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ABSTRACT: The N2 photofixation presents a green and eco-friendly ammonia synthesis 

approach. However, present strategies for light-induced N2 activation suff er from low 

efficiency and instability, largely hindering the development of this technology. Herein, we 

report the LaFeO3 co-optimization of N2 activation as well as subsequent photoinduced 

protonation with the further phosphate acid treatment. Efficient ammonia evolution rate 

reached 250 μmol g−1
 h−1

 over LaFeO3 under simulated sunlight with appropriate acid 

treatment. The enhancement of phosphate modified samples was mainly attributed to the “pull 
and push” eff ect. The hydrogen bonding centers and transition metals (Fe) served as two 
separation active sites, which improves the adsorption and activation of dinitrogen. In addition, 

the facilitation of H2O dissociation was also achieved after phosphate modification. These 

results suggested an alternative N2 photofixation strategy of traditional organic and precious 

metallic additives for efficient ammonia synthesis.  
KEYWORDS: N2 photofixation, surface modification, proton, photocatalysis, hydrazine 

■ INTRODUCTION  
Nitrogen (N2) fixation to ammonia (NH3) is the second most 
important chemical process in nature next to photosyn-

thesis.
1−3

 Artificial N2 fixation is of growing importance in 

various modern industrial and agricultural fields with the 
development of human society. The industrial Haber−Bosch 
method process is generally conducted under severe conditions 
(300−550 °C, 150−250 MPa) because of the stubborn triple 

bond of N2 toward dissociation (944 kJ mol
−1

), consuming 1− 

2% of world electricity and generating 300 million tons of 

carbon dioxide as side product per year.
4−6

 Catalysts that were 

applied to energy-efficient N2 fixation have been studied for 

100 years, despite the recent progress in solar-driven N2 

reduction by water with semiconductors at mild reaction 
conditions. The involved photocatalysts still suff er from low 
efficiency even in the presence of various hole-scavengers or 
cocatalysts. With consideration of the global energy crisis as 
well as climate change, efficient ammonia synthesis under mild 
conditions is still a scientific challenge remaining to be met.  

The eff ective activation of N N triple bonds and the subsequent 
protonation process of dinitrogen are considered to be the 

bottlenecks of N2 photofixation. Recently, construction of surface 

defects on the photocatalysts including Bi-based photocatalysts, g-

C3N4, or TiO2 has been regarded as a popular strategy.
7−9

 In 

contrast, for the biogeochemical N2 cycle, a molybdenum−iron 

(MoFe) containing protein within the nitrogenase activates N2 

molecules using the core MoFe cofactor which cleaves the stable 

N2 under mild conditions through the “pull and push” hypothesis. 

The “push−pull” hypothesis of N2 activation is the synergetic 

eff ect of metal and Lewis acid centers, in which electron density 
is “pushed” from a  

 
 
 

reduced transition metal center and “pulled” into the N2 unit by 

adjacent hydrogen bonding sites.
10

 The “push” eff ect is that 
the transitional metals (metal = Fe, Mo, Ni, Co, etc.) donate 
their available d-orbital electrons to π N N antibonding to 

activate the N2 ligand.
11

 For instance, the Fe
3+

 ions insert at 

the 
interstitial position of g-C N and are stabilized in g-C N 

3 4 3 4  
through the coordinative Fe N bonding, which was proven to 

be the active sites for the adsorption and activation of N2.
12

 

The Fe
3+

 ions doped in the semiconductors are easy to reduce 

to Fe
2+

 by photogenerated electrons, which also promotes the 

activation of N2.
13

 Chang et al. also reported that the Cr
3+

 
ions in Cr-MIL101 played the vital role in thermodynamically 

capturing nitrogen over methane and oxygen with a large N2 
uptake. According to these results, the unsaturated transition 

metal sites show the capability to strongly adsorb the N due to 
π 2 14  

the available electrons donated into the N N antibonding. The 

“pull” eff ect is from the acidic sites (including hydrogen bonding) 

in the secondary sphere of the nitrogenase, which plays a crucial 

role in facilitating N2 activation with low overpotential and high 

selectivity.
15,16

 The dinitrogen molecule with lone pair electrons 

presents the character of Lewis base, and is thus more easily 

chemisorbed on the surface with Lewis acid character.
17

 

