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SOME NEW RESULTS ON LIPSCHITZ REGULARIZATION FOR
PARABOLIC EQUATIONS

NICOLAS DIRR AND VINH DUC NGUYEN

Abstract. It is well-known that the bounded solution u(t, x) of the heat equation posed
in RN×(0, T ) for any continuous initial condition becomes Lipschitz continuous as soon as
t > 0, even if the initial datum is not Lipschitz continuous. We investigate this Lipschitz
regularization for both strictly and degenerate parabolic equations of Hamilton-Jacobi
type. We give proofs avoiding Bernstein’s method which leads to new, less restrictive
conditions on the Hamiltonian, i.e. the first order term. We discuss also whether the
Lipschitz constant depends on the oscillation for the initial datum or not. Finally, some
important applications of this Lipschitz regularization are presented.

1. Introduction

It is well-known that the bounded solution u(t, x) of the heat equation posed in RN ×
(0, T ) for any continuous initial condition becomes Lipschitz continuous as soon as t > 0.
The precise statement is: there exists a positive continuous function α : (0, T ] → [0,∞)
which depends only on the oscillation of the initial datum (not on its Lipschitz constant
which may not even exist) such that

|Du|∞ ≤ α(t).(1.1)

In this article, we study the above question for the following nonlinear parabolic equation
∂u

∂t
− trace(A(x,Du)D2u) +K(x, t,Du) = 0, (x, t) ∈ TN × (0, T ),

u(x, 0) = u0(x), x ∈ TN ,
(1.2)

where A(x, p) = σ(x, p)σ(x, p)T with σ ∈ W 1,∞(TN ;MN). K will in general be coercive
and convex in a carefully quantified way. Depending on the nature of these additional
assumptions on the Hamiltonian, the Lipschitz constant at time t > 0 may depend on
t and the oscillation of the initial datum, or, if the growth of the Hamiltonian is super-
quadratic, it may even be independent of the initial datum. The latter behaviour is of
course different from what to expect for the heat equation and is related to the fact that
the first order part becomes dominant.

In the sequel we will make our assumption precise and compare them with the literature.
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2 NICOLAS DIRR AND VINH DUC NGUYEN

In this paper, we always assume that the Hamiltonian K is continuous and TN -periodic
in x. The diffusion matrix A is always assumed to be non-negative semi-definite, i.e.,

A(x, p) ≥ 0, (x, p) ∈ TN × RN .(1.3)

The diffusion matrix is said to be strictly elliptic if

there exists ν > 0 such that A(x, p) ≥ νI, (x, p) ∈ TN × RN .(1.4)

More precise structures on diffusion matrices A(x, p) are presented in Section 3.
Comparison with results in the literature: There is a vast literature on this subject.

An exhaustible overview would be more appropriate for a monograph than for this brief
note, so the following remarks should be rather seen as an effort to put this paper into a
context rather than as a definitive overview.

A bound like in (1.1) was obtained in [7] for viscous and non-viscous Hamilton-Jacobi
equations using Bernstein’s method under quite restrictive structures on the first order.
Bernstein’s method, however, requires formally to differentiate the equation, which yields
to quite restrictive assumptions on the x-dependence of the Hamiltonian K. More precisely,
they consider the class of parabolic equations satisfying two main structural assumptions
as follows:

• There exists R0 > 0 and a strictly increasing Φ with Φ(0) = 0 such that for some

δ > 0, G(r) = Φ(r)
r1+δ

is increasing. G is coercive and for all (x, p) ∈ TN × RN with
|p| ≥ R0.

DpK(x, p)p−K(x, p) ≥ Φ(|p|).(1.5)

• There exists a positive constant C such that for all (x, p) ∈ TN × RN , |p| ≥ R0

−DxK(x, p)p ≤ C(DpK(x, p)p−K(x, p)).(1.6)

The assumption (1.5) is quite natural for super-linear convex-type Hamiltonians but the
assumption (1.6) is quite restrictive. The typical example satisfying (1.5) and (1.6) is:

K(x, p) = |p|k − f(x) k > 1 is a constant, f(x) is a continuous function.(1.7)

Note that in general a(x)|p|k does not satisfy (1.6) because the left hand side has no sign
and grows like |p|k+1, while the right-hand side grows only like |p|k.

The typical example is:

K(x, p) = a(x)|p|k − f(x) k ≤ 2 is a constant, a, f are continuous functions.(1.8)

In this paper we study this type of result for Hamiltonians of any growth order in
gradient variable and even for degenerate parabolic equations in periodic domain. We
obtain results for strictly elliptic and degenerate diffusion matrices with quite general
structural conditions on the Hamiltonians, avoiding the use of Bernstein’s method. As a
particular case, we obtain a result inspired by the theory of Mean Field Games which will
be presented in Theorem 3.5 and explained in Section 4.
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In Priola and Porretta [14], the authors studied (1.1) for both linear and nonlinear
parabolic equations posed in RN . Their main goal is to obtain the gradient estimate
independently of the infinity norms of the coefficients of the operator but only depending
on their modulus of continuity. Since the authors consider the equations in RN , which
require them to take care the behavior of solutions at infinity, their results mainly apply
for strictly elliptic equations and sub-quadratic Hamiltonians.

