
memory etc.), (iii) Volume (enables a container to mount parts of the disk
to persistent storage), (iv) Port mapping, (v) Environmental variables, (vi)
Monitoring (monitoring components including the Monitoring Agent) [35].

The containerised component with linked properties is stored into the
SIDE internal repository and can be (re)used and modified when composing
larger multi-tier cloud native applications, via the application composition
view [36]. After the application is composed (i.e. components with their
properties are linked to one another and present a fully functional multi-
tier microservice-based cloud-native application) (4) it is verified that all the
components are correctly linked and the properties are set.

The entire application logic description is then mapped into the TOSCA
orchestration standard that can be edited and manipulated in SIDE. Chang-
ing TOSCA directly also has an effect on modelling graphs. After creating
TOSCA (5) it is verified for its correctness and (6) passed to DRIP via a
RESTful API. According to the application description and set properties
(e.g. constraints) DRIP calculates the size and amount of VMs needed for
the optimal run of the application in the multi-cloud environment and (7)
maps the provisioning plan into TOSCA which is (8) sent back to SIDE
for confirmation. After a software engineer approves the proposed plan in
SIDE (9), DRIP negotiates the SLAs of cloud providers and starts with the
(10) deployment and execution of the entire application in the cloud en-
vironment. When the application is running the (11) monitoring metrics
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are being collected from ASAP and (12) stored into the TSDB for the Self
adapter to analyse the data and monitoring server for monitoring metrics.
During application runtime, (13) the Alarm trigger is returning the status of
the application to SIDE. In case the thresholds for set constraints are vio-
lated (14) the Self adapter proposes scaling and sends the new plan to DRIP
that (15) calculates and deploys the new provisioning plan.

5. Application to the SWITCH Use Cases

The SWITCH project was designed and tested on three industrial time-
critical cloud applications. Each of these is supported by the SWITCH work-
bench in four ways: (1) defining the basic service components for the plat-
form, e.g. setting up the proxy edge, the management server, the VoIP
servers, the MCU Media mixer; (2) describing the application logic – sensor
data collection, data storage, processing, activation of warning services, the
properties for streaming services (input distributor and proxy transcoder);
(3) describing the quality requirements at system, network, infrastructure
and application levels, e.g. admissible percentage of packet loss or maximum
latency, or defining the type of machines needed, etc.; (4) monitoring the
runtime infrastructure and taking action if failure occurs (self-adaptation) or
if additional resources are required to support an increased number of users.
These four requirements map closely to the co-programming paradigm.

5.1. SWITCH requirements

Before the SWITCH architecture was defined, we analysed three indus-
trial time-critical applications: an elastic disaster early warning system12

(BEIA use case); a cloud studio for directing and broadcasting live events13

(MOG use case); and a collaborative real-time business communication plat-
form14 (WT use case). These three companies would be using SWITCH to
implement their solutions. Based on this, we created a minimal list of re-
quirements that should be satisfied by SWITCH, shown in Table 1. The table
presents the collected requirements identified by developers and researchers
in the field. Not all features are used by all the use cases, but all the use
cases have their requirements met by SWITCH.

12BEIA Consult, Romania, http://www.beiaro.eu/
13MOG Technologies, Portugal. http://www.mog-technologies.com/
14Welness Telecom, Spain, http://www.wtelecom.es/
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Table 1: Critical requirements that SWITCH offers within the component creation and
application composition phases for the WT, MOG and BEIA use cases.
Requirement WT MOG BEIA

Component definition
√ √ √

Component composition
√ √ √

Component configuration
√ √ √

Scalability settings
√ √

Network characteristics
√ √ √

Multicast definition
√

Monitoring
√ √ √

Response to system state
√ √

Manual reconfiguration
√ √

Setting up proxy
√ √

Management of VoIP Servers
√

The first three requirements (Component definition, composition and con-
figuration) are required by all applications. They are the pieces that enable
the description of the application. The Scalability settings enable the system
to define how each component is going to scale and what the requirements
are for it. For instance one of the requirements could be that a certain num-
ber of ports are available on the VM the component is running on. The
description of the network characteristics is also important for all the use
case applications, as time-critical applications are heavily dependant on the
network between the user and the application, and between each component.
In order to meet the changing demands of the application and the changing
environment, monitoring capability is required by all the applications. Most
applications require some adaptation based on the monitored system state
or Manual reconfiguration if certain services cannot be adapted on the fly
as this would disturb the normal functioning of the application. Addition-
ally to these global requirements there were some special cases that also had
to be met. MOG, due to the specifics of the system required the ability
to Multicast the data from their components. BEIA required the ability to
reconfigure proxies for their components. WT had requirements to manage
their VoIP servers to a finer granularity deciding, for each component and
deployment, which specific servers should be used.
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5.2. Switch collaborative real-time business communication platform

The Unified Communication (UC) platform (WT Use Case) is a real-
time, time-critical application for an enterprise business environment that
embraces communication among two or more users. The platform offers pres-
ence detection, an instant messaging service (chat), message delivery service
and audio and video calls. The architecture and interaction of SWITCH and
the use case is illustrated in Figure 8. To provide the desired system, the
developer needs control not only over the code that is running but also the
underlying architecture – the core of co-programming.

