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Abstract 

It is known that urbanization and industrialization contribute to rapidly increasing emissions of 

volatile organic compounds (VOCs), which are a major contributor to the formation of secondary 

pollutants (e.g., tropospheric ozone, PAN (peroxyacetyl nitrate) and secondary organic aerosols) 

and photochemical smog. The emission of these pollutants has led to a large decline in air quality 

in numerous regions across the world, which has ultimately led to concerns regarding their impact 

on human health and general wellbeing. Catalytic oxidation is regarded as one of the most 

promising strategies for the removal of VOCs from industrial waste streams. The review 

systematically documents the progress and developments made in the understanding and design 

of heterogeneous catalysts for VOC oxidation over the last two decades. This detailed review 

addresses how catalytic performance is often drastically affected by the pollutant sources and 

reaction conditions. It also highlights the primary routes for catalyst deactivation and discusses 

protocols for their subsequent reactivation. Kinetic models and proposed oxidation mechanisms 

for representative VOCs are also provided. Typical catalytic reactor and oxidizer for industrial 

VOC destruction were further reviewed. We believe that this review will act as a great foundation 

and reference point for future design and development in this field. 
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1. Introduction 

Volatile organic compounds (VOCs) typically refer to organic compounds which have boiling 

points below 250 °C under atmospheric pressure (101.325 kPa).1 Most emitted VOCs can lead to 

the formation of secondary pollutants such as tropospheric ozone, peroxyacetyl nitrate, and 

secondary organic aerosols; and their toxicity and carcinogenic human health effects are well 

documented (Tables S1 and S2).2-4 Rapid urbanization and industrialization has been linked to the 

growing VOC emissions.5,6 For example, industrial non-methane VOC emissions in China 

increased by 11.6 times from 1.15 Tg in 1980 to 13.35 Tg in 2010, which was above the average 

annual rate of 8.5%.7 The emission of VOCs has been linked to a number of anthropogenic 

sources, which include petroleum refining, petrochemical processing, solvent use, and many other 

industrial activities.8-12 The vast majority of emitted VOCs consist of alkanes, alkenes, alkynes, 

aromatics, alcohols, aldehydes, ketones, esters, halocarbons and sulfur/nitrogen containing 

compounds and their environmental impact is typically dependent on the functionality of the 

given VOC. Aromatics and alkenes are well recognized as highly polluting molecules, which is 

attributed to their involvement in the formation of photochemical ozone (Tables S1).12,13 

Halogenated and chlorinated VOCs require additional attention due to their inherent toxicity and 

stability.14 Since 1999, VOC emissions have been heavily regulated by legislation provided by the 

European Union (EU). The Goteborg protocol provided in 2006 subsequently affirmed that by 

2020, all EU countries should half their VOC emissions compared to that observed in the year 

2000.15 Given the environmental impact and toxicity of VOCs and new legislations in place, it is 

of great importance to develop efficient and applicable methods to reduce global VOC emissions. 

There are numerous research initiatives currently under development to meet the challenging 

environmental regulations. Manifold recovery technologies (e.g. adsorption, absorption, 

membrane separation and condensation) and oxidative approaches (catalytic oxidation, thermal 

incineration, biological degradation, photocatalytic decomposition and non-thermal plasma 

oxidation) have been developed. Each of these technologies however, have practical limitations, 

which are typically attributed to the large variety of different VOCs and the conditions associated 

with emission sources.16 Adsorption-based techniques are only really favorable for the treatment 

of highly dilute VOC emissions, as they typically rely on condensation approaches, which are 
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energy intensive and generally limited to the removal of volatile solvents.17 Absorption is a costly 

process where the pollutants are scavenged in a liquid for separation and recovery and the 

disposal of VOCs and spent solvent is the common problem faced by this processes.18 Membrane 

separation is another possible alternative for the removal of VOCs owing to the advantages of 

simple operation to conduct and compact design; however, the membrane separation process is 

costly and the operation/maintenance of this technology is quite expensive.19 Low-temperature 

condensation is energy intensive and limited to treatment of evaporative solvents.20 Biological 

degradation is generally selective, concentration and temperature sensitive, and effective only for 

low weight and highly soluble hydrocarbons and usually requires relatively longer empty bed 

retention time.21,22 Photocatalytic decomposition has a broad-spectrum activity toward various 

VOCs at ambient temperature; however, the relatively low quantum efficiency and long residence 

time requirement result in the limited oxidation capability and load adaptability of this 

technology.7 A highly reactive environment (active species can react with VOC molecules and 

decomposed them) can be created in non-thermal plasma without spending high energy on 

heating the entire gas stream, while the formation of undesired by-products such as O3, NOx and 

intermediates is uncontrolled due to its non-selectivity and limited capability.23 Thermal 

incineration is a convenient and efficient approach, but it typically requires high temperatures (≥ 

800 °C) to achieve full oxidation of highly concentrated VOC streams. Due to its high energy 

demand, this technology is not very economical, although the heat released from incineration can 

be recovered. Furthermore, incomplete thermal oxidation of VOCs can also produce numerous 

undesirable by-products such as CO, dioxins and NOx. The complete catalytic oxidation of VOCs 

into CO2 and water is one of the most effective and economically feasible technologies currently 

being investigated for the removal of dilute VOC (< 0.5 vol.%) effluent streams. In this approach, 

the VOCs are oxidized over a suitable catalyst at much lower temperatures (typically; 200-500 °C) 

than with thermal incineration. In addition, in some cases the product selectivity in catalytic 

oxidation processes can be controlled, and can be even more energy efficient if the process is 

coupled with heat exchangers to redistribute the heat effectively.24 

Due to the obvious merits of this technology, a significant amount of investigations have 

considered the design and synthesis of catalysts for the oxidation of VOCs. Generally, there are 

two fundamental types of catalysts used in these processes: noble metal supported catalysts 
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(NMSCs) and transition metal oxides (TMOs).15 Despite being quite costly, noble metal 

supported catalysts are generally preferred for VOC catalytic oxidation because of their high 

specific activity and ease of regeneratation.25 The noble metal phases are usually supported by 

simple and low-cost oxides such as SiO2 and -Al2O3,
26-29 but also by molecular sieves and TMOs 

including ZSM-5, Beta, SBA-15, MCM-41, TiO2,
 and Co3O4 to increase the dispersion of the 

noble metals and aid adsorption of reactants. Both these can reduce the overall nobel metal 

loading required, which has economic advantages.30-37 Platinum (Pt) and palladium (Pd), have 

been found to be highly active for the total oxidation of C2-C8 paraffins and are the most 

extensively studied elements of all the noble metals.38 The catalytic performance of NMSCs is 

typically dependent on a number of factors, which include: the physicochemical properties of the 

active metal or support, the interaction between the metal and support, the nobel metal precursor 

used in the preparation, the preparation method used, and the size and morphology of noble metal 

particles and supports. TMO catalysts are a cheaper alternative to the NMSCs. These typically 

consist of elements from groups IIIB and IIB in the periodic table and possess high electron 

mobilities and positive oxidation states. The TMO materials are generally less active than the 

NMSCs, but they possess other advantages such as their low cost, excellent reducibility and 

thermal stability, and resistance to poisoning.39-41 Efforts have been made to develop efficient 

TMO catalysts for VOC catalytic oxidation, with the primary aim of enhancing the 

low-temperature reaction activity, to bridge the activity gap between these systems and NMSCs. 

The development of different types of catalysts for catalytic oxidation of VOCs has been widely 

reported in the literature7,15,42-49 and a number of previous reviews have been published. In 1987, 

Spivey et al.42 presented an overview of the catalytic systems used for the oxidation of VOCs. 

Everaert and Baeyens43 subsequently published a review in 2004, which linked the catalytic 

oxidation of VOCs with theoretical oxidation kinetics and highlighted how influential reactor 

design could be on the catalytic performance observed. Li et al.44 followed on from this, by 

publishing a review which in 2009 which predominantly focused on the catalytic oxidation of 

VOCs over non-noble metal catalysts, whilst Liotta45 reviewed the development of catalytic 

oxidation of VOCs over supported noble metals in 2010. Scirè and Liotta15 followed on from this 

with a review focusing on the use of Au supported catalysts for the oxidation of VOCs. In 2014, 

Aranzabal et al.46 reported on the catalytic oxidation of chlorinated VOCs (CVOCs). Huang and 
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co-authors47 reviewed catalysts which were focused on the low-temperature oxidation of VOCs in 

2015 and in 2016, Zhang et al.7 provided an overview of catalytic VOC oxidation from a 

technological and applicative perspective. In the same year, Li et al.50 reviewed the development 

of synthesis, fabrication, and processing of nanostructured noble metals and metal oxides and 

their peformance in catalytic oxidation of VOCs. 

  As discussed previously, catalytic oxidation is perhaps one of the most promising approaches 

for end-of-pipe dilute VOC emission control.24,51-54 Despite this, there are still some limitations 

with the use of this methodology. One fundamental challenge that remains is the development of 

a definitive criterion for selecting an appropriate catalyst for a given purpose. There are numerous 

examples of catalysts in the literature which are efficient for the catalytic oxidation of VOCs, 

which have been documented in the reviews presented previously. While this is a useful means of 

compiling data, many of the reviews do not account for catalytic performance under realistic 

practical operational conditions; it is known that industrial flue streams typically consist of 

undesirable substances such as water vapor, halogen or sulfur-containing organic compounds, 

sulfur oxides, and ammonia,55 which can hinder catalytic performance. It is therefore, often very 

difficult to identify the best catalysts and catalytic reaction conditions to use for the oxidation of a 

specific VOC. In addition, the catalytic activity, reaction kinetics, regeneration behavior, and 

oxidation mechanism may have significant differences in performance for a VOC derived from 

diverse emission sources. 

  Previous reviews about catalytic oxidation of VOCs predominantly focused on progresses in 

catalyst design and only encompassed a small variety of common pollutants. In this review, we 

provide a systematical summary on the progresses and achievements in VOC catalytic oxidation 

since 1990 with the primary target of clarifying the fundamental principles which drive the 

catalytic oxidation of VOCs. We hope to provide reputable representation to the research which 

has been conducted in this field under practical emission conditions. Emphasis has been placed on 

reviewing the effect of the emission source and documenting the progresses made for the catalytic 

oxidation of a wide variety of VOCs, including saturated alkanes, unsaturated alkenes and alkynes, 

aromatics, and heteroatom-containing hydrocarbons. Following on from this, we clarify the effect 

of reaction conditions (water vapor, inorganic NOx or ozone, and organic pollutant composition) 

on catalytic VOC oxidation and highlight the main causes for catalytic deactivation such as 
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coking, poisoning, and sintering. Subsequently, approaches for catalytic reactivation is also 

reviewed and discussed. Proposed kinetic models and oxidation mechanisms of representative 

VOCs are discussed and clarified. Finally, typical catalytic reactors and oxidizers for industrial 

VOC destruction were further reviewed. We believe that a comprehensive review on this subject 

will be both informative and instructive in expanding the understanding of the fundamental 

principles which drive catalytic VOC oxidation reactions. We hope that this review will provide a 

crucial reference point for future catalyst design of materials for the catalytic oxidation of VOCs 

under applicative reaction conditions. 

2. Major VOC emission sources and sorts 

  VOCs can be emitted from a wide range of sources including petroleum refining, organic 

chemical raw material production, synthetic resin, textile dyeing and printing, leather 

manufacturing, pharmaceutical industry, pesticide manufacturing, coating, printing ink, and 

adhesive manufacturing, spraying, printing, and the manufacture of electronic equipment.24 The 

nature of industry typically dictates the type of VOC emitted, which can include: alkanes, alkenes, 

alkynes, aromatics, oxygen-containing hydrocarbons (alcohols, aldehydes, ketones, ethers, and 

esters), halocarbons, and sulfur/nitrogen containing compounds.56-58 

2.1. Petroleum refining 

  Petroleum refining refers to a number of processes which are involved with the production of 

fuel, oil, lubricating grease, solvent oil, petroleum coke, paraffin wax, asphalt, refined oil, naphtha, 

and oil additives from crude oil refining, including the primary processing (crude distillation), 

secondary processing (cracking, catalytic reforming, coking and refining, etc.), and third 

processing (refinery gas processing).59,60 In these processes, VOCs are predominantly emitted 

from process waste streams but can also be emitted during the handling of reactants or products 

and from unexpected leaks. The primary pollutants emitted from these processes are ethane, 

propane, isobutane, cyclohexane, n-hexane, butene, propene, benzene, toluene, xylene, methyl 

ethyl ketone and 2-propanol.46,61,62 

2.2. Organic chemical raw material production 

  A large variety of VOCs are also emitted from industries which produce large quantities of 

organic chemicals such as the polymer, fine chemical, and solvents industries. These industries 
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typically emit a wide variety of VOCs which can include: ethane, cyclohexane, ethylene, propene, 

benzene, toluene, xylene, ethylbenzene, methanol, formaldehyde, acetaldehyde, chloroethane, 

dichloroethane, trichloroethylene, vinyl chloride, chlorobenzene and acrylonitrile.46,57,63,64 

2.3. Synthetic resin 

  The synthetic resin industry is also responsible for the emission of a number of VOC pollutants 

in the processes of producing synthetic resin (e.g., polyethylene, polypropylene, polyvinyl 

chloride, polystyrene, acrylonitrile-butadiene-styrene copolymer, polyamide, polycarbonate and 

polymethyl methacrylate) from basic chemical raw materials mainly include pentane, ethylene, 

propene, toluene, ethylbenzene, styrene, methanol, ethanol, vinyl chloride, dichloromethane, 

acrylonitrile and hexamethylenediamine.57,65 

2.4. Textile dyeing and printing 

  The textile and dyeing processing industry using cotton, wool, linen, silk, and chemical fiber as 

raw materials can emit a wide variety of alkanes, aromatic hydrocarbons, alcohols, aldehydes, 

ketones and esters to the environment,66-68 such as n-hexane, benzene, toluene, xylene, styrene, 

methanol, ethylene glycol, formaldehyde, acetone, methyl ethyl ketone, ethyl acetate, methyl 

chloride, trichloroethane and vinyl chloride. 

2.5. Leather manufacturing 

  The leather (or artificial/synthetic leather) manufacturing process requires a large amount of 

organic solvents, which discharge lots of VOC pollutants including benzene, toluene, xylene, 

ethylbenzene, 2-butanol, 2-propanol, formaldehyde, cyclohexanone, 2-butanone, acetone, butyl 

acetate, ethyl acetate, vinyl chloride and dimethylamine.24 

2.6. Pharmaceutical industry 

  Pharmaceutical industry includes pharmaceutical raw materials manufacturing, chemical drug 

manufacturing, and biological drug manufacturing, and all these processes release large numbers 

of VOCs into atmosphere,46,57,68,69 which primarily includes cyclohexane, benzene, toluene, 

xylene, methanol, ethanol, 2-propanol, acetone, ethyl acetate, dichloromethane, 

1,2-dichloroethane and trichloromethane. 

2.7. Pesticide manufacturing 
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  Pesticides can be divided into three major categories of herbicides, insecticides, and sterilizers, 

which mainly refer to various chemical pesticides, microbial pesticides, and biochemical 

pesticides. The organic pollutants emitted from the pesticide production processes are 

epoxypropane, benzene, toluene, xylene, methanol, 2-propanol, butanol, formaldehyde, butanone, 

acetic acid, methyl chloride, chlorobenzene, pyridine, acrylonitrile and ethylenediamine.64,69 

2.8. Coating, printing ink, and adhesive manufacturing 

  Coating manufacturing refers to the production of covering materials made by adding pigments, 

solvents and auxiliary materials to natural resins or synthetic resins, and the primary VOCs 

emitted in these activities are toluene, ethylbenzene, xylene, butanol, ethylene glycol, acetone, 

butanone, cyclohexanone, butyl acetate, and styrene.62,70,71 Printing ink manufacturing refers to 

the activities for production of colored slurry (obtained by mixing, grinding and modulation of 

pigments, fillers, and coupling materials (e.g., vegetable oils, mineral oils, and resins)) used in 

printing and inks for printers and duplicators. N-hexane, cyclohexane, benzene, toluene, xylene, 

methanol, ethanol, 2-propanol, butanol, ethyl acetate, and butyl acetate are usually existed in the 

tail gas of ink production.61,72,73 Adhesive manufacturing refers to the production of various types 

of adhesives using synthetic or natural materials, and main organic pollutants in these processes 

are benzene, toluene, formaldehyde, methanol, styrene, trichloromethane, carbon tetrachloride, 

1,2-dichloroethane and ethylenediamine.74-76 

2.9. Spraying 

  Production of various equipment and tools (automobile, motorcycle, bicycle, furniture, ship, 

container, household appliance, wire, cable, etc.) generally involves the surface coating process, 

which releases different types of VOCs into atmosphere, such as benzene, toluene, xylene, 

ethylbenzene, methanol, 2-propanol, n-butanol, ethyl acetate and butyl acetate.24,70 

2.10. Printing 

  The paper, plastic, and offset printing and packaging material manufacturing (e.g., soft 

packaging material coating) processes emit large amounts ofalkanes,aromatic hydrocarbons, 

alcohols, and esters into the environment,68,73 including n-butanol, n-butane, toluene, xylene, 

methanol, ethanol, n-propanol, 2-propanol, propanediol, n-butyl alcohol, methyl acetate, ethyl 

acetate and butyl acetate. 
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2.11. Electronic equipment manufacturing 

  VOCs are generally emitted from four discharge sections in the electronic equipment 

production processes,57,66,77-79 that is, (1) semiconductor and integrated circuit manufacturing with 

benzene, toluene, xylene, 2-propanol, acetone, methyl ethyl ketone and butyl acetate as the 

primary pollutants; (2) flat panel display manufacturing with 2-propanol, propanediol, acetone 

and dimethyl sulfoxide as the main pollutants; (3) printed circuit board with benzene, toluene, 

xylene, ethanol, n-propanol, 2-propanol, butanol, formaldehyde, butanone, ethyl acetate and butyl 

acetate as the major emissions; and (4) electronic terminal product manufacturing with benzene, 

toluene, xylene, ethanol, 2-propanol, cyclohexanone, acetone, butyl acetate, dichloromethane and 

trichloroethylene as the main pollutants. 

3. Oxidation of different sorts of VOCs 

3.1. Saturated alkanes 

  Alkanes are the simplest organic compounds containing hydrogen and carbon, but contribute to 

a large proportion of the VOC emitted each year. This is primarily because of their widespread 

application as feedstocks for the industrial synthesis of chemicals. There are numerous examples 

of alkanes which qualify as VOCs. Those which are commonly emitted including ethane, propane, 

n-hexane, n-butane, pentane, cyclopentane, cyclohexane, n-heptane, methyl cyclohexane and 

n-octane.2,80-82 Many of these compounds have different environmental and toxicological effects. 