Gradient bounds for superlinear Hamiltonians were studied in Lions [11], Barles [3], see
also Lions and Souganidis [12] and references therein. These ideas were used in Barles and
Souganidis [4] and after that extended by Ley and one of the author [13] to study the large
time behavior of parabolic equations and systems. Let us mention a work of Cardaliaguet
and Sylvestre [6] where oscillations and Hölder bounds for nonlinear degenerate parabolic
equations were proved but the bounds depends on the L∞ norm of the solution.

We would like to mention that the most far-reaching consequence of Bernstein’s method
to date is the powerful Lions-Souganidis condition, [12], see also [1], which yields Lipschitz
estimates for Hamilton-Jacobi equations under very mild structural assumptions. For
parabolic equations, however, the application would require a bound on |∂tu(x, t)|, which
requires the initial datum to be more regular than just bounded.

Notation:
We denote S(N) the class of symmetric N ×N matrices.
|M |∞ denotes the supremum norm of matrix M .
Remark:
Our methods are based on some change of variables of exponential type, which requires

the solutions to be bounded away from zero. Note that we can assume this without loss of
generality for bounded time intervals [0, T ] on the torus: By adding a big constant to the
initial datum u0 (depending on supTn×(0,T )K(x, t, 0) and infTn u0(x)) neither the Lipschitz
constant of the solution nor the oscillation of the initial datum is changed and we can from
now on assume that

u(x, t) ≥ 1 for all (x, t) ∈ TN × RN .(1.9)

Structure of the paper
We consider separately the degenerate and strictly parabolic case, each leading to sepa-

rate assumptions and results. Roughly speaking, in the degenerate case the regularization
comes from the the Hamiltonian, while in the strictly parabolic case it comes from the
second order term.

In section 2, we show that for super-quadratic Hamiltonians the oscillation of solutions
does not depend on the initial datum after a certain time, because there is a super-solution
which is infinite at time t = 0, so the oscillation at any later time is bounded by this
supersolution.

In Section 3, we obtain estimates on the Lipschitz constant via an exponential change
of variables and the classical doubling-of-variables method. We avoid differentiating the
equation as it would be the case with Bernstein’s method. Our method yields a bound
depending on the oscillation of the initial datum. With the result from Section 2, we can
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conclude that the Lipschitz constant of solutions for super-quadratic Hamiltonians does
not depend on the initial datum after a certain time.

(Actually, the bound depends on the supremum over time of the oscillation in space of
the solution, but the comparison principle allows to bound this by a constant depending
on K(x, t, 0) and the oscillation of the initial datum.)

In section 4 we present some examples satisfying our structures, and we explain an
important application of Lipschitz regularization which is independent of the oscillation
of the initial datum: The long-time behaviour of a class of nonlinear stochastic partial
differential equations studied by P.E. Souganidis and one of the authors in [9]

2. Oscillation of solutions with super-quadratic Hamiltonians

We consider the following structural conditions on the Hamiltonians. there exists q > 2, M > 0, there is a function f
depending only on M, q such that for all x ∈ TN , p ∈ RN , t ∈ (0, T ), then
K(x, t, p) ≥M−1|p|q − f(M).

(2.1)

We assume the following condition on the diffusion

|A(x, p)| ≤ C0, for any x ∈ TN , p ∈ RN .(2.2)

We extend a result proved in [9] for the L∞ norm of solutions for super-quadratic Hamil-
tonians. The proof is the same as the proof of [Lemma 4.2, [9]], where the authors obtained
a result when A does not depend on p, and will be presented in Appendix for the reader’s
convenience.

Proposition 2.1. Assume that A,K are continuous functions, and that (2.1) and (2.2)
hold where q > r, then for continuous viscosity solution u of (1.2), we have

|u(x, t)−minu0| ≤ C(t), C does not depend on initial datum.

It can be seen from [Lemma 4.2, [9]] or from Proposition (2.1) that under (2.1), the
oscillation of solutions of equation (1.2) is bounded independently of initial conditions.
The question now is that: what happens if (2.1) is violated? We can easily see that the
claim is not true for heat equations.

