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Cognitive and White-Matter Compartment Models Reveal
Selective Relations between Corticospinal Tract
Microstructure and Simple Reaction Time

X Esin Karahan, X Alison G. Costigan, X Kim S. Graham, X Andrew D. Lawrence, and X Jiaxiang Zhang
Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom

The speed of motor reaction to an external stimulus varies substantially between individuals and is slowed in aging. However, the
neuroanatomical origins of interindividual variability in reaction time (RT) remain unclear. Here, we combined a cognitive model of RT
and a biophysical compartment model of diffusion-weighted MRI (DWI) to characterize the relationship between RT and microstructure
of the corticospinal tract (CST) and the optic radiation (OR), the primary motor output and visual input pathways associated with
visual-motor responses. We fitted an accumulator model of RT to 46 female human participants’ behavioral performance in a simple
reaction time task. The non-decision time parameter (Ter ) derived from the model was used to account for the latencies of stimulus
encoding and action initiation. From multi-shell DWI data, we quantified tissue microstructure of the CST and OR with the neurite
orientation dispersion and density imaging (NODDI) model as well as the conventional diffusion tensor imaging model. Using novel
skeletonization and segmentation approaches, we showed that DWI-based microstructure metrics varied substantially along CST and
OR. The Ter of individual participants was negatively correlated with the NODDI measure of the neurite density in the bilateral superior
CST. Further, we found no significant correlation between the microstructural measures and mean RT. Thus, our findings suggest a link
between interindividual differences in sensorimotor speed and selective microstructural properties in white-matter tracts.
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Introduction
Voluntary response to external stimuli is a hallmark of cognitive
control that encompasses perceptual, decision and motor pro-

cesses. The reaction time (RT), measured as the latency between a
preparatory stimulus and a predefined action, varies substantially
across individuals (Jensen, 2006), changes during development
(Dykiert et al., 2012), aging (Woods et al., 2015) and neurode-
generation (Gorus et al., 2008), and has implications for mortal-
ity (Der and Deary, 2018). RT has also been identified as a marker
of mental processing speed (Ho et al., 1988; Sheppard and Ver-
non, 2008), a heritable trait relating to intelligence (Vernon,
1989; Rabbitt, 1996).
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Significance Statement

How does our brain structure contribute to our speed to react? Here, we provided anatomically specific evidence that interindi-
vidual differences in response speed is associated with white-matter microstructure. Using a cognitive model of reaction time
(RT), we estimated the non-decision time, as an index of the latencies of stimulus encoding and action initiation, during a simple
reaction time task. Using an advanced microstructural model for diffusion MRI, we estimated the tissue properties and their
variations along the corticospinal tract and optic radiation. We found significant location-specific correlations between the
microstructural measures and the model-derived parameter of non-decision time but not mean RT. These results highlight the
neuroanatomical signature of interindividual variability in response speed along the sensorimotor pathways.
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Individual differences in RT have been regarded as reflections
of a “primitive” neurophysiological characteristic (Rabbitt et al.,
2001), and the potential of RT as a behavioral phenotype neces-
sitates understanding its microstructural underpinnings (Turken
et al., 2008; Penke et al., 2010). In humans, diffusion tensor im-
aging (DTI) is commonly used to estimate tissue microstructure
from diffusion-weighted MRI (DWI; Basser and Pierpaoli, 1996),
which is sensitive to the degree of anisotropic water diffusion
because of cellular structures. The DTI measures of several white-
matter pathways have been shown to correlate with RT, both in
adults (Tuch et al., 2005; Turken et al., 2008; Johnson et al., 2015)
and children (Madsen et al., 2011; Tamnes et al., 2012; Scantle-
bury et al., 2014), possibly because of the difference in experi-
ments and cohorts across studies. One hypothesis of these
structural–functional correlations is that the interindividual vari-
ability in RT is due to variations in tissue microstructure, such as
axon diameter or myelination that affects the nerve conduction
velocity (Waxman, 1980; Fields, 2008), which in turn affects spike
timing and oscillatory coupling over long-range connections
(Pajevic et al., 2014) that are necessary for motor control (Baker
et al., 2003; Pogosyan et al., 2009) and RT (Chevalier et al., 2015;
Chopra et al., 2018).

However, research on the relationship between RT and DTI
raises two unresolved issues. First, RT, even in simple tasks, is a
hybrid measure of multiple intermixed cognitive processes (Gold
and Shadlen, 2007; Forstmann et al., 2016; Ratcliff et al., 2016).
Second, the conventional DTI model cannot distinguish micro-
structural properties between intracellular and extracellular space,
because it assumes a single tissue compartment (Beaulieu, 2002).

This study addressed these questions
by combining a cognitive model of RT
and a biophysical compartment model of
the DWI signal. We used the cognitive
model (Brown and Heathcote, 2008) to
decompose a non-decision time measure
from individual participant’s RT distribu-
tion in a simple reaction time task, which
accounts for the latencies of stimulus en-
coding and action initiation (Lo and
Wang, 2006; Donkin et al., 2011). DWI
data were analyzed with the neurite orien-
tation dispersion and density imaging
(NODDI) model (H. Zhang et al., 2012).
NODDI estimates separately the isotropic
and anisotropic diffusion in multiple com-
partments, allowing two specific measures
of tissue microstructure: the neurite density
index (NDI) as the intracellular volume
fraction and the orientation dispersion in-
dex (ODI) explaining the bending or fan-
ning of axon orientations.

