

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/122010/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Li, Xiaoman, Wang, Wenzhong, Jiang, Dong, Sun, Songmei, Zhang, Ling and Sun, Xiang 2016. Efficient solar-driven nitrogen fixation over carbon-tungstic-acid hybrids. Chemistry : a European Journal. 22 (39) , pp. 13819-13822. 10.1002/chem.201603277

Publishers page: https://doi.org/10.1002/chem.201603277

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Efficient Solar-Driven Nitrogen Fixation over Carbon– Tungstic-Acid Hybrids

Xiaoman Li, Wenzhong Wang,* Dong Jiang, Songmei Sun, Ling Zhang, and Xiang Sun^[a]

Abstract: Ammonia synthesis under mild conditions is of supreme interest. Photocatalytic nitrogen fixation with water at room temperature and atmospheric pressure is an intriguing strategy. However, the efficiency of this method has been far from satisfied for industrialization, mainly due to the sluggish cleavage of the N N bond. Herein, we report a carbon-tungstic-acid (WO3·H2O) hybrid for the cooptimization of N2 activation as well as subsequent photoinduced protonation. Efficient ammonia evolution reached 205 mmol g^{@1} h^{@1} over this hybrid under simulated sunlight. Nitrogen temperature-programmed desorption revealed the decisive role of carbon in N2 adsorption. Photoactive WO3·H2O guaranteed the supply of electrons and protons for subsequent protonation. The universality of carbon modification for enhancing the N2 reduction was further verified over various photocatalysts, shedding light on future materials design for ideal solar energy utilization.

Artificial ammonia (NH₃) synthesis by the reduction of atmospheric nitrogen is of great importance for the human society.^[1] The industrial Haber-Bosch process for NH₃ production using N₂ and H₂ is generally conducted under severe conditions (300-450 8C, 15-25 MPa) over iron-based catalysts, accompanied with massive energy consumption as well as fossil-derived CO₂ emission.^[1c, 2] An energy-efficient and environmentally friendly NH3 synthesis is therefore highly desirable. Solar-driven N2 reduction by water using semiconductor photocatalysis at room temperature and atmospheric pressure has been one promising strategy.^[3] These photocatalysts, however, still suffer from low quantum efficiencies, even in the presence of various holescavengers or cocatalysts. The inefficient NH₃ evolution is mainly attributed to the sluggish N2 activation on the semiconductor surface that together with subsequent photoinduced protonation, contributes to the elementary steps of the whole photocatalytic process.

Actually, sufficient N₂ activation is the prerequisite of its reduction during various processes. In the biogeochemical N2 cycle, a molybdenum-iron (MoFe)-containing protein within the nitrogenase activates N2 molecules using a core MoFe cofactor.^[4] In classical Haber-Bosch reactions, Fe or Ru-based cat-alysts provide the active sites for N₂ activation.^[5] For photoca-talysis, some studies learned from above cases and tried to find the answer in structures containing metallic active centers such as the iron-doped TiO₂ reported by Schrauzer et al. and the FeMoS-chalcogels core cluster reported by Banerjee et al.^[3c, 6] Besides this, researchers also explored the feasibility of nonmetallic centers for N2 activation. Recently, efficient N2 photoreduction to NH3 has been achieved over BiOBr nanosheets and graphitic carbon nitride (g-C₃N₄) under visible-light irradiation, benefiting from enhanced N2 activation at the O and N vacancies, respectively.^[7]

In addition to N2 pre-activation on catalyst surface, subsequent photoinduced protonation is another key point. For instance, the electron-donating iron protein within nitrogenase plays an indispensable role in N2 reduction. As an n-type semiconductor with widespread elements, tungsten oxide hydrates have attracted much attention in energy storage and photocatalysis.^[8] Due to the outstanding electron and proton conductivity, herein WO₃·H₂O was selected as the photoactive material to explore the N₂ photofixation. Greatly enhanced N₂ reduction to ammonia (205 mmol g^{@1} h^{@1}) was achieved by carbon modifi-cation under simulated sunlight irradiation. Careful studies evi-dently revealed the indispensable roles of carbon in surface N2 dissociation and WO3·H2O in photoinduced protonation, respectively. Furthermore, the carbon modification strategy was found universal for enhancing photocatalytic ammonia evolu-tion over other semiconductor materials.