Example 2.2. Consider the heat equation
∂u

∂t
−∆u = 0, (x, t) ∈ R× (0, T ),

u(x, 0) = Asin(x), x ∈ R, A > 0
(2.3)

The solution of the equation (2.3) is given by

u(x, t) = Ae−tsin(x),

it is clear that osc(u(., t)) := maxx∈R u(x, t) − minx∈R u(x, t) = 2Ae−t depends on the
oscillation of the initial datum.
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3. Gradient bounds for parabolic equations

We first recall the following lemma which is proved in [13] when A(x, p) does not depend
on x. An almost identical proof for A(x, p) is presented in Appendix for the reader’s
convenience. We need some structures on A(x, p) as follows:

|σ(x, p)| ≤ |σ|∞ < +∞,∀(x, p) ∈ TN × RN .(3.1)

and

|σ(x, p)− σ(y, p)| ≤ |σx|∞|x− y| <, |σx|∞ < +∞ ∀(x, p) ∈ TN × RN .(3.2)

Lemma 3.1. Suppose (3.1) and (3.2) hold, φ ∈ C(TN × [0, T ]). Let Ψ : R+ → R+ be an
increasing concave function such that Ψ(0) = 0 and the maximum of

max
x,y∈TN ,t∈[0,T ]

{φ(x, t)− φ(y, t)−Ψ(|x− y|)},

is achieved at (x, y, t). If x 6= y and t > 0, then for every % > 0, there exists (a, p,X) ∈
J

2,+
φ(x, t), (a, p, Y ) ∈ J2,−

φ(y, t) such that(
X 0
0 −Y

)
≤M + %M2,(3.3)

with

p = Ψ′(|x− y|)q, q =
x− y
|x− y|

, B =
1

|x− y|
(I − q ⊗ q),(3.4)

M = Ψ′(|x− y|)
(

B −B
−B B

)
+ Ψ′′(|x− y|)

(
q ⊗ q −q ⊗ q
−q ⊗ q q ⊗ q

)
(3.5)

and the following estimate holds

−trace(A(x, p)X − A(y, p)Y ) ≥ −N |σx|2∞|x− y|Ψ′(|x− y|) +O(%).(3.6)

If, in addition, (1.4) holds, then there exists C̃ = C̃(N, ν, |σ|∞, |σx|∞) such that

−trace(A(x, p)X − A(y, p)Y ) ≥ −4νΨ′′(|x− y|)− C̃Ψ′(|x− y|)|x− y|+O(%)(3.7)

The trace estimates can be found in [10, 8, 2, 4].

3.1. Strictly parabolic equations. We consider the following structure in the next the-
orem


For any L > 1, there exists C ∈ R, such that

for all x, y ∈ TN , t ∈ [0, T ], |p| ≥ L, and µ ≥ 1+L|x− y|, we have

K(x, t, p)− µK(y, t,
p

µ
) ≥ −C|p| − C.

(3.8)
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Theorem 3.2. Assume (3.1), (3.2) (1.4) and (3.8) hold. Let u be a continuous viscosity
solution of (1.2)satisfying (1.9), and define

exp(w(x, t)) = u(x, t), for any x ∈ TN , t ∈ [0, T ]

Then, there exists a positive continuous function α : (0, T ] → [0,∞), which only depends
on the oscillation of the initial datum, such that |Dw|∞ ≤ α(t).

If (2.1) also holds, α(t) can be chosen independently of the oscillation of the initial datum.

Remark 3.3. The second part of the theorem follows directly from Proposition 2.1 which
claims that under (2.1), the oscillation of solutions of equation (1.2) is bounded indepen-
dently of initial conditions.

The following proof is inspired by the proofs of [Lemma 2.6 , [4]], [Lemma 2.5 , [13]] and
[Theorem 3.3 , [14]].

Proof of Theorem 3.2. First of all, we have

exp(w)wt = ut(x, t), exp(w)Dw = Du(x, t), exp(w)Dw ⊗Dw + exp(w)D2w = D2u.

So the function w solves the new equation

∂w

∂t
− tr(AD2w) +G(x, t, w,Dw) = 0,(3.9)

where

G(x, t, w, p) = e−wK(x, t, ewp)− |σ(x, p)Tp|2.
Step 1. Appropriate test functions.

Fix any t0 ∈ (0, T ), we define the open set

∆ = ∆(t0) =
{

(t, x, y) ∈ (0, T )× TN × TN :
t0
2
< t < (T ∧ 3

2
t0)
}
,

Let us set

ωt0(v) = osc(
t0
2
,T∧ 3

2
t0)(v) = sup

{
v(x, t)− v(y, t), (x, y) ∈ TN × TN ,

t0
2
< t < (T ∧ 3

2
t0)
}
,

Consider the function Ψ : R+ → R+ defined by

Ψ(s) =
A1

A2

(1− e−A2s)(3.10)

where A1, A2 > 0 (depends on t0) will be chosen later. It is straightforward to see that Ψ
is a C∞ concave increasing function satisfying Ψ(0) = 0 and, for all r > 0 and s ∈ [0, r],

Ψ′′ + A2Ψ′ = 0, A1e
−A2r = Ψ′(r) ≤ Ψ′(s) ≤ Ψ′(0) = A1.(3.11)

We define the functions

Φε(t, x, y) = w(x, t)− w(y, t)−Ψ(|x− y|)− C0(t− t0)2 − ε

T − t
,(3.12)
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z(x, y, t) = Ψ(|x− y|) + C0(t− t0)2 +
ε

T − t
,

In case where the supremum over (t, x, y) ∈ ∆ of Φε defined in (3.12) is non-positive for
small ε, we let ε→ 0 and t = t0 and having for all x, y ∈ TN ,

w(x, t0)− w(y, t0) ≤ Ψ(|x− y|) ≤ A1(t0)|x− y|,

where the latter inequality follows from the concavity of Ψ. This yields the desired
Lipschitz bound.