Hydrogen bonding groups (from such as phosphate or 

hydrofluoric) and Lewis acidic sites are used in metallic enzymes 

to modulate substrate binding and activation. The two eff ects may 

synergistically contribute to the low overpotential and high 

protonation selectivity in the enzyme;  
 
 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. (a) XRD patterns of LaFeO3 and P-LFO series samples. (b) The TEM image of phosphate modified sample of P1-LFO.   
thus, the N N triple bonds are hydrogenated gradually via 
the successive transfer of electrons and protons which 

lower the high activation energy of N2.
18

 According to the 
examples of enzymatic catalysts, the efficient approach for 

N2 activation and hydrogenation relies on the concomitant 
transfer of protons and electrons, which stem from acids 

and reduction equivalents, respectively.
19 

 
As the imitation of biogeochemistry, the solar-driven N2 

reduction is also performed under moderate reaction conditions 

accompanied by the photogenerated electrons and H2O-
derived proton transfer, while its efficiency is still low because 
of the recombination of the photogenerated carriers, inefficient 
withdrawing of proton from water, and the hydrogenation 

process of activated N2. Inspired by the “pull and push 
strategy”, we chose the transition metal dominated perovskite 

structure LaFeO3 (LFO) as the photocatalyst. With the 

consideration of the relatively low N2 photofixation ability of 

sole LaFeO3, phosphate groups were modified on the surface 

of LaFeO3 to mimic the electron transfer between the ATP and 
the FeMo factor, which play the critical role in the activation 

of the N2 triple bond and facilitates the hydrogenation process 

of N2. Furthermore, the phosphates (phospholipids) are known 
to play vital roles in both transferring electrons in electron-
transport chains and pumping protons to drive chemical 

synthesis during the light-dependent reactions including the H2 

production and CO2 fixation.
20

 In this way, phosphate-

involving photofixation was mimicked to improve the N2 

photofixation ability of LaFeO3. The perovskite LaFeO3 
surface modified with phosphate acid exhibited efficient 

photocatalytic activity for ammonia synthesis (250 μmol g
−1

 

h
−1

) under simulated sunlight. 

■ EXPERIMENTAL SECTION  
Synthesis of the Samples. All the reagents were of analytic purity 

and used as received from Sinopharm Reagent Co. Ltd. LaFeO3 

photocatalyst was synthesized via a hydrothermal method. Briefly, 2 mmol 

of La(NO3)3 and 2 mmol of Fe(NO3)3·9H2O were dissolved in 40 mL of 

deionized water. An 8 mmol portion of citric acid was added into the 

above solution under continuous stirring. Afterward, the solution was 

transferred into a 50 mL Teflon-lined stainless steel autoclave and kept at 

160 °C for 10 h. After the reaction mixture cooled to room temperature, 

the obtained precipitate was rinsed by deionized water several times and 

then dried at 60 °C overnight, followed by calcination at 750 °C for 3 h. 

Phosphate modified LaFeO3 

 
(P-LFO, samples are noted as Pn-LFO, n = 1, 2, 3, n indicates the 

phosphate concentration) was obtained by immersing LaFeO3 

powders in the H3PO4 solution with an initial concentration of 
0.1, 0.2, and 0.3 mmol/L, respectively, followed by calcination at 
500 °C for 2 h.  

Chemicals and Characterization. The purity and crystallinity 
were characterized by powder X-ray diff raction (XRD) with a Rigaku 
D/MAX 2250 V diff ractometer using monochromateted Cu Kα (λ = 
0.15418 nm) radiation. Diffuse reflectance spectra were obtained on a 