For the first time, pristine tungstic acid (HWO-p) was synthesized using a microwave-assisted method. Surface decoration of carbon (HWO/C) was achieved by a post-microwave treat-ment of HWO-p in a PEG-200/water mixed solution with differ-ent amount of glucose (mg, for further details, see the Sup-porting Information), namely, HWO/C-X (X, 0–1000). For refer-ence, HWO-p was treated under identical conditions without the addition of glucose (HWO). As indicated by the XRD pat-terns (Supporting Information, Figure S1), the post-microwave exposed (120) facets of HWO and HWO/C by the etching of the PEG and carbon modification did not change the crystal-line structure of the pristine WO_3 ·H₂O. As shown in the TEM and SEM images (Figure 1, Supporting Information, Figure S2), asprepared HWO-p presents as microspheres with a hierarchi-cal structure composed of 2D sheet-like building blocks, and

[[]a] X. Li, Prof. W. Wang, D. Jiang, S. Sun, L. Zhang, X. Sun Shanghai Institute of Ceramics

Chinese Academy of Sciences

Shanghai 200050 (P. R. China) E-mail: wzwang@mail.sic.ac.cn

Figure 1. (a, b) TEM image and HRTEM image of HWO/C. (c) SEM image of HWO/C. (d–f) EDS mapping of O, W and C of (c), respectively.

surface decoration of carbon does not change the morpholo-gy. The HRTEM (Figure 1 b) image shows that the carbon coat-ing on the HWO layer and the carbon is partly amorphous. The interlayer spacing in the crystallized carbon, around 3.4 &, corresponds to the 002 distance of graphitic carbon. Meanwhile, energy-dispersive X-ray spectroscopy (EDS) mapping (Fig-ure 1 d-f) evidently confirmed the uniform fold of carbon layers on the HWO base material. The successful decoration of carbon on WO₃·H₂O surface can also be traced by the diffuse reflectance spectra (DRS) (Supporting Information, Figure S3). As shown in Figure S3 (Supporting Information), the HWO/C-X samples present gradually increased light absorption in the near-infrared region with the increase of glucose addition. The actual loading amounts of carbon in HWO/C@X samples were roughly estimated by thermogravimetric analysis (Supporting Information, Figures S4 and S5).

Photocatalytic N₂ fixation over various materials was explored using water as the reactant in the absence of any organic scavengers or metal cocatalysts. As shown in Figure 2 a, after 1 h of Xe lamp irradiation, only low levels of NH₃ evolution (3.8 mmol $g^{@1} h^{@1}$) were detected using HWO. However, the NH₃ production was greatly enhanced by surface carbon decoration. In Figure 2 b, with the increase of carbon decoration, the NH₃ evolution over HWO/C-X samples presented a mono-

tonic increase with the increase of X, reaching about 220 mmol $g^{@1}\,h^{@1}\,$ over HWO/C1000, a 58-fold increase compared to pure HWO. According to thermogravimetric analysis, the unobvious enhancement from HWO/C0 to HWO/C1000 can be attributed to the saturation of carbon layer decoration on the HWO surface, which can also be reflected by the DRS data (Supporting Information, Figure S6). Herein, HWO/C500 is selected for further discussion. As shown in Figure 2 c, the NH₃ production increased linearly, reaching 205 mmol g^{@1} h^{@1} after 60 min irradiation. The system did not evolve NH₃ in the absence of light irradiation or nitrogen atmosphere. The NH₃ production under visible-light irradiation was 31 % of that under UV/Vis light (Figure 2 c). In addition to the as-prepared WO₃·H₂O, NH₃ evolution was also tested over carbon modified commercial WO₃·H₂O (HWO-com/C). The activity difference can be attributed to the different specific surface area of two WO₃·H₂O supporters (Supporting Information, Figure S7). Above results indisputably indicate the indispensable roles of both carbon decoration and photoactive WO₃·H₂O for efficient NH₃ evolution.

Figure 2. Photocatalytic N₂ fixation rate. (a) Photocatalytic N₂ fixation rates of different samples. (b) Photocatalytic N₂ fixation rates of HWO/C-X samples. (c) Photocatalytic N₂ fixation rates of HWO/C500 with time under UV/ Vis light (red), dark (pink), visible light (green) and argon atmosphere (blue), respectively.