We argue by contradiction assuming that the supremum over (t, x, y) ∈ ∆ of Φε defined
in (3.12) is positive. We define Ψ as in (3.10) and we will show later that we can choose
A1, A2 such that

Ψ(
√
N) > ωt0(w).(3.13)

We make the following straightforward observations:
By choosing

C0 =
4ωt0(w)

t20
,(3.14)

we have Φε < 0 if either t = t0
2

or t = 3t0
2

. Moreover, since limt→T−
ε

T−t = +∞, we conclude

that Φε cannot have a maximum if t = t0
2

or t = (T ∧ 3
2
t0).

We then deduce that this supremum is a maximum achieved at some (x̄, ȳ, t̄) ∈ ∆. Notice
that x̄ 6= ȳ because of the continuity of w.
Step 2. Viscosity inequalities for (3.9). Writing the viscosity inequalities at (x̄, ȳ, t̄),
we obtain

a− trace(A(x̄, p)X) +G(x̄, t̄, w(x̄, t̄), p) ≤ 0,

b− trace(A(ȳ, p)Y ) +G(ȳ, t̄, w(ȳ, t̄), p) ≥ 0.

where a− b = ∂z
∂t

(x̄, ȳ, t̄) = 2C0(t− t0) + ε
(T−t)2 , p = Ψ′(|x̄− ȳ|) x̄−ȳ

|x̄−ȳ| .

Therefore,

2C0(t− t0)− trace(A(x̄, p)X − A(ȳ, p)Y )

+ G(x̄, t̄, w(x̄, t̄), p)−G(ȳ, t̄, w(ȳ, t̄), p) ≤ 0.(3.15)

Step 3: Obtaining a contradiction from (3.15).
From Lemma (3.1), we have

−trace(A(x, p)X − A(y, p)Y ) ≥ −4νΨ′′(|x− y|)− C̃Ψ′(|x− y|)|x− y|+O(%).(3.16)
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We now estimate G(x̄, t̄, w(x̄, t̄), p)−G(ȳ, t̄, w(ȳ, t̄), p) using (3.8). Set P := ew(x̄,t̄)p and
µ := ew(x̄,t̄)−w(ȳ,t̄), we have

G(x̄, t̄, w(x̄, t̄), p)−G(ȳ, t̄, w(ȳ, t̄), p)

= e−w(x̄)

(
K(x̄, t̄, P )− µK(ȳ, t̄,

P

µ
)

)
− |σ(x, p)Tp|2 + |σ(y, p)Tp|2.(3.17)

Fix any L > 1, there is always a constant C depending on K, |σ|∞, |σx|∞, L from (3.8).
We can always enlarge C such that

L ≥ 4ωt0(u)

Ct0
+ 1,(3.18)

We will prove in Step 4 that it is possible to choose A1, A2, r in (3.13) such that

|P | = |ew(x̄,t̄)p| ≥ |p| = Ψ′(|x̄− ȳ|) ≥ Ψ′(r) = A1e
−A2r ≥ L.(3.19)

Since the maximum in (3.12) is positive and Ψ is concave, we get

µ ≥ 1 + w(x̄, t̄)− w(ȳ, t̄) > 1 + Ψ(|x̄− ȳ|)
≥ 1 + Ψ′(|x̄− ȳ|)|x̄− ȳ| ≥ 1 + L|x̄− ȳ|.

We will show in Step 4 that we can choose

|p| ≥ L.

It follows that we can apply (3.8) to (3.17) to get

G(x̄, w(x̄), p)−G(ȳ, w(ȳ), p)(3.20)

≥ −Ce−w(x̄)|P | − C − 2C2|x− y|(Ψ′)2 ≥ −CΨ′(|x̄− ȳ|)− C − 2C2|x− y|(Ψ′)2
.

Plugging (3.16),
and (3.20) in (3.15) and by letting %→ 0, we obtain

−4νΨ′′(|x− y|)− (C̃|x− y|+ C)Ψ′(|x− y|)− 2C2|x− y|(Ψ′)2
(|x− y|)− C

< 2C0(t0 − t) < C0t0 =
4ωt0(w)

t0
.