The catalytic oxidation of alkanes has been widely investigated; most of which has predominantly 

focused toward the oxidation of ethane, propane and n-hexane. To date, the work in this area has 

used a wide variety of different catalysts and includes the use of noble metal (Pt, Pd, Ru, and Au) 

based catalysts,83-89 transitional metal (Co, Ni, V, Mo, Cu, Mn, and Fe) oxides,90-96 perovskite- 

and spinel-type materials97-102 and hydrotalcite derivative oxides.103 

3.1.1. Ethane 

  Ethane is an important low weight VOC, which is formed as a major by-product from coal 

gasification, rock oil outgassing and numerous chemical processes such as petroleum refining and 

the production of organic chemicals.104 There are numerous reports published on the total 

catalytic oxidation of ethane to CO2 and water over Pd and Au supported on base metal oxides 

such as NiO, Cr2O3 and Co3O4.
86,89,105-107 
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SnO2 was previously shown to be active for the total oxidation of methane.108 For this reason, 

Tahir and Koh95 subsequently prepared a series of M/SnO2 (M = Mn, Co, Cu, Ce, and Ni) 

catalysts using an impregnation technique and found that the catalytic activity for ethane 

oxidation varied quite significantly. The order of activity observed for this series of catalysts was 

as follows: Mn/SnO2 = Co/SnO2 > Cu/SnO2 > Ce/SnO2 = Ni/SnO2. The Mn/SnO2 was determined 

to exhibit a higher stability than that of Co/SnO2, which was connected with the in situ production 

of a Co3O4 surface modification during the reaction. Cu/ZSM-5 has been extensively studied as a 

catalyst in the low-temperature decomposition of organic compounds.109,110 Kucherov et al.94 

reported that isolated Cu2+ species located in a square-planar coordination was responsible for the 

high activity observed over this catalyst. This was related to the interaction between the bivalent 

cations and oxygen atoms located in the zeolitic framework which are linked to Al3+ ions. In the 

same study, they also reported that the addition of fairly large quantities (5 wt.%) of La or Ce to 

this material could further enhance catalytic performance, which was attributed to the dopant 

metals involvement in the stabilization of the square-planar Cu2+cations at high temperatures.94 

  It is well known that perovskite-type oxides with the general formula of ABO3 have a high 

structural stability, where A sites may be occupied by rare-earth, alkaline-earth, alkali, or other 

large ions, and the B sites are usually filled with transition-metal cations. Moreover, the 

perovskite composition can be widely changed by the partial replacement of A and/or B cations 

with other metals, which can change the physicochemical properties of the material.100 In general, 

changing the oxidation states of the A-site typically affects the oxygen adsorption capacity of the 

material, whereas B-site replacement influences the nature of adsorbed oxygen.111,112 Preparing 

and testing materials with different A and B site combinations can be a productive method to 

acquire and understand how the physicochemical properties of a catalyst effect its performance in 

a given reaction.113 Lee et al.98 investigated how the partial substitution of La3+ with alkali metals 

in a LaMnO3 perovskite effected catalytic performance in the oxidation of ethane. It was 

determined that the partial substitution of La with K resulted in a strong reduction in oxygen 

non-stoichiometry and oxygen desorption of the perovskites material. The incorporation of K 

however, was found to have a negative effect on the catalytic activity since K facilitating oxygen 

activation and reduction to O2- lattice oxygen, promoting the oxydehydrogenation of ethane to 

ethylene (Fig. 1i). 
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  Due to their inherent stability, it is exceptionally difficult to oxidize alkanes over TMOs and 

perovskites. NMSCs such as supported Pd materials however, are well known to be highly 

efficient catalysts for the oxidation of alkanes.114 Samorjai and co-workers115 recently 

investigated the catalytic oxidation of ethane over Pd foils in temperatures ranging from 573-698 

K at 800 Torr (total pressure). Post-reaction characterization of the catalyst by auger electron 

spectroscopy (AES) showed that a significant proportion of PdOx species were present, regardless 

of the reaction conditions used. They determined that a surface oxygen monolayer coverage of 

0.3-0.5 was found to be optimum for ethane oxidation. Kolade et al.116 used monolith (made of 

Pd/active carbon) as an adsorptive catalytic reactor for ethane disposal (Fig. 1ii). This structure 

provided a high surface area, low pressure drop, and low resistance to the transport of particulate 

and can maintain high VOC conversion while preventing thermal loss. 

Au has historically been considered as an element catalytically inert, in particular with respect 

to alkane oxidation. However, Au has been shown to be a metal capable of excellent catalyst 

activity when present as nanocrystals on a support. Solsona et al.114 conducted a study which 

compared the activity of Au supported on MnOx and CoOx for the oxidation of ethane. It was 

determined that the total oxidation of ethane could be achieved at temperatures as low as 250 °C 

(GHSV of 15,000 h-1) over the Au/CoOx catalyst synthesized by a co-precipitation method. The 

presence of Au in the catalyst was determined to enhance the reducibility of the support and a 

correlation between the redox properties of the catalysts and the catalytic activity was established. 

3.1.2. Propane 

Propane is an alkane present in both oil and natural gas. The quantity of propane emitted from 

stationary sources continues to increase and is believed to be directly linked with the continued 

development of chemical processes and products.117 Recent developments in catalytic oxidation 

of propane has primarily involved the use of single or multiple metal oxide systems containing Co, 

Mn, Fe, Ni and Cu.91,96,102,118-126 The most promising metal oxides systems developed to date 

typically consist of either Co and/or Mn oxides.127,128 Co3O4 has been consistently found to the 

more active than other stable Co phases, such as CoO, which has been attributed to the lower 

oxidation state of Co in Co3O4.
128 Similar observation have been made regarding manganese 

oxides; partially reduced phases such as Mn2O3 and Mn3O4 have been found to display a higher 
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catalytic destruction activity.43 

It is known that Co3O4 is one of the most efficient catalysts currently available for the total 

oxidation of propane.120,129-132 High surface area cobalt oxide is typically desirable as it is more 

easily reduced, which is attributed to a reduced Co-O bond strength and higher defect 

concentration. Ordered Co3O4 oxides with surface areas as high as 173 m2∙g-1 were successfully 

obtained through a nanocasting route using a mesostructured KIT-6 silica template.119 The 

mesoporous Co3O4 was found to display a higher activity for this reaction when compared to 

conventional Co3O4, which has been ascribed to the higher surface area of the material and 

greater proportion of oxygen vacancies. The ordered structure in this material however, did not 

appear to have an influence on the catalytic performance. A subsequent study by Salek et al.120 

provided a novel method for obtaining high surface area Co3O4 (up to 100 m2∙g-1), which was 

achieved by using CoO(OH) as the catalyst precursor. The CoO(OH) was calcined at 250 °C in 

air and was found to totally convert propane (0.4 vol.%) at just 230 °C (volumetric flow rate of 

1.63 cm3∙s-1). The enhanced activity was attributed to the increased accessibility of reactants to 

catalyst surface. Alternative approaches have targeted the immobilization of Co3O4 on various 

support materials, which can have a dramatic influence on the physicochemical properties of the 

active Co3O4 phase.133 Zhu et al.126 determined that the propane oxidation activity of a 

Co3O4/ZSM-5 synthesized by a hydrothermal method, was higher than that of a bulk Co3O4 

material. The excellent catalytic activity exhibited by the Co3O4/ZSM-5 catalyst was attributed to 

a number of factors, which included; enhanced reducibility of Co3+ species, a higher proportion of 

Co3+ species and surface lattice oxygen, and increased lattice oxygen mobility (Fig. 2i and ii). It is 

also important to note that in some cases, supporting Co3O4 can also have detrimental effects on 

the catalytic performance observed. Taylor and co-worker131 determined that highly dispersed 

Co3O4 exhibited strong interactions with the support material, which ultimately led to a reduction 

in the observed catalytic activity. 

MnOx is an abundant, low cost alternative catalyst for the oxidation of VOCs.134,135 The 

catalytic oxidation of C3 hydrocarbons over Mn3O4 was studied in detail by Busca and 

co-workers.136 Only propene and trace quantities of ethylene were observed at incomplete 

propane conversions; CO2 was only detected under a highly oxidizing atmosphere. To rationalize 

this, a propane oxidation mechanism over Mn3O4 was proposed, offering an explanation as to 
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how the propene was produced. Both Co and Mn oxide catalysts have been prepared by a wet 

oxidation procedure and utilized organic acids as a reducing agent. A previous study indicated 

that the organic acids could act as a template in the metal oxide precipitation.121 When the Co and 

Mn oxides were prepared in this way, both materials were found to be highly active for this 

reaction. The enhancement in performance was owing to an increased proportion of the reduced 

phase with the Mn oxide. The high activity observed with the Co oxide however was merely 

attributed to an increase in surface area. 

As the catalytic performance in propane oxidation strongly depends on their surface structure 

and surface active sites, there is often a direct relationship between catalytic activity and the 

crystal plane figure/crystal facet Miller indices and/or geometric features of the catalyst surface. 

Xie et al.122 reported that the crystal phase of MnO2 catalysts (α-, β-, γ-, and δ-MnO2) 

significantly influenced their catalytic activity in this reaction. Of the materials tested, α-MnO2 

exhibited the best activity, with 90% of propane oxidized at 290 °C (GHSV of 30,000 h-1). Unlike 

the other Mn oxide phases discussed previously, with MnO2, the surface area and reducibility of 

MnO2 do not appear to be influential factors which drive the catalytic activity. DFT calculations 

were subsequently conducted, which simulated the adsorption of propane on the different crystal 

phases of MnO2. It was determined that the crystal phases had a dramatic effect on the adsorption 

energy of the propane on the MnO2 (Fig. 2iii). The calculated binding energies were found to vary 

in the following order: α(310) > γ(120) > β(110) > δ(001). This aligned with the activity observed 

for these materials and so, the activity was directly attributed to the adsorption energy of propane 

over MnO2. Besides, the presence of translational motion in α-MnO2 along with its stronger 

deformation and stretching modes may lead to its better catalytic activity for this reaction.122 

Although the Fe oxide is typically less active than both Co and Mn oxides for this reaction, it 

has a high thermal stability and is therefore less susceptible to sintering deactivation routes. In 

addition, Fe oxide is environmentally benign and readily available, which ultimately merits 

economic benefits. Fe oxide has been found to display some promise as a catalyst for the low 

temperature oxidation of propane and propene.137 Mesoporous Fe oxides have been found to be 

much more active than bulk Fe oxide, which has been attributed to enhancements in the total 

surface area and reducibility of the material and a superior reactant mass transfer resistance.138 

Recently, Nieto and co-workers96 prepared a series of mesoporous Fe oxide materials by a soft 
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chemistry method; utilizing oxalic acid as the precipitating agent and a hard template method; 

KIT-6 silica was used as the hard template. These materials were subsequently characterized and 

tested for this reaction. The mesoporous Fe oxide prepared using oxalic acid exhibited a higher 

activity for this reaction, which was partly attributed to the formation of nanocrystalline 

aggregates on the catalysts surface. A direct relationship between the catalysts reducibility and 

activity was observed. 

Mixed metal oxides have significantly different properties (textural, morphological, redox and 

acid-base) compared to single metal oxides. There are numerous examples of mixed-metal oxide 

materials displaying better activity for the oxidation of VOCs than their mono-metallic oxide 

counterparts.139-143 The observed enhancement in catalytic performance is often owing to the 

multiple available energy levels of the metals and their associated oxygen anions in the 

mixed-metal systems, facilitating increased interactions between the VOC and surface-bound 

active oxygen anions. This property is also likely to result in a higher mobility of surface oxygen 

and/or substrate and increase electron transportation through the materials lattice. One such 

example of this, was provided by Morales et al.125 who prepared a series of Cu-Mn mixed metal 

oxides by a co-precipitation method with varied ageing times. The Cu-Mn mixed oxide catalysts 

all displayed a higher propane oxidation activity than that observed over Mn2O3 and CuO. 

Increasing the ageing time during the preparation of the Cu-Mn oxide was also found to further 

increase the activity and CO2 selectivity. 

CeO2 has displayed a lot of potential as a catalyst for the total oxidation of VOCs, which has 

been attributed to a host of unique properties such as its high oxygen storage capacity and ability 

to undergo redox shuttling between Ce3+ and Ce4+.144,145 Ce is often utilized as structural and 

electronic promoter, owing to its high oxygen storage capacity24,25 Mesoporous Ce1-xMnxO2 

catalysts with Ce : Mn of 1.5 exhibited a very high activity for propane oxidation and could 

totally convert propane to CO2 and water at 300 °C.124 Lu and co-workers91 have also 

demonstrated that Mn-Ni oxide materials were highly active for the catalytic oxidation of propane. 

Of the catalysts tested in this study, a MnNi0.2Ox catalyst exhibited the highest catalytic activity; a 

90% propane conversion was observed at 240 °C (GHSV of 30,000 h-1). The high activity 

observed was linked to the formation of a Mn-Ni-O material which was found to form when only 

small quantities of Ni were incorporated in the preparation. The synergistic interaction between 
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Ni and Mn was related to a number of factors, which included an increased proportion of surface 

Mn4+ species and oxygen vacancies, a higher oxygen mobility and enhanced reducibility of the 

material (Fig. 3i). 

A significant quantity of work has also investigated the use mixed metal oxide spinel structured 

materials, hydrotalcite-derived oxides and perovskites for the catalytic oxidation of VOCs. Spinel 

structured oxides typically contain cation sites of a specific structure (tetrahedral and octahedral) 

and have oxide anions arranged in a cubic close-packed lattice146. A series of CoxMn3−xO4 spinel 

oxides (0≤ x ≤ 3), exhibiting specific surface areas up to 250 m2∙g-1, were synthesized and tested 

for the catalytic oxidation of propane.102 The spinel oxide materials exhibited an exceptional 

low-temperature catalytic activity for this reaction (Fig. 3iii and iv). The most efficient catalyst 

(Co2.3Mn0.7O4) tested, achieved a propane conversion of approximately 90% at only 220 °C 

(apparent activation energy (Ea) of 60 ± 10 kJ∙mol-1), which is notably better than other Co oxide 

catalysts reported in the literature.102 

Mixed transition metal oxides can be readily obtained through the calcination of LDH 

precursors. It is known that metal oxide materials prepared in this way typically exhibit a good 

dispersion of active components and have large surface areas and a high thermal stability. Jiang et 

al.103 determined that CuxMg3-xAlO materials derived from CuxMg3-xAl ternary hydrotalcites were 

highly active for the catalytic oxidation of propane. The performance of these materials for this 

reaction was found to be highly dependent on the Cu content. A Cu0.5Mg2.5AlO material exhibited 

the highest catalytic activity as the strong interactions between the component oxides (Fig. 3ii). 

LaCoO3 perovskite materials have also been found to be active for this reaction, which can be 

enhanced further by substituting with Sr or Ce ions.147-150 Merino et al.100 were the first to 

investigate how the partial replacement of La with Ca effected the materials catalytic performance 

in this reaction. Experimental results revealed that the substitution of Ca2+ for La3+ generated 

oxygen vacancies and preserved charge neutrality throughout the material, which resulted in a 

“reductive stoichiometry”. This resulted in a notable reduction in the Ea for propane activation 

and ultimately resulted in an increase in the observed catalytic activity. 

Supported noble metal (Pd, Pt, Au, and Ru) catalysts have also been extensively investigated as 

catalysts for the oxidation of propane. Pd- and Pt-supported catalysts have displayed a lot of 

potential as catalysts for the total oxidation of short chain alkanes.126,151 Various support materials 
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such as Al2O3, TiO2, zeolites and perovskites have been investigated in an attempt to improve the 

oxidative performance of the noble metal phases.27,112,152-157 The behavior of these supported Pd 

or Pt catalysts is strongly influenced by the nature of the support. TiO2 for example, is known to 

be more resistant to sulphur poisoning than Al2O3.
155 

The total catalytic oxidation of hydrocarbons over Pd supported catalysts is dependent on the 

redox cycle of palladium; oxygen incorporation in the products proceeds through a PdO 

intermediate species.158,159 The performance of these catalysts is therefore likely to be influenced 

by the Pd dispersion, which is typically driven by the Pd-support interaction.160 For this reason, 

the morphology and exposed crystal planes of support material can have a significant impact on 

the performance of these catalysts in total oxidation reactions. Hu et al.161 recently prepared a 

series of nanocrystallites CeO2 materials with different morphologies and crystal planes by a 

hydrothermal method. It was determined that Pd species on CeO2 rods and cubes predominantly 

formed PdxCe1−xO2−σ phases which contained -Pd2+-O2−-Ce4+- linkages. In contrary, when Pd was 

supported on CeO2 octahedrons, large quantities of PdOx nanoparticles were observed. 

Interestingly, the highest reaction rates and turnover frequencies (TOF) for propane oxidation 

were observed over the Pd/CeO2-octahedron catalyst. This increase in activity was owing to an 

increased proportion of (111) facets in the CeO2-octahedron support material (Fig. 4i), inducing 

strong Ce-O surface bonds which favors the production of PdO species.102 

Pt supported catalysts have also be found to be highly active for this reaction.162,163 Aryafar and 

Zaera164 conducted a kinetic study on the oxidation of lower alkanes (methane, ethane, propane 

and n-butane) over Ni, Pd and Pt foils, and found that Pt was the most active foil for the oxidation 

of most of the compounds; methane being the only exception. Previously, we have shown that the 

acid-base properties of the support could significantly effect the activity of Pd-supported catalysts. 

Brønsted acid sites (BAS) assisted with the dispersion of Pd species and could dramatically effect 

the Pd oxidation state. 

  It is found that the BAS are responsible for the formation of the dispersed Pd species and the 

acid-base property of support has significant influence on the dispersion and oxidation state of 

Pd.31,165-168 Yazawa et al.169 investigated how the acid strength of the support influenced the 

propane oxidation activity with varying concentrations of O2 in the gas feed. It was determined 

that partially oxidized Pd species were desirable for this reaction. It was concluded that acidic 
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supports hinder the oxidation of Pd, while basic supports enhance Pd oxidation. As such, it was 

proposed that a highly acidic support favors oxidation activity under oxygen-rich conditions, 

whereas basic supports are expected to be more suitable under oxygen-lean conditions.169 A 

similar correlation between catalytic activity and the acid-base properties of the support has been 

observed with supported Pt catalysts; the effect of support acidity on propane oxidation activity 

over Pt-based catalysts was investigated by Murakami and co-workers.170 It was proposed that 

highly acidic supports were favorable as they inhibited the oxidation of the Pt. Further evidence 

for this was observed by Yazawa et al.,171 who synthesized a series of Pt catalysts on different 

supports (Pt/MgO, Pt/La2O3, Pt/ZrO2, Pt/Al2O3, Pt/SiO2, Pt/SiO2-Al2O3 and Pt/SO4
2--ZrO2) and 

tested them for the low temperature oxidation of propane. Once again, it was determined that the 

more acidic supports displayed a higher catalytic activity (Fig.4ii). 

The oxidation of saturated aliphatic hydrocarbons is typically conducted over Au catalysts at 

higher temperatures than those used with Pd and Pt supported catalysts.172,173 As with Pd and Pt, it 

is generally accepted that the catalytic activity of Au supported catalysts for VOC oxidation is 

dependent on the nature of the support material. Solsona et al.174 investigated the use of a 

Au/Ni-Ce-O catalyst for this reaction, and proposed that the excellent activity observed was 

attributed to their high total surface area, low Ni-O bond strength and highly reducible Ni sites. 