Figure 8: Architecture of the real-time UC platform.

The behaviour of the UC platform depends on the load demands of the
system. In order to meet QoS requirements, the system is designed to auto-
matically perform scaling if needed. Using SWITCH we can guarantee the
traffic demand of the UC use case while maintaining the proper operation of
the system no matter the workload (Figure 8). The SIDE subsystem allows
developers to define the system at container level with their QoS require-
ments. DRIP checks the resources needed for the service before starting
execution and deployment of the UC to different VMs. If the application
must be scaled up, DRIP will provision new resources in a cloud environ-
ment while maintaining QoS. ASAP is responsible for monitoring and raising
alarms when scaling is required.
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In Table 2 time-critical requirements for the WT use case are presented.
For the normal operation of Real-Time Protocol (RTP) Engine the most cru-
cial time-critical constraints that must be satisfied are delay and jitter with
130ms and 100ms, respectively. Similarly, for Asterix PBX and Dubango
WebRTC the most crucial is to satisfy jitter with threshold 150ms.

Table 2: QoS time-critical requirements in Unified Communication platform.

Component RTP Engine Asterix PBX Dubango WebRTC

Delay (ms) 130 10 500

Jitter (ms) 100 150 150

Bandwidth (Mbps) 2 2 2

Loss Rate (%) 1 1 2

Error rate (%) 1 >1 >1

5.3. Switch elastic disaster early warning system

An elastic disaster early warning system enables people and authorities
to save lives and property in case of disaster. In case of floods, a warning
issued with enough time before the event will allow for reservoir operators to
gradually reduce water levels, people to reinforce their homes, hospitals to
be prepared to receive more patients, and authorities to prepare and provide
help. The system uses advanced scaling techniques, combining VM provision-
ing and automatic SDN definitions to seamlessly increase the throughput of
the operations during high demand and moves the location of the infrastruc-
ture in order to maintain functionality during cloud downtime. To do this
the component and application performance must be monitored and main-
tained. In order to do this the QoS and the system requirements must be
specified.

An early warning system collects data from real-time sensors, processes
the information using predictive simulation tools and provides warning ser-
vices for the public to obtain more information. The implementation of such
a system faces several challenges, as the system must: (1) collect and process
the sensor data in nearly real-time; (2) respond to urgent events rapidly; (3)
predict the increase of load peaks in the network; (4) operate robustly and
reliably; (5) be scalable when the amount of data increases.

A more dataflow-oriented representation is included in Figure 9. The
Data Collector receives data from the Remote Telemetry Station through
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Figure 9: Functional diagram for an elastic disaster early warning system.

the IP Gateway. Collected data is stored in the Graphite Database. Data
is sent to the Graphite Database through a Monitoring Adapter. Sending
data this way is more efficient because it uses a simple protocol and a more
scalable sampling. Data stored in Graphite is easily displayed in Grafana
dashboards. When exceptional scenarios occur, the Data Collector sends a
HTTP request to the Alerter for notifying the end-users. When the Session
Initiation Protocol (SIP) Notifier receives a request from the Alerter it sends
it to the Asterisk software which handles request and sends the notification
through PABX.

Table 3: QoS in elastic disaster early warning system.

Component Graphite SIP Notifier IP Gateway

Delay (ms) 10 10 500

Jitter (ms) 1 1 N/A

Bandwidth (Mbps) 40 400 >1

Loss Rate (%) 0.5 0.5 1.5

Error rate (%) 0.1 0.1 0.5

Table 3 contains the relevant metrics for the early warning system. Due
to the nature of the system the SIP Notifier requires much higher bandwidth
(400 Mbps) since it communicates with call centres, while Graphite requires
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less (40 Mbps) since it only stores the data from IP Gateways.
Dispatching the alerts to the final agents (e.g. citizens, authorities) is

a time-critical component of this use case. Its elasticity mostly depends
on the ability of the Notification System to handle a significant amount of
call events. Each notification worker sends several application-level metrics
(including the number of outgoing calls and the memory usage) to the ASAP
subsystem through the Monitoring Adapter for an elastic provisioning level
to be offered by DRIP by increasing/decreasing the number of workers. In
order to meet these requirements the system must be described in concrete
terms, specifying the values of the monitoring metrics and the actions that
need to take place in order for the adaptation to occur so that it can be
adapted when the number of final agents changes.