UV−vis spectrophotometer (Hitachi U-3010) using BaSO4 as the 

reference. The morphology and microstructure of samples were 

examined by TEM using a TecnaiG2 F20 S-Twin. The N2 

temperature-programmed desorption (N2-TPD) analysis was per-

formed on a Micromeritics ChemiSorb 2750, equipped with a thermal 
conductivity detector. For each sample (30 mg), after pretreatment 

with a He flow at 400 °C for 2 h in a quartz tube, the N2 adsorption 

was performed in a N2 gas flow at the rate of 30 mL/min at room 

temperature. Afterward, the sample was heated to 500 °C at a heating 
rate of 10 °C/min under high pure He gas flow. The hydroxyl radicals 

produced on the surface of LaFeO3 were examined in 100 mL of 
deionized water with 50 mg of photocatalyst under the Xe lamp. X-
ray photoelectron spectroscopy (XPS) analysis was performed on an 
ESCALAB 250 instrument (Thermo Scientific Ltd.). The C 1s signal 
was used to calibrate the charge eff ects. Infrared (IR) spectra were 

recorded on KBr/LaFeO3 pellets (1 wt % LaFeO3 or P-LFO) in a 
Burker Tensor 27 spectrometer. After accumulation of 64 scans, the 

spectra were collected with a resolution of 4 cm−1
. BET surface area 

was performed on a Micromeritics ASAP 2000 analyzer. In situ 
diffuse reflectance FTIR spectra were also recorded by a Bruker 
Tensor 27 spectrometer, with a designed reaction cell. Then, the high 
purity Ar was used to pump out all the gases in the reaction cell and 

was adsorbed on the photocatalyst surface. Afterward, the N2 was 

pumped in to construct the nitrogen atmosphere over the P1-LFO 
sample. The photoluminescence (PL) spectrum was measured with a 
Hitachi F-4600 spectrophotometer at room temperature (excitation 
wavelength = 360 nm).  

Nitrogen Photofixation. N2 photofixation was carried out in a 
homemade gas−solid reaction system. Briefly, 0.02 g of phosphate 

modified LaFeO3 was uniformly dispersed on the alumina sample 
platform in a glass reactor (600 mL), and 40 mL of water was injected into 

the reactor as the proton source. High purity N2 was flowed into the 

reaction system with a diff erent velocity ratio. Then, the reaction system 
was exposed to the full-spectrum irradiation of a 500 W Xe lamp. The 
visible light was obtained with a λ > 420 nm high pass filter. The products 
were expelled outside the reactor by continuous flow and finally trapped in 

160 mL of 0.05 M H2SO4 absorption liquid. Prior to any light irradiation, 

N2 was kept flowing into the reactor for 1 h to exclude the O2 thoroughly. 

After the reaction, the remained H2O 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. (a) N2 adsorption−desorption isotherms of the products. (b) FTIR spectrum of P1-LFO with the characteristic absorption band of 
phosphate.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. XPS spectrum of (a) La 3d and (b) Fe 3d in LFO and P1-LFO, respectively.  
 
in the reactor was also transformed into the absorption liquid to 
avoid the loss of any products. The concentration of ammonia was 
measured using Nessler’s reagent spectrophotometry method. The 

N2H4 formed during the reaction was measured via using the 4-
dimethylamino-benzaldehyde spectrophotometry method.  

Computational Methods. All of the calculations were performed 
using the CASTEP package in the Accelrys Material studio modeling 

suite using periodic DFT. The Perdew−Burke−Ernzerhof (PBE) 

exchange-correlation functional was used within the spin-polarized 

generalized gradient approximation (GGA). The (121) facets of 

polycrystal LaFeO3 were chosen to perform DFT simulations. A (3 ×  
3) supercell with the vacuum thickness of 15 Å was modeled. In order 

to get exact results, the electronic state was expanded using plane 

waves as a basis set as with a cut of 420 eV, and the Brillouin zone 

was sampled using a 2 × 3 × 1 Monkhorst−Pack k-grid.  
Photoelectrochemical Analysis. The photoelectrochemical 

measurements were performed on a CHI 660D electrochemical 

workstation (Shanghai Chenhua, China) using a standard three-electrode 

cell in which 0.5 M Na2SO4 solution was used as electrolyte, with a 

working electrode, a platinum wire as counter electrode, and a saturation 

mercury electrode (RHE) as the reference electrode. To make a working 

electrode, 20 mg of catalyst was suspended in 0.5 mL of ethanol, and the 

mixtures were ultrasonically scattered for 5 min to form a homogeneous 

mixture. Then, 0.1 mL of slurry was dropped on the fluorine doped tin 

oxide (FTO) glass (1.5 cm × 2 cm). After 

 
evaporation of ethanol in the air, the electrode was calcined at 300 °C 

for 2 h. Before the photocurrent measurement, N2 or Ar gas was 

purged into the Na2SO4 aqueous solution to remove the dissolved 
molecular oxygen for 30 min and kept purging during the 
photocurrent measurement. Electrochemical impedance spectroscopy 
(EIS) measurements were employed to study the transportation and 