One of the most commonly used mixed metal oxide catalysts used for total oxidation reactions is 

Hopcalite; a mixed copper and manganese oxide originally discovered approximately ninety years 

ago.175,176 More recently, Solsona et al.89 utilized Hopcalite as a support materials for Au 

nanoparticles and determined that the performance of Au/Hopcalite catalysts in this reaction were 

dramatically affected by the calcination temperature. Calcination at 300 °C was found to produce 

the most active catalyst, which was linked to an improvement in the reducibility of the Hopcalite, 

induced from the incorporation of a Au phase. Au/Co3O4 has also been found to be highly active 

for the total oxidation of saturated hydrocarbons.15,177 A transient propane oxidation experiment 

was conducted over an Au/CoOx catalyst and monitored using a temporal analysis of products 

(TAP) reactor. The enhanced performance observed from the introduction of Au onto the surface 

of CoOx was attributed to an increase in oxygen mobility between lattice and surface oxygen.178 

More recently, Solsona et al.179 investigated the performance of Au deposited on a series of 

mesoporous Co oxide materials for this reaction. Again, Au was found to increase the catalytic 
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activity when compared to a corresponding Au-free Co3O4 material, which was ascribed to an 

improved reducibility of the Co oxide in the presence of Au nanoparticles (Fig. 4iv). 

The activity of NMSCs can be further modified through the addition of a second active 

component. Modifiers are generally added to promote activity and enhance catalytic resistance to 

deactivation. Fe, Mn, W, Re, Ce and La have all been investigated for their promotional effect on 

NMSCs in propane oxidation.27,153-155,180 The addition of tungsten to a Pd/TiO2 catalyst was found 

to significantly enhance the catalytic activity in this reaction (Fig. 4iii). In the standard Pd/TiO2 

catalyst, both Pd0 and Pd2+ species were observed. Interestingly, after W was added, all the 

observed Pd presence existed as Pd2+. The increased activity observed was attributed to the 

formation of a WOx-decorated interface between PdOx and TiO2.
155 Zheng et al.180 subsequently 

investigated how the introduction of Ni to a Pt/Ce0.4Zr0.6O2 catalyst effected its performance in 

this reaction. The modified material exhibited an enhancement in activity and resistance to sulfur. 

It has been proposed that rare earth metals such as Ce can act as both structural and chemical 

promoters; stabilizing noble metal nanoparticles against sintering and providing an additional 

source of active oxygen. In addition to this, Gluhoi and Nieuwenhuys153 investigated how MOx 

(M = alkali (earth), transition metal and cerium) promoted the performance of Au/Al2O3 catalysts 

in this reaction. The addition of MOx to Au/Al2O3 was found to improve the propane oxidation 

activity. The observed enhancement was proposed to be ascribed to two factors: (i) stabilization 

of the supported Au nanoparticles and (ii) increased oxygen activation. As a promoter, La has 

been shown to improve the thermal stability of alumina.181,182 La has also been shown to have 

additional benefits as a promoter; when doped onto a Pd catalyst, strong interactions between Pd 

and La can influence the oxidation state of Pd.183 Li et al.154 determined that Pd supported onto a 

La-modified alumina material enhanced the catalytic performance for this reaction, compared to 

the original Pd/Al2O3 catalyst. As discussed previously, the oxidation state of supported Pd can be 

affected by the basicity of support material. La can have a similar effect and promote the 

oxidation of supported Pd, due to its electrophobic nature. For this reason, La can be a useful 

modifier for catalysts operating at low temperatures or oxygen deficient conditions.154 

3.1.3. N-hexane 

  N-hexane is a common VOC emitted from oil field gas, petroleum refining, and the textile 
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dyeing and printing industries. Many catalysts including transition metal (Cu, Co, W, Bi, Ti, and 

Mn) oxides, noble metal (Pt, Pd, and Au) supported materials, perovskite- and spinel-type oxides 

have been investigated for the catalytic oxidation of n-hexane.84,97,101,184-195 Manganese oxide 

based catalysts are perhaps the most interesting from a commercial perspective, attributable to 

their low synthesis costs and high activity.134,196 MnO2 has been reported to be even more active 

than some NMSCs for this reaction.197 As with some of the other VOCs discussed previously, the 

high activity of the manganese oxide catalysts for this reaction is attributed to the co-existence of 

mixed valence states of Mn2+/Mn3+ or Mn3+/Mn4+ and lattice oxygen.198,199 Mn-Co mixed metal 

oxides have also been found to be highly efficient systems for the oxidation of VOCs,200 and are 

in general, more efficient than their mono-metallic oxide counterparts. Tang et al.201 demonstrated 

that this was also the case for this reaction. 

Zeolites have also gained much attention as catalysts for the oxidation of hydrocarbons, which 

has been attributed to their pore structures, acidic properties, good thermal stability, and ion 

exchange properties.202 More specifically, Díaz et al.188 studied the oxidation of n-hexane over a 

series of NaX and CaA zeolites, which were modified by Fe exchange with Mn2+, Co2+, and Fe3+. 

Of the catalysts tested, the Mn-exchanged CaA catalyst exhibited the highest activity for this 

reaction. The performance of this material was attributed to the Mn instigating changes in the 

morphological structure, surface acidity, and oxygen affinity of the zeolite. 

CeO2 can act both as an oxygen source or oxygen sink in surface based reactions. In addition, it 

is known that CeO2 can enhance the reducibility and dispersion of supported metal particles.40 

Ce-Zr oxide materials (Ce0.5Zr0.5O2 and Ce0.15Zr0.85O2) have been investigated as catalysts for this 

reaction.203 The insertion of ZrO2 into cubic CeO2 lattice distorts the structure of the oxide, which 

allows for greater lattice oxygen mobility and can improve catalyst activity.204 The introduction of 

small quantities of Cu into CeO2 was also been reported to improve its activity in total oxidation 

reactions.185 

CeO2 has also attracted attentions as support material for Au nanoparticles and has been 

applied as a catalyst for the oxidation of various VOCs. Centeno et al.194 studied the catalytic 

oxidation of n-hexane over Au/Al2O3 catalysts and found that the addition of CeO2 to the material, 

enhanced the metal support interaction and dispersion of Au particles. The enhancement in 

activity was connected with an increase in the mobility of lattice oxygen and an increased stability 
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of the desired Au oxidation state. 

TiO2 and MnO2 are commonly used as supports for Au nanoparticles. TiO2 carries a positive 

charge at low pH, which is less than the value of 6.0 of its isoelectric point,205 which facilitates 

strong interactions with anionic Au species (AuCl4
-), enhancing the Au dispersion. Lahousse et 

al.206 reported that γ-MnO2 is more active than some of the conventional NMSCs used in VOC 

oxidation reactions. Grange and co-workers193 investigated the effect of the Au particle size in 

Au/TiO2 and Au/γ-MnO2 catalysts by comparing samples prepared by deposition-precipitation 

(DP) with samples prepared by ananion adsorption method. It was concluded that the differences 

in the Au particle size for the two methods originated from the mobility of Au surface species 

during the thermal treatment. The Au/γ-MnO2 catalyst prepared by DP displayed the highest Au 

dispersion but did not exhibit the highest propane oxidation activity, due to a loss in the specific 

surface area of the material.193 

In general, supported Pt catalysts are more active than Au supported catalysts for the oxidation 

of VOCs.207,208 Pt nanoparticles supported on high surface area -Al2O3, either as a powder or 

immobilized on a wash-coated monolith is the most commonly used catalyst for VOC abatement 

industrially.45 The total oxidation of n-hexane has been studied over Pt/Al2O3 catalysts with small 

and large Pt crystallites.84 To this catalyst, Mn was subsequently introduced by the DP method 

and the effect of the precipitating agent was compared. When ammonia was used, predominantly 

spherical Mn oxide particles were observed on the surface. In contrary, when dimethylamine was 

invoked as the precipitating agent, fibrous needle-like structures of MnOx were observed, which 

were characteristic of a cryptomelane phase. Both the Mn doped Pt/Al2O3 catalysts were more 

active than the corresponding Pt/Al2O3 catalyst. Of these, the material containing Mn precipitated 

by dimethylamine exhibited the highest activity, which was attributed to an increase in oxygen 

mobility and increased proportion of active oxygen species from Pt-O-Mn sites, associated with 

cryptomelane phase. 

3.1.4. Other saturated C4-C6 alkanes 

  The catalytic oxidation of numerous other saturated alkanes such as n-butane, iso-butane, 

n-pentane, cyclopentane, iso-pentane, and cyclohexane has also been reported in the literature. A 

large proportion of the work specifically investigating the catalytic oxidation of n-butane and/or 
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iso-butane has involved the use of supported precious metal (Pt, Ru, and Au) catalysts. Haneda et 

al.209 studied the oxidation of n-butane over Pt supported on ZrO2 and Y-stabilized ZrO2 and 

established that the TOF increased as the Pt dispersion decreased. This relationship between the 

oxidative activity of Pt catalysts and dispersion has also been observed with reactions conducted 

over Pt/SiO2 and Pt/TiO2.
210 The addition of Y2O3 to supported Pt catalysts has been shown to 

improve the thermal stability of the catalyst, which is associated with an enhanced metal-support 

interaction but does not appear to effect the catalytic activity.209 The catalytic oxidation of 

n-butane and iso-butane has also been studied by Okal and Zawadzki87 over Ru/γ-Al2O3 catalysts. 

In this study, the catalysts pre-treatment conditions; calcination-reduction or direct reduction with 

H2, were found to have a significant influence on ruthenium dispersion and catalytic activity. The 

presence of chlorine in the catalyst was found to notably reduce the Ru dispersion in the catalyst 

which was only exposed to reduction in H2, which had a detrimental effect on the oxidation 

activity. The introduction of a calcination step prior to reduction in H2, was found to reduce the 

quantity of chlorine on the catalysts’ surface and ultimately led to increased Ru dispersion and 

oxidation activity. The activity of the Ru/γ-Al2O3 catalysts was ultimately owing to the 

availability of oxygen from the surface RuxOy species. 

  Supported Pt catalysts have also been reported as efficient catalysts for n-pentane 

oxidation.211,212 Once again, it is widely accepted that oxidative activity of these catalysts is 

typically related to Pt dispersion and the acid strength of the supporting material.83 The reaction 

kinetics and in situ activation of cyclopentane was also investigated over Pt/Al2O3 catalysts. It 

was determined that the reaction was first order with respect to both oxygen and cyclopentane, 

but the reaction order and Ea did not appear to change when the Pt dispersion was varied. 

Cyclopentane oxidation is proposed to proceed via a surface redox mechanism, with the 

dissociative adsorption of oxygen considered to be the rate-determining step.213 The catalytic 

activity and adsorption properties of copper-containing pentasils with Si : Al mole ratios of 20 and 

40 have also been investigated for the oxidation of iso-pentane.214 The catalysts were prepared via 

ion exchange, mechanical mixing, and impregnation methods and were all found to exhibit a high 

catalytic activity. The activity of these materials was attributed to reducible Cu2+ cations, located 

in square planar co-ordinations in zeolite. 

  The catalytic oxidation of cyclohexane has also been reported over a number of different 
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catalysts such as CeO2, Co3O4, MnOx, and Pd supported catalysts.215-218 With the Pd supported 

catalysts, the observed TOF was once again determined to be dependent on the dispersion of the 

supported Pd nanoparticles.217 

3.2. Unsaturated alkenes and alkynes 

In addition to alkanes, alkenes make up a large proportion of the VOCs emitted industrially 

each year. Many of the commonly emitted alkenes have detrimental effects on both the 

environment and human health. Propene in particular, is recognized as highly polluting compound 

because of its high photochemical ozone creativity potential (POCP).12,219 Given that both 

ethylene and propene make up such a large proportion of the alkene VOCs emitted each year, the 

catalytic oxidation of these compounds has been extensively studied over the last decade.220-240 

3.2.1.Ethylene 

Ethylene is extensively used as a solvent in the production of varnishes, synthetic resins, 

adhesives, and printing ink due to its low toxicity, good solubility and volatility.241 There are 

numerous examples of mixed metal oxide catalysts used for the total oxidation of ethylene in the 

literature. Chen et al.242 pointed out that a mesoporous Cu-Mn oxide catalyst could catalyze the 

oxidation of ethylene at temperatures as low as 200 °C. Following on from this, Njagi et al.225 

synthesized a mesoporous Cu-Mn oxide catalyst by a redox methodology, which was determined 

to be highly active for this reaction; complete ethylene oxidation (1.0 vol.%) was achieved at 

200 °C (weight hourly space velocity (WHSV) of 35,000 mL·g-1·h-1). The incorporation of Cu 

into this oxide material was found to further enhance the catalytic activity, which was ascribed to 

increased reducibility of the material and enhanced lattice oxygen mobility. Additional work 

conducted by Piumetti et al.243 compared the performance of three mesoporous Mn oxide 

catalysts (Mn2O3, Mn3O4, and MnxOy) for this reaction, which were prepared by a solution 

combustion method. Of the catalysts tested, the Mn3O4 catalyst displayed the highest catalytic 

activity; ethylene was completely oxidized to CO2 and water at 260 °C (GHSV of 29,100 h-1). 

In recent times, mesoporous carbon materials have amassed a lot of interest in heterogenous 

catalysis due to their high surface area, large pore volume, controllable surface properties, and 

good chemical stability.244,245 In a recent report by Li et al.,222 a series of Co catalysts supported 

on mesoporous carbon spheres, with varied Co weight loadings, were synthesized by an isometric 
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impregnation method and tested for this reaction. The most active catalyst contained a cobalt 

loading of 30 wt.% and fully converted 1000 ppm of C2H4 at temperatures as low as 185 °C with 

a total flow rate of 100 cm3∙min-1 (Ea = 79.2 kJ∙mol-1). 

There are also numerous reports on the use of NMSCs for this reaction. Isaifan and Baranova229 

investigated how the nature of the support (Y2O3-ZrO2, Sm2O3-CeO2, carbon, and γ-Al2O3) 

influenced the activity of supported Pt nanoparticles in this reaction (Fig. 5i). Of the catalysts 

tested in this study, the Pt/Carbon catalyst was determined to be the most active. A subsequent 

study was conducted by the same group, which investigated how the Pt particle size influenced 

the catalytic activity of the Pt/Carbon catalyst under fuel-lean conditions.226 It was determined 

that the performance of the Pt/Carbon catalyst is strongly dependent on the Pt nanoparticle size. 

Smaller Pt nanoparticles were determined to provide the most active catalysts and a Pt/C catalyst 

with a mean particle size distribution of 1.5 nm (+/- 0.5 nm) exhibited full ethylene conversion at 

approximately 100 °C (WHSV of 12,000 mL·g-1·h-1) (Fig 5ii and iii). 

  The emission of ethylene from fruit and vegetables can lead to a reduced shelf lifetimes as it 

enhances the rate of ripening.24 This causes huge economic issues in the agricultural industry as 

the emission of ethylene in this way has been estimated to cause substantial postharvest food 

losses (as high as 10-80%) and as such, has provided addition motives for the development of 

processes to alleviate this impact.246-248 Given that these food products are typically stored at 

temperatures between 0-25 °C, it is important that processes are developed which can efficiently 

remove ethylene at these mild conditions. This is an exceptionally challenging venture, as the 

high energy C-C σ bond in ethylene is difficult to activate and break at low temperatures (≤ 

25 °C). Previous works have indicated that well dispersed Au nanoparticles supported on metal 

oxides are highly active for a range of different total oxidation reactions.249-251 The efficiency of 

supported Au nanoparticles for low-temperature oxidation reactions is reported to be dependent 

on a variety of factors including the Au particle size, the properties of support, and their 

preparation and heat treatment conditions.252,253 

Li et al.230 investigated the effect of different supports (Fe2O3, Co3O4, TiO2, and ZnO) for Au 

nanoparticles on this reaction at low temperatures. Of the catalysts tested, the Au/Co3O4 catalyst 

exhibited the highest activity; an ethylene conversion of 7.4% was observed at 25 °C and full 

conversion was observed at 160 °C with a gas flow rate of 33.4 mL∙min-1 (Fig. 5iv). A subsequent 
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study investigated how the Co3O4 morphology effected the catalytic activity of Au/Co3O4 

catalysts.254 Au supported on mesoporous Co3O4 was determined to highly active and ethylene 

conversions of up to 76 % were observed at 0 °C with a gas flow rate of 60 mL·min-1. HRTEM 

indicated that the excellent low temperature activity of this catalyst was attributed to a high 

proportion of exposed {110} facets present in the mesoporous Co3O4 material (Fig. 5v). A 

subsequent study further probed the relationship between the activity and morphology of 

Au/Co3O4 catalysts. Co3O4 nanorods, polyhedral, and cubes were synthesized and immobilized 

with Au. The resulting catalysts exhibited ethylene conversions of 94%, 86%, and 27% 

respectively, at 0 °C (WHSV of 9000 mL·g-1·h-1). HRTEM images indicated that the Co3O4 

polyhedra and cubes predominantly consisted of exposed {011} and {001} planes respectively, 

whereas the Co3O4 rods predominantly consisted of exposed {110} facets.220 

Supported Pt and Ag catalysts have also displayed potential for this reaction. Jiang et al.255 

reported that Pt nanoparticles supported on mesoporous silica (MCM-41) can fully oxidize 

ethylene at 0 °C. A series of Ag catalysts supported on microporous zeolites (ZSM-5, Beta, Y, 

and Mordenite) were prepared by Yang et al.256 and tested for the oxidation of 100 ppm of 

ethylene at 25 °C. The nature of the zeolitic framework and water content of the gas feed were 

proposed to have a substantial influence on the stability of the catalysts. The catalysts tested 

displayed excellent activities and exhibited full oxidation to CO2 and water under these conditions. 

The stability of the catalysts was proposed to be proportional to the quantity of available Brønsted 

acid sites. Some deactivation was observed with the Ag/zeolite catalysts, which was attributed to 

the disappearance of BAS during the reaction. A subsequent study compared a series of noble 

metal catalysts (Au, Ag, Pt, and Pd) supported on ZSM-5 for low temperature ethylene oxidation 

at 25 °C. Of the catalysts tested, the Pt/ZSM-5 catalyst was determined to be the most active.257 It 

was determined that fluorination of the ZSM-5 material prior to immobilization with Pt led to a 

further enhancement in the catalytic performance due to an increase in the Brønsted acidity of the 

support, which enhanced the adsorption and activation of the ethylene compounds. The 

fluorination step was also credited with enhancing the lifetime of the catalyst which was 

attributed to increasing the inhibition of the BAS to water. 

3.2.2. Propene 
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The catalytic oxidation of propene has been investigated in detail in recent years. This is 

predominantly due to its abundant production or application in numerous industries. Propene has 

high POCP12 and is a primary contributor to photochemical smog, and therefore has substantial 

environmental impacts. Some examples of catalytic systems reported in the literature are 

displayed in Table 1. 

Table 1 List of some representative catalysts for propene oxidation. 

Catalyst Reactant composition 
Space velocity 

/Flow rate 

T90 

(°C) 
Ref. 