5.4. Switch cloud studio for directing and broadcasting live events

For the production of live TV events, a distributed cloud application has
been developed within the SWITCH project, supported by the transmission
of video over IP. Through a Web App it allows the director to perform actions
such as changing the camera, selecting the number of input streams and
choosing the output feed [37]. Since the cloud studio is expected to be an
event-based service, i.e. it is started when it is needed and stopped when
the broadcast stops, the program and the architecture that can service the
system needs to be described, so that the deployment of the system can be
done quickly with different starting parameters.

This is a prime example of the co-programming concept, as it enables
the modification of the system - serving more cameras - and testing and
maintaining performance for the system during run time.

Table 4: QoS metrics in Switch Cloud Studio.

Component Imput Distributor Proxy
Transcoder

Video Switcher

Delay (ms) 30 30 30

Jitter (ms) 0.5 0.5 0.5

Bandwidth (Mbps) 130 130 130

Loss Rate (%) >0.1 >0.1 >0.1

Error rate (%) >0.1 >0.1 >0.1

Table 4, presents QoS metrics related to the MOG Use case. Jitter,
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and Loss and Error rates are of the greatest importance, while Delay is less
important, as video can arrive late, as long as it arrives at the same rate.

Each Input Distributor node is responsible for receiving an input stream,
decompressing and delivering it, by multicast, generating the resulting media
flows. In this case, the relevant nodes are the Video Switcher and the Proxy
Transcoder. Each Proxy Transcoder is responsible for transcoding the pair
of media flows it has subscribed to, generating a proxy version and making it
available externally, for example for a Web Application. The Video Switcher
must subscribe to the multicast addresses that the Input Distributors are
providing, store the data it receives, and serve it by multicasting the Flow
that the Business Logic determines [37].

Figure 10: Live multi-stream switching in the cloud.

Each Output node receives, by multicast, video flow from the Video
Switcher and delivers it abroad in a single stream. This means that there
may be multiple Outputs, including, for example, an Output that delivers
a stream with the same Input characteristics. Each component has specific
properties that can be configured. The necessary connections and complexity
can be added to build the desired scenario. The monitoring system (mon-
itoring adapter and server) is added automatically if at least one of the
components indicates that it has a monitoring agent attached.
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6. Evaluation

Although our evaluation briefly tackles productivity, in this section we
aim only to show that SWITCH IDE is capable of supporting software devel-
opment of cloud-native applications with co-programming efficiently through-
out their entire life-cycle. On the other hand, more evaluation, on real-world
tasks and with control groups, would be needed in order to prove that pro-
ductivity is improved by using SWITCH [38]. Most of productivity measure-
ments focus on Lines of Code, which cannot be used in our case, as SIDE is
closely related to graphic programming languages [39].

For the purpose of evaluation, we chose six academic researchers from
the field of distributed cloud computing and DevOps engineering. For all the
participants, we provided detailed instructions explaining how to create all
three use cases with and without SWITCH. Participants were aware of our
work and as experts in the field they are familiar with composing Docker-
based cloud applications. Time was measured in minutes using stop watch
and we were present the entire time of the experiment.

The participants were provided with instructions on how to use SIDE and
on creating the TOSCA and Docker compose files. The instructions on how
to create an application were provided to the test subjects, so that they only
had to worry about how to describe the use case and not spend time on the
use case architecture.

A clean install of SWITCH was used so that components could not be
reused, but the participants were told that they are free to reuse components
they create if they wish. During the creation of the application, time was kept
for each stage of application creation (e.g. component creation, component
modification (optional), application composition, and create the TOSCA and
Docker compose files).

In the first stage of the experiment, participants were asked to describe all
the containers (Figure 12) used in the application and the application itself.
They were given all the information about the properties of the components
(ports, docker image locations, volumes, variables etc.) and how they should
be linked to one another. According to the time needed (measured in min-
utes) for software components description using SWITCH and creation of
writing description of those components directly into TOSCA, we have cal-
culated distribution (see Figure 12) that has revealed more consistency (a lot
of users have similar times) when using SWITCH since it application logic
and workflow are mapped into TOSCA fast and automatically.
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Figure 11: This bar chart illustrates the times (in minutes) needed to undertake various
phases that are part of cloud application’s life cycle using SWITCH and no SWITCH for
all three beforehand described industrial use cases.

In the second phase, the participants were told to describe the same
applications by creating the TOSCA and Docker Compose file for all three
applications in Visual Studio Code. They were, again, provided with an
example of the descriptions and expected to use code completion and copy
paste to achieve their goals as fast as possible. At the end, the descriptions
were checked in order to ascertain if they meet the TOSCA standards and
that all the references were correct, but the descriptions were not used to
deploy actual applications. The times needed to complete each phase in the
life cycle of all three applications are presented in Figure 11. Values on the
y axis present an average of all participants for each of the phases and for all
three use cases.