separation of photogenerated charge carriers. A 0.5 M of Na2SO4 

electrolyte containing 5 mmol of Fe (CN)6
3−/4− was applied. The 

influence on the proton transfer after phosphate modification was 
investigated by linear sweep voltammetry (LSV). LSV was conducted 
over the potential range −0.6 to 0.1 V with a scan rate of 1 mV/s. 

■ RESULTS AND DISCUSSION  
Characterization. As indicated in Figure 1a, the surface 

phosphate modifications did not change the orthorhombic 

perovskite structure of LaFeO3. The XRD pattern of the 

LaFeO3 shows the sharp diff raction peaks at 22.6°, 33.2°, 
39.7°, 46.2° and 57.4°, which can be indexed to the planes 

(101), (121), (220), (202) and (242) of LaFeO3 (JCPDS 37-

1493).
21

 The detailed characterization of the morphologies 
of the photocatalyst is based on the TEM. It is clear that the 

phosphate modified LaFeO3 (P1-LFO) exhibits the 
nanoplate morphology with the size between 200 and 350 
nm (shown in Figure 1b). 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. (a) UV−vis absorption spectra of LFO and P-LFO. Inset shows plots of (αhν)
1/2

 versus photon energy (hν) of LFO and P-LFO. 
(b) EIS Nyquist plots with Xe lamp irradiation over LFO and P-LFO series samples.  
 

The BETs of the surface area of the pristine LaFeO3 and P-
LFO series samples have been measured. As can be seen from 

Figure 2a, the pristine LaFeO3 exhibits the specific surface 

area of 15 m
2
/g while the P-LFO series samples show a slight 

small value in the range 12.4−14.5 m
2
/g. The phosphate 

modification has little influence on the BET surface area of the 
composites, implying that the negligible eff ect from surface 

area on the followed N2 photofixation performance. The 
successful modification of phosphate was confirmed by FTIR 
as well as XPS. As shown in Figure S1, the absorption peak at 

the 3400 cm
−1

 is assigned to be the OH bending mode of the 

adsorbed water and the OH group. The band at 1644 cm
−1

 
corresponds to the asymmetric stretching of the carboxyl root. 

The less intense band at 1387 and 1025 cm
−1

 corresponds to 

the principle vibration of the carbonate CO3
2−

 group and ν3 
asymmetric stretching of metal carbonates, which were not 

detected by the XRD.
22

 In addition, two sharp peaks at 558 

and 420 cm
−1

, which are attributed to the Fe−O stretching 
mode and the O−Fe−O bending mode, respectively. Compared 

with pristine LaFeO3, the enhanced absorption peak at 3400 

cm
−1

 of the P1-LFO sample is assigned to the adsorbed water 
or OH groups from phosphate groups, indicating the formation 
of hydrogen bonding after phosphate modification. The strong 

absorption at 1050 cm
−1

 (shown in Figure 2b) indicates the 

presence of PO4
3−

 groups on the LaFeO3 surface.
23 

 
X-ray photoelectron spectroscopy (XPS) was used to 

investigate the surface chemical environment of both LaFeO3 and 

P1-LFO samples. As further proof for the modification, the P 2p 

peak (shown in Figure S2) for LaFeO3 is centered at 133.6 eV, 

which is assigned to be the characteristic of the pentavalent 

oxidation state (P
5+

) in the form of the P−O bond. As shown in 

Figure 3a, the La 3d5/2 peak of the pristine LaFeO3 centered at ca. 