Using the fact that for all s ∈ [0,
√
N ], Ψ′′(s)+A2Ψ′(s) = 0 and sΨ′(s) ≤ Ψ(s) ≤ Ψ(

√
N),

we can rewrite the above inequality as[
4νA2 − (C̃

√
N + C + 2C2Ψ(|x̄− ȳ|))

]
Ψ′(|x− y|)− C <

4ωt0(w)

t0
.(3.21)

Step 4. Choosing appropriate constants satisfying all the conditions. We now
choose the constants A1, A2 fulfilling (3.13), (3.19) and hence obtaining a contradiction
in (3.21).

We set

A2 =
1

4ν
(C̃
√
N + 2C + 2C2ωt0(w)) and A1 = (L+ ωt0(w))exp(A2

√
N).
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From the choice of A1, we have for all r ∈ [0,
√
N ]

Ψ′(r) = A1e
−A2r = (L+ ωt0(w))eA2(

√
N−r) ≥ L

and (3.19) holds.
Moreover from the above choice of A1, A2, the left hand side of (3.21) is greater than

CL− C =
4ωt0 (w)

t0
. This explains the choice of L in (3.18).

We then get a contradiction in (3.21).
�

Remark 3.4. (Alternative Structural Condition)
Without performing a change of function in the proof of Theorem 3.2, we have a slightly

different result if replacing (3.8) by


For any L > 1, there exists C ∈ R, such that

for all x, y ∈ TN , t ∈ [0, T ], |p| ≥ L, we have
K(x, t, p)−K(y, t, p) ≥ −C|p| − C − 2C2|x− y||p|2.

(3.22)

Theorem 3.5. Under the same assumptions as in Theorem 3.2 where (3.8) is replaced
by (3.22). We have the same conclusion.

The proof is similar and therefore omitted. Note in particular that (3.22) is always
satisfied for a sublinear Hamiltonian, see Section 4 for a brief discussion.

3.2. Degenerate parabolic equations. We now consider degenerate diffusion matrices
and hence the Hamiltonians are the ones yielding the lipschitz regularity of the solution.
This is reflected in the difference between (3.8) and (3.23): Now the required lower bound
on the right hand side is much stronger.

We consider the following structure
There exists L > 1 such that

for all x, y ∈ TN , t ∈ [0, T ], |p| ≥ L, and µ ≥ 1+L|x− y|, we have

K(x, t, p)− µK(y, t,
p

µ
) ≥ 2C|x− y||p|2 +N |σx|2∞|x− y||p|,

(3.23)

where C = 2|σ|∞|σx|∞.

Theorem 3.6. Assume (3.1), (3.2) (3.23) hold. Let u be a continuous viscosity solution
of (1.2) satisfying (1.9). Set

exp(w(x, t)) = u(x, t), for any x ∈ TN , t ∈ [0, T ].

Call L the constant such that (3.23) holds, then we have

|Dw(x, t)| ≤ 1

2|σ|∞|σx|∞t
+ L.(3.24)
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Proof of Theorem 3.6. Recall that the function w defined by

exp(w(x, t)) = u(x, t), for any x ∈ TN , t ∈ [0, T ]

solves
∂w

∂t
− tr(A(x, p)D2w) +G(x, t, w,Dw) = 0,

where

G(x, t, w, p) = e−wK(x, t, ewp)− |σ(x, p)Tp|2.
Step 1. Appropriate test functions.

We set the first conditions on the auxiliary function ϕ : We require ϕ ≥ 1 and

ϕ(0) = +∞,
We define the function

Φ(x, y, t) = w(x, t)− w(y, t)− L|x− y|ϕ(t),(3.25)

and we define for convenience

S = sup
(x,y,t)∈TN×TN×[0,T ]

Φ(x, y, t)

.
If S is non-positive we have for all x, y ∈ TN ,

w(x, t)− w(y, t) ≤ ϕ(t)L|x− y|,
this yields the desired result.
So now we argue by contradiction that S is positive.
We find that the supremum defined in (3.25) is a maximum and achieved at (x̄, ȳ, t̄) ∈

TN × TN × (0, T ]. Notice that x̄ 6= ȳ because the continuity of w.
Step 2. Viscosity inequalities for (3.9). Writing the viscosity inequalities at (x̄, ȳ, t̄),
we obtain

a− trace(A(x̄, p)X) +G(x̄, t̄, w(x̄, t̄), p) ≤ 0,

b− trace(A(ȳ, p)Y ) +G(ȳ, t̄, w(ȳ, t̄), p) ≥ 0.

where a− b = L|x̄− ȳ|ϕ′(t̄), p = Lϕ(t̄) x̄−ȳ
|x̄−ȳ| .

Therefore,

L|x̄− ȳ|ϕ′(t̄)− trace(A(x̄, p)X − A(ȳ, p)Y )(3.26)

+ G(x̄, t̄, w(x̄, t̄), p)−G(ȳ, t̄, w(ȳ, t̄), p) ≤ 0.

