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Abstract: Ammonia synthesis under mild conditions is of 

supreme interest. Photocatalytic nitrogen fixation with water 

at room temperature and atmospheric pressure is an 

intriguing strategy. However, the efficiency of this method 

has been far from satisfied for industrialization, mainly due 

to the sluggish cleavage of the N N bond. Herein, we report 

a carbon–tungstic-acid (WO3·H2O) hybrid for the co-

optimization of N2 activation as well as subsequent 

photoinduced protonation. Efficient ammonia evolution 

reached 205 mmol g@1 h@1 over this hybrid under 

simulated sunlight. Nitrogen temperature-programmed 

desorption revealed the decisive role of carbon in N2 ad-

sorption. Photoactive WO3·H2O guaranteed the supply of 

electrons and protons for subsequent protonation. The 

universality of carbon modification for enhancing the N2 

reduction was further verified over various photocatalysts, 

shedding light on future materials design for ideal solar 

energy utilization. 

 

 
Artificial ammonia (NH3) synthesis by the reduction of atmos-

pheric nitrogen is of great importance for the human society.[1] 

The industrial Haber–Bosch process for NH3 production using 

N2 and H2 is generally conducted under severe conditions (300–

450 8C, 15–25 MPa) over iron-based catalysts, accompa-nied 

with massive energy consumption as well as fossil-derived CO2 

emission.[1c, 2] An energy-efficient and environmentally friendly 

NH3 synthesis is therefore highly desirable. Solar-driven N2 

reduction by water using semiconductor photocatalysis at room 

temperature and atmospheric pressure has been one promising 

strategy.[3] These photocatalysts, however, still suffer from low 

quantum efficiencies, even in the presence of various hole-

scavengers or cocatalysts. The inefficient NH3 evolution is 

mainly attributed to the sluggish N2 activation on the semicon-

ductor surface that together with subsequent photoinduced 

protonation, contributes to the elementary steps of the whole 

photocatalytic process.  
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Actually, sufficient N2 activation is the prerequisite of its re-

duction during various processes. In the biogeochemical N2 

cycle, a molybdenum–iron (MoFe)-containing protein within the 

nitrogenase activates N2 molecules using a core MoFe co-

factor.[4] In classical Haber–Bosch reactions, Fe or Ru-based 

cat-alysts provide the active sites for N2 activation.[5] For 

photoca-talysis, some studies learned from above cases and 

tried to find the answer in structures containing metallic active 

centers such as the iron-doped TiO2 reported by Schrauzer et al. 

and the FeMoS-chalcogels core cluster reported by Banerjee et 

al.[3c, 6] Besides this, researchers also explored the feasibility of 

nonmetallic centers for N2 activation. Recently, efficient N2 

photoreduction to NH3 has been achieved over BiOBr nano-

sheets and graphitic carbon nitride (g-C3N4) under visible-light 

irradiation, benefiting from enhanced N2 activation at the O and 

N vacancies, respectively.[7] 
 

In addition to N2 pre-activation on catalyst surface, subse-

quent photoinduced protonation is another key point. For in-

stance, the electron-donating iron protein within nitrogenase 

plays an indispensable role in N2 reduction. As an n-type semi-

conductor with widespread elements, tungsten oxide hydrates 

have attracted much attention in energy storage and photoca-

talysis.[8] Due to the outstanding electron and proton conduc-

tivity, herein WO3·H2O was selected as the photoactive material 

to explore the N2 photofixation. Greatly enhanced N2 reduction 

to ammonia (205 mmol g@1 h@1) was achieved by carbon 

modifi-cation under simulated sunlight irradiation. Careful studies 

evi-dently revealed the indispensable roles of carbon in surface 

N2 dissociation and WO3·H2O in photoinduced protonation, re-

spectively. Furthermore, the carbon modification strategy was 

found universal for enhancing photocatalytic ammonia evolu-tion 

over other semiconductor materials.  
For the first time, pristine tungstic acid (HWO-p) was synthe-

sized using a microwave-assisted method. Surface decoration of 

carbon (HWO/C) was achieved by a post-microwave treat-ment 

of HWO-p in a PEG-200/water mixed solution with differ-ent 

amount of glucose (mg, for further details, see the Sup-porting 

Information), namely, HWO/C-X (X, 0–1000). For refer-ence, 

HWO-p was treated under identical conditions without the 

addition of glucose (HWO). As indicated by the XRD pat-terns 

(Supporting Information, Figure S1), the post-microwave 

exposed (120) facets of HWO and HWO/C by the etching of the 

PEG and carbon modification did not change the crystal-line 

structure of the pristine WO3·H2O. As shown in the TEM and 

SEM images (Figure 1, Supporting Information, Figure S2), as-

prepared HWO-p presents as microspheres with a hierarchi-cal 

structure composed of 2D sheet-like building blocks, and 
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Figure 1. (a, b) TEM image and HRTEM image of HWO/C. (c) SEM image 

of HWO/C. (d–f) EDS mapping of O, W and C of (c), respectively. 