834.2 eV shows the typical complex structure of core-level 
photoemission spectra of the light rare earth compounds. In 
addition, the well-known spin−orbit multiplet splitting, a 
characteristic satellite structure of La 3d, is present, which has 
been mainly attributed to final-state eff ects or to charge-transfer 

coexcitations.
24

 After phosphate modification, the La 3d spectrum 

of P1-LFO exhibits a positive shift of 0.6 eV compared with that 

of pristine LaFeO3, indicating the binding between La
3+

 and 

phosphate with the formation of La-PO3
− species. In contrast, the 

Fe 3d spectrum of both P1-LFO and LFO remained unchanged, 
implying almost no interaction 

 

between the phosphate and Fe
3+

 (Figure 3b). It is mainly 

because La
3+

 shows a superior basicity than that of Fe 
3+

 
that results in the preferential combination with phosphate. 
It can be first concluded that two diff erent and separation 

active sites are formed, transition metal Fe
3+

 and phosphate 
species. The O 1s signals of P1-LFO (shown in Figure S3) 
show two peaks at 530.1 and 532.9 eV. The main peak at 
530.1 eV could be ascribed to the contribution of La−O and 

Fe−O in the LaFeO3 crystal lattice. The OH XPS is closely 
related to the hydroxyl groups resulting mainly from the 
chemisorbed water or surface hydroxyl groups from 

PO4
3−

.
25

 Compared with P1-LFO, the O 1s signal of LFO 

just exhibited the presence of lattice oxygen in LaFeO3.  
Diffuse reflectance spectra were recorded to investigate the 

optical characters of the samples. As shown in Figure 4a, 
compared to pristine LFO, P-LFO series samples present an 

obvious red-shift of the absorption edge to about 560 nm. It is 
because the acidification process may generate a highly 

protonated surface after calcination as well as the surface  
oxygen vacancies for light-harvesting.

26
 The inset shows the 

(αhν)
1/2

 versus hν of LFO, P1-LFO, P2-LFO, and P3-LFO.  
The band gap values of the samples were determined to be around 

2.0, 1.95, 1.92, and 1.91 eV, respectively. As indicated in Figure 

3b, under light irradiation, the Nyquist plots of the P-LFO series 

presented much smaller semicircles in the high frequency region 

compared to that of pure LaFeO3, indicating promoted charge 

separation and transport in photoexcited P-LFO series samples. 

With the increase of the phosphate modification, the semicircles of 

P2-LFO and P3-LFO were larger than that of P1-LFO, indicating 

that the proper treatment of phosphate was crucial to the transfer 

of electrons. The PL spectrum of P-LFO and LaFeO3 with an 

excitation wavelength at 360 nm is shown in Figure S4. The PL 

emission intensities of the phosphate modified samples were 

weaker than that of the untreated sample, while the intensities of 

P2-LFO and P3-LFO were stronger than that of P1-LFO. The 

results from EIS and PL measurements indicate that the excess 

amount of phosphate used is unfavorable for charge transportation 

and separation.  
Activation of N2. The nitrogen activation ability of pure 

LaFeO3 was also studied by the first principle. As shown in Figure 

S5, the optimized structural parameters of N2 molecules were 
calculated by DFT according to the optimized structures. The 
extent of the N N triple bond weakening on the (121) 
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Figure 5. (a) N2-TPD profiles of the as-prepared LaFeO3 photocatalysts. (b) The in situ FTIR spectra recorded during the N2 adsorption on 

P1-LFO. (c) The transient photocurrent of responses of diff erent LFO photocatalysts in N2 and Ar atmosphere. (d) Surface structure of 

phosphate modified LFO with the interaction of N2.   
facets of LaFeO  in this case can be observed visually by the 

  3  
N N triple bond increasing to 1.167 Å, which is between the free 

molecular N2 (1.081 Å) and nitrene N2H4 (1.201 Å). As the 

chemical adsorption sites are regarded as active sites for N2 

activation, chemisorption is an essential step in N2 photo-fixation. 