Step 3. Estimates of the terms in (3.26).
From Lemma (3.1), we have

−trace(A(x, p)X − A(y, p)Y ) ≥ −LN |σx|2∞|x− y|+O(%).(3.27)



LIPSCHITZ REGULARIZATION FOR PDES 11

We now estimate L|x̄ − ȳ|ϕ′(t̄) + G(x̄, t̄, w(x̄, t̄), p) − G(ȳ, t̄, w(ȳ, t̄), p) using (3.23). Set
P := ew(x̄,t̄)p and µ := ew(x̄,t̄)−w(ȳ,t̄), we have

L|x̄− ȳ|ϕ′(t̄) +G(x̄, t̄, w(x̄, t̄), p)−G(ȳ, t̄, w(ȳ, t̄), p)

= L|x̄− ȳ|ϕ′(t̄) + e−w(x̄)

(
K(x̄, t̄, P )− µK(ȳ, t̄,

P

µ
)

)
− |σ(x)Tp|2 + |σ(y)Tp|2.(3.28)

It is clear that

|P | = |ew(x̄,t̄)p| ≥ |p| = Lϕ(t̄) ≥ L,(3.29)

Since the maximum in (3.25) is positive, we get

µ ≥ 1 + w(x̄, t̄)− w(ȳ, t̄) > 1 + L|x̄− ȳ|ϕ(t̄) ≥ 1 + L|x̄− ȳ|.
So we have

|p| ≥ L and µ ≥ 1 + L|x̄− ȳ|.
Noticing that e−w|P |2 = ew|p|2 ≥ |p|2 = L2ϕ(t̄)2. It follows that we can apply (3.23)

to (3.28) to get

L|x̄− ȳ|ϕ′(t̄) +G(x̄, w(x̄), p)−G(ȳ, w(ȳ), p)(3.30)

≥ L|x̄− ȳ|ϕ′(t̄) + e−w(x̄)(2C|x− y||P |2 +N |σx|2∞|x− y||P |)− C|x− y||p|2,
> N |σx|2∞|x− y|L+ L|x̄− ȳ|ϕ′(t̄) + L2ϕ(t̄)2C|x− y|,

where we recall that C = 2|σ|∞|σx|∞.
Plugging (3.27), and (3.30) in (3.26), we can rewrite (3.26) as

L|x̄− ȳ|ϕ′(t̄) + L2ϕ(t̄)2C|x− y| < 0.

or,

ϕ′(t̄) + Lϕ(t̄)2C < 0.

So if we choose from the beginning ϕ ≥ 1 such that ϕ′(t̄) +Lϕ(t̄)2C ≥ 0, for instance with
the choice of ϕ

ϕ(t) =
1

LCt
+ 1, C = 2|σ|∞|σx|∞

in the above calculations, we get a contradiction and hence obtain (3.24).
�

Remark 3.7. We would like to make some comments about the bound obtained in The-
orems 3.2 and 3.6.

In these two theorems, we proved that |Dw|∞ ≤ α(t), where exp(w(x, t)) = u(x, t). But
we are interested in the bound for the original solutions u. The desired bound for u can be
obtained with a similar change of variable of type exp(v(x, t)) = u(x, t)−minx∈TN u(x, t)+1,
we still have |Dv|∞ ≤ α(t) (α depends on the oscillation of v) with an almost identical
proof.



12 NICOLAS DIRR AND VINH DUC NGUYEN

It is clear that minx∈TN v(x, t) = 0 and hence

exp(osc(v(., t))) = exp(max
x∈TN

v(x, t)) = osc(u(., t)) + 1.

It also implies easily that osc(v(., t)) ≤ osc(u(., t))
Since we have

|Du(x, t)| = exp(v(x, t))|Dv(x, t)| ≤ (osc(u(., t)) + 1)|Dv(x, t)|
≤ (osc(u(., t)) + 1)α(osc(v(., t))) ≤ (osc(u(., t)) + 1)α(osc(u(., t))).

So we have the bound for the original solutions u from Theorems 3.2 and 3.6.

4. Examples and Applications

4.1. Examples. We present an example satisfying (3.23).

K(x, t, p) = a(x, t)|p|k − f(x, t),(4.1)

where k > 1, a > 0, f are Lipschitz continuous functions with the Lipschitz constant
bounded uniformly in t ∈ [0, T ].

We show that K satisfies (3.23). For all x, y ∈ TN , t ∈ [0, T ], |p| ≥ L, M is some constant
depending only on the oscillation of the solution, for M ≥ µ ≥ 1+L|x − y|, we need to
verify that

K(x, t, p)− µK(y, t,
p

µ
) ≥ C|x− y||p|2,(4.2)

for large value of L chosen later.
With α > 1, Bernoulli’s inequality yields

µα − µ ≥ (α− 1)(µ− 1),(4.3)

We have,

K(x, t, p)− µK(y, t,
p

µ
) = a(x, t)|p|k − a(y, t)

|p|k

µk−1
− f(x, t) + µf(y, t) := S − f(x, t) + µf(y, t).