 
surface decoration of carbon does not change the morpholo-gy. 

The HRTEM (Figure 1 b) image shows that the carbon coat-ing 

on the HWO layer and the carbon is partly amorphous. The 

interlayer spacing in the crystallized carbon, around 3.4 &, cor-

responds to the 002 distance of graphitic carbon. Meanwhile, 

energy-dispersive X-ray spectroscopy (EDS) mapping (Fig-ure 1 

d–f) evidently confirmed the uniform fold of carbon layers on the 

HWO base material. The successful decoration of carbon on 

WO3·H2O surface can also be traced by the diffuse reflectance 

spectra (DRS) (Supporting Information, Figure S3). As shown in 

Figure S3 (Supporting Information), the HWO/C-X samples 

present gradually increased light absorption in the near-infrared 

region with the increase of glucose addition. The actual loading 

amounts of carbon in HWO/C@X samples were roughly 

estimated by thermogravimetric analysis (Supporting 

Information, Figures S4 and S5).  
Photocatalytic N2 fixation over various materials was ex-

plored using water as the reactant in the absence of any or-

ganic scavengers or metal cocatalysts. As shown in Figure 2 a, 

after 1 h of Xe lamp irradiation, only low levels of NH3 evolu-tion 

(3.8 mmol g@1 h@1) were detected using HWO. However, the 

NH3 production was greatly enhanced by surface carbon deco-

ration. In Figure 2 b, with the increase of carbon decoration, the 

NH3 evolution over HWO/C-X samples presented a mono- 

tonic  increase with the  increase of  X,  reaching about 

220 mmol g@1 h@1 
over HWO/C1000, a  58-fold  increase com- 

pared to pure HWO. According to thermogravimetric analysis, 

the unobvious enhancement from HWO/C0 to HWO/C1000 can 

be attributed to the saturation of carbon layer decoration on the 

HWO surface, which can also be reflected by the DRS data 

(Supporting Information, Figure S6). Herein, HWO/C500 is 

selected for further discussion. As shown in Figure 2 c, the NH3 

production increased linearly, reaching 205 mmol g@1 h@1 after 

60 min irradiation. The system did not evolve NH3 in the ab-

sence of light irradiation or nitrogen atmosphere. The NH3 pro-

duction under visible-light irradiation was 31 % of that under 

UV/Vis light (Figure 2 c). In addition to the as-prepared 

WO3·H2O, NH3 evolution was also tested over carbon modified 

commercial WO3·H2O (HWO-com/C). The activity difference can 

be attributed to the different specific surface area of two 

WO3·H2O supporters (Supporting Information, Figure S7). 

Above results indisputably indicate the indispensable roles of 

both carbon decoration and photoactive WO3·H2O for efficient 

NH3 evolution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Photocatalytic N2 fixation rate. (a) Photocatalytic N2 fixation rates 

of different samples. (b) Photocatalytic N2 fixation rates of HWO/C-X sam-

ples. (c) Photocatalytic N2 fixation rates of HWO/C500 with time under UV/ 

Vis light (red), dark (pink), visible light (green) and argon atmosphere (blue), 

respectively. 

 

Careful studies were conducted to explore the decisive role of 

carbon decoration in N2 photoreduction. Raman spectrosco-py 

was firstly recorded to investigate the precise structure of the 

supported carbon. As shown in Figure 3 a, absorptions before 

1000 cm@1 are ascribed to WO3·H2O, and the absorp-tions at 

1600–1300 cm@1 belong to carbon. Specifically, the peak at 

1580 cm@1 stems from the absorption of carbon with sp2 

hybridization, and the peak at about 1345 cm@1 is ascribed to 

carbon with sp3 hybridization. The intensity ratio of the D to the 

G peak (ID/IG) is 0.807 and the high G band is ascribed to the 

graphitic clusters embedded in the amorphous matrix.[9] This 

point was further confirmed by X-ray photoelectron spec-

troscopy (XPS), for which the C1s peak around 284.84 and 

285.8 eV indicates the mixed sp2 and sp3 bonding (Supporting  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. (a) Raman spectra of HWO/C. (b) N2-TPD profiles of the as-

prepared HWO-500 and HWO-500/C photocatalysts. 