Furthermore, using probabilistic trac-
tography and volume skeletonization, we
developed a new method to quantify the
changes of microstructural metrics along
fiber tracts. We focused on two a priori
tracts according to the functional anat-
omy of voluntary movement and visual
processing that are relevant to the simple
reaction time task. The first was the corti-
cospinal tract (CST), a major output
pathway carrying motor impulses from
the giant pyramidal cells in the motor area

to the midbrain (Lemon, 2008). The second was the optic radia-
tion (OR), the prominent white-matter relay in the visual system,
transmitting information from the lateral geniculate nucleus
(LGN) to V1 (Garey and Powell, 1971; Ebeling and Reulen,
1988).

Our results demonstrated that microstructural metrics varied
substantially along CST and OR. Higher neurite density in bilat-
eral superior CST was associated with faster non-decision time
across participants, but not with the mean RT. These findings
suggested microstructural-specific influence of interindividual
variability in subcomponents of the action decision process.

Materials and Methods
Participants. Forty-six healthy participants were recruited from the Car-
diff University School of Psychology participant panel (all females, age
range 19 –24 years; mean age 20.8 years). Participants had normal or
corrected-to-normal vision, and none reported a history of neurological
or psychiatric illness. This study was approved by the Cardiff University
School of Psychology Research Ethics Committee. Written informed
consent was obtained from all participants.

Experimental design. Participants performed a visually paced simple
reaction time (SRT) task adapted from previous studies (J. Zhang et al.,
2012; Shafto et al., 2014). The task was conducted in a behavioral testing
room. The participants were presented with an image of a right hand on
a 24-inch LED monitor with 1920 � 1080 screen resolution (ASUS
VG248QE) and pressed the spacebar on the keyboard button with their
right index finger. Four transparent circles superimposed above the four
fingers in the hand image to serve as task cues (Fig. 1A). On each trial, the
task cue above the index finger in the image turned to an opaque circle,
indicating the start of the trial, and the participants were instructed to
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Figure 1. A, Experimental paradigm of the SRT task. Participants were instructed to respond when a filled circle appeared over
the index finger in the hand picture. B, Exemplar time course of the LBA model. The LBA assumes that accumulated evidence for an
action decision is accumulated linearly over time, and a decision is made once the accumulated evidence reaches a threshold. In
each trial, the starting point of the accumulation process is sampled from a uniform distribution. The rate of accumulation is
sampled from a Gaussian. The model predicted RT includes the duration of the accumulation process and a non-decision time (Ter),
that accounts for the latencies of non-decision processes such as stimulus encoding and action initiation, which are shown as
shaded area. C, Violin plots (mean and density) of the mean RT and Ter across participants. D, The fit of the LBA model to RT
quantiles in the SRT task. Error bars denote the 95% confidence intervals.
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respond as quickly as possible. After participants’ response or after a
maximum of 3 s response window, the opaque task cue extinguished and
changed back to a transparent circle. Visual stimuli were presented by
using Microsoft Visual Basic 5.0.

After a short practice, the participants performed 50 trials of the SRT
task. To discourage proactive response strategies, the intertrial interval
randomly varied across trials with a skewed distribution (minimum 1800
ms, maximum 6800 ms, and mean 3700 ms). RT was measured as the
latency between task cue onset and button press. Trials with RT �150 ms
or �1500 ms were excluded from further analysis (0.65% of the total
number of trials across all participants). Mean RT was then calculated as
the behavioral dependent measure for each participant.

Accumulator model of simple actions and parameter estimation. We
further analyzed the RT data using a cognitive model of RT, the linear
ballistic accumulator (LBA) model (Brown and Heathcote, 2008). The
LBA model is a simplified implementation of a large family of sequential
sampling models (Ratcliff and Smith, 2004; Bogacz et al., 2006; Gold and
Shadlen, 2007; J. Zhang, 2012) and has been used to study the cognitive
processes underlying decision making (Ho et al., 2009; Forstmann et al.,
2011), action selection (J. Zhang et al., 2012), and action inhibition (Se-
bastian et al., 2018).

In the present SRT task, there was only one possible action. We as-
sumed that the process is governed by a linear evidence accumulation
process (Fig. 1B), from a randomly sampled starting point to a decision
threshold B (for similar approaches, Ratcliff and Van Dongen, 2011;
Schurger et al., 2012). The speed of evidence accumulation varies across
trials as a Gaussian random variable with a mean � and SD �. The
model-predicted RT is given by the duration of the accumulation process
to reach a decision threshold B, plus a constant non-decision time Ter.
The non-decision time Ter does not relate to evidence accumulation, but
accounts for the latency of other processes including motor response
initiation and stimulus encoding (Gold and Shadlen, 2007; Brown and
Heathcote, 2008).