Careful studies were conducted to explore the decisive role of carbon decoration in N₂ photoreduction. Raman spectrosco-py was firstly recorded to investigate the precise structure of the supported carbon. As shown in Figure 3 a, absorptions before 1000 cm^{@1} are ascribed to WO₃·H₂O, and the absorptions at 1600–1300 cm^{@1} belong to carbon. Specifically, the peak at 1580 cm^{@1} stems from the absorption of carbon with sp2 hybridization, and the peak at about 1345 cm^{@1} is ascribed to carbon with sp3 hybridization. The intensity ratio of the D to the G peak (ID/IG) is 0.807 and the high G band is ascribed to the graphitic clusters embedded in the amorphous matrix.^[9] This point was further confirmed by X-ray photoelectron spectroscopy (XPS), for which the C1s peak around 284.84 and 285.8 eV indicates the mixed sp2 and sp3 bonding (Supporting

Figure 3. (a) Raman spectra of HWO/C. (b) N2-TPD profiles of the asprepared HWO-500 and HWO-500/C photocatalysts.

Information, Figure S9).^[10] According to the literature, the N N triple bond can be evidently weakened at the unsaturated carbon, including the edge of the armchair graphite surface or the tip of a capped (5, 5) single-walled carbon nanotube.^[11] lt is proposed that the sp2 bonded carbon in the hybridized structures is capable of exhibiting the reactive role toward the absorption and activation of N2 molecular. Temperature-programmed desorption (TPD) investigations have been conducted to visualize the activation of N2 on the surface of the HWO-500 and HWO-500/C since WO₃·H₂O easily loses the crystallized water when the temperature is higher than 250 8C. As shown in Figure 3 b, except for the physical absorptions at approximately 100 8C, one peak at 350 8C and two peaks at 250 and 350 8C were observed for HWO-500 and HWO-500/C, respectively. The uplift of TCD signal after 350 8C of the HWO-500/C was attributed to the decomposition of carbon. Earlier work has established the electrochemical feasibility of NH3 production cycles with tungsten.^[12] This finding indicated the N₂ chemisorption on both W and C. Furthermore, the higher binding energy between W and N2 was disadvantageous to the photocatalytic process and the weaker binding between C and N was favorable for the reduction.

In addition to the surface N₂ activation, photoinduced protonation with electron/proton transfer is another elementary step in N₂ reduction to NH₃. Due to its outstanding electron and proton conductivity, photoactive WO₃·H₂O played an important role in this process. In photocatalysis, efficient photonto-electron (PE) conversion is required for a high photon-toproduct quantum yield. As indicated in Figure 4 a, under light irradiation the Nyquist plot of a HWO electrode presented a much smaller semicircle in the high-frequency region compared to that in the dark, indicating greatly promoted chargeseparation and transport in photoexcited HWO. The electron

Figure 4. (a) Electrochemical impedance spectroscopy Nyquist plots with or without Xe lamp irradiation over HWO and HWO/C. Transient current - time curves over HWO/C (b) and HWO (c) electrodes in an Ar or N₂ atmosphere. (d) Photocatalytic N₂ fixation rates and rates normalized with BET of HWO-Y/C (Y represents the different calcination temperatures).

transport can be further enhanced by carbon decoration, confirmed by the smaller semicircle of the Nyquist plot recorded over an HWO/C electrode (Figure 4 a). Another evidence of en-

hanced PE conversion within HWO/C was the much higher photocurrent density. As indicated in Figure 4 b and c, the current response reaches up to 20 mA for HWO/C, whereas it is about 2 mA for HWO. Interestingly, the transient current responses in the N2-bubbled electrolyte were much smaller than that in the presence of Ar. indicating a certain kind of photoinduced electron consumption by N₂. Notably, for HWO/C the current reduction was nearly 80 %, whereas for HWO it was merely 15 %. Given the above discussion about N2 dissociation on a carbon surface, the electrochemical measurements provide another convictive supplement to the TPD data for verifying the decisive role of carbon within the hybrid. Besides the electron generation and transport, sufficient proton supply is also pivotal for protonation. In order to verify this point, we controlled the amount of hydrate water within the HWO-C hybrid by calcining HWO at different temperatures in air before surface carbon decoration. As shown in the XRD pattern (Supporting Information, Figure S10), HWO was gradually transformed to WO₃ by calcination at 500 8C with the gradual loss of crystal water. As a result, the NH₃ evolution by N₂ reduction was greatly suppressed over partly dehydrated HWO/C,