We have

S = a(x, t)|p|k − a(y, t)
|p|k

µk−1
=
|p|k

µk−1
[a(x, t)− a(y, t)] + a(x, t)[|p|k − |p|

k

µk−1
]

≥ − |p|
k

µk−1

Lip(a)(µ− 1)

L
+min(a)[|p|k − |p|

k

µk−1
] (and from (4.3), we get)

≥ |p|k(µ− 1)

µk
[min(a)(k − 1)− Lip(a)µ

L
]

≥ |p|k(µ− 1)

µk
[min(a)(k − 1)− Lip(a)M

L
].

By choosing L big enough, it shows the desired inequality.
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Now, we present an example that satisfies (3.8). For any Lipschitz continuous function
a with the Lipschitz constant bounded uniformly in t ∈ [0, T ] (if k ≥ 1, a needs to be non-
negative, for 0 ≤ k < 1 no positivity is required), f continuous and |f(x, p)| ≤ C(|p|+ 1)

K(x, t, p) = a(x, t)|p|k + f(x, p), k ≥ 0 .(4.4)

In the theory of Mean Field Games, sublinear Hamiltonians are important. The following
is an important example coming from Mean Field Games that satisfies (3.22). For any
continuous function K satisfying

|K(x, t, p)| ≤ C|p|+ C,(4.5)

then K satisfies (3.22) and hence Theorem 3.5 applies.

4.2. Application to the Large-time behavior for Hamilton-Jacobi equations forced
by additive noise. Dirr and Souganidis, [9], consider Hamilton-Jacobi equations driven
by additive noise which is white in time and smooth in space (depending only on finitely
many independent Brownian motions). They show (Theorem 2.3 in [9]) that if the deter-
ministic equation has an attractor which consists of a uinique solution up to constants,
then the attractor of the stochastic version consists of a unique trajectory defined for times
on all of R.

A crucial ingredient in the proof are Lipschitz estimates. They are used in the following
way:

By elementary probabilistic arguments, there are plenty of intervals of small noise, in
which different solutions behave like solutions to the deterministic equation. This means
that their distance (modulo constants) decreases, while by the comparison principle this
distance cannot increase outside those ”good” intervals. Hence also the distance (always
uo to constants) of solutions of the stochastic equation decreases as time increases and
they pass through sufficiently many small-noise intervals.

However, in order to show that solutions of the stochastically perturbed and unperturbed
equation stay close if the noise is small thewy need to control the Lipschitz-constant. As
the initial datum ina small-noise interval is the solution at the end of the preceding bi-noise
interval, the initial datum and its oscillation is not controlled, so Lipschitz regularization
independently of the initial datum is necessary.

The results in this paper allow to strengthen the results of [9] in as much as for su-
perquadratic Hamiltonian and nonzero second-order part our assumptions, which are slightly
weaker than those in [9].

5. Appendix

5.1. Proof of Proposition 2.1.

Proof of Proposition 2.1. Step 1. Assume without loss of generality that minu0 = 0 and
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β = q − 2 > 0, γ = (1− θ)q − 2

q − 1
, α = γ − 1 + 2θ,(5.1)

where θ ∈ (0, 1
2
) is chosen so that α > 0.

Step 2: General form of super-solutions
For a, b > 0, we consider the function Ga,b : RN × (0,∞)→ R

Ga,b(x, t) = f(M)t+ 2bC0t
γ + atα + bγ|x|2tγ−1,

where C0 is the constant appearing in assumption (2.2).
Note that for any x 6= 0, limt→0+ Ga,b(x, t) = +∞.
Since D2|x|2 = 2I, we have

M =
∂G

∂t
− trace(A(x,DG)D2G) +M−1|DG|q − f(M)

≥ aαtα−1 + b(γ − 1)γ|x|2tγ−2 +M−1|DG|q

≥ aαtα−1 + b(γ − 1)γ|x|2tγ−2 +
1

2M
|DG|q

= aαtα−1 + |x|2tγ−2[
1

M
|2bγtγ−1|q|x|q−2t2−γ − b(1− γ)γ]

= aαtα−1 + |x|2tγ−2[
1

M
|2bγ|q( |x|

tθ
)q−2 − b(1− γ)γ].

Step 3: Choosing the suitable constants a, b.
We need to choose the suitable constants such that D > 0.
If |x| ≥ tθ, we can choose b depending on q, θ, and K but not on a such that D > 0.
If |x| < tθ, we choose a such that

D > aαtα−1 − b(1− γ)γ|x|2tγ−2 > 0.

This is satisfied if

aαtα−1 − b(1− γ)γt2θ+γ−2 = tα−1[aα− b(1− γ)γ] > 0.

Finally, the periodic super-solution V (x, t) is defined as follows

V (x, t) = inf
z∈TN

G(x− z, t).