We fitted the LBA model to the RT distribution from the SRT task
using a minimization procedure validated in previous studies of RT
modeling (Bogacz and Cohen, 2004; Bogacz et al., 2006; Boucher et al.,
2007; Dean et al., 2011; J. Zhang et al., 2012, 2016). For each participant,
the observed RT distribution was binned into the 0.1, 0.3, 0.5, 0.7, and 0.9
quantiles (Ratcliff and Smith, 2004), and the model prediction of the five
RT quantiles were estimated from 100,000 numerical simulations. The
starting point variability was fixed at 0.5 as the scaling parameter (Brown
and Heathcote, 2008; Donkin et al., 2009). The model parameters (Ter, B,
�, and �) were determined by minimizing the likelihood ratio � 2 statistic
between the observed and predicted RT distributions using the Simplex
search algorithm (Nelder and Mead, 1965). To optimize the chance of
locating the optimal model parameters, the minimization procedure
started with a set of initial parameter values. Each initial parameter set
was chosen from 100 randomly generated values that produced the best
fit. The entire minimization procedure was then repeated 20 iterations to
identify the best-fitting model parameters. The two time-dependent
measures, the non-decision time Ter and the mean RT, were then associ-
ated with microstructural metrics from diffusion MRI.

MRI data acquisition. Whole-brain two-shell DWI data were acquired
using a Siemens 3T Prisma MRI scanner and a 32-channel receiver head
coil (Siemens Medical Systems) at the Cardiff University Brain Research
Imaging Centre with single-shot spin-echo echoplanar imaging pulse
sequence (echo time 67 ms, repetition time 9400 ms, field-of-view 256 �
256 mm, acquisition matrix size 128 � 128, voxel size 2 � 2 � 2 mm).
Diffusion sensitizing gradients were applied in 30 isotropic directions at
a b value of 1200 s/mm 2 and in 60 isotropic directions at a b value of 2400
s/mm 2. Six images with no diffusion weighting (b � 0 s/mm 2) were also
acquired. Participants also underwent high-resolution T1-weighted
magnetization prepared rapid gradient echo scanning (MPRAGE; echo
time: 3.06 ms; repetition time: 2250 ms sequence, flip angle: 9°, field-of-
view: � 256 � 256 mm, acquisition matrix: 256 � 256, voxel size: 1 �
1 � 1 mm).

DWI data processing and modeling. DWI data were converted from
DICOM to NIfTI format using dcm2nii (RRID:SCR_014099; http://
www.nitrc.org/projects/dcm2nii). The images were skull-stripped, and

corrected for eddy currents and head motion using FSL BET and eddy_
correct functions (FSL 5.0.9, http://www.fmrib.ox.ac.uk/fsl). DWI data
from both shells were registered to the first non-diffusion (b � 0 s/mm 2)
volume.

After preprocessing, diffusion tensors were fitted to the DWI data
using DTIFIT in FSL for each shell (b � 1200 s/mm 2 and b � 2400
s/mm 2). Local fiber orientation distributions in each voxel were esti-
mated by using the ball and stick model for multiple shells (Behrens et al.,
2003; Jbabdi et al., 2012). For each voxel, we calculated two DTI mea-
sures, fractional anisotropy (FA) and mean diffusivity (MD) by using the
b � 1200 s/mm 2 shell data (Fig. 2A). FA is a scalar ranging from 0 to 1
that quantifies the coherence of water diffusion, with 0 indicating low
coherence and 1 indicating high coherence, whereas MD measures the
average rate of water diffusion, with higher rates indicating fewer bound-
aries for water diffusion (Basser and Pierpaoli, 1996). Only data with b �
1200 s/mm 2 was used for the calculation of FA and MD, because the DTI
model assumes only hindered diffusion in the extra-axonal space which
is more sensitive to lower b values (Le Bihan et al., 2001).

The same preprocessed DWI data were fitted to the NODDI model
using the NODDI MATLAB Toolbox v1.0.1 (https://www.nitrc.org/
projects/noddi_toolbox). The NODDI model contains three tissue com-
partments: intracellular space, extracellular space, and CSF. The
intracellular estimation uses the stick model to capture the restricted
diffusion perpendicular to neurites and unhindered diffusion along
them. The extracellular compartment models the hindered diffusion of
water molecules by Gaussian anisotropic diffusion with parallel and per-
pendicular diffusivities. The CSF compartment is modeled as isotropic
Gaussian diffusion to minimize the confounding effect of CSF contami-
nation (H. Zhang et al., 2012). From the model-derived intracellular and
extracellular compartments, we calculated two voxelwise NODDI mea-
sures, NDI, and ODI (Fig. 2A). NDI represents the volume fraction of the
intracellular compartment that contains the axons and dendrites, and
ODI quantifies the angular variation in neurite orientation. Neurite ori-
entation distribution was parametrized with the Watson distribution by
using the “WatsonSHStickTortIsoV_B0” model.

The high-resolution T1-weighted MPRAGE image was linearly coreg-
istered to the native DWI space using mutual information with 6 degrees
of freedom. The coregistered MPRAGE image was segmented and nor-
malized to the Montreal Neurological Institute (MNI) standard template
by linear and nonlinear deformations using FSL. The forward and inverse
deformation fields between the native DWI space and the MNI template
space were used for subsequent tractography and along-tract analysis.

Tractography. For each participant, we conducted probabilistic trac-
tography to reconstruct bilateral CST, OR, and dorsal cingulum bundle
(CB; the latter as a comparison tract) in the individual’s native space
using FMRIB’s Diffusion Toolbox (Behrens et al., 2007). For all tracts, we
used multiple regions-of-interest (ROIs) from the Jülich histological at-
las (Bürgel et al., 2006) and John Hopkins University (JHU) DTI-based
white-matter atlases (Hua et al., 2008) to define seed masks, target masks,
waypoints, and exclusion masks.