presenting rates of 194.9, 94.2 and 17.2 mmol g^{@1} h^{@1} when HWO was treated at 100, 300, and 500 8C, respectively. In order to understand the effect of surface area on the photoreactivity of calcined samples, the NH3 evolution rates were normalized with surface areas (Figure 4 d, and Supporting Information Table S1). The k/BET of HWO-300/C (3.37) was close to that of HWO-100/C (3.13), however, the k/BET of HWO-500/C (1.16) reduced greatly. It was found that the existence of crystal water improved the efficiency of the reaction. WO₃·H₂O was reported to be easily injected with protons and electrons.^[13] These results suggest the necessity of unbroken crystalline structure of HWO for photoinduced protonation, probably due to the intrinsic proton conductivity. We further explored the source of protons in the final product NH₃. On one hand, after prolonged N2 photofixation, neither performance reduction of NH3 evolution nor decomposition of HWO into WO3 was observed, indicating the retention of protons within HWO. On the other hand, O₂ evolution in the reaction system during N₂ photofixation was found to be nearly stoichiometric according to Equation (1). As evidence, the photocurrents of HWO-100/C and HWO-500/C were tested in the nonprotic electrolyte CH₃CN with different amounts of water (Supporting Information, Figure S11). The HWO-100/C exhibited greater decreases when 0.4 vol % water introducing and indicated N2 reacted with the proton in the water and the HWO-100/C exhibited better conductivity of the proton.^[14] Moreover, the CV of HWO/C in N₂ atmosphere was presented in Figure 5. The reduction potential was linearly correlated with the decease of pH. According to the following formula:^[15] dEp/dpH =2.303 mRT/nF, in which m is the number of protons, n is the number of electrons, and m/ n is calculated to be 3 for the reduction process. This indicated that the number of protons was triple that of the electrons involved in the electroreduction process, which proved the

Figure 5. Cyclic voltammograms (CV) of HWO/C on glass carbon electrodes in the solutions with different pH values. Inset: the influence of pH on the reduction peak current and potential.

proton-coupled electron transfer. And during the NH₃ evolu-tion process, a little amount of N2H4 was detected in the system (Supporting Information, Figure S12). The success of the N2 fixation on the HWO/C was attributed to the multistep delivery of successive self-excited electrons and water-derived protons to N₂. Thus the proposed transfer of proton and elec-tron in the process was as shown in Scheme S1 (Supporting In-formation). Based on above results, the original source of proton in photogenerated NH₃ should be water, but not the hydrate water within HWO. The HWO played indispensable role in the dissociation of H₂O to O₂ and proton and the con-ductivity of the proton. For detail, the O2 evolution was more than NH3 formation result of the dissolution of O2 in water (Supporting Information, Figure S13). The reasons of the reduc-tion of NH₃ might be that the protons were transferred to compound H₂ and the O_2 oxidized the NH_3 in the closed system. The cycle experiment was achieved on the HWO/C (Supporting Information, Figure S14). Though the performance of the fresh catalyst was reduced after the first cycle, the NH₃ evolution rates (ca. 100 mmol $q^{@1} h^{@1}$) turned to be stable from the second cycle (Supporting Information, Figures S15–S18).

2 N₂ þ 6 H₂O ! 4 NH₃ þ 3 O₂

ð1Þ

In addition to above carbon-HWO hybrids, we further exam-ined the universality of surface carbon modification for en-hancing N₂ photoreduction over other materials. Although these systems have not yet been optimized, the results in Fig-ure S19 (Supporting Information) revealed that photocatalytic NH₃ evolution over P25, anatase TiO₂ and BiOBr can be significantly enhanced by decoration small amounts of carbon on semiconductor surface, clearly indicating the universality of the carbon decoration strategy.

In summary, highly efficient N_2 photofixation to NH_3 was achieved over carbon-WO₃·H₂O hybrids in pure water without any additives or cocatalysts. On one hand, carbon greatly en-

hances the surface N₂ activation as well as the separation and transport of photogenerated charge carriers. On the other hand, photoactive $WO_3 \cdot H_2O$ with outstanding electron/proton conductivities guaranteed the supply of required electrons and protons for subsequent protonation. The universality of carbon modification for enhancing the N₂ reduction was further veri-fied over other materials. This carbon decoration strategy might guide the future design of efficient systems for solar-driven N₂ fixation.