 
 



        

        

Information, Figure S9).[10] According to the literature, the N N transport can be further enhanced by carbon decoration, con- 
triple bond can be evidently weakened at the unsaturated firmed by the smaller semicircle of the Nyquist plot recorded 

carbon, including the edge of the armchair graphite surface or over an HWO/C electrode (Figure 4 a). Another evidence of en- 

the tip of a capped (5, 5) single-walled carbon nanotube.[11] 
It hanced PE conversion within HWO/C was the much higher 

is proposed that the sp2 bonded carbon in the hybridized photocurrent density. As indicated in Figure 4 b and c, the cur- 

structures is capable of exhibiting the reactive role toward the rent response reaches up to 20 mA for HWO/C, whereas it is 

absorption and activation of N2  molecular. Temperature-pro- about 2 mA for HWO. Interestingly, the transient current re- 

grammed desorption (TPD) investigations have been conduct- sponses in the N2-bubbled electrolyte were much smaller than 

ed to visualize the activation of N2 on the surface of the HWO- that in the presence of Ar, indicating a certain kind of photoin- 

500 and HWO-500/C since WO3·H2O easily loses the crystallized duced electron consumption by N2. Notably, for HWO/C the 

water when the temperature is higher than 250 8C. As shown current reduction was nearly 80 %, whereas for HWO it was 

in Figure 3 b, except for the physical absorptions at approxi- merely 15 %. Given the above discussion about N2 dissociation 

mately 100 8C, one peak at 350 8C and two peaks at 250 and on a carbon surface, the electrochemical measurements pro- 

350 8C were observed for HWO-500 and HWO-500/C, respec- vide another convictive supplement to the TPD data for verify- 

tively. The uplift of TCD signal after 350 8C of the HWO-500/C ing the decisive role of carbon within the hybrid. Besides the 

was attributed to the decomposition of carbon. Earlier work electron generation and transport, sufficient proton supply is 

has established the electrochemical feasibility of NH3  produc- also pivotal for protonation. In order to verify this point, we 

tion  cycles  with  tungsten.[12]  This  finding  indicated  the  N2 controlled the amount of hydrate water within the HWO-C 
chemisorption on both W and C. Furthermore, the higher bind- hybrid  by  calcining  HWO  at  different  temperatures  in  air 

ing energy between W and N2  was disadvantageous to the before surface carbon decoration. As shown in the XRD pattern 

photocatalytic process and the weaker binding between C and (Supporting Information, Figure S10), HWO  was  gradually 

N was favorable for the reduction.   transformed to WO3 by calcination at 500 8C with the gradual 

In addition to the surface N2 activation, photoinduced proto- loss of crystal water. As a result, the NH3 evolution by N2 reduc- 

nation  with  electron/proton  transfer  is  another  elementary tion was greatly suppressed over partly dehydrated HWO/C, 

step in N2  reduction to NH3. Due to its outstanding electron presenting rates of 194.9, 94.2 and 17.2 mmol g@1 h@1  when 

and proton conductivity, photoactive WO3·H2O played an im- HWO was treated at 100, 300, and 500 8C, respectively. In order 
portant role in this process. In photocatalysis, efficient photon- to understand the effect of surface area on the photoreactivity 

to-electron (PE) conversion is required for a high photon-to- of calcined samples, the NH3  evolution rates were normalized 

product quantum yield. As indicated in Figure 4 a, under light with  surface areas (Figure 4 d,  and  Supporting  Information 

irradiation the Nyquist plot of a HWO electrode presented Table S1). The k/BET of HWO-300/C (3.37) was close to that of 

a much smaller semicircle in the high-frequency region com- HWO-100/C (3.13), however, the k/BET of HWO-500/C (1.16) re- 

pared to that in the dark, indicating greatly promoted charge- duced greatly. It was found that the existence of crystal water 

separation and transport in photoexcited HWO. The electron improved the efficiency of the reaction. WO3·H2O was reported 

   to be easily injected with protons and electrons.[13]  These re- 
   sults suggest the necessity of unbroken crystalline structure of 