Each tract was reconstructed by sampling 5000 streamlines per voxel
with 0.5 mm step length, 0.2 curvature threshold, 0.1 fiber threshold, and
3 mm minimum streamline length. The probabilistic tractography pro-
cedure generates an image in which the intensity of each voxel is the ratio
of the number of streamlines that pass through that voxel over the total
number of streamlines generated in the seed voxels (Fig. 2B). We thresh-
olded the probabilistic tractography outputs at 5 � 10 �5 to discard
false-positives (Rilling et al., 2008).

For the CST, we followed a previous method (Y. Zhang et al., 2010) to
use the ROIs from the JHU atlases. The tractography was seeded from the
cerebral peduncle (CP) and extended through the posterior limb of in-
terior capsule and superior corona radiata (SCR). The target mask was
the intersection of the precentral gyrus from the JHU atlas with the
individual gray matter images from MPRAGE segmentation (Fig. 2B).
The target mask was dilated with a 2 mm disk-shaped kernel using the
Image Processing Toolbox in MATLAB to account for anatomical vari-
ability across individuals (Clatworthy et al., 2010). Exclusion masks in-
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cluded the contralateral hemisphere, anterior limb of the internal
capsule, the retrolenticular part of the internal capsule, the pontine cross-
ing tract, and the inferior and superior cerebellar peduncle.

For the OR, the tractography was seeded from the LGN in each hemi-
sphere, and a central slice of OR defined in the Jülich histological atlas
was used as a waypoint mask to avoid the fibers that transverse Meyer’s
loop (Clatworthy et al., 2010). The target mask was the primary visual
cortex, jointly defined by the Jülich histological atlas and the individual
gray matter mask from MPRAGE segmentation. This target mask was
further dilated with a 2 mm disk-shaped kernel to account for the indi-
vidual anatomical variability (Fig. 2B). Exclusion masks included the
anterior boundary of the OR in the Jülich atlas and the contralateral
hemisphere (Clatworthy et al., 2010).

For the CB, we used the cingulum defined in the Jülich histological
atlas to localize the seed and target masks. The tractography was seeded
from the anterior section of the cingulum and a central slice of the same
image was used as a waypoint mask. The target mask was located at the
posterior section of the cingulum.

After tractography, we generated a group-based representation of each
tract in the MNI space across all participants (Figs. 2C, 3A, 4A). The
individual thresholded tractography results were binarized following the
transformation to the MNI space by applying the forward deformation

field from MPRAGE normalization. A group-based tract image was cal-
culated from the union of all participants’ normalized tracts.

Tract skeletonization. Similar to previous studies (Yeatman et al.,
2012), we performed tractography-based skeletonization for subse-
quent along-tract analysis in native space. This procedure is different
from FA-based skeletonization methods, which are typically used for
alignment-invariant tract representation for voxelwise analysis
(Smith et al., 2006).

For each tract, we generated a skeletal profile of the group tract
images using in-house scripts and the volume skeleton toolbox in
MATLAB (Fig. 2D; Cornea et al., 2007). First, the group tract image
was binarized. The isolated voxels with no second order neighbors
were removed. Holes and discontinuities in the tract image volume
were removed by dilating the whole tract volume with a 2 mm disk-
shaped kernel. Second, we applied the thinning algorithm to estimate
the skeleton of the cleaned tract images (Cornea et al., 2007). The
thinning algorithm estimates the curve-skeleton of a three-
dimensional object by iteratively removing simple voxels from the
surface boundary. Simple voxels are defined as the ones whose re-
moval would not change the topology of the volume. This operation
was repeated until no simple voxels remained. To find the main cur-
vature of the tract, branches along the main trunk of the skeleton were
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two-shell DWI data. B, Probabilistic tractography of CST and OR were calculated and thresholded in individual participant’s native space. Seed (green), waypoint (purple), and termination masks
(blue) used for the tractography are overlaid for both tracts. C, Individual tractography results of CST and OR were normalized to the MNI space and united to obtain group-based tract images. The
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skeleton was smoothed with cubic spline interpolation. The central portion of the group-based tract volume (between the two blue planes shown in C) and the skeleton were clipped for further
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space to calculate microstructural metrics along tracts.
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removed. A cubic spline interpolation was fitted to the principal
trunk of the skeleton to obtain a smoothed three-dimensional skele-
ton of the tract. Third, similar to previous approaches (Yeatman et al.,
2012), we focused on the central portion of the tracts, where fiber
bundle morphology is most consistent across individuals. Therefore,
we clipped the group-based CST image and the skeleton to the por-
tion between the cerebral peduncle and the superior corona radiata,
and we clipped the group-based OR image and the skeleton to the
portion closer to anterior regions of V1 and posterior regions of LGN.

Microstructural measures along tracts. To quantify microstructural
metrics and their changes along tracts, we divided the spline interpola-
tion of each group-based tract skeleton into 30 segments with equal
length and 20% overlap between adjacent segments, although our main
results were not dependent on the exact number of segments. All the
voxels in the group-based tract image were assigned to the corresponding
segment based on the closest Euclidean distance. This procedure was
repeated for all the tracts in the left and right hemispheres, resulting in 30
equidistant sub-volumes along the principal skeleton of each group-
based tract image (Fig. 2E). Because adjacent segments were overlapping,
the labeled sub-volumes also had overlapping voxels. This interpolation
ensured the along-tract microstructural measures were less affected by
segment boundaries (Yeatman et al., 2012).