10%Co/ZrO2 0.6% C3H6, Air balance 100 mLmin-1 < 210 129 

30%Co3O4-70%CeO2 1000 ppm C3H6, 9% O2, He balance 36,000 mLg-1h-1 225 223 

2%Pt/BaO/Al2O3 800 ppm C3H6, 2% O2, N2 balance 1000 mLmin-1 225  228 

1%Pt/Al2O3
a 600 ppm C3H6, 1% O2, He balance 50,000 h-1 < 180 227 

1%Pt/Al-PILCb 0.5% C3H6, 10% O2, He balance 2000 h-1 250 271 

0.5%Pd/CsFAU 6000 ppm C3H6, Air balance 100 mLmin-1 199 32 

0.8%Pd/TiO2 1000 ppm C3H6, 9% O2, Air balance 35,000 h-1 162 266 

3.07%Au/Ce0.3Ti0.7O2
c 6000 ppm C3H6, Air balance 100 mLmin-1 260 231 

1%Au/CeO2
d 1200 ppm C3H6, 9% O2, He balance 150 mLmin-1 < 200 232 

4%Au/Ce0.3Ti0.7O2
e 6000 ppm C3H6, Air balance 150 mLmin-1 270 233 

5%Au/CeOx-Al2O3 0.4% C3H6, 3.6% O2, He balance 30 mLmin-1 220 235 

1%Au/TiO2 1000 ppm C3H6, 9% O2, He balance 35,000 h-1 < 275 277 

3.7%Au/CeO2
f 6000 ppm C3H6, Air balance 100 mLmin-1 < 200 280 

0.5%Pd-1%Au/TiO2 1000 ppm C3H6, Air balance 100 mLmin-1 < 225 239 

3%Au-3%Ir/TiO2
f 1200 ppm C3H6, 9% O2, He balance 7800 h-1 < 200 240 

a Catalyst with Pt dispersion of 0.81; b Al-PILC: Al-pillared montmorillonite; c Ce0.3Ti0.7O2 support was calcined 

at 400 °C. d Catalyst was firstly activated in a H2 stream; e Urea as the precipitant agent; f Prepared by the 

deposition-precipitation method. 

As with many of the other VOC discussed previously, numerous studies have investigated the 

use of TMOs as a mean of catalytically oxidizing propylene. Among these, Co-based catalysts are 

widely acknowledged as being the more active. It is known that doping TMO with CeO2 leads to 
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modifications of materials the redox properties, which can enhance the oxygen mobility and 

consequentially, improve the catalytic activity.258 For this reason, Liotta et al.223 prepared a series 

of Co3O4-CeO2 catalysts via a co-precipitation method, with differing ratios of Co3O4 and CeO2 

and tested them for this reaction. Of the catalysts tested, a Co3O4 (30%)-CeO2 (70%) catalyst 

displayed the highest activity, exhibiting a full propene conversion at 250 °C (WHSV of 36,000 

mL·g-1·h-1). The high performance of this catalyst was ascribed to the well-dispersed Co3O4 

particles on the surface of CeO2. Previous work has indicated that the dispersion of a metal phase 

over an oxide support can be controlled by the introduction of chelating ligand, such as 

ethylenediamine.259 Mixed metal oxides containing Co oxide and ZrO2 or Al2O3 have also been 

prepared and tested for the oxidation of propene. Of these two catalytic systems, the Co-Al oxide 

catalyst exhibited the highest activity which was attributed to the enhanced reducibility of the Co 

species when combined with Al2O3.
260 The poor activity of the Co-Zr oxide system was on 

account of weak interactions between the two composite materials, leading to poorer Co oxide 

dispersion on the surface of ZrO2. Wyrwalski et al.129 determined that the interaction between Co 

oxide and ZrO2 could be enhanced by introducing ethylenediamine into the Co(NO3)2 solution 

during the catalyst synthesis. This was found to increase the dispersion of Co oxide and ultimately, 

increased the performance of the catalyst in the oxidation reaction. Despite this, Deloume and 

co-workers261 believed that the partial substitution of Zr into the Mn sites of a La-Mn perovskite 

had a detrimental effect on the catalytic performance for this reaction since ZrO2 increasing the 

quantity of chemisorbed oxygen species on perovskite surface. Single-phase cobalt-manganese 

spinel oxides (CMO) have also been investigated as catalysts for this reaction. Of the perovskite 

materials tested, a Co2.35Mn0.65O4 perovskite displayed the highest activity, but only displayed 

similar activity to that observed with pure Co3O4 (Fig. 6i).262 

Noble metal (Pd, Pt, and Au in particular) supported catalysts have also been extensively 

studied for this reaction. As discussed previously, it is well-known that the nanoparticle support 

plays an important role in the activity and stability of supported noble metal nanoparticles in these 

types of reactions. The performance of Pd supported catalysts in catalytic oxidation is strongly 

dependent on the acid-base property of the support and the metal-support interaction.263-265 The 

catalytic performance of Pd/Al2O3, Pd/CeO2, and Pd/TiO2 in this reaction were investigated by 

Giroir-Fendler and co-workers.266 Of the catalysts tested, Pd/TiO2 exhibited the highest activity, 
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while Pd/CeO2 displayed the poorest activity. The poor performance of the Pd/CeO2 catalyst was 

related to the CeO2 stabilizing PdO species. The promotional effect of CeO2 on a series of Pd 

catalysts supported on Al2O3 was however demonstrated in a separate study.267 

Zeolites are often been adopted as supports for Pd nanoparticles in the oxidation of VOCs.32,268 

In one such study, a series of BEA and FAU zeolites were exchanged with different alkali metal 

cations (Na+ and Cs+), immobilized with Pd and tested for this reaction. The incorporation of 

different cations in the zeolitic framework led to a decrease in the surface area and micropore 

volume of Pd/BEA and Pd/FAU materials. The observed activity in this reaction was determined 

to be heavily dependent on the type of zeolite used and on the nature of the alkali metal cation 

exchanged. The activity of the Pd catalysts immobilized on FAU zeolite exhibited the following 

trend; Pd/CsFAU > Pd/ NaFAU > Pd/HFAU. Interestingly, the opposite trend was observed with 

the BEA supported catalysts. These trends in activity were linked to the influence of the 

electronegativity of the cation on the Pd dispersion, PdO reducibility, and adsorption energy of 

propene.32 

  As discussed previously, in noble metal supported systems, the activity of catalysts are 

significantly affected by the dispersion of the active metal component. The effect of Pt dispersion 

on Al2O3-supported catalysts for this reaction has been reported.269,270 Haneda et al.227 reported 

that the TOF for this reaction over Pt/Al2O3 catalysts increased proportionally with Pt dispersion 

(Fig. 6ii). Similar results were also observed by Korili and co-workers,271 who synthesized a 

series of Pt and Pd catalysts supported on pillared-clay materials. Interestingly, the activity of Pt 

supported catalysts in the total oxidation of hydrocarbons is reported to also be affected their 

surface acidity or basicity.272-274 The acidity/basicity of the catalyst was also determined to have 

an effect on this reaction, as Wan et al.228 determined that an enhancement in activity was 

observed upon the doping of BaO onto Pt/Al2O3. Interestingly however, sulfation of a Pt/Al2O3 

catalyst was determined to result in the deactivation of Pt/Al2O3, which is contradictory to the 

results obtained by Burch et al.275 and Skoglundh et al.276 in this reaction over sulfonated 

Pt/Al2O3. Wan et al.228 proposed that the enhanced activity exhibited by the Pt/BaO/Al2O3 

catalyst in this reaction was ascribed to weakened propene adsorption, the formation of a reactive 

enolic intermediate species and a reduced barrier for the oxidation of intermediate CO species. 

This is evidenced by the fact that the strong adsorption of propene and CO poisoning are 
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established to be principle deactivation pathways for the deactivation of Pt/SO4
2-/Al2O3 catalysts 

in total oxidation reactions. 

  Au supported catalysts have been widely investigated for application in propene oxidation 

reactions.277-279 Of these, Au/CeO2 is considered to be one of the most active catalysts for this 

reaction and can provide a full conversion to CO2 at temperatures below 200 °C (GHSV of 

35,000 h-1).279 This is however, heavily dependent on the Au loadings and pretreatment conditions 

used. The catalytic activity of Au/CeO2, Au/TiO2, Au/Al2O3 and Au/CeO2-Al2O3 was investigated 

for this reaction by Giroir-Fendler and co-workers.279 It was proposed that the point of zero 

charge (PZC) of the support has a dramatic influence on the quantity Au deposited. For example, 

an oxide with a lower PZC would typically lead to higher Au loadings. As with the other VOC 

discussed previously, the activity of Au supported catalysts for this reaction is strongly dependent 

on the Au-support interaction, which ultimately effects the Au particle size and dispersion. 

  The influence of the supported noble metal (Au, Ag and Cu) and synthesis method (wet 

impregnation (IMP) and DP) on CeO2-supported catalysts was recently investigated for this 

reaction.280 Of the catalysts tested, the highest activity was exhibited by a Au/CeO2 catalyst 

prepared by DP (temperature for 90% conversion of propene (T90) at around 180 °C (Fig. 6iii). 

The enhanced activity of this catalyst was related to the existence of a higher proportion of 

oxidized Au species. Independently, Lamallem et al.233 also determined that an Au/Ce-Ti-O 

catalyst prepared by DP was far more active than the corresponding catalyst prepared by IMP. 

The pre-treatment of Au supported catalysts and incorporation of alkali and transition metal 

additives can also have significant effect on the activity of Au supported catalysts in this 

reaction.231,232,234,235,238 Lakshmanan et al.232 reported that calcined Au/CeO2, Au/Al2O3 and 

Au/xCeO2-Al2O3 samples were less active than corresponding materials which instead, underwent 

a reductive pre-treatment step. This was once again owing to a particle size effect; the reduced 

catalysts were found to consist of a larger proportion of small Au nanoparticles. Gluhoi et al.234 

investigated the effect of doping different oxides onto a Au/Al2O3 catalyst on propene oxidation 

activity. A promotional effect was observed from doping the catalyst with different alkali metal 

oxides (MOx, M = Li, Rb, Mg and Ba), which was in relation to a decrease in the size of active 

Au0 particles and an increase in their relative stability (Fig. 6iv). Despite this, an interfacial effect 

resulting from the doping of TMO is considered to be more influential than the Au particle size. 
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The doping of TMO (M = Ce, Mn, Co and Fe) can act as both structural and chemical promoters, 

stabilizing Au particles against sintering and providing an increase in available active oxygen.235 

A significant enhancement in the catalytic activity of a Au/TiO2 catalyst for this reaction was also 

observed by the addition of Ir.240 In this case, the increased activity was on account of a 

synergistic effect resulting from the formation of Ir-Au bimetallic alloy. The presence of Au was 

found to hinder the re-oxidation of iridium in the bimetallic nanoparticles upon exposure to air 

and under typical reaction conditions used for this reaction. This ultimately induced a 

preservation of the catalytic activity upon subsequent catalytic cycles. 

3.2.3. Butene and acetylene 

There are only a few reports focusing on the catalytic oxidation of butene and acetylene in the 

literature. Przekop and Kirszensztejn281 investigated the use of Pt/B2O3/Al2O3 catalysts for the 

oxidation of 1-butene. Different ratios of the metal oxide components were assessed and a catalyst 

with B : Al of 0.3 exhibited the highest activity, which was considerably higher than the activity 

exhibited by the corresponding Pt/Al2O3 catalyst. The enhanced activity was ascribed to the 

increased acidic character of the support, which was promoted by the presence of boron oxide.281 

The catalytic oxidation of acetylene was investigated over Co3O4-coated natural clay/commercial 

cordierite honeycomb monoliths. The complete oxidation of acetylene was achieved at 

temperatures below 360 °C (GHSV of 50,000 h-1). The higher catalytic activity of Co3O4 

supported on the clay monolith was highly dependent on the synergetic effects induced by the 

chemical composition of the clay surface.282 

3.3. Aromatic hydrocarbons 

Aromatic hydrocarbons represent another type of VOCs commonly emitted industrially. 

Aromatic solvents are used in vast quantities in various paints, thinners, gums, adhesives, lacquers 

and printing inks.283 Of the aromatic VOCs; benzene, toluene, ethylbenzene, and xylene (BTEX) 

contribute to the majority of the total industrial emissions.284 Aromatic compounds are considered 

to pose considerable environmental hazards and are often toxic and/or carcinogenic.199,285 The 

catalytic oxidation of BTEX has extensively studied over the past two decades and a large 

quantity of noble metal (Pd, Pt, Au and Ag) supported catalysts,286-293 transitional metal (Co, Mn, 

Cu, Cr, Ni and Ti) oxides catalysts,294-304 rare earth oxide catalysts,305-307 perovskite- and spinel- 
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based oxides catalysts308-313 and hydrotalcite derived catalysts have been developed and 

investigated (Tables 2 and 3).314-318 

3.3.1. Benzene 

As with many of the other VOCs discussed, Co3O4 is also a very attractive material for the 

oxidation of benzene, which is predominantly due to the high oxygen mobility it exhibits.319,320 

Mu et al.321 reported that the doping of CeO2 onto a Co/SBA-15 catalyst by a hydrothermal 

method, could reduce the catalysts activity in this reaction. This reduction in activity was owing 

to pore blocking and a reduction in the reducibility of Co3O4 to Co0 (Fig. 7i). In contrary, Zuo et 

al.322 reported that the addition of CeO2 facilitated the reduction of Co oxide at lower 

temperatures, which greatly enhanced the catalytic activity of CoCe/SBA-16 in this reaction (Fig. 

7ii). Mesoporous Co3O4-CeO2 catalysts with different Co : Ce ratios have been prepared by Hao 

and co-workers323 via a nanocasting methodology, invoking the use of two-(2D) and 

three-dimensional (3D) hard templates; SBA-15 and KIT-6, respectively. It was determined that 

the 2D Co3O4-CeO2 catalyst exhibited a lower catalytic activity than the corresponding 3D 

catalyst. An optimum Co : Ce ratio of 16 was subsequently determined with the 3D Co3O4-CeO2 

catalyst. In these materials, the activity of these materials for this reaction was linked to the 

proportion of hydroxyl and oxygenated species; higher surface oxygen species resulted in a better 

catalytic activity.323 

A series of CoMnAlOx oxide catalysts, obtained from the calcinations of LDH precursors were 

prepared and tested for this reaction. Of these, a CoMn2AlOx material exhibited the highest 

activity; a 90% conversion of benzene was observed at about 238 °C with a space velocity of 

60,000 mL∙g-1∙h-1 (Ea = 65.77 kJ·mol-1).324 The catalytic oxidation of benzene over CoAlOx and 

CoCuAlOx mixed oxides has also been reported in recent studies,312,325,326 but were found to be 

less active than the above-mentioned CoMnAlOx catalysts. Ding et al.325 found that the 

preparation method (constant pH precipitation, decreasing pH precipitation and urea 

homogeneous precipitation) could have a significant on the activity exhibited by CoAlOx mixed 

oxides. It was determined that the material prepared by the decreasing pH precipitation method 

exhibited the highest activity because the enhancement in the reducibility of Co3+ species in the 

Co(Co,Al)2O4 spinels. Li et al.312 found that the addition of Cu to CoAlOx materials could further 
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improve the reducibility of Co oxide component of the material, which resulted in an increase in 

the activity. A number of reports have also investigated the use Co-containing perovskites as 

catalysts for this reaction,308,327 but in general, far higher temperatures are required (> 400 °C) in 

order to achieve full benzene conversions. 

The catalytic oxidation of benzene and toluene has been studied over a series of Mn oxide 

catalysts (Mn3O4, Mn2O3 and MnO2). Of these catalysts tested, the Mn3O4 material exhibited the 

highest catalytic activity. The addition of either K, Ca or Mg to the Mn3O4 material further 

enhanced the catalytic activity. This improvement in performance was attributed to an increase 

quantity of surface defects and surface bound hydroxyl species.199 Tang et al.328 reported that 

MnOx derived from the calcination of a Mn oxalate precursor, was also highly active for the 

oxidation of a number of benzene, toluene, and xylene compounds. The performance of this 

material was dependent on a number of factors including, its large surface area, small pore sizes, 

excellent low-temperature reducibility, rich lattice oxygen stores and appropriate distribution of 

Mn oxidation states. The morphology of MnOx materials should also be considered, as it can also 

influence catalytic performance in this reaction. Hou et al.329 synthesized and tested a series of 

birnessite-type Mn oxides and determined that nanoflower morphologies exhibited much higher 

activities than the corresponding nanowire and nanosheet oxides materials (Fig. 7iii). Three types 

of MnO2 microspheres (i.e., hierarchical hollow β-MnO2 microspheres, hierarchical 

double-walled hollow β/α-MnO2 microspheres and hierarchical hollow α-MnO2 microspheres) 

were prepared by Chen and co-workers330. The authors stated that hierarchical hollow α-MnO2 

microspheres exhibited the highest catalytic ability (T90 = 320 °C; WHSV of 60,000 mL∙g-1∙h-1). 

Following this, the researchers from the same group developed a more efficient hierarchical 

sea-urchin-shaped MnO2 microsphere material, which could decompose 90% of benzene at about 

218 °C (WHSV of 60,000 mL∙g-1∙h-1).331 

Numerous studies have investigated how the doping of additional elements (e.g., Ti, Cu, Co, Ni 

and Ce) onto MnOx affects the catalytic performance in this reaction.332-339 Tang et al.340 

investigated the effect of supporting Co3O4 nanoparticles on a series of 1D MnO2 materials 

(α-MnO2 nanowires, α-MnO2 nanorods and α-MnO2 microrods). Notable increases in 

performance were observed when Co3O4 was immobilized on each of the MnO2 materials. The 
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highest performance was exhibited by Co3O4 supported on MnO2 nanowires; a 90% conversion of 

benzene was observed at 247 °C (WHSV of 120,000 mL·g-1·h-1). Following this, a series of 

Co-Mn oxide catalysts with different nanostructures were synthesized by Wang et al. (Fig. 8),333 

who determined that a Co doped nanocubic MnO2 material exhibited the highest catalytic 

performance for this reaction. An alternative study, investigated the effect of doping Ti onto a 

δ-MnO2 material and was also determined to be highly active for this reaction.318 The promotional 

effect of copper on the catalytic activity of MnOx-CeO2 has also been investigated. The 

incorporation of copper was found to significantly improve the catalytic activity of the mixed 

metal oxide and complete conversion of benzene was achieved at 250 °C. The enhancement in 

performance was related to the presence of Cu significantly increased the generation of surface 

defect oxygen species, which increased the number of adsorption sites for benzene.319 Chen and 

co-workers341 pointed out that a 90% conversion of benzene at 232 °C with a WHSV of 12,000 

mL∙g-1∙h-1 (Ea = 45.2 kJ·mol-1) could be achieved over a hierarchically porous Mn2Ni1 mixed 

oxide. The low activation barrier was owing to a synergetic effect between Mn and Ni in the 

mixed oxide spinel, which increased the quantity of surface-adsorbed oxygen species and an 

enhanced low-temperature reducibility. MnCoOx and MnCeOx composites have also been 

investigated by Hou et al.342, but higher reaction temperatures were required (> 260 °C) over 

these materials in order achieve the full oxidation of benzene. 

CuO-CeO2 materials have previously been reported to be highly active as catalysts for a range 

of different oxidation reactions. In some cases, these materials have even shown comparable 

activity to NMSCs in total oxidation reactions.343-346 Zhou et al.347 reported that the preparation 

method used for the synthesis of Cu-Ce mixed oxides had a significant influence on their catalytic 

performance in BTEX oxidation reactions. CuCeOx catalysts prepared by a hard-templating 

approach was determined to possess a higher activity than corresponding catalysts prepared by 

co-precipitation and other complex methods. The higher activity of this material was relied on its 

higher porosity and surface area, both of which were important catalytic traits in total oxidation 

reactions.348 This was further evidenced by Wang and co-workers,349 who determined that the 

reducibility of CuO-CeO2 catalysts was strongly influenced by the total surface area of the 

material; high surface area materials typically displayed better reducibility. Following this, high 

surface area mesoporous Cu-Mn oxide (ca. 221 m2·g-1) were synthesized by a nanocasting 
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approach.350 The nanocasted catalyst displayed an excellent benzene oxidation activity; 90% 

conversion was obtained at 234 °C over a Cu0.6MnOx sample (WHSV of 60,000 mL·g-1·h-1), 

which was 131 °C lower than that observed over the corresponding CuMnOx catalyst prepared by 

a co-precipitation method. The catalyst pre-treatment conditions are an important factor to 

consider when using Cu based catalysts. This was clearly demonstrated by Yang et al.351 who 

determined that the reduction of a Cu/SBA-15 in H2 prior to its application, dramatically 

influenced its activity for this reaction. 