   HWO for photoinduced protonation, probably due to the in- 

   trinsic proton conductivity. We further explored the source of 

   protons in the final product NH3. On one hand, after prolonged 

   N2 photofixation, neither performance reduction of NH3 evolu- 

   tion nor decomposition of HWO into WO3 was observed, indi- 
   cating the retention of protons within HWO. On the other 

   hand, O2 evolution in the reaction system during N2 photofixa- 

   tion was found to be nearly stoichiometric according to Equa- 

   tion (1). As evidence, the photocurrents of HWO-100/C and 

   HWO-500/C were tested in the nonprotic electrolyte CH3CN 

   with different amounts of water (Supporting Information, Fig- 

   ure S11). The HWO-100/C exhibited greater decreases when 0.4 

   vol % water introducing and indicated N2  reacted with the 

   proton in the water and the HWO-100/C exhibited better con- 

   ductivity of the proton.[14] Moreover, the CV of HWO/C in N2 at- 
   mosphere was presented in Figure 5. The reduction potential 

   was linearly correlated with the decease of pH. According to 

   the following formula:[15] dEp/dpH =2.303 mRT/nF, in which m 

Figure 4. (a) Electrochemical impedance spectroscopy Nyquist plots with or is the number of protons, n is the number of electrons, and m/ 
without Xe lamp irradiation over HWO and HWO/C. Transient current - time 

n is calculated to be 3 for the reduction process. This indicated 
curves over HWO/C (b) and HWO (c) electrodes in an Ar or N2 atmosphere. 

 

 

that the number of protons was triple that of the electrons in- 
(d) Photocatalytic N2  fixation rates and rates normalized with BET of HWO-Y/ 

volved  in  the  electroreduction  process,  which  proved  the C (Y represents the different calcination temperatures).  

      



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Cyclic voltammograms (CV) of HWO/C on glass carbon 

electrodes in the solutions with different pH values. Inset: the influence 

of pH on the reduction peak current and potential.  

 

proton-coupled electron transfer. And during the NH3 evolu-tion 

process, a little amount of N2H4 was detected in the system 

(Supporting Information, Figure S12). The success of the N2 

fixation on the HWO/C was attributed to the multistep delivery of 

successive self-excited electrons and water-derived protons to 

N2. Thus the proposed transfer of proton and elec-tron in the 

process was as shown in Scheme S1 (Supporting In-formation). 

Based on above results, the original source of proton in 

photogenerated NH3 should be water, but not the hydrate water 

within HWO. The HWO played indispensable role in the 

dissociation of H2O to O2 and proton and the con-ductivity of the 

proton. For detail, the O2 evolution was more than NH3 

formation result of the dissolution of O2 in water (Supporting 

Information, Figure S13). The reasons of the reduc-tion of NH3 

might be that the protons were transferred to compound H2 and 

the O2 oxidized the NH3 in the closed system. The cycle 

experiment was achieved on the HWO/C (Supporting 

Information, Figure S14). Though the performance of the fresh 

catalyst was reduced after the first cycle, the NH3 evolution rates 

(ca. 100 mmol g@1 h@1) turned to be stable from the second 

cycle (Supporting Information, Figures S15–S18). 

 

2 N2 þ 6 H2O ! 4 NH3 þ 3 O2 ð1Þ 

 
In addition to above carbon-HWO hybrids, we further 

exam-ined the universality of surface carbon modification for 

en-hancing N2 photoreduction over other materials. Although 

these systems have not yet been optimized, the results in 

Fig-ure S19 (Supporting Information) revealed that 

photocatalytic NH3 evolution over P25, anatase TiO2 and 

BiOBr can be signifi-cantly enhanced by decoration small 

amounts of carbon on semiconductor surface, clearly 

indicating the universality of the carbon decoration strategy.  
In summary, highly efficient N2 photofixation to NH3 was 

achieved over carbon-WO3·H2O hybrids in pure water without 

any additives or cocatalysts. On one hand, carbon greatly en- 

 

hances the surface N2 activation as well as the separation 

and transport of photogenerated charge carriers. On the 

other hand, photoactive WO3·H2O with outstanding 

electron/proton conductivities guaranteed the supply of 

required electrons and protons for subsequent protonation. 

The universality of carbon modification for enhancing the N2 

reduction was further veri-fied over other materials. This 

carbon decoration strategy might guide the future design of 

efficient systems for solar-driven N2 fixation. 
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