All the sub-volumes were transformed back to the individual’s native
space to reconstruct participant specific sub-volumes along tracts. For
each participant, a voxel in a sub-volume was included in the calculation
of individual microstructural metrics only if: (1) it was in the individual
white-matter mask from the MPRAGE segmentation, (2) it had a FA
value �0.2 from DTI modeling, and (3) it had a suprathreshold proba-
bility of connection from the tractography results.

This approach enables quantification of microstructural measures at
multiple locations (i.e., segments) along the principal trajectory of a
white-matter tract, reducing three-dimensional volumetric data to one-
dimensional tract profiles. There are two advantages to quantify micro-
structural measures at the segment level rather than the voxel level. First,
it enables estimation of the variation of microstructure along tract tra-
jectories, which are otherwise not directly observable in voxelwise anal-
ysis or when averaging over the entire tract. Second, the combination of
group-level segments and individual-level constraints balances the con-
sistency and variability across participants when making inferences along
tracts.

For each participant, the four microstructural metrics (NDI, ODI and
FA, MD) at each sub-volume of each tract were calculated as a weighted
average of the metrics from all voxels within the sub-volume M:

Weighted Metric �M� �
1

�v�MP�v�
�

v�M

P�v� � Metric �v�,

where the weight P(v) for voxel v is the strength of connection in v
estimated from probabilistic tractography.

Statistical analysis. To examine the relationships between RT and Ter,
we used both frequentist and Bayesian Pearson’s correlation tests across
participants (JASP team, 2018). We used repeated-measures ANOVA
with two factors of track segments and hemispheres to examine the
change of microstructural measures along tracts and across hemispheres.
Greenhouse–Geisser correction was applied where Mauchly’s sphericity
test indicated that the assumption of sphericity was violated.

For each sub-volume along a tract, we used general linear models to
associate the weighted average of microstructural metrics to individual
mean RT and Ter from the behavioral data. Because of the age-related
changes in DWI signal (Yeatman et al., 2014; Cox et al., 2016), we in-
cluded age as a nuisance variable in all the models. To correct for multiple
comparisons from the 30 overlapping segments along each tract and 4
microstructural metrics (NDI, ODI, FA, and MD), we used threshold-
free cluster enhancement (TFCE) in FSL PALM toolbox with 10,000
permutations to control familywise error at the cluster level in each tract
and across multiple microstructural metrics (Smith and Nichols, 2009;
Winkler et al., 2014).

Software accessibility. The algorithms for tract skeletonization, tract
segmentation and other analyses used in the current study is open-source
and freely available online (https://github.com/esinkarahan/ATA).

Results
We examined whether interindividual differences in brain mi-
crostructure would be associated with the reaction time of simple
motor actions. Participants were required to perform a right-
hand SRT task (Fig. 1A) to measure their mean RT (Fig. 1C).
Next, we used the LBA model (Brown and Heathcote, 2008) to
quantify the non-decision time Ter during simple actions (Fig.
1B), a model-derived parameter to account for the latency of
motor initiation and stimulus encoding (Lo and Wang, 2006;
Cavanagh et al., 2011; Donkin et al., 2011). The two behavioral
measures were then correlated with microstructural metrics from
NODDI and DTI models in the primary motor and visual path-
ways: the CST and OR, together with a comparison tract, the CB.

Behavioral results
The mean RT across 46 participants was 363.02 	 30.832 ms (SD)
and the mean Ter was 249.238 	 48.227 ms (SD; Fig. 1C). The
LBA model provided an adequate fit to the observed RT distribu-
tions (Fig. 1D). We used frequentist and Bayesian Pearson’s cor-
relation to examine the intercorrelation between behavioral
measures. There was no significant correlation between mean RT
and Ter [r � 0.114, p � 0.45, 95% CI � (�0.182, 0.392), BF10 �
0.243], and no correlations between the behavioral measures and
age (RT: r � 0.074, p � 0.624, 95% CI � (�0.221, 0.357), BF10 �
0.206; Ter: r � 0.062, p � 0.683, 95% CI � (�0.233, 0.346),
BF10 � 0.199].

Tractography and along-tract microstructural metrics
We used a ROI-based probabilistic tractography approach to re-
construct four tracts (left CST, right CST, left OR, and right OR)
in the individual’s native space and obtained group-based tract
images after normalizing individual tracts to the MNI space.
From the group-based tract images (Fig. 3A), the inferior CST
close to the brainstem showed high consistency across partici-
pants and the superior CST had large individual variability when
it approaches the cortex. Similarly, there was a large tract vari-
ability where the OR approaches V1 (Fig. 4A).