  It is widely acknowledged that Pd supported catalysts are the most efficient catalysts for 

aromatic hydrocarbon oxidation.24,85,352 Numerous reports have investigated the use of Al2O3, 

molecular sieves, and pillared clays as supports for Pd nanoparticles in the catalytic oxidation of 

benzene.168,353-355 The addition of Pd to a Co/Al2O3 catalyst was determined to increase the 

quantity of active oxygen species on the surface of the catalyst and enhance the dispersion of 

Co3O4 on the surface of Al2O3.
356 A novel route for the preparation of porous catalysts was 

explored by Li et al.357 for application in total oxidation reactions. For this, a porous 

Co3O4-supported Pd catalysts was synthesized by the pyrolysis of a metal organic framework 

(MOF). While the catalytic system proposed in this study only exhibited a modest oxidative 

activity (temperature for 100 % conversion of benzene (T100) = 350 °C; WHSV = 60,000 

mL·g-1·h-1)), it provided a novel approach for obtaining high surface area porous materials, which 

would undoubtedly act as a foundation for future investigation. 

  The use of mesoporous siliceous materials such as SBA-15, MCM-48, MCM-41 and HMS as 

catalysts for the oxidation of benzene has also attracted a lot of attentions in recent 

times.168,289,358,359 These materials are considered to be desirable in the field because of their 

controllable pore size, high surface area and surface-rich silanol group content. The performance 

and oxidation mechanism of five Pd containing catalysts supported on a range of molecular sieves 

(Beta, ZSM-5, SBA-15, MCM-48 and MCM-41) was investigated by Hao and co-workers168 for 

the oxidation of benzene, toluene and ethyl acetate. The activity of these catalysts followed the 

order; Pd/Beta > Pd/ZSM-5 > Pd/SBA-15 > Pd/MCM-48 > Pd/MCM-41 for all of the substrates 

examined. While the Pd/Beta catalyst exhibited the highest initial activity, it deactivated quickly 

due to the in situ formation of coke. In contrary, the Pd/ZSM-5 and Pd/SBA-15 catalyst exhibited 

a much higher a degree of stability; maintaining their initial activities for 72 h.168 In addition to 
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this, Li et al.289 synthesized a series of Pd/SBA-15 catalysts by traditional aqueous impregnation 

and grafting methods. It was determined that the catalyst prepared via the grafting method was far 

more active for this reaction, exhibited complete conversion of benzene below 190 °C (GHSV of 

100,000 h-1). A subsequent study by Mu et al.358 determined that the doping of a lanthanide (e.g., 

La, Ce and Nd) to this material could further enhance the catalytic activity of the Pd/SBA-15 

catalyst. More recently, another study also reported that doping Ni onto a Pd/SBA-15 could also 

increase its catalytic activity for this reaction.359 Pd nanoparticles have also exhibited a high 

catalytic activity when supported on a Al-HMS mesoporous sieve; exhibited a full benzene 

conversion at 200 °C (GHSV of 100,000 h-1).360 ZSM-5/MCM-48 micro/mesoporous composite 

materials, which combine the advantages of mesoporous molecular sieves (large surface area and 

pore diameter) and zeolites (strong intrinsic acidity and high hydrothermal stability) were used as 

supports for Pd nanoparticles by Xu and co-workers.165 The Pd/ZSM-5/MCM-48 composite 

catalysts exhibited a much higher activity for this reaction than that observed over the 

corresponding Pd/ZSM-5 and Pd/MCM-48 catalysts. 

Pillared interlayered clays (PILCs) are typically highly porous materials and have high total 

surface areas. For this reason, they are of great interest to be used as supports for noble metal 

nanoparticles in total oxidation reactions. A series of Zr-, Ce- and Al-pillared laponite clays 

(Al-Lap, Ce-Lap and Zr-Lap) were synthesized and used as supports for Pd nanoparticles. The 

catalysts were subsequently tested for the total oxidation of benzene. The results indicated that the 

Pd/PILC catalysts were far more active than a corresponding Pd/Al2O3 catalyst. It was determined 

that the most active of these catalysts; Pd/Zr-Lap, could completely oxidize benzene at 210 °C 

(GHSV of 20,000 h-1).290 An additional study investigated the use of Al-PILC as a support for Ce 

and Pd in this reaction.353 It was postulated that the optimized structure of the supports strengthen 

the interaction between CeO2 and Al-PILC, which in turn, improved the dispersion of Pd on 

material surface. 

  A number of studies have also investigated the use of Au nanoparticles for the oxidation of 

benzene.361-368 CeO2 has been investigated as a support for Au nanoparticles.362 The activity of 

this material was predominantly associated with the high surface area of CeO2 support and the 

ability of the surface Au species to dissociate O2. Another study, investigated the performance of 

supported Au nanoparticles on three different metal oxides (ZnO, Al2O3 and MgO) and tested 
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each of the catalysts for their performance as catalysts in the oxidation of benzene, toluene and 

xylenes. The Au/ZnO catalyst exhibited the highest activity, which was due to a strong interaction 

between Au and ZnO, originating from the similar lattice parameters of the Au {111} and ZnO 

{101} planes.363 Andreeva et al.364 reported on this reaction over Au/V2O5 supported on either 

TiO2 or ZrO2 and a synergistic effect between Au and vanadia was observed. Both catalyst 

displayed promising activities, but the Au/V2O5/TiO2 catalyst was determined to be the most 

active. It was proposed that oxygen activation occurred on the surface of the Au nanoparticles and 

benzene activation occurs on the V oxide surface. Subsequent studies by the same group further 

investigated the role of V and Mo on Au/CeO2 and Au/CeO2-Al2O3 catalysts and provided further 

evidence for the role of Au in these systems.309,365,366 Additional Au/V2O5 catalysts supported on 

mesoporous TiO2 or ZrO2 was also investigated by Su and co-workers.367 It was determined that 

the Au/V2O5/meso-ZrO2 catalyst exhibited a higher activity than the corresponding catalyst 

supported on TiO2, which was ascribed to stronger interactions between the Au nanoparticles and 

the oxide surface. Recently, mono-(Au, Pd) and bimetallic Au-Pd catalysts supported on 

Fe-modified CeO2 for this reaction was investigated by Karakirova and co-workers.368 The 

bimetallic AuPd catalyst exhibited the highest activity due to its better reducibility (Fig. 7iv). 

  There are fewer examples of Pt- and Ag- supported systems in the literature.369-371 Li et al.291 

reported that the complete oxidation of benzene over Pt-based catalysts could be achieved at 

150 °C (WHSV of 60,000 mL·g-1·h-1), which was notably lower than the previous works utilizing 

Au and Pd systems. They suggested that the GO support had a significant impact on the high 

activity observed, proposing that this too had a role in the activation of oxygen. In addition to this, 

characterization by X-ray photoelectron spectroscopy (XPS) and Raman confirmed that electron 

transfer between the GO and Pt was also responsible for the high catalytic performance of this 

material. Pt nanoparticles supported on mesoporous CeO2 (1 wt.% Pt/CeO2-MM) and CeO2 

nanocubes (1 wt.% Pt/CeO2-NC) were investigated by Zhao and co-workers.372 The TOF of the 1 

wt.% Pt/CeO2-MM catalyst at 140 °C was approximately nine times higher than observed over 

the 1.0 wt.% Pt/CeO2-NC. Theoretical and experimental investigation revealed that the partial 

confinement of Pt nanoparticles in the mesoporous of the mesoporous CeO2 leaded to a 

significant enhancement in the activity of the surface lattice oxygen at the interface between Pt 

nanoparticles and CeO2 (Fig. 7v). 
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In general, Ag supported nanoparticles are reported to be much less active than corresponding 

Pd-, Au- and Pt-based catalysts for this reaction. Heinrichs and co-workers373 investigated the 

catalytic oxidation of benzene over Ag/SiO2 xerogel, Cu/SiO2 xerogel and Pd/SiO2 xerogel and 

determined that the temperature for 50% conversion of benzene (T50) over the Pd/SiO2 xerogel 

was 170 °C (Fig. 7vi). The corresponding T50 over the Ag/SiO2 xerogel was much higher; 260 °C. 

A synergistic effect between Ag and Mn supported on mesoporous zirconia nanofibers was 

reported recently by Einaga and co-workers.293 Despite the enhancement observed from the 

addition of Ag, full conversion of benzene was only observed at 498 °C with a flow rate of 200 

mL·min-1, which is much higher than many other examples discussed. 

Table 2 Summary of reported active catalysts for benzene low-temperature oxidation. 

Catalyst Reactant composition 
Space velocity 

/Flow rate 

T90 

(°C) 
Ref. 

MnOx
a 1000 ppm C6H6, Air balance 60,000 mLg-1h-1 209 329 

OL-1b 2000 mgm-3 C6H6, Air balance 48,000 mLg-1h-1 232 332 

Ti/-MnO2
c 1000 ppm C6H6, Air balance 60,000 mLg-1h-1 250 333 

MnO2@Co3O4 1000 ppm C6H6, Air balance 120,000 mLg-1h-1 247 324 

Porous Mn0.5Co0.5Ox 1000 ppm C6H6, Air balance 120,000 mLg-1h-1 237 337 

Mn0.66Ni0.33Ox 1000 ppm C6H6, Air balance 120,000 mLg-1h-1 249 314 

2.54%Cu/MnOx-CeO2 200 ppm C6H6, He balance 30,000 mLg-1h-1 < 240 335 

Meso-CuO-CeO2 1000 ppm C6H6, Air balance 96,000 mLg-1h-1 250 350 

Meso-Cu0.6MnOx 1000 ppm C6H6, Air balance 60,000 mLg-1h-1 234 351 

Co4.75Cu0.25Al 516 ppm C6H6, Air balance 36,000 mLg-1h-1 246 312 

CoMn2AlOd 100 ppm C6H6, Air balance 60,000 mLg-1h-1 208 325 

Pd/ZSM-5/MCM-48e 1500 ppm C6H6, Air balance 32,000 h-1 204 165 

0.3%Pd/Beta 1500 ppm C6H6, Air balance 26,000 h-1 225 168 

9%Pd/SBA-15 1050 ppm C6H6, Air balance 100,000 h-1 180 289 

0.9%Pd/Nd-SBA-15 1000 ppm C6H6, Air balance 100,000 h-1 219 358 

0.9%Pd/Al-HMS (Si/Al = 100) 1050 ppm C6H6, Air balance 100,000 h-1 < 200 360 

1.5%Pd/SiO2 xerogel 2550 ppm C6H6, Air balance 100 mLmin-1 180 373 



39 
 

0.3%Pd/Ti-SBA-15f 1500 ppm C6H6, Air balance 26,000 h-1 205 287 

0.3%Pd/Zr-pillared laponite 1050 ppm C6H6, Air balance 20,000 h-1 195 290 

0.2%Pd/6%Ce/Al-PILCg 130-160 ppm C6H6, Air balance 20,000 h-1 240 353 

0.2%Pd/10%Co-0.8%Ce/Al2O3 1000 ppm C6H6, Air balance 20,000 h-1 190 356 

0.53%Pd/Co3O4
h 100 ppm C6H6, Air balance 60,000 mLg-1h-1 221 357 

1%Pt-1%rGO/Al2O3
i 100 ppm C6H6, Air balance 60,000 mLg-1h-1 140 291 

1%Pt/CeO2-MMj 2000 mgm-3 C6H6, Air balance 48,000 mLg-1h-1 153 372 

1%Au/CeO2/Hydroxyapatite 120 ppm C6H6, Air balance 30,000 h-1 < 230 292 

3%Au4%MoCe 4200 mgm-3 C6H6, Air balance 4000 h-1 < 160 309 

6.5%Au/meso-Co3O4 1000 ppm C6H6, Air balance 20,000 mLg-1h-1 189 361 

2.3%Au2%VCeAl(1:1) 3800 mgm-3 C6H6, Air balance 4500 h-1 < 200 366 

0.17%Pd-0.3%Pt/Ce/KL-NYk 1000 ppm C6H6, Air balance 20,000 h-1 205 354 

1%Pd-3%AuFeCel 4200 mgm-3 C6H6, Air balance 4000 h-1 < 150 368 

a Synthesized via an oxalate route; b Octahedral layered birnessite-type manganese oxide with nanoflower 

morphology; c Heated in autoclave at 140 °C; d Catalyst alcined at 550 °C; e Catalyst with Si : Al molar ratio of 

40; f Catalyst with Si : Ti molar ratio of 20; g Al-PILC: alumina pillared clays; h Co3O4 with porous polyhedron 

morphology and calcined at 350 °C; i rGO: reduced graphene oxide; j CeO2-MM: microsized mesoporous CeO2; 

k KL-NY: porous kaolin/NaY composite; l Prepared by the impregnation method. 

3.3.2. Toluene 

Toluene is a commonly used solvent in the chemical industry and is a significant contributor to 

the formation of photochemical smog.12,374 The catalytic oxidation of toluene has been 

investigated over a wide variety of different catalysts including Mn-, Co-, Cu-, Fe-, Pd-, Pt- and 

Au- containing materials,37,268,375-395 perovskite-type oxides,396-398 and pure CeO2.
399 Many 

examples of the catalysts used for the oxidation of toluene and their corresponding performance is 

documented in Table 3. 

Table 3 Survey of literature data on catalytic oxidation of toluene at low temperature. 

Catalyst Reactant composition 
Space velocity 

/Flow rate 

T90 

(°C) 
Ref. 
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14.8%NiO/NCNTsa 1000 ppm C7H8, Air balance 20,000 mLg-1h-1 240 463 

LaNiO3 5000 ppm C7H8, 10% O2, N2 balance 19,200 mLg-1h-1 250 397 

MnOx
b 1000 ppm C7H8, Air balance 15,000 h-1 230 376 

Mn3O4
c 10000 ppm C7H8, Air balance 30,000 h-1 250 400 

Mn3O4 nanorod 10000 ppm C7H8, Air balance 30,000 h-1 225 402 

α-MnO2 nanowire 4000 mgm-3 C7H8, Air balance 10,000 mLg-1h-1 237 406 

γ-MnO2
d 2000 ppm C7H8, 20% O2, N2 balance 120,000 mLg-1h-1 252 407 

Mn0.85Ce0.15 10000 ppm C7H8, Air balance 32,000 h-1 < 220 412 

Meso-TiMnCeOx
e 1000 ppm C7H8, 6% O2, N2 balance 15,000 h-1 180 420 

15%LaMnO3/Y2O3-ZrO2 1000 ppm C7H8, 20% O2, N2 balance 100 mLmin-1 247 311 

sc-LaMnO3
f 500 ppm C7H8, 10% O2, N2 balance 19,200 mLg-1h-1 225 468 

LaMnO3
g 1000 ppm C7H8, 20% O2, He balance 15,000 mLg-1h-1 213 474 

Hollow spherical LaCoO3 1000 ppm C7H8, Air balance 20,000 h-1 237 469 

La0.6Sr0.4CoO3- 1000 ppm C7H8, Air balance 20,000 h-1 240 472 

15%La/CeO2-nanopolyhedra 300 mgm-3 C7H8, Air balance 12,000 h-1 240 482 

8%CuO/Ce0.8Zr0.2O2 4400 ppm C7H8, Air balance 55 mLmin-1 225 447 

20%CuMnCe/ZrO2 0.5% C7H8, Air balance 24,000 mLg-1h-1 < 220 453 

15%Co3O4/CNTsh 850 ppm C7H8, 20% O2, He balance 60 mLmin-1 < 240 432 

5%CoOx/meso-SiO2 1000 ppm C7H8, 20% O2, N2 balance 20,000 h-1 230 435 

8%CoOx/3DOM-La0.6Sr0.4CoO3 1000 ppm C7H8, Air balance 20,000 mLg-1h-1 227 436 

Cake-like Cr2O3 1000 ppm C7H8, Air balance 20,000 h-1 240 462 

0.5%Pd/plateletlike SBA-15 1000 ppm C7H8, Air balance 32,000 h-1 192 484 

0.5%Pd/ZSM-5/KIT-6 1000 ppm C7H8, Air balance 32,000 h-1 203 486 

0.5%Pd/Bimodal mesosilica 1000 ppm C7H8, Air balance 350 mLmin-1 228 487 

1%Pd/ZSM-5 (Si/Al = 25) 1000 ppm C7H8, Air balance 32,000 h-1 212 490 

3.35%Pd-CoAlO 2000 ppm C7H8, Air balance 60,000 mLg-1h-1 226 489 

0.5%Pd/macro/meso-TiO2 1000 ppm C7H8, Air balance 13,200 mLg-1h-1 < 200 494 

1%Pd/Co3AlOi 0.08% C7H8, Air balance 30,000 h-1 230 495 

3.26%Pd-CoAlO-Alj 2000 ppm C7H8, Air balance 60,000 mLg-1h-1 207 496 
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0.5%Pt/Meso-NaZSM-5k 1000 ppm C7H8, Air balance 60,000 mLg-1h-1 185 499 

0.97%Pt(1.9 nm)/ZSM-5 1000 ppm C7H8, Air balance 60,000 mLg-1h-1 < 150 505 

0.94%Pt/MCM-41 1000 ppm C7H8, Air balance 100 mLmin-1 170 500 

2%Pt/MCM-41l 4340 ppm C7H8, Air balance 15,000 h-1 125 394 

1%Pt/Beta-Hk 1000 ppm C7H8, Air balance 60,000 mLg-1h-1 190 497 

1.15%Pt/KBeta-SDSm 1000 ppm C7H8, Air balance 60,000 mLg-1h-1 < 150 509 

0.2%Pt/CeO2-nanorod 1000 ppm C7H8, Air balance 48,000 mLg-1h-1 150 501 

0.27%Pt/26.9%CeO2-Al2O3
n 1000 ppm C7H8, Air balance 20,000 mLg-1h-1 198 502 

9%Pt/16%CZB/Al2O3
o 900 ppm C7H8, Air balance 8000 h-1 < 100 504 

0.2%Pt-0.1Pd%/MCM-41 5000 ppm C7H8, 10% O2, N2 balance 10,000 h-1 175 530 

0.25%Pd-0.25%Pt/SiO2
p 1000 ppm C7H8, Air balance 60,000 mLg-1h-1 < 155 26 

6.4%Au/3DOM-La0.6Sr0.4MnO3 1000 ppm C7H8, 20% O2, N2 balance 20,000 mLg-1h-1 170 518 

0.13%Ag/MnO2 nanowires 1000 ppm C7H8, 20% O2, Ar balance 20,000 mLg-1h-1 215 513 

1.95%Au1Pd2/meso-Cr2O3 1000 ppm C7H8, 20% O2, N2 balance 20,000 mLg-1h-1 165 525 

0.9%Au1Pd2/Ce0.6Zr0.3Y0.1O2 1000 ppm C7H8, 20% O2, N2 balance 20,000 mLg-1h-1 218 523 

3.8%AuPd1.92/3DOM-Mn2O3 1000 ppm C7H8, Air balance 40,000 mLg-1h-1 162 529 

3%Pt751%Au25/ZnO/Al2O3 1.8 mol% C7H8, Air balance 40 mLmin-1 < 200 528 

1%Ru/Co3O4-MOF (ZIF-67) 1000 ppm C7H8, 20% O2, Ar balance 60,000 mLg-1h-1 238 510 

a NCNTs: Nitrogen-doped carbon nanotubes; b Catalyst prepared by an alkali-promoted redox precipitation 

strategy;  c Acetic acid (HAc) : Mn molar ratio of 3 in precursor solution; d Obtained by removing La cations 

from three-dimensional ordered macroporous LaMnO3 perovskites; e Molar ratios of Mn : Ti and Ce : Ti were 

0.4 and 0.05, respectively; f Prepared in a supercritical water (sc-H2O) reaction environment; g Prepared by the 

citrate sol-gel method; h Precursor ultrasonic at 120 °C; i Synthesized by the co-precipitation method; j In situ 

growth of 2D CoAl-LDHs on the AlOOH microsphere; k Catalyst was reduced in a H2 stream before use; l 

MCM-41 synthesis in the presence of fluoride anions; m Directly synthesized by Beta zeolite seed; n CeO2-Al2O3 

support with three-dimensionally ordered macro-/mesoporous (3DOM) structure; o CZB: Ce0.65Zr0.15Bi0.20O1.9; p 

Oleic acid (OA) was introduced into the aqueoussolution of metal salts. 