Temperature-programmed desorption (TPD) tests were conducted 

to evaluate the N2 chemisorption on the surface of P-LFO and 

LFO. As indicated in Figure 5a, LFO presented two desorption 
peaks at 150 and 265 °C, attributed to the physical and chemical 

adsorption of N2. For P1-LFO, the peaks ranging from 250 to 365 

°C were related to the strong chemisorption of N2. Notably, the 

peak of P1-LFO was more intense than that for pristine LFO, 
which is mainly attributed to the solid acid nature of modified 

phosphate groups. Generally, molecular N2 with lone pair 

electrons presents Lewis base character, and is thus more easily 
chemisorbed by Lewis acid or the catalyst surface modified 
hydrogen bonding species. The TPD peak shifted to a higher 
temperature because of the delayed evolution of absorbed 
molecular N . The proposed  

2  
surface modified groups Fe La O P OH stemming from the 
phosphate acid supported on LFO acted as Lewis acid sites 

and thus contributed to the enhanced N2 adsorption and 
activation. Moreover, the additional peak of P1-LFO at 370 °C 

was also recorded, and additional N2 adsorption sites of P1-
LFO were detected. The indirect evidence of the enhancement 

of the N2 adsorption and activation was shown in the in situ 
FTIR spectra (Figure 5b), and the peaks at 2334 and 2350 

cm
−1

, absent on pure LFO, are associated with the υ̅(N N) 

modes of N2 adsorbed on the acidic sites.
27

 The formation of 

OH−N2 adducts as reported indicates the more efficient 

 

adsorption of N2 on the catalyst surface under the 
atmosphere pressure.  

In order to confirm the activation of the N2, the photocurrent 

responses of the P1-LFO and LFO under N2 and Ar atmosphere 

were also recorded as shown in Figure 5c. The photocurrent 
response reaches up to 0.46 μA for LFO and P1-LFO samples in 
Ar atmosphere. However, it is about 0.4 μA for LFO and 0.3 μA 

for P1-LFO in the N2 saturated atmosphere, respectively. The 

decreased current response is mainly due to the interaction 

between the N2 and catalyst. The transient photocurrent responses 

of both samples in N2 saturated electrolyte were much smaller 

than that in the presence of Ar, indicating certain amounts of 

photoinduced electrons consumed by N2. Noticeably, both the 

photocurrent curves of P1-LFO and LFO decreased at the 
beginning and then remained stable when the light was on, 

indicating that the electrons were captured by N2 initially. Still, 

the photocurrent of P1-LFO was 25% lower than that of LFO, 

which contributed to the enhancement of N2 adsorption and 

activation due to hydrogen bonding. Given the above discussion 

about N2 dissociation on a phosphate modified surface, the 

electro-chemical measurements provide another convincing 
supple-ment to the TPD data for verifying the decisive role of 
phosphate within the LFO. Figure 5d shows a possible mechanism 

for improved N2 activation via the synergistic eff ect of phosphate 

and transition metal Fe
3+

, which is regarded as the “pull and push” 

strategy. In this model, the Fe
3+

 was suggested to be the first 

active site for N2 activation, while the hydrogen bonds from 

phosphate modified on the La
3+

 sites were considered to be the 

additional N2 active sites. Hydrogen bonding groups are 

commonly used in metalloenzymes to 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. (a) Photocatalytic N2 fixation rates of P1-LFO with time under UV−vis light (black), under visible light (red), in the dark (blue) in 

N2 atmosphere, or under UV−vis light in Ar atmosphere (green), respectively. Inset: photocatalytic N2 fixation rate of diff erent samples. 

(b) The LSV curves of LFO and P-LFO series samples recorded in saturated N2 electrolyte over time.  
 
modulate substrate binding and activation, which lead to 

the polarization of N2 to lower the activation barrier.  
N2 Photofixation Performance. On the basis of the 

theoretical prediction results, the N2 photofixations over LaFeO3 

and various P-LFO samples were explored using water as the 
reactant in the absence of any organic scavengers or noble metal 