We calculated the weighted NODDI (ODI, NDI) and
weighted DTI (FA, MD) metrics from the 30 segments of each
tract, equidistant along the tract’s principal skeleton (Figs. 3C,
4C). A repeated-measures ANOVA on microstructural metrics
showed significant main effects of segments in CST (NDI:
F(5.04, 226.65) � 20.82, p � 3.44E�17; ODI: F(4.18,188.28) � 550.94,
p � 3.01E�104; FA: F(5.47,246.29) � 730.35, p � 1.408E�149; MD:
F(5.14,231.08) � 168.80, p � 5.48E�76, Greenhouse–Geisser cor-
rected) and OR (NDI: F(8.01,360.37) � 64.13, p � 9.99 E�65; ODI:
F(8.08,363.42) � 126.63, p � 1.1E�100; FA: F(8.72,392.55) � 71.62,
p � 1.01E�245; MD: F(11.65,524.08) � 32.38, p � 9.75E�132).

In the CST, there was significant hemispheric difference in
NDI (F(1,45) � 18.35, p � 0.000095) and MD (F(1,45) � 17, p �
0.00016), with lower NDI and MD values in the left hemisphere
as compared with the right, consistent with previous results that
CST displays a structural asymmetry independent of handedness
(Hervé et al., 2006; Westerhausen et al., 2007; Powell et al., 2012;
Seizeur et al., 2014; Andersen and Siebner, 2018). The hemi-
spheric difference in ODI and FA did not reach significance
(ODI: F(1,45) � 3.81, p � 0.057; FA: F(1,45) � 1.85, p � 0.18). In
the OR, there was significant hemispheric difference in all metrics
(NDI: F(1,45) � 61.18, p � 6.27E�10; ODI: F(1,45) � 34.89, p �
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4.29E�7; FA: F(1,45) � 15.22, p � 0.00032; MD: F(1,45) � 6.7, p �
0.013).

These main effects were qualified by significant interactions
between segment locations and hemispheres in CST (NDI:
F(6.04,271.79) � 3.569, p � 0.002; ODI: F(6.43,289.33) � 20.13, p �
1.15E�20; FA: F(8.78,395.14) � 23.41, p � 1.98E�31; MD: F(9.15,411.59)

� 4.4, p � 0.000014) and OR (NDI: F(9.55,429.75) � 17.862, p �
4.134E�75; ODI: F(10.39,467.53) � 9.72, p � 2.995E�15; FA:
F(9.43,424.34) � 3.8, p � 0.000095; MD: F(11.43,514.51) � 4.76, p �
3.59E�7). Therefore, there were substantial variations in micro-

structural metrics along CST and OR consistent with other studies
(Yeatman et al., 2012; Johnson et al., 2014).

We examined the correlations between the microstructural
metrics along tract segments. TFCE with 10,000 permutations
was used to correct multiple comparisons for the number of seg-
ments along tracts. NDI was positively correlated with ODI in
superior segments of the CST (left CST: segments 23–30; right
CST: segments 25–30, p � 0.05 TFCE-corrected) and anterior
segments of OR (left OR: segments 20 –29; right OR: segments
18 –28, p � 0.05 TFCE-corrected). Consistent with previous re-

Figure 3. A, Group-based image of the CST. The voxel intensity denotes the proportion of overlapping across participants. B, Visualization of the CST with the skeleton and the approximate
locations of segments 1, 10, 20, and 30. C, The means of NDI, ODI, MD, and FA profiles of the left and right CST across participants. Shaded areas represent 95% CI. The segments 1–30 were from CP
to SCR as in B.

Figure 4. A, Group-based image of the OR. The voxel intensity denotes the proportion of overlapping across participants. B, Visualization of the OR with the skeleton and the approximate
locations of segments 1, 10, 20, and 30. C, The means of NDI, ODI, MD, and FA profiles of the left and right OR across participants. Shaded areas represent 95% CI. The segments 1–30 were from V1
to posterior LGN as in B.
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sults of NODDI measures and their relationship with DTI met-
rics (H. Zhang et al., 2012), ODI was negatively correlated with
FA (left CST: segments 1–30; right CST: segments 1–30; left OR:
segments 1–30, right OR: segments 1–30, p � 0.05 TFCE-
corrected) and MD (left CST: segments 1–17 and 19 –30; right
CST: segments 3–10, 12 and 16 –30; left OR: segments 19 –30,
right OR: segments 20 –30, p � 0.05 TFCE-corrected).

Correlating response speed measures with
tract microstructure
We used general linear models to examine the associations be-
tween response speed measures (RT and Ter) and microstructure
metrics in all tract segments, including age as a nuisance variable.
TFCE with 10,000 permutations was used to correct multiple
comparisons for the number of segments along tracts and across
all microstructural metrics (NDI, DI, FA, and MD).

For the CST (Fig. 5A), faster Ter was associated with higher
NDI values in the superior segments of both left (segments 18 –
30, p � 0.05, TFCE-corrected) and right tracts (segments 15–28,
p � 0.05, TFCE-corrected). The segments with significant corre-
lations comprised the posterior limb of interior capsule and the
SCR that connect to the precentral gyrus (Fig. 5C). No other
microstructural metrics of the CST had significant correlation

with the Ter (across all segments of the left CST: p � 0.323; right
CST: p � 0.116).

For the OR (Fig. 5A), there was no significant correlation
between Ter and any microstructural metrics after correction of
multiple comparison (across all segments of the left OR: p �
0.076; right OR: p � 0.24).

There was no significant correlation between mean RT and
microstructural metrics in CST (across all segments of the left
CST: p � 0.425; right CST: p � 0.31) or OR (across all segments
of the left OR: p � 0.108; right OR: p � 0.479; Fig. 5B).