  Mn oxide based catalysts are some of the most widely investigated in this area and have 

displayed a lot of potential. The desirable performance of these materials is attributed to their high 
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oxygen storage capacity and redox properties.400 The size and morphology of these materials 

often have a dramatic effect on their catalytic performance in total oxidation reactions.401 The 

relationship between activity and morphology of Mn oxide catalysts was demonstrated by Li et 

al.402 who prepared Mn3O4 nanorods by a DP method. It was determined that the size of the 

Mn3O4 rods had a dramatic influence on their activity in the oxidation of toluene. Manganese 

oxide polyhedra with hollow and solid morphologies were synthesized by Ye and co-workers51 

using a convenient hydrothermal route without any surfactants or templates; the hollow 

polyhedral manganese oxide showed much higher catalytic activity toward toluene oxidation 

compared with that of the solid one due to the cavity nature, large quantity of active oxygen, and 

high manganese oxidation state of hollow MnOx. MnO2 has also demonstrated a lot of potential as 

a catalyst for this reaction, owing to its multivalent nature and nonstoichiometric 

composition.299,403-405 Cheng et al.406 also determined that the morphology of this material had a 

substantial effect on the catalytic activity; 1D α-MnO2 nanowires exhibited a notably higher 

activity for this reaction than a commercial MnO2 material. Si et al.407 further evidenced this and 

reported that a γ-MnO2 material with a 3D macroporous and mesoporous structure had a very 

high toluene oxidation activity (T90 = 252 °C; WHSV of 120,000 mL∙g-1∙h-1).  

The activity of Mn oxides can be further enhanced by the doping of an additional component to 

form mixed oxides.408-416 Ye and co-workers412 determined that Mn-Ce mixed oxide nanorods, 

consisting of a high Mn content, displayed an excellent catalytic activity and high stability for this 

reaction (Fig. 9i). This was associated with the formation of an intimately mixed Mn-Ce oxide 

phase giving rise to more Mn4+ species and oxygen vacancies. Delimaris and Ioannides413 

subsequently determined that MnOx-CeO2 catalysts prepared by a urea oxidation method also 

displayed promising potential as catalysts for this reaction; complete toluene conversion was 

achieved at 260 °C (GHSV of 50,000 h-1). Li et al.417 investigated this reaction over a series of 

Mn-containing mixed oxides, and determined that a Mn-Zr mixed oxide material, prepared by the 

reverse microemulsion method, exhibited a higher activity than a corresponding material prepared 

by co-precipitation. 

There are some examples of TiO2 and Al2O3 being adopted as a support to increase the 

dispersion of MnOx.
418,419 In addition to this, MnOx was loaded onto a series of different supports 

(α-Al2O3 and γ-Al2O3 obtained from Boehmite, commercial γ-Al2O3, SiO2, TiO2 and ZrO2) and 
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tested for the catalytic oxidation of toluene.419 Of the catalysts tested, a 9.5 wt.% MnO2/α-Al2O3 

material exhibited the highest activity; toluene conversion up to 90% was achieved at 289 °C 

(GHSV of 15,000 h-1). 

Recently, Li and co-workers420 proposed that MnO2 supported on a mesostructured LaMnO3 

perovskite was an active catalyst for toluene oxidation, over which toluene could be totally 

oxidized to CO2 and water at 290 °C (WHSV of 120,000 mL·g-1·h-1) (Fig. 9ii). Catalytic 

oxidation of toluene over MnMgAl or MnCoMgAl mixed oxides obtained by calcination of the 

corresponding LDH precursors was also reported.421,422 Dula et al.415 confirmed that a MgAlMn 

mixed oxide material derived from Mn(II) incorporating MgAl-LDH was more active than a 

corresponding material derived from MnO4−-intercalated MgAl-LDH. The enhanced performance 

was related to an increase in the quantity of surface Mn4+/Mn3+ species, which have important 

redox properties in total oxidation reactions. It was subsequently determined that the substitution 

of Mg with Mn (or Co) could lead to an even greater catalytic activity.422 

  The catalytic oxidation of toluene over porous 1D Co3O4 nanowires and nanorods was studied 

by Au and co-workers.424 These materials exhibited a high catalytic performance for this reaction, 

which was attributed to their large surface area, high surface oxygen content, and excellent 

low-temperature reducibility. Ordered mesoporous Co3O4 oxides were also synthesized and 

investigated by the same group. The highly ordered nature of these materials was considered to be 

pivotal for the high oxidative activity they exhibited.425,426 More recently, 3D hierarchical Co3O4 

nanocatalysts with different morphologies and various exposed crystal planes (Fig. 10), were 

synthesized by Ye and co-workers427 via a hydrothermal process. Of the catalysts tested, a 

hierarchical cube-stacked Co3O4 microspherical material exhibited the highest toluene oxidation 

activity ascribable to its high surface area, highly defective structure, abundance of surface 

adsorbed oxygen species, and large proportion of high valence Co ions. Co3O4 supported on 

montmorillonite consisting of an expanded mesoporous system was also determined to possess a 

high catalytic activity for this reaction.428 It has been reported that the doping of Ce or La onto 

cobalt oxides can enhance the activity of the parent Co3O4 catalyst.429 This enhancement was 

proposed to be a result of strong interactions between Ce (or La) and Co, leading to an increased 

dispersion of the active oxide phases. 

There are numerous other examples of different support materials been investigated in an 
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attempt to enhance the activity of CoOx phases in the oxidation of toluene. Carbon nanotubes 

(CNTs) are considered as one of the promising supports ascribed to their good electrical 

conductivity, mechanical strength, thermal stability and high quantity of surface defects.430,431 

Jiang and Song432 suggested that the surface defect structures in CNTs could not only enhance the 

ability of Co3O4 to develop reduction/oxidation cycles, but also increased the proportion of the 

adsorbed oxygen species to the surface lattice oxygen. Interestingly, the CO2 selectivity was 

observed to increase proportionally with the quantity of COOH present on the surface of the 

CNTs. With the best catalyst, the complete conversion of toluene was achieved at 257 °C with a 

CO2 selectivity of 100% (flow rate of 60 mL·min-1), which is much better than with Co3O4/Beta, 

Co3O4/ZSM-5 and Co3O4/SBA-15.432 Mesoporous silicas are commonly used as supports in 

catalysis as their high surface area and regular pore structure typically facilitates a good 

dispersion of active metal or metal oxide particles.433,434 Lin and Bai435 synthesized a series of 

CoOx/SiO2 spheres with either a hollow or mesoporous structure (CoOx/hSiO2 and CoOx/mSiO2) 

and determined that of the two catalysts, the CoOx/SiO2 exhibited the highest activity for this 

reaction. This was related to a number of factors, including; an increased proportion of Co present 

in the active phase (Co3O4), a higher proportion of surface Co3+ content and increased reducibility 

of Co3+ at low temperatures. 3D ordered macroporous (3DOM) La0.6Sr0.4CoO3 (LSCO)-supported 

Co3O4 was prepared using an in situ poly(methyl methacrylate)-templating strategy by Au and 

co-workers.436 It was determined that an 8 wt.% Co3O4/3DOM LSCO material exhibited the best 

catalytic performance for toluene oxidation; 90 % toluene was converted at 227 °C (WHSV of 

20,000 mL·g-1·h-1). The high activity of this material was associated with the high surface oxygen 

content of this catalyst, the high surface area of the LSCO, good low-temperature reducibility, and 

strong interactions between Co3O4 and LSCO.  

MgAl-based hydrotalcite is an important precursor for obtaining various mixed oxides, which 

are active for the oxidation of toluene.315,316,437 Gennequin et al.437 demonstrated that the doping 

of Co on Mg-Co-Al hydrotalcite catalysts has a beneficial effect on the observed catalytic activity. 

The reconstruction of the layered structure enhances the interaction between the cobalt species 

and the support and improves the performance of the catalyst in this reaction.438 More recently, 

the effect of doping Ce into CoMgAlOx mixed oxides was investigated by Moreno and 

co-workers.439 The Ce/CoMgAlOx catalyst, which utilized [Ce-EDTA] as the Ce precursor, 
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provides a better toluene conversion activity than a corresponding catalyst prepared by wet 

impregnation. The enhancement was in relation to improvements in the catalysts redox properties. 

  Cu-based binary or ternary mixed oxides (e.g., CuMnOx, CuCeOx, CuAlOx, CuMnCeOx and 

CuZnMnOx)
313,440-444 and supported Cu catalysts (Al2O3, ZrO2, CeZrOx or molecular sieves as the 

support) have also been investigated as catalysts for the total oxidation of toluene.384,445-448 The 

potential of CuMnOx oxide catalysts is well known industrially for total oxidation reactions. 

Behar et al.313 reported that cubic spinel Cu1.5Mn1.5O4 nanoparticles; approximately 10 nm in size, 

were highly active catalysts for this reaction; complete oxidation reported at 240 °C (flow rate of 

100 mL∙min−1). Previously, we have reported on the synthesis of mesoporous CuCeOx mixed 

oxides prepared by a self-precipitation approach.449 This method of preparation allowed for a 

large proportion of Cu2+ ions to be doped into the mesoporous CeO2 lattice, which enhanced the 

proportion of oxygen vacancies at the CuOx and CeO2 interface. Of the catalysts tested, the 

highest activity was exhibited by a Cu0.3Ce0.7Ox material; 90 % toluene was converted 212 °C 

(GHSV of 36,000 h−1). This was significantly lower than corresponding catalysts prepared by 

impregnation and thermal oxidation methods (Fig. 9iii). The enhanced performance of these 

materials was connected with a higher quantity of surface oxygen species and enhanced 

low-temperature reducibility.449 Bialas et al.443 subsequently reported that a CuAl2O4 catalyst was 

more active than its corresponding Co-Al monometallic oxide counterparts. 

  A series of different transition metal (Cu, Fe, Mn, Cr, Co, Mo and Ni) catalysts supported on 

Al2O3 were prepared and tested for the oxidation of toluene. Of the catalysts tested, Cu/Al2O3 

catalyst exhibited the best activity. The activity of the other catalysts tested followed the order: 

Fe/Al2O3 > Cr/Al2O3 > Mn/Al2O3 > Co/Al2O3 > Mo/Al2O3 > Ni/Al2O3.
384 This was also 

evidenced by Nah and co-workers.450 CeO2 doped with metal ions such as Cu, Mn and Co have 

exhibited promising activity as catalysts for this reaction. The high activity of these catalysts was 

owing to their large quantities of lattice defects and ion vacancies, which provided major transfer 

channels for surface oxygen (O2-, O-) and lattice oxygen (O2-).451 Developing highly active CeO2 

catalysts which exhibit a high thermal stability is a challenge. Chen and co-workers445,452 

developed a Cu-Mn-Ce/ZrO2 catalyst which possessed both of these attributes. The high thermal 

stability of this catalyst was attributed to the interaction of ZrO2 and Cu-Mn-Ce instigated through 

the heat treatment of the material. A series of CexZr1-xO2/CuO catalysts have also been 
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investigated for this reaction.446 The doping of Zr into CeO2 was observed to promote the 

dispersion and reducibility of the active copper species. An 8%CuO/Ce0.8Zr0.2O2 catalyst calcined 

at 400 °C exhibited the highest activity; full conversion of toluene was achieved at 275 °C 

(GHSV of 33,000 h-1). 

  In addition to metal oxides, molecular sieves have demonstrated a lot of potential as catalyst 

supports for Cu-containing catalysts. Popova et al.453 determined that immobilizing Cr and Cu 

species on SBA-15 catalysts could provide active catalysts for the total oxidation of toluene. The 

study indicated that the optimal metal oxide content for these catalysts was 3 and 7 wt.% for Cr 

and Cu, respectively. The effect of immobilizing both Cu and Mn on a series of different 

mesoporous and microporous molecular sieves has also been investigated (Cu-Mn/MCM-41, 

Cu-Mn/β-zeolite, Cu-Mn/ZSM-5 and Cu-Mn/porous silica) for this reaction. Of the catalysts 

tested, the Cu-Mn/MCM-41 catalyst exhibited the highest catalytic activity due to highly 

dispersed Cu-Mn mixed oxides phases in the mesoporous structure.448 

  Other transition metal (e.g., V, Ti, Ni, Cr and Fe) supported catalysts have also been 

investigated for toluene oxidation.454-459 It was reported that a Ti/MCM-41 catalyst, obtained by a 

direct synthesis route, which consisted of a substantial quantity of Ti exhibited a notably higher 

activity than that of a corresponding catalyst prepared by the wet impregnation technique on 

TiO2-anatase.304 Mesoporous nickel oxides with two different morphologies; nanorods and 

nanocubes, were prepared using a microemulsion strategy and tested for this reaction. The NiO 

nanorods were determined to possess a better catalytic activity.460 Another study reported on the 

synthesis of a cylindrical Cr2O3 material with a rhombohedral structure and determined that this 

material displayed a promising activity for this reaction (Fig. 9iv).461 Jiang et al.462 reported that a 

NiO supported nitrogen-doped carbon nanotubes (NiO/NCNTs) catalyst exhibited an excellent 

toluene oxidation activity, which was proposed to a result of its good low-temperature reducibility 

and proportion surface oxygen. Popova et al.463 proposed that the doping of small quantities of 

iron into mesoporous silica (Fe : Si molar ratio of 0.01) enhanced the catalytic activity for this 

reaction. The increased activity was associated with the formation of stable Fe3+ ions in the silica 

matrix, promoting an Fe3+/Fe2+ redox cycle. 

As discussed previously, perovskite-type oxides have displayed promising potential as catalysts 

in the total oxidation of various hydrocarbons.464-469 Both the external conditions (e.g. preparation 
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method) and intrinsic factors (e.g., crystal structure, surface area, type of A/B-site cation and 

number of surface oxygen defect) is known to affect the catalytic performances of perovskite-type 

oxides. Hosseini et al.470 determined that a LaMn0.5Co0.5O3 catalyst was more active than a 

LaCr0.5Co0.5O3 and LaCu0.5Co0.5O3 catalyst for the oxidation of toluene. Deng et al.471 suggested 

that the activity of a single-crystalline La0.6Sr0.4CoO3-δ catalyst was much better than that 

observed over a corresponding poly-crystalline material as the distinct oxygen nonstoichiometry 

and single-crystalline structure of the oxide. Rousseau et al.472 reported that partial substitution of 

La3+ by Sr2+ cations could significantly improve the catalytic activity of LaCoO3. A similar study 

experiment was conducted where Fe was used to substitute in place of the Co. In this case, very 

little change in the catalytic activity was observed. Zhang et al.473 determined that the preparation 

method used could also have a significant influence on catalytic performance of LaMnO3 

catalysts in this reaction. A LaMnO3 catalyst prepared by a citrate sol-gel method exhibited a 

better activity than corresponding materials prepared by glycine oxidation and co-precipitation 

methods. The material prepared by the citrate method was found to have a higher total surface 

area and enhanced low temperature reducibility. 

In general, perovskite materials typically exhibit low surface areas, which is attributable to the 

harsh calcination conditions required during their preparation. Given that the activity of total 

oxidation catalysts is often highly dependent on the materials surface area, it somewhat limits 

their application in this field. These issues can be avoided to an extent, by targeting the synthesis 

of porous perovskite materials or by immobilization of these phases onto high surface area 

supports.308,474 Dai and co-workers310,475-478 prepared a series of perovskite oxides with meso- or 

macroporous structures and tested them for total oxidation of toluene. The porous perovskite 

materials exhibited significantly higher surface areas and better low temperature reducibilities. 

These physicochemical enhancements were reflected in the oxidative performance exhibited by 

the catalysts. A 3D ordered microporous LaMnO3 catalyst achieved a 90% conversion of toluene 

at 243 °C (GHSV of 20,000 mL·g-1·h-1).476 Following this, an additional 3DOM Eu0.6Sr0.4FeO2 

perovskite material was synthesized and used as a support for Co oxide. The synthesized material 

exhibited a well-defined 3DOM structure, a surface area of 22-31 m2·g-1 and fairly well dispersed 

cobalt oxide nanoparticles; with mean particles determined to be between 7 and 11 nm in size 

(Fig. 11). Of the catalysts synthesized and tested in this study, the highest toluene oxidation 
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activity was exhibited by the CoOx/3DOM-ESFO catalysts with 3 and 6 wt.% CoOx present.478 

There are numerous of other reports on the use of metal oxides to support perovskite-type 

materials.479,480 In one such study, LaMnO3 was supported on a range of different oxide materials 

(Y2O3-ZrO2 and TiO2) and tested for the oxidation of toluene. The experiments indicated that 

there was a clear interaction between the LaMnO3 perovskite phase and both the TiO2 and 

Y2O3-ZrO2 materials, which affected their oxygen mobility and increased their catalytic 

performance.311 Ce-based oxides are also regularly used as supports for perovskite. A series of 

CeO2 materials with different morphologies (rods, cubes and polyhedrons) were synthesized by 

Wang et al.481 and utilized as supports for La0.8Ce0.2MnO3. The morphology of the CeO2 was 

determined to have a significant effect on the activity of the La0.8Ce0.2MnO3 phase. Of the 

catalysts tested, the La0.8Ce0.2MnO3/CeO2-polyhedra exhibited the highest activity; 100 % toluene 

was converted at 240 °C (GHSV of 12,000 h−1) and the exceptional activity was as a result of the 

high surface area, high oxygen vacancies and higher proportion of surface oxygen. 