According to the results, SWITCH IDE has obviously speeded up the
implementation of all phases (and for all three use cases) that are part of the
application’s life cycle in comparison to the creation of components, TOSCA
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Figure 12: The plot presents the distribution of time it takes to describe software compo-
nent in SIDE and its mapping into TOSCA vs. providing TOSCA description manually.
Each red point on the chart presents average time needed to design each component for
all three applications.

and Docker compose files manually. When comparing creation with/without
SWITCH, it is clear that there exists significant decrease of the time needed
for creation of any phase using SWITCH. Moreover, the most substantial
difference can be seen with TOSCA and Docker compose file creation that
is approximately more that 50 times faster on the average for all three use
cases due to automatic TOSCA mapping and Docker compose file generation.
The most relevant characteristic is the Entire Workflow, as it represents the
actual time needed to create an application which is on average almost twice
as faster as creating workflow manually.
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7. Conclusion

In this paper, we have presented a new concept for engineering com-
plex adaptable cloud systems with time-critical constraints: the application-
infrastructure co-programming model. It offers programmability and control-
lability and reconfiguration of application logic composition and workflow
and virtual environment and therefore offers application scalability, avail-
ability, resilience and self-adaptation. These are the essential QoS properties
that are crucial for the QoE and present particular challenges specially for
time-critical cloud applications.

According to the analysis of functional and non-functional requirements
of three time-critical industrial applications, we have discovered that pro-
grammable and controllable features can be best supported by having unique
three-part SWITCH architecture. SWITCH Interactive development Envi-
ronment (SIDE) that provides a GUI with service modelling tools of docker
compose files for the creation of software components and the composition
of an application’s logic and workflow; Dynamic Real-time Infrastructure
Planner (DRIP) is responsible for the infrastructure planning, provisioning,
deployment and execution of applications to the virtual cloud infrastruc-
ture; Autonomous System Adaptation Platform (ASAP) provides monitor-
ing services and deals with the scaling of applications, Alarm trigger and
self-adaptation. In order to exchange data within all three subsystems appli-
cation logic with all its constraints, QoS parameters and application workflow
are mapped into the OASIS TOSCA.

The novelty of the SWITCH system is the way that QoS parameters, such
as NFR and network-, infrastructure- and application-level metrics can be
visually presented, managed and linked to the components (e.g. containers)
using graphical modelling. Furthermore, QoS parameters etc. are mapped
into TOSCA and exchanged between the three subsystems.

As a result of the evaluation, using SWITCH for the creation of all three
industrial applications with time-critical constraints through various phases
in the life cycle of cloud-native applications (e.g. components and applica-
tion creation, Docker compose file creation and TOSCA mapping) signifi-
cantly decreases time due to the SWITCH co-programming properties. On
the contrary, manually creating components and application, generating and
mapping the entire application logic into TOSCA has proven to be consid-
erably time consuming and process. The most significant difference among
using SWITCH and manual creation was achieved in the process of TOSCA
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and Docker compose file generation for all three use cases and in the favour
of SWITCH.

In addition to developing and demonstrating the effectiveness of the
SWITCH architecture, we went beyond the project’s objectives and also de-
veloped an Multi-Objective Optimisation approach for the trade off between
conflicting Non-Functional Requirements in order to assure enhanced QoS.
However, details of this latter approach are out of scope of the present paper
and can be found elsewhere [16].

One thing that is still missing is a larger-scale trial with applications dur-
ing their whole life-cycle, changing and updating the software in an iterative
manner. This is only possible with a longer running successful application,
something that will probably only be available in the next couple of years.
During this time, SWITCH will not be abandoned. On the contrary, since
graphical modelling of software components proved to be time saving for the
creation of applications and reasonably easy to process. We are planning to
create so called (1) Dynamic Metadata Documents Generating System that
would be able to generate various types of documents, such as .yaml, .xml,
Docker compose and similar based on application’s QoS properties and (2)
Applications Offline and Runtime State Snapshot Versioning System that
would create and store a snapshot of created application’s logic and work-
flow of a running state in the virtual infrastructure and be available from the
internal SWITCH repository and reusable in other cloud environments. In
general, we will follow state-of-the-art trends and strive towards novel ideas.
Furthermore, extending TOSCA in order to support orchestration of appli-
cations that sent an enormous amount of (Big) data and run towards the fog
and edge of the network will certainly be a challenge as well.
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Highlights 
The main objective is to address entire lifecycle of time-critical cloud applicaitons  
SWITCH offers middleware services for infrastructure planning and provisioning  
Interactive graphical modeling tools for specification of time-critical requirements  
Self-adaptation of on-demand resources and reconfigurability of infrastructure  
The concept of co-programming model to support programmability and controllability  
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