Specificity analysis: comparison white-matter tract and
model parameters
Is it possible that the significant structural-functional associa-
tions we observed could simply be a global whole-brain white-
matter property (Penke et al., 2010; Johnson et al., 2015)? To
address this possibility, we have included the analysis of the
bilateral dorsal CB as a comparison tract. As a part of the
limbic system, the CB is important to emotional processing,
memory and social behavior (Bubb et al., 2018), but we do not
anticipate microstructural variations in this tract to be associ-
ated with the non-decision time in the simple RT task. We
applied the same analysis pipeline on bilateral dorsal CB.
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Figure 5. Standardized linear regression coefficients between microstructural metrics and Ter (A) and mean RT (B). The segments with significant associations after TFCE ( p � 0.05;
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There was no significant correlation between Ter and any mi-
crostructural metrics (across all segments of the left CB: p �
0.43; right CB: p � 0.249, TFCE-corrected). Similarly, we did
not observe any significant correlation between mean RT and
microstructural metrics (across all segments of the left CB: p �
0.14; right CB: p � 0.157).

Although the current study had a priori hypotheses for corre-
lations between Ter and microstructural metrics in CST and OR,
previous research showed that, in choice RT tasks, the decision
threshold correlated with tract strength between pre-SMA and
subthalamic nucleus (Forstmann et al., 2010, 2011). We therefore
examined correlations between other LBA model parameters
(threshold B and mean drift rate �) and microstructural metrics
in an exploratory analysis. This analysis showed no significant
result for any microstructural metrics in CST (across all seg-
ments, �: p � 0.13; B: p � 0.186) or OR (across all segments, �:
p � 0.571; B: p � 0.17).

Discussion
By combining cognitive and biophysical models with along-tract
analyses, we found that the NDI of superior segments of bilateral
CST negatively correlated with the non-decision time (Ter), a
model-derived component of RT that represents the duration of
non-decision processes (Donkin et al., 2011).

NODDI quantifies intracellular neurite density separately
from orientation dispersion (H. Zhang et al., 2012), which are
otherwise indistinguishable in standard DTI measures. NODDI
measures have been shown to be sensitive to microstructural
changes in brain development (Genc et al., 2018), psychosis (Rae
et al., 2017), and neurodegeneration (Colgan et al., 2016). The
CST segments with negative NDI-Ter correlations included a part
of the SCR and its connections to the precentral gyrus. This re-
gion had a large dispersion of fiber orientation, as indicated by
the large ODI values (Fig. 3C). Therefore, a simple tensor model
would be less sensitive to detection of effects with behavioral
measures, highlighting the advantages of compartment models
such as NODDI (Groeschel et al., 2016). The NDI-Ter correlation
observed in this region may relate to somatotopic organization of
the CST (Seo et al., 2012) and distal (finger) movements used in
the task, which needs to be confirmed in future studies combin-
ing functional localizers and tractography (Dalamagkas et al.,
2019).

In both humans (Fukutomi et al., 2018) and rodents (Jes-
persen et al., 2010; Sepehrband et al., 2015), neurite density esti-
mates are sensitive to myelin content and packing density, which
may affect the axonal conduction delay in white-matter tracts
across individuals (Waxman, 1980; Fields, 2008; Seidl, 2014; Mc-
Dougall et al., 2018). However, the conduction delay between
neural activity in the motor cortex and electromyographic signals
is only 10
30 ms (Gross et al., 2000; Riddle and Baker, 2005; Volz
et al., 2015), too short to be a dominant component of Ter, and
the properties of the gray-matter circuitry cannot be ignored. It
has been shown that even a subtle change in conduction delay can
have profound impacts on spike timing and oscillatory coupling
over long-range connections (Pajevic et al., 2014) that are neces-
sary for motor control (Baker et al., 2003; Pogosyan et al., 2009).
Our results suggested that participants with faster motor speed
may have a more efficient corticospinal network for voluntary
actions (Michaels et al., 2015), with its white-matter properties
reflected in higher NDI values in CST.

Electrophysiological evidence is consistent with this hy-
pothesis. Beta-band oscillation in sensorimotor cortices have
high intraindividual stability (Espenhahn et al., 2017), and

beta-band corticomuscular coherence relates to visuomotor
performance (Kristeva et al., 2007), suggesting a functional
role of synchronized information transmission between cor-
tex activity and electromyography (Baker, 2007). This corti-
cospinal transmission is interrupted in ALS, evident by axonal
loss (Smith, 1960) and reduced NDI (Broad et al., 2019) in the
CST, and ALS patients exhibit impaired cortical oscillation
and corticomuscular coherence with prolonged RT (Proud-
foot et al., 2017). Microstructural efficiency and neural syn-
chrony are not independent but rather coupled tightly with
complex interactions (Pajevic et al., 2014; Bells et al., 2017).
To confirm that the conduction delay influences RT via mod-
ulations of oscillatory couplings in healthy individuals (Price
et al., 2017), future studies need to combine white-matter
microstructural measures with oscillatory signals in the gray-
matter (e.g., magnetoencephalography).

We did not find a significant correlation between microstruc-
ture and behavioral measures in the OR (cf. Tuch et al., 2005).
The SRT task in the current study may not be sensitive to the
interindividual variability in the visual processing pathway, as
suggested by the lack of change of visual event-related potential in
the SRT task (Mangun and Hillyard, 1991).