  Previous reports have indicated that supported Pd catalysts are typically highly active for the 

catalytic oxidation of toluene. The high performance of these catalysts has been associated to a 

dual role of the Pd: metallic Pd sites are active for the decomposition of VOCs and PdO provides 

an additional source of surface oxygen. In addition to this, Liu et al.482 demonstrated that 

supported Pd catalysts are often more stable than supported Pt catalysts for this reaction. Porous 

silica materials, metal oxides and hydrotalcite-derived oxides are typically utilized as the supports 

for Pd active phase.263,483-488 We have previously reported on the use of porous silicas, including 

microporous zeolites, mesoporous molecular sieves, and micro-/mesoporous composites as 

supports for Pd nanoparticles. In our investigations, we determined that the ZSM-5 is a stable and 

coke-resistant support for Pd supported catalysts in this reaction and that the acidity of the support 

can influence the Pd dispersion, redox potential and CO2 desorption of the catalyst.168,485 Of the 

catalyst we tested, a Pd/ZSM-5 catalyst (Si : Al molar ratio of 25) exhibited the highest activity 

for this reaction; a 100 % toluene conversion was observed at 220 °C (GHSV of 32,000 h−1).489 

Compared to microporous zeolites, mesoporous materials (such as SBA-15, MCM-48 and KIT-6) 

possess a narrower pore size distribution, higher specific surface areas, and have considerably 

lower rates of Pd aggregation compared to other supported materials.490,491 We determined that 

the preparation of these material using a grafting method, leaded to the formation of exceptionally 
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well dispersed Pd nanoparticles on SBA-15. It was also determined that the solvent used in the 

preparation (ethanol, water, tetrahydrofuran, dimethyl sulphoxide and N,N-dimethylformamide) 

had a significant effect on the resultant Pd dispersion; the highest Pd dispersion was observed 

when N,N-dimethylformamide was used.492 Other synthesis procedures have reported using a 

“two-solvent” approach, which combines the use of a hydrophobic solvent, such as hexane, with a 

hydrophilic solvent such as water.483,484 We prepared a Pd/SBA-15 catalyst using this approach 

and determined that acid sites on the catalyst further assisted with the Pd dispersion. Furthermore, 

the Pd/SBA-15 catalyst exhibited a high thermal stability and a high tolerance to moisture. The 

most active catalyst prepared in this way was observed to fully convert toluene at 210 °C (GHSV 

of 32,000 h-1).33 A silica material consisting of both micro- and mesoporous was also used as a 

support for Pd nanoparticles and was active for the catalytic oxidation of toluene oxidation; 

100 % conversion of toluene was achieved at temperatures around 200 °C (flow rate of 350 

mL∙min-1), which was notably lower than exhibited by catalysts consisting of a single porous 

system.167,486 

  Metal oxides and hydrotalcite-derived mixed oxides have also been probed as supports for Pd 

nanoparticles in toluene oxidation.493-495 Okumura et al.263 investigated how the acid-base 

properties of a metal oxide support affected the catalytic performance of Pd nanoparticles. It was 

determined that the electronic interaction between the Pd nanoparticles and the supports had a 

significant impact on the activity of the catalyst; the highest activity reported in this study was 

exhibited by a 0.5 wt.% Pd/ZrO2 catalyst (Fig. 12i), which was on account of an increased 

proportion of metallic Pd sites on the catalysts surface.263 A series of high surface area 

hierarchical macro-mesoporous ZrO2, TiO2, and ZrO2-TiO2 materials have also been synthesized 

and utilized as supports for Pd nanoparticles in this reaction. All of the catalysts tested exhibited a 

high oxidation activity due to the in situ aerobic oxidation of Pd0 species to form very active 

[Pd2+O2−] species, which upon oxidation of the substrate, revert back to Pd0.30,493 Previously, we 

have synthesized a series of Pd/Co3AlOx catalysts, which were derived from hydrotalcite-type 

precursors (HTlcs) and tested them for this reaction. The Pd nanoparticles were immobilized 

using a variety of different techniques, including; impregnation, wet ion exchange and 

co-precipitation. All of the synthesized catalysts were exhibited higher oxidation activities than 

the comparative benchmark material; a Pd/Co3AlOx catalyst prepared via a thermal oxidation 
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protocol (Fig. 12ii). The enhanced activity of these catalysts was predominantly associated with 

the materials high surface areas, small Co3AlOx crystallite size and the presence of highly 

dispersed PdO particles.494 

  In general, supported Pt catalysts can oxidize toluene at lower temperatures than corresponding 

Pd supported catalysts. As with Pt, there are lots of examples of different Pt-supported systems 

which have been developed and tested for the oxidation of toluene. These include; zeolites and 

molecular sieves (ZSM-5, Beta and MCM-41), CeO2 and Al2O3.
496-503 Once again, the dispersion 

of Pt on the surface of the supporting material significantly influences the activity of catalyst. One 

investigation reported on the preparation of a series of Pt/ZSM-5 catalysts, with different sized Pt 

nanoparticles ranging from 1.3 to 2.3 nm. Of the catalyst tested, a Pt/ZSM-5 catalyst with a mean 

particle size of 1.9 nm exhibited the highest activity for this reaction; 98 % conversion of toluene 

was achieved at 155 °C (GHSV of 60,000 mL·g-1·h-1). The high activity exhibited was attributed 

to a trade off between the Pt dispersion and proportion of metallic Pt present on the surface (Fig. 

12iii).504 More recently, a series of mesoporous zeolitic materials were synthesized, in an attempt 

to combine the advantageous properties of zeolites and mesoporous materials.505-507 Pt was 

subsequently immobilized onto the surface of these materials and tested for this reaction. Pt 

nanoparticles supported on a mesoporous Beta zeolite exhibited the highest activity, which was 

owing to a high Pt dispersion and desirable Pt0/Pt2+ ratio. When this catalyst was compared to a 

corresponding catalyst prepared on a conventional Beta zeolite, it was much more active and 

exhibited a much higher stability.496 Chen et al.498 reported that doping of alkali metal cations 

(e.g., Na+, K+ and Cs+) onto mesoporous ZSM-5 could enhance the proportion of Pt0 on the 

surface of a mesoporous Pt supported ZSM-5 catalyst and improve the catalytic activity for this 

reaction. A subsequent report from the same group also confirmed that a similar effect could be 

observed from doping K onto a Beta zeolite supported Pt catalyst.508 

The properties of support material such as the morphology, composition and acid-base site 

composition can also significantly affect the activity of NMSC.509-512 CeO2 nanorods, 

nanoparticles and nanocubes, which predominantly consist of {110}, {111}, and {100} facets 

respectively, were utilized as supports for Pt nanoparticles and tested of the oxidation of toluene. 

The experiments indicated that catalytic activity was highly influenced by the morphology of the 

support. The highest activity was exhibited by Pt/CeO2 nanorods, which was connected with this 
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material exhibiting the highest proportion of surface oxygen vacancies and could be reduced at 

the lowest temperature.500 

A highly efficient catalyst with a formula of 7 wt.% Pt/16 wt.% Ce0.64Zr0.15Bi0.21O1.895/γ-Al2O3 

was developed by Imanaka and co-workers.503 Over this catalyst, 100 % toluene could be 

converted at temperatures as low as 120 °C (GHSV of 8000 h−1). Experimental results indicated 

that the Ce0.64Zr0.16Bi0.20O1.90/γ-Al2O3 catalyst could readily provide oxygen from the bulk of the 

material to the surface at temperatures below 100 °C. The mobility of oxygen from the bulk of the 

material was determined to increase further upon the addition of Pd.503 The use of hydrophobic 

supports can in some instances be desirable, as they can assist with the expulsion of water vapor 

from the catalyst surface during oxidation reactions. The presence of water vapor in waste streams 

is common and has been shown to dramatically hinder the catalytic performance and stability of 

supported metal catalysts. One example of such a system was reported by Wu and Chang,513 who 

synthesized a Pt/styrene divinylbenzene copolymer (SDB) catalyst, which completely oxidized 

toluene at only 150 °C (GHSV of 21,000 h-1). 

Compared with Pt and Pd, Au is much less expensive. Many factors including; the nature of the 

support, Au particle size and electronic state, the method of immobilizing Au and pretreatment 

condition can affect the activity of Au supported catalysts in oxidation reactions.514,515 In one 

study, the effect of the support material on the activity of Au nanoparticles for the oxidation of 

toluene was investigated. For this, Au was immobilized onto a series of different oxides (La2O3, 

MgO, NiO and Fe2O3) and tested, which revealed that the Au particle size and reducibility are 

primary factors influencing the catalytic activity. Interestingly, the Au oxidation state was 

determined to have very little effect on the catalytic performance.516 Au supported on materials 

with 3DOM structures have been extensively investigated by Dai and co-workers517-520 for this 

reaction. They determined that 3DOM perovskite oxides materials such as LaSrMnOx and 

LaSrCoOx are good supports for Au nanoparticles in this reaction due to their higher surface area 

and 3D porestructure.518 A series of Au/3DOM-Mn2O3 catalysts with varied Au loadings of 

between 1.9 and 7.5 wt.% were also investigated by the same group. Of the catalysts tested, a 5.8 

wt.% Au/3DOM-Mn2O3 catalyst exhibited the highest activity; a toluene conversion of 90 % was 

achieved at 244 °C (WHSV of 40,000 mL·g-1·h-1).519 Previous studies have confirmed that the 

addition of TMO to NMSC can considerably improve the materials catalytic activity in the 
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oxidation of VOCs. This was also shown to be the case with the oxidation of toluene, as Yang et 

al.520 reported that a Au/MnOx/3DOM-SiO2 catalyst was significantly more active than 

corresponding Au/3DOM-SiO2 and MnOx/3DOM-SiO2 catalysts. 

  The incorporation of a secondary metal to produce bimetallic NMSC has been shown to be 

particularly attractive, as it can significantly enhance the reaction activity, selectivity and 

stability.521-526 This was shown to be the case in the oxidation of toluene by Hosseini et al.,525 who 

synthesized a series of bimetallic Pd/Au/TiO2-ZrO2 catalysts and tested them for this reaction. A 

Pd : Au molar ratio of 4 exhibited the highest toluene oxidation activity. In a separate study, a 

series of Pt-Au/ZnO/Al2O3 bimetallic catalysts were synthesized and tested for this reaction. 

Changing the molar ratio of Pt : Au in bimetallic catalysts supported on ZnO/Al2O3 was 

determined to have a significant effect on mean particle size. Increasing the Au content resulted in 

an increase in the mean particle size observed and as a result, the highest activity was observed 

with the bimetallic catalyst containing the least Au content.527 

A series of 3DOM-Mn2O3 supported AuPd catalysts with varying Au : Pd ratios were prepared 

by Au and co-workers.528 Each of the catalysts were determined to have fairly uniformly 

dispersed AuPd nanoparticles, which exhibited mean particle sizes of 2-4 nm (Fig. 13). A 3.8 

wt.% Au1.92 wt.%Pd/3DOM-Mn2O3 catalyst exhibited the highest activity for the oxidation of 

toluene. The excellent catalytic activity, thermal stability, and high resistance to water of this 

material was ascribed to its efficiency to associatively adsorb O2 and the strong interaction 

between the nanoparticles and 3DOM-Mn2O3 support.528 

Silica materials have also been investigated as a support for bimetallic nanoparticles in total 

oxidation of toluene.529,530 Wang et al.26 recently reported that a Pd-Pt/SiO2 catalyst was highly 

active for this reaction and reported that this catalyst exhibited very little coking during the 

reaction. It was determined that the activity of this catalyst could be markedly improved by 

adding oleic acid into the metal salt solution during the catalyst preparation, which was linked to 

an increase in the proportion of metallic Pd in the resultant catalyst (Fig. 12iv). 

3.3.3. Xylene 

  Xylene is another VOC, commonly used in number of industrial fields despite the fact that the 

World Health Organization considers it to be chronically toxic and carcinogenic.530,531 For this 
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reason, the catalytic oxidation of xylene has been widely studied over a number of Mn-, Ce- and 

Pd-supported catalysts.532-535 Examples of Au and Pt supported catalysts for the oxidation of 

xylene are somewhat limited by comparison.536-538 

CeO2 catalysts with different morphologies (nanoparticles, nanocubes and nanorods) were 

synthesized and tested as catalysts for the oxidation of o-xylene. Of the catalysts tested, the CeO2 

nanorods exhibited both the highest activity and stability. The high performance of these 

materials was attributed to the increased proportion of (111) and (100) facets they exhibit. These 

facets were considered to increase the quantity of oxygen vacancies in the material, which are 

known to be pivotal in the activation of O2.
535 

As discussed previously, MnOx materials have also been extensively investigated as catalysts 

for this reaction.539-542 Wu et al.539 reported that an α-MnO2 catalyst has much higher o-xylene 

oxidation activity (temperature for 100% conversion of o-xylene = 210 °C; flow rate of 50 

mL∙min-1) than that of mixture of α-MnO2 and δ-MnO2. The higher activity was attributed the 

quasi-quadrangular conformation of the of α-MnO2 material. For this reason, an additional study 

was conducted by the same group, who investigated how the preparation method of MnOx 

catalysts effected there activity in this reaction. It was determined that utilization of a 

redox-precipitation method produced a porous hierarchically structured microcrystalline α-MnO2 

material, which consisted of almost 100% Mn4+ ion on its surface. In contrary, a more 

conventional precipitation method was determined to produce a mixture of MnO2 and Mn3O4 

phases, which exhibited a closely packed spherical morphology and contained only 31% Mn4+ ion 

on its surface. The α-MnO2 prepared by the redox-precipitation method exhibited a good 

low-temperature reducibility and converted 100% o-xylene into CO2 at 220 °C (GHSV of 8000 

h-1).540 Zhou et al.543 also demonstrated that the chemical composition and structure of MnOx 

catalysts are significantly influenced by the preparation method. A MnOx catalyst prepared by a 

hard templating method was determined be more active than a corresponding catalyst prepared by 

a conventional precipitation method. 

Pd supported catalyst have been shown to be highly active for the total oxidation of 

xylene.544-547 A series of γ-Al2O3 supported noble metal (Pd, Pt, Au, Ag and Rh) catalysts were 

prepared by He and co-workers545 via a wet impregnation method and tested for the oxidation of 

o-xylene. Of the catalysts tested, the Pd/γ-Al2O3 catalyst exhibited the highest activity. Kim and 



54 
 

Shim85 proposed that subjecting a Pd/γ-Al2O3 catalyst to a H2 pre-treatment could further increase 

its catalytic, which is unsurprising given that the activity of Pd supported catalysts in the 

oxidation of VOCs is typically dependent on the particle size and oxidation state of the Pd 

nanoparticles. This was further evidenced by Dégé et al.,547 who also reported that activity is 

dependent on the proportion of Pd0 present in the catalyst. The T100 for xylene of a Pd/HFAU 

catalyst reduced from 280 to 240 °C (GHSV of 18,000 h−1) after a reductive pre-treatment at 

300 °C for 1 h. Following this, Wang et al.,548 reported that a series of Pd/Co3O4 materials were 

also exceptionally active for this reaction. It was determined that the activity of the catalysts was 

heavily influenced by the method of Pd deposition and was directly related to the dispersion of 

PdO. In a more recent study, Xie et al.549 determined that the activity of mesoporous 

CoO-supported Pd (Pd/meso-CoO) was much more active than a corresponding catalyst 

supported on mesoporous Co3O4. The higher activity over the Pd/meso-CoO was relied on the 

Pd-CoO interface which was proposed to be pivotal in the activation of O2 and assist with the 

stability of Pd0 species; considered to be the predominant site for the adsorption of o-xylene. 

  For practical applications, catalysts should be supported on structured supports, such as 

ceramic and metallic monoliths. Supporting catalysts on these extrudates reduces the pressure 

drop from the gas feed into the catalyst bed, reduces diffusion distances, and are generally more 

resistant to vibrational and thermal shock.550,551 A series of MOx (M = Cu, Ni, and Co) doped 

MnCeOx oxide catalysts were immobilized onto ceramic monoliths using a sol-gel method by 

Zhang and Wu.552 The doping of this catalyst with CuOx resulted in a significant enhancement in 

the catalytic activity. Of the catalysts tested, a MnCeCu0.4/monolith catalyst exhibited the highest 

activity for the oxidation of o-xylene; 90 % o-xylene was converted at 277 °C (GHSV of 10,000 

h-1). 

Carbon-coated monoliths have also been investigated as catalyst extrudates. Carbon materials 

are typically very versatile which is desirable from a catalyst design perspective.553-556 

Moreno-Castilla and co-workers557 have reported on the use of carbon-coated monoliths as 

extrudates to support Pd and Pt nanoparticles and have tested these materials for the oxidation of 

m-xylene. The Pt supported materials were more active than the corresponding Pd materials. The 

activity of the Pd supported catalysts increased as the mean particle size decreased, but 

interestingly, the opposite trend was observed with Pt supported catalysts due to a structure 
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sensitivity effect.557 

3.3.4.Naphthalene 

Polycyclic aromatic hydrocarbons (PAHs) represent a large class of VOCs, which are typically 

released during the oxidation of organic matter, such as diesels, gasoline, biomass, coal and 

wood.558,559 PAHs are considered to be highly carcinogenic and mutagenic.560 The emission of 

PAHs to the atmosphere is widespread and takes place on a large scale and as such, are 

considered to pose serious environmental and health risks.561 Naphthalene is considered to be one 

of the least toxic and simplest PAHs which are commonly emitted and so, is an excellent model 

compound to study the total catalytic oxidation of PAHs.562-564 

The catalytic activities of many different metal oxides (CoOx, MnOx, CuO, ZnO, Fe2O3, CeO2, 

TiO2, Al2O3 and CuZnOx) have been studied previously for the oxidation of naphthalene.565 Of 

the catalysts tested, a CeO2 catalyst was determined to be the most active which was ascribed to 

the high surface area of the catalyst and the strength of the bond between naphthalene and the 

catalyst surface. A series of nanocrystalline CeO2 catalysts were subsequently prepared by a 

combustion method, which employed ethylene glycol (EG) as a fuel for the reaction.566 The EG : 

Ce ratio used in the preparation of these catalysts had a pronounced effect on the catalytic activity 

observed. The highest activity and CO2 selectivity was exhibited by a catalyst prepared with an 

EG : Ce molar ratio of 0.75 which was related to a higher proportion of oxygen vacancies present 

in this material. A subsequent study was conducted by the same group over CuCeOx catalysts and 

the same conclusions were drawn.567 Another study investigated the activity exhibited by a series 

of mesoporous CeO2 catalysts, which were prepared by a nanocasting methodology and invoked 

the use of 2D SBA-15, 3D KIT-6 and 3D MCM-48 as the template. All the catalysts tested were 

highly active for this reaction, which was predominantly owing to the high surface areas of the 

materials and accessibility of the substrate to the active sites.307,568 

The doping of Zr into CeO2 has been shown to be beneficial for the catalytic oxidation of 

naphthalene.569 Taylor and co-workers570 determined that the incorporation of small quantities of 

Zr into the CeO2 lattice had a notable effect on the performance of the catalyst. Increasing the 

quantity of Zr in the CeO2 lattice was determined to have a detrimental impact on the catalytic 

performance, which was on account of an increased proportion of hydrophilic OH species on the 
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catalysts surface. 