�
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5.2. Proof of Lemma 3.1. The theory of second order viscosity solutions yields (see [8,

Theorem 3.2] for instance), for every % > 0, the existence of (a, p,X) ∈ J2,+
φ(x, t), (a, p, Y ) ∈

J
2,−
φ(y, t) such that (3.3), (3.4), (3.5) hold.

Le us prove (3.6) and (3.7). From (3.3), for every ζ, ξ ∈ RN , we have

〈Xζ, ζ〉 − 〈Y ξ, ξ〉 ≤ Ψ′〈ζ − ξ, B(ζ − ξ)〉+ Ψ′′〈ζ − ξ, (q ⊗ q)(ζ − ξ)〉+O(%).

We estimate trace(A(x, p)X) and trace(A(y, p)Y ) using two orthonormal bases (e1, · · · , eN)
and (ẽ1, · · · , ẽN) in the following way:

T := trace(A(x, p)X − A(y, p)Y ) =
N∑
i=1

〈Xσ(x, p)ei, σ(x, p)ei〉 − 〈Y σ(y, p)ẽi, σ(y, p)ẽi〉

≤
N∑
i=1

Ψ′〈ζi, Bζi〉+ Ψ′′〈ζi, (q ⊗ q)ζi〉+O(%)

≤ Ψ′′〈ζ1, (q ⊗ q)ζ1〉+
N∑
i=1

Ψ′〈ζi, Bζi〉+O(%),(5.2)

where we set ζi = σ(x, p)ei − σ(y, p)ẽi and noticing that Ψ′′〈ζi, (q ⊗ q)ζi〉 = Ψ′′〈ζi, q〉2 ≤ 0
since Ψ is concave.

We now build a suitable base to prove (3.6) and another one to prove (3.7).
In the case of (3.6) where σ could be degenerate, we choose any orthonormal basis such

that ei = ẽi. It follows

T ≤
N∑
i=1

Ψ′〈(σ(x, p)− σ(y, p))ei, B(σ(x, p)− σ(y, p))ei〉+O(%)

≤ Ψ′N |σ(x, p)− σ(y, p)|2|B|+O(%)

≤ Ψ′N |σx|2∞|x− y|+O(%)

since |B| ≤ 1/|x− y|. Thus (3.6) holds.
When (1.4) holds, i.e., A(x, p) ≥ νI for every (x, p) ∈ TN × RN , the matrix σ(x, p) is

invertible and we can set

e1 =
σ(x, p)−1q

|σ(x, p)−1q|
, ẽ1 = − σ(y, p)−1q

|σ(y, p)−1q|
, where q is given by (3.4).

If e1 and ẽ1 are collinear, then we complete the basis with orthogonal unit vectors ei =
ẽi ∈ e⊥1 , 2 ≤ i ≤ N. Otherwise, in the plane span{e1, ẽ1}, we consider a rotation R of angle
π
2

and define

e2 = Re1, ẽ2 = −Rẽ1.

Finally, noticing that span{e1, e2}⊥ = span{ẽ1, ẽ2}⊥, we can complete the orthonormal
basis with unit vectors ei = ẽi ∈ span{e1, e2}⊥, 3 ≤ i ≤ N.
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From (1.4), we have

ν ≤ 1

|σ(x, p)−1q|2
≤ |σ|2∞.(5.3)

It follows

〈ζ1, (q ⊗ q)ζ1〉 =

(
1

|σ(x, p)−1q|
+

1

|σ(y, p)−1q|

)2

≥ 4ν.

From (3.4), we deduce Bq = 0. Therefore

〈ζ1, Bζ1〉 = 0.

For 3 ≤ i ≤ N, we have

〈ζi, Bζi〉 = 〈(σ(x, p)− σ(y, p))ei, B(σ(x, p)− σ(y, p))ei〉 ≤ |σx|2∞|x− y|.

Now, we estimate ζ2

|ζ2| = |(σ(x, p)− σ(y, p))Re1 + σ(y, p)R(e1 + ẽ1)| ≤ |σx|∞|x− y|+ |σ|∞|e1 + ẽ1|.

It remains to estimate

|e1 + ẽ1| ≤
1

|σ(x, p)−1q|
|σ(x, p)−1q − σ(y, p)−1q|+ |σ(y, p)−1q|

∣∣∣∣ 1

|σ(x, p)−1q|
− 1

|σ(y, p)−1q|

∣∣∣∣
≤ 2|σ|∞|σx|∞

ν
|x− y|,

from (5.3) and |(σ−1)x|∞ ≤ |σx|∞/ν.
We hence obtain from (5.2) T ≤ 4νΨ′′ + C̃Ψ′|x− y|+O(%) where

C̃ = C̃(N, ν, |σ|∞, |σx|∞) := |σx|2∞(N − 2 + (1 +
2|σ|2∞
ν

)2).(5.4)

This yields (3.7).
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