Our study provides new methods for studying brain, behavior
and cognition relationships. First, we used microstructural mea-
sures weighted by connection probability and along-tract analy-
sis based on volumetric skeletonization and segmentation.
Similar to previous studies (Yeatman et al., 2012), we showed
significant variations in all microstructural measures along CST
and OR. These variations may be because of changes in micro-
scopic tissue properties (Murray and Coulter, 1981), local tract
geometry, or neighboring environments such as partial volumes
and crossing fibers. Correlations with behavioral measures were
observed only in a portion along the tracts, confirming the needs
to take into account microstructural variations along tracts
(Johnson et al., 2014; Yeatman et al., 2014). Several methods have
previously been proposed for characterizing microstructural
metrics along tracts, including medial axis representations
(Yushkevich et al., 2008), b-spline resampling of streamlines
(Colby et al., 2012), arc length matching to prototype fibers
(O’Donnell et al., 2009) and centroid fibers based on the mini-
mum (Wang et al., 2016) or mean (Yeatman et al., 2012) distance
of fibers within a tract.

The current study coregistered individual tractography results
to a template space and generated group-level tract probability
maps (Hua et al., 2008), from which the tract skeleton and equi-
distant segments were calculated for subsequent along-tract anal-
ysis. In both CST and OR, voxels close to the tract skeleton had
high tract probabilities in the group maps, suggesting a good
agreement across participants. This approach allows reduction of
the noise from individual tractography and generates represen-
tative volumetric tract profiles. Nevertheless, normalization er-
rors and variances of tract geometries may hamper the precision
of inference at the individual level. To address this issue, we trans-
formed along-tract segments back to the native space and ac-
counted for individual heterogeneity using masks from
individual tissue probability and tractography. Furthermore, we
capitalized on the connection distributions from probabilistic
tractography to down-weight the contributions from voxels with
high noise or low certainty in the calculation of microstructural
measures (Olvet et al., 2016). As a result, our method combined
group-level along-tract profiling as well as individual-level fiber
tracking.
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Our automated analysis pipeline can be applied to other
tracts. We note that, like other methods for along-tract analysis,
further tests are needed to ensure the robustness in smaller tracts
with more substantial variability than demonstrated here, which
is beyond the scope of the current study. To facilitate future re-
search, we have made our analysis scripts open source and freely
available.

Second, our study highlighted the benefits of computational
modeling of behavioral data (Forstmann et al., 2016). The LBA
model decomposed RT distributions into the duration of an ev-
idence accumulation process (Gold and Shadlen, 2007) and non-
decision time Ter. Individual differences in Ter are likely subject to
influences at multiple processing levels. Along CST, we found
that microstructural metrics correlated with the Ter but not mean
RT. Considering the predominate role of CST in transmitting
motor commands (Lemon, 2008; Murray et al., 2017), our results
provide anatomical evidence to support the common assump-
tion that the Ter includes motor latencies. The Ter is a unitary
estimate and hence cannot distinguish between visual and motor
latencies. It is possible to combine our approach with other im-
aging modalities to dissociate the Ter into subcomponents that
occur before and after decisions (White et al., 2014; Nunez et al.,
2019).

There are several limitations to this study. Our experimental
samples included only female participants with a narrow age
range. Both gender (Maccoby, 1991; Dykiert et al., 2012) and age
(Wilkinson and Allison, 1989) have been shown to influence RT
(Yang et al., 2015) and microstructural measures (Good et al.,
2001; Toosy et al., 2004; Lebel et al., 2012; Bede et al., 2014; Cox et
al., 2016; Kodiweera et al., 2016). On the other hand, our homog-
enous sample also ensured that gender and age could not be
confounds that mask the influence of other variables, and hence
improved sensitivity and interpretability. Further research could
extend our results to heterogeneous or genetically-informed
samples, because both white-matter microstructure and RT are
affected by genetic and environmental factors (Martin et al.,
2004; Chiang et al., 2011; Rüber et al., 2015).

We focused on two a priori tracts of primary motor and visual
pathways: CST and OR, because the latencies of motor initiation
and stimulus encoding are commonly assumed to comprise the
Ter. This does not rule out the possibility that RT in other tasks
associate with microstructural measures in different white-
matter tracts. Indeed, the RT in a visual oddball task correlated
with the MD in tracts connecting the visual cortex with frontal
and temporal cortices (Konrad et al., 2009), and the RT in a
selective attention task correlated with the FA in the superior
and inferior longitudinal fasciculus (Mayer and Vuong, 2014).
The current study only estimated the Ter and mean RT from a
single SRT task, and hence cannot infer the extent to which the
microstructural correlates of response speed may vary as a
function of different tasks. An important future direction is to
have a mechanistic understanding of how tissue microstruc-
ture may selectively influence behavioral performance across
cognitive domains.

In conclusion, interindividual differences in non-decision
time during simple actions were reflected in the extent of neurite
density in white-matter tracts responsible for motor informa-
tion transmission. These findings help validate the functional
origin of non-decision time assumed in current models of
decision-making and action selection. Our results further
raise an intriguing possibility that tissue microstructure in key
fiber tracts importantly influences response speed in basic
cognitive processes.
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