cocatalysts. Evidently, LaFeO3 exhibited greatly enhanced N2 

photofixation reactivity after phosphate mod-ification. As shown 

in Figure 6, NH3 production increased linearly, reaching 250 

μmol g−1
 h−1

 after 60 min of irradiation over P1-LFO. The 

photocatalyst also exhibits good stability during the recycle test 

(Figure S6). The system did not evolve NH3 in the absence of 

light irradiation or in an Ar atmosphere for comparison. As 

additional proof of N2 photofixation, N2H4 was also detected in 

the form of an intermediate over LaFeO3 and P1-LFO (shown in 

Figure S7). The N2H4 yields of P1-LFO and LaFeO3 are only 

10.3 and 1.45 μmol g−1
 h−1

, while the NH3 yields are dozens of 

times higher than those under full-spectrum irradiation, indicating 

the LaFeO3-based photo-catalysts exhibit the excellent selectivity 

toward NH3. The NH3 production under visible light irradiation 

was 30% of that under UV−vis light. After 1 h of Xe lamp 

irradiation, only low NH3 evolution (45 μmol g−1
 h−1

) was 

detected over pure LaFeO3. As shown in the inset to Figure 6, 

NH3 evolution over P-LFO samples presented a monotonic 

increase with acid treatment, reaching about 250 μmol g−1
 h−1

 

over P1-LFO, a 4.4-fold increase compared to pure LFO. With the 
excessive treatment of phosphate, however, the ammonia 
synthesis rates decreased mainly due to the block of electrons 
transferring. As indicated in the results of EIS, the phosphate 

modification also plays the important role in facilitating the H2O 

dissociation and proton transfer. Linear sweep voltammetry (LSV) 
behavior of the proton transfer in the form of hydrogen evolution 
reaction (HER) over LFO and P-LFO series samples was 

examined in the N2 saturated electrolyte under the Xe lamp 

irradiation. The overall potential of pure LFO was −0.5 V at 0.1 

mA/cm
2
 versus a reversible hydrogen electrode (RHE). When a 

moderate amount of phosphate was modified on the LFO surface, 
the overall potential of all the P-LFO samples exhibits positive 
shifts to −0.45, −0.40, and −0.38 V, respectively. The improved 
HER performance after phosphate mediation suggests that the 

phosphate is capable of eff ectively facilitating the H2O 

dissociation and promoting the proton transfer on the LFO 
surface. This is concluded to be another reason for the 

 

improved N2 photofixation performance, which is related to the 

protonation process of N2. On the basis of the above analysis, the 

possible N2 reduction on P-LFO is proposed as follows: 
 

P‐ LFO +  hν →  P‐LFO( h
+

  +  e 
−

) (1) 

Fe 
3
 
+

  +  e 
−

  →  Fe
2+ 

(2) 

Fe 
2
 
+

  +  N2 →  Fe 
3
 
+

  +  N2 (3) 

N2 +  4e 
−

  +  4H 
+

  →  N2 H4 (4) 

N2 H4 +  2e 
−

  +  2H 
+

  →  2NH3 (5) 

6H 2 O +  12h
+

  →  3O2 +  12H
+ 

(6) 
 
First, simulated solar light excited electrons and holes are 

generated on the P-LFO catalyst (eq 1). Fe
3+

 species are 

reduced to Fe
2+

 by the photogenerated electrons (eq 2). The 

Fe
2+

 ions serve as the N2 activation centers and donate the 

electrons to N2, which promote the formation of activated N2 

species (*N2) (eq 3). The photogenerated electrons reduce the 

*N2 further and produce an N2H4 intermediate (eq 4) due to  
the synergistic N2 activation eff ect from phosphate and 

transition metal Fe
3+/2+

. The amount of hydrazine (N2H4) in  
the final product was about 4%, indicating that the N2H4 
will be easily reduced to ammonia as detected (eq 5).
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Meanwhile, the H2O oxidation is another half-reaction 
besides N2 photofixation, which provides sufficient protons 
for ammonia synthesis (eq 6). 

■ CONCLUSION 
 
Our work provides an alternative N activation strategy that 

weaken the triple N N bonds under 
2
light irradiation by taking the 

“pull and push” strategy of nitrogenase to the photocatalysis fields. 

The outstanding N2 photofixation performance (250 μmol g−1
 

h−1
) was achieved over phosphate modified (P1-LFO) as the 

positive results of the photocatalyst designation. The excellent N2 

photofixation performance is contributed to the synergistic eff ect 
of hydrogen bonding from phosphate and transition metals of 

LaFeO3, which enhances the adsorption and activation of N2. In 

addition, phosphate modification might serve as a universal 
strategy for the designation of the photocatalysts with sustainable 

N2 conversion performance. 
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