Acknowledgements

This work was supported by the National Basic Research Pro-gram of China (2013CB933200) and the National Natural Sci-ence Foundation of China (51272269, 51272303 and 51472260).

Keywords: carbon · nitrogen fixation · photocatalysis · tungstic acid

- a) S. Giddey, S. P. S. Badwal, A. Kulkarni, Int. J. Hydrogen Energy 2013, 38, 14576 – 14594; b) M. E. Bluhm, M. G. Bradley, R. Butterick, U. Kusari, L. G. Sneddon, J. Am. Chem. Soc. 2006, 128, 7748 – 7749; c) J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 2008, 1, 636 – 639.
- [2] a) M. Steinberg, H. C. Cheng, Int. J. Hydrogen Energy 1989, 14, 797
 820; b) S. Licht, B. Cui, B. Wang, F. F. Li, J. Lau, S. Liu, Science 2014, 345, 637 640.
- [3] a) O. Rusina, A. Eremenko, G. Frank, H. P. Strunk, H. Kisch, Angew. Chem. Int. Ed. 2001, 40, 3993 – 3995; Angew. Chem. 2001, 113, 4115 – 4117;
 b) N. N. Rao, S. Dube, Manjubala, P. Natarajan, Appl. Catal. B 1994, 5, 33 – 42; c) G. N. Schrauzer, T. D. Guth, J. Am. Chem. Soc. 1977, 99, 7189 – 7193.
- [4] a) Y. Nishibayashi, Inorg. Chem. 2015, 54, 9234 9247; b) C. Sivasankar, S. Baskaran, M. Tamizmani, K. Ramakrishna, J. Organomet. Chem. 2014, 752, 44 58.
- [5] T. Kandemir, M. E. Schuster, A. Senyshyn, M. Behrens, R. Schlçgl, Angew. Chem. Int. Ed. 2013, 52, 12723 – 12726; Angew. Chem. 2013, 125, 12955 – 12959.
- [6] A. Banerjee, B. D. Yuhas, E. A. Margulies, Y. Zhang, Y. Shim, M. R. Wasielewski, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 2030 – 2034.
- [7] a) H. Li, J. Shang, Z. Ai, L. Zhang, J. Am. Chem. Soc. 2015, 137, 6393 – 6399; b) G. Dong, W. Ho, C. Wang, J. Mater. Chem. A 2015, 3, 23435 – 23441.
- [8] a) M. Seifollahi Bazarjani, M. Hojamberdiev, K. Morita, G. Q. Zhu, G. Cher-kashinin, C. Fasel, T. Herrmann, H. Breitzke, A. Gurlo, R. Riedel, J. Am. Chem. Soc. 2013, 135, 4467 4475; b) Z. Chen, Y. Peng, F. Liu, Z. Le, J. Zhu, G. Shen, D. Zhang, M. Wen, S. Xiao, C. P. Liu, Y. Lu, H. Li, Nano Lett. 2015, 15, 6802 6808.
- [9] L. Zhang, X. Wei, Y. Lin, F. Wang, Carbon 2015, 94, 202 213.
- [10] S. T. Jackson, R. G. Nuzzo, Appl. Surf. Sci. 1995, 90, 195 203.
- [11] a) Y.-J. Xu, J.-Q. Li, Chem. Phys. Lett. 2005, 406, 249 253; b) M.
 D. Ganji, Nanotechnology 2008, 19, 025709.
- [12] C. J. Pickett, J. Talarmin, Nature 1985, 317, 652 653.
- [13] a) S. H. Baeck, K. S. Choi, T. F. Jaramillo, G. D. Stucky, E. W. McFarland, Adv. Mater. 2003, 15, 1269 1273; b) B. W. Faughnan, R. S. Crandall, M. A. Lampert, Appl. Phys. Lett. 1975, 27, 275 277.
- [14] H. Li, J. Shang, J. Shi, K. Zhao, L. Zhang, Nanoscale 2016, 8, 1986 1993.
- [15] E. Laviron, J. Electroanal. Chem. 1974, 52, 355 393.