Several Mn2O3 catalysts have been synthesized and tested for the total oxidation of naphthalene 

by Solsona and co-workers.571 The activity of these materials was related to be highly dependent 

on their corresponding surface areas, reducibility and lattice oxygen mobility. In addition, it was 

concluded that a crystalline Mn2O3 phase has a higher intrinsic activity than MnO2. Hopcalite 

have also been investigated for this reaction. The calcination temperatures of these catalysts were 

determined to have a significant effect on the resultant activity. A precursor calcined at 400 °C 

exhibited the highest activity and CO2 ascribabled to a high surface composition of amorphous 

CuMn2O4. Increased calcination temperatures reduced the activity of the catalysts, which was 

owing to the formation of a more crystalline CuMn2O4 phase.572 

  Noble metal (Pd, Pt and Au) supported catalysts have also been investigated for the oxidation 

of naphthalene.573-575 Garcia et al.576 reported that a Pd/TiO2 catalyst was more active than 

corresponding Pd/V/TiO2 and V/TiO2 catalysts. Another study also investigated the activity of Pd 

nanoparticles catalysts on various supports (i.e., BETA and ZSM-5 zeolites, a 

silicoaluminophosphate molecular sieve (SAPO-5) and γ-Al2O3) for this reaction. Of the catalysts 

tested, a Pd/BETA material exhibited the highest activity; a 100 % conversion of naphthalene was 

converted at 165 °C (flow rate of 50 mL∙min−1).577 Ndifor et al.561 reported that doping a 

Pt/γ-Al2O3 catalyst with V (0.5 wt.%) could significantly improve the activity of the catalyst. The 

observed enhancement was attributed to the increased reducibility of surface, due to the presence 

of V. Further increases in the V content however, was determined to have a detrimental effect on 

the catalytic performance, which was connected with the formation of V2O5. Mochida and 

co-workers578 determined that a Pt/SBA-15 catalyst was more active than a corresponding catalyst 

supported on γ-Al2O3. Further investigation revealed that the Pt/SBA-15 catalyst was also more 

active than Ru/SBA-15 and Mo/SBA-15 catalysts, which was owing to differences in the 

chemisorption of naphthalene on these materials as weak chemisorption of naphthalene. The Al 

species in the SBA-15 material was proposed to operate as a structural promoter, assisting with 

the dispersion of Pt and inhibiting the agglomeration of the Pt nanoparticles. 

3.4. Oxygen-containing VOCs 

  Oxygen-containing VOCs such as methanol, ethanol, 2-propanol, formaldehyde, acetaldehyde, 
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propanal, acetone, methyl ethyl ketone, ethyl acetate and butyl acetate are commonly emitted in 

industrial waste streams. The environmental and toxicological impact of these VOCs is typically 

dependent on their functionalization. For example, alcohols can participate in secondary reactions, 

leading to the formation of aldehydes which are considered to be eye and respiratory irritants 

which upon repeated exposure, can lead to serious respiratory conditions.579,580 

3.4.1. Methanol 

  Methanol is extensively used as a solvent in a number of industrial sectors and is also being 

trialed as a potential non-petroleum based fuel.581,582 The partial oxidation of methanol however, 

leads to the formation a more toxic pollutant; formaldehyde, which has somewhat limited its 

application as a fuel additive in the transport sector.9,583 The low temperature oxidation of 

methanol is typically a clean and efficient process,584,585 which has been investigated over a wide 

range of different catalysts.586-595 

  Numerous reports have indicated that Co3O4 is a highly active catalyst for the oxidation of 

methanol. Xia et al.596 reported that the cubic Co3O4 with a 3D ordered mesoporous structure 

could obtain methanol conversions up to 90 % at 139 °C (WHSV of 20,000 mL∙g-1∙h−1). The 

activity of this material was linked to its high specific surface area and good low-temperature 

reducibility. The reaction mechanism of methanol oxidation on Co3O4 surfaces was studied by 

density functional theory (DFT) with a GCA+U framework. The results from these experiments 

indicated that methanol more favorably adorbs onto Co3+ ((110)-B surface) sites as opposed to 

Co2+ ((111)-B surface) sites. Over the (110)-B surface, methanol could readily be oxidized to CO2 

and water. Over the (111)-B surface however, it was determined that methanol could only be 

oxidized to CH2O.597 As such, it was concluded that the total oxidation of methanol occurred at 

Co3+ sites. 

  The acid/base properties of different supports have been reported to influence the dispersion 

and oxidation state of Pd nanoparticles. A study by Jabłońska et al.598 investigated the 

performance of a variety of Pd catalysts (Pd/HY, Pd/NaY and Pd/Al2O3) for the oxidation of 

methanol. Of the catalysts investigated, the Pd/HY catalyst exhibited the highest catalytic activity 

(T90 = 120 °C; flow rate of 20 cm3∙min−1), which was ascribed to the acidity of the material 

increasing the Pd dispersion. The presence of Pd0 and Pd2+ species were observed in the active 
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catalyst and both were reported to be important for the catalysis taking place. It is known that 

CeO2-ZrO2 catalysts have good redox and oxygen storage properties and typically exhibit high 

thermal resistance in oxidation reactions.599 A series of mesoporous Pd/CeO2-ZrO2 catalysts were 

prepared by DP method and tested for this reaction.600 The mesoporous Pd/CeO2-ZrO2 catalyst 

exhibited a higher activity than that observed over corresponding mesoporous Pd/ZrO2 and 

Pd/CeO2 catalysts. Another study investigated how Ba doping effected the catalytic performance 

of a Pd/Al2O3-Ce0.3Zr0.7O2 for this reaction.601 An enhanced activity was observed upon doping of 

Ba to the catalyst, which was attributed to an enhancement in the formation of the methoxy 

intermediate species, considered to be the rate determining step in this reaction. 

  Zhao et al.590 investigated the catalytic oxidation of methanol over a series of Pt/TiO2 and 

Pt/CeO2-TiO2 catalysts. The Pt/TiO2 catalysts, which was calcined at 350 °C, exhibited a 

methanol conversion of 70 % at room temperature. The corresponding Pt/CeO2-TiO2 catalyst, 

which had approximately 1-2 mol% of the Ce doped into the TiO2 exhibited a very similar 

activity to the monometallic Pt/TiO2 catalyst, but was determined to be more stable. More 

recently, Cimino et al.602 reported that cathodic electrodeposition of Pt onto Fecralloy foams had 

high activity in methanol oxidation. 

  The low temperature oxidation of methanol and its partial oxidation intermediates was 

investigated over a series of Au catalysts supported on various reducible oxides by Torres 

Sanchez and co-workers.603 Of the catalysts tested, a Au/α-Fe2O3 catalyst exhibited the highest 

activity. This was also observed by Scirè et al.591 who tested a series of Au, Ag and Cu catalysts 

supported on Fe2O3. The Au supported catalyst was determined to be the most active, which was 

associated with a weakening of the Fe-O bond enhancing the mobility of lattice oxygen. Au/CeO2 

catalysts have also been investigated as catalysts for the total oxidation some VOCs (2-propanol, 

methanol and toluene).604 The performance of these catalysts was attributed to the Au particle size. 

Smaller Au nanoparticles were proposed to be more active which was in relation to the weakening 

of Ce-O bonds at the interface of the Au nanoparticle. Petrov605 determined that a Au-Co mixed 

oxide supported on CeO2/TiO2 can totally oxidize methanol at a temperature of 50 °C, which 

exhibited a better activity than a corresponding Pt catalyst. 

Another study investigated supporting Au- and CeO2 on mesoporous SBA-15, which were 

subsequently doped with additional metals such as Cu and Zr and tested for the oxidation of 
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methanol.606 The incorporation of Cu was determined to increase the Au dispersion due to 

electronic transfers from Cu+ species to metallic Au, instigating strong interaction between the 

metals on the surface. The addition of Zr and Cu to the catalysts was determined into favor the 

formation of dimethyl ether and methyl formate, respectively. 

  A series of γ-Al2O3-supported Cu, Mn, Ce, K, Ag, Cu-Mn, Cu-Ce, Cu-Ag and Cu-K catalysts 

have also been synthesized and tested for the oxidation of methanol. Of the catalysts tested in this 

study, the Ag containing catalysts were determined to be the most active, of which the 

Ag-Cu/γ-Al2O3 catalyst was the most active. The high activities observed were owing to the 

presence of Ag+ species.607  

3.4.2. Ethanol 

Ethanol is also widely used as an industrial solvent and fuel/fuel additives.608,609 Like methanol, 

the partial oxidation of ethanol can lead to the formation aldehydic species which are notably 

more toxic.15 For this reason, there are numerous examples of catalysts which have been 

investigated for the low-temperature oxidation of ethanol. Mn-based oxides and Pt supported 

catalysts have displayed the most potential to date,610-613 but other transition metal (Cr, Co and 

Ce)-based catalysts and Au supported catalysts have also displayed some promise.614-618 

There are many examples of highly active MnOx based catalysts for the oxidation of ethanol 

documented in the literature. Bai et al.619 determined that the morphology of a MnO2 catalyst 

could have a dramatic influence on its catalytic performance in this reaction. A series of 1D, 2D 

and 3D structured MnO2 catalysts were investigated for this reaction. Of the catalysts tested, the 

3D MnO2 catalysts exhibited the highest activity which was associated with the better 

low-temperature reducibility and higher proportion of Mn4+ species present in this material. Over 

the 3D-MnO2 catalyst, complete oxidation of ethanol was achieved at 150 °C with a WHSV of 

45,000 mL∙g-1∙h-1 (Fig. 14i). Another study, investigated how a series of octahedral molecular 

sieve (OMS-2) catalysts synthesized from different precursors could influence the catalytic 

activity for this reaction.609 It is found that the OMS-2 catalyst derived from a MnSO4 precursor 

exhibited the highest activity, which was linked to weakened Mn-O bonds. 

Another study by Cadús and co-workers,620 reported that the doping of small quantities of Cu 

(10 wt.%) into a MnOx catalyst could improve the materials catalytic activity for the oxidation of 
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ethanol. The observed enhancement was attributed to Cu instigating a reduction in the 

crystallinity of the MnOx material and increased the proportion of oxygen vacancies. It was 

however determined, that increasing the quantity of Cu in the catalyst favored the partial 

oxidation of ethanol. An additional study reported that the total oxidation of ethanol could be 

achieved at 200 °C (flow rate of 100 mL∙min−1) over a MnOx-CeO2 catalyst, which is a much 

lower temperature than that required over a 0.3 wt.% Pt/Al2O3 catalyst.621 Other studies also 

confirmed that high ethanol activities could be exhibited over Mn0.6Ce0.4O2
622 and La-Mn based 

perovskite-type catalysts.623 

Investigations into catalysts prepared by the thermal decomposition of LDH precursors have 

also been investigated for the low-temperature oxidation of ethanol.624,625 The performance of 

such catalysts in this reaction can be further improved by doping these materials with additional 

transitionmetal ions. A series of MII-MIII LDH precursors materials with MII : MIII molar ratio of 2 

(MII = Cu, Co, Ni, Cu-Ni, Cu-Co and Co-Ni; MIII = Mn or Al) were prepared by the 

co-precipitation from solutions of the corresponding metal nitrates.626 Of the catalysts synthesized, 

a CuNiMnOx mixed oxide material was determined to be the most active and the ternary mixed 

oxide materials which contained Mn were determined to be the more active than the binary 

CuMnOx, CoMnOx, and NiMnOx catalysts (Fig. 14ii). A separate study conducted by Aguilera et 

al.,444 reported that CoMnMgAlOx oxide catalyst exhibited a 90 % ethanol conversion at 252 °C 

(flow rate of 200 mL∙min−1), which provide a higher yield of CO2 than a corresponding catalyst 

containing Cu (CuMnMgAlOx oxide). Kovanda et al.627 also investigated the use of ternary 

CoMnAlOx oxides materials for the oxidation of ethanol, over which ethanol conversion of 50 % 

were observed at approximately 180 °C (flow rate of 41.6 mL∙min−1). Further enhancements in 

the performance were subsequently observed when the same material was doped with KNO3. 

When 3 wt.% K was doped onto the material, an ethanol conversion of 50 % could be achieved at 

140 °C, but did increase the selectivity to partial oxidation products such as acetaldehyde.628 

The oxidation of ethanol over different noble metal (Pt, Pd, Ir, Rh, and Au) catalysts supported 

on TiO2 was investigated by Figueiredo and co-workers.629 Of the catalysts tested, a Pt/TiO2 

catalyst was determined to be the most active and the activity of the catalysts decreased in order; 

Pt/TiO2 > Pd/TiO2 >> Rh/TiO2 ≈ Ir/TiO2 >> Au/TiO2. This order of activity was observed 

regardless of the preparation method used. Gaálová et al.630 compared the activity of Au and Pt 
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nanoparticles supported on a Ce-Zr-O support. The Pt supported catalyst was determined to have 

a significantly higher activity than the corresponding Au catalyst and was determined to be more 

active than the corresponding commercial catalyst, Pt-Pd/Al2O3. The Pt/Ce-Z-O catalyst exhibited 

an ethanol conversion of 50 % at 99 °C (WHSV of 20 m3∙g-1∙h−1). 

A series of Pt/Ce/activated carbon catalysts were also synthesized and tested for the oxidation 

of ethanol. The activity of these catalysts were notably higher than that observed over a 

corresponding Pt/CeO2 catalyst. The most promising activity was exhibited by a Pt-10Ce/C which 

achieved a total conversion of ethanol to CO2 at 160 °C (flow rate of 100 mL∙min−1) and was 

stable in a test run for 100 h.631 However, under more humid conditions (RH of 40 and 80%), the 

activity of Pt-10Ce/C did drop slightly, which was attributed to the hydrophobic character of the 

activated carbon (AC) support (Fig. 14iii). A subsequent study by the same group investigated 

how the Pt precursor influenced the performance of the Pt-CeO2/C catalyst in this reaction. A 

catalyst synthesized from H2PtCl6 exhibited a much higher ethanol conversion and CO2 

selectivity than a corresponding catalyst prepared from Pt(NH3)4(NO3)2, which was attributed to 

an increase Pt dispersion and a stronger metal-CeO2 interaction.632 

3.4.3. 2-propanol 

2-propanol (isopropanol) is a typical gaseous VOC pollutant with a high level of toxicity and 

has therefore attracted vast interest from researchers worldwide.633-635 Its prominence comes as a 

result of its versatility as a solvent and reactant in several industrial processes such as printing, 

coatings, spraying, semiconductors, precision machinery industries and pharmaceutical 

applications.636,637 Cu-based oxides and Au supported catalysts are two of the most reported 

systems for the total oxidation of 2-propanol.638,639 

  Supports such as TiO2, Fe2O3, CeO2 and Al2O3 were adopted for Au sites in the total oxidation 

of 2-propanol. Centeno et al.640 claimed that the presence of nitrogen in Au/TiO2 (Au/TiOxNy) 

had a negative influence on the oxidation of 2-propanol to CO2, while an enhancement was 

observed in partial oxidation to acetone. It was also suggested that the presence of Auδ+ or Au0 

species as well as Au particle amount and size determined the overall catalytic activity. Galvagno 

and co-workers641,642 confirmed that the Au oxidation state and/or the particle size played a key 

role in the catalytic oxidation of VOCs such as 2-propanol. The catalytic oxidation of 2-propanol 
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over various metal oxide-supported Au catalysts (Au/CeO2, Au/Fe2O3, Au/TiO2 and Au/Al2O3) 

was studied by Liu and Yang.636 Of the catalyst studied, Au/CeO2 was found to be the most active 

in this range. The oxidition state of Au was an important factor for 2-propanol oxidation over 

Au/CeO2 catalysts with Au+1 species exhibiting higher activity than Au0. Scirè et al.604 reported 

that the presence of Au enhanced the activity of CeO2 towards 2-propanol oxidation with the 

catalytic performance being related to the capacity of Au nanoparticles to weaken the adjacent 

surface Ce-O bonds, thus enhancing the reactivity of the CeO2 surface. Centeno et al.194 found 

that CeO2 enhanced the fixation and dispersion of Au particles in Au/CeO2/Al2O3 catalysts, which 

improved the activity of Au particles in VOC oxidation. 

  Fierro and co-workers643 reported that the Cu-Co2 spinel catalyst exhibited the highest activity 

in 2-propanol oxidation out of a range of Cu-(Cr, Mn and Co)2 mixed oxides. The researchers 

ascribed this high reactivity to the higher reducibility under the reaction conditions and a 

synergistic effect between Cu-Co2 mixed oxide and CuO particles. Various other materials such 

as Ni-Mn or Zn-Cr spinels were also reported in 2-propanol oxidation.644,645 Nanocrystalline 

AMn2O4 (A = Co, Ni and Cu) manganite spinels were prepared by Nabavi and co-workers644 

using a sol-gel auto oxidation method. It was found that NiMn2O4 exhibited the best activity due 

to the synergetic effect between Mn3+ and Ni2+ phases in nickel manganite oxide, achieving 

complete conversion of 2-propanol at 250 °C. Following this work, the correlation between 

structure and activity of MCr2O4 nanospinels (M = Co, Cu, and Zn) in the oxidation of 2-propanol 

was also studied by the same group,645 and revealed that the ZnCr2O4 exhibited the highest 

activity and stability. The authors believed that the higher activity of ZnCr2O4 was due to the 

existence of excess surface oxygen on the catalyst, active Cr3+-Cr6+ pair sites and a synergistic 

effect between ZnO and ZnCr2O4. The high stability of ZnCr2O4 was explained by the existence 

of stable Cr6+ species on the surface of catalyst. 

3.4.4. Formaldehyde 

Formaldehyde is an important precursor for the synthesis of many other materials and chemical 

compounds. As such, millions of tons of formaldehyde are used each year, with contamination 

and waste streams leading to tremendous harm to humans and the environment.646-648 It is well 

known that long-term exposure to air containing formaldehyde, even at very low ppm level, may 
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cause serious health problems including nasal tumors, irritation of the mucous membranes of the 

eyes and respiratory tract, skin irritation, decreased concentration and weakened immunity.649,650 

Catalytic oxidation of formaldehyde is an efficient and environmentally friendly approach for its 

abatement.651 The majority of works focus on the synthesis and development of Mn-, Co-, Pt-, 

Au- and Ag-based catalysts for the deep oxidation of formaldehyde at low temperature.652-660 

Mn based catalysts have been widely studied for formaldehyde oxidation and appeared to be 

the most active catalysts among the transition metal oxides. α-, β-, γ- and δ-MnO2 oxides were 

prepared by the hydrothermal method, and it was found that the δ-MnO2 exhibited the best 

performance in the series δ-MnO2 > α-MnO2 > γ-MnO2 > β-MnO2, achieving nearly complete 

formaldehyde conversion at 80 °C (WHSV of 600,000 mL∙g-1∙h−1).661 The tunnel structure and 

active lattice oxygen species were described as the main factors which contribute to the excellent 

performance of δ-MnO2. Rong et al.662 reported that single-crystalline α-MnO2 nanowires with 

exposed {310} facets exhibited much better activity and stability for formaldehyde oxidation than 

those with exposed {100} and {110} facets. It was suggested that the {310} facets with high 

surface energy could not only facilitate adsorption/activation of O2 and water but also be 

beneficial to the generation of oxygen vacancies. Wang et al.663 also indicated that the abundance 

of manganese vacancies had a positive effect on the performance of birnessite catalysts in the 

deep oxidation of formaldehyde. 3DOM MnO2 with disordered polycrystalline walls and a large 

number of exposed (110) crystal planes (enriched Mn4+ ions) displayed better formaldehyde 

oxidation activity than common MnO2.
664 

In order to enhance the catalytic activity and extend the operating temperature window for 

formaldehyde oxidation, the combination of two or more transition metal oxides is often 

employed.125,665 MnCoOx, MnCeOx and MnFeOx mixed oxides were generally used in 

formaldehyde oxidation. Shi et al.666 proposed that the MnxCo3-xO4 solid solution synthesized by 

a co-precipitation method could completely oxidize formaldehyde at 75 °C (GHSV of 60,000 h-1; 

relative humidity of 50%) ascribed to the large amount of surface oxygen available on 

MnxCo3-xO4. In addition, they suggested that the oxidation and decomposition of formate and 

hydrocarbonate species was the rate-limiting step for the catalytic oxidation of HCHO. Following 

this, the authors from the same group demonstrated that the 3D ordered cubic mesoporous Co-Mn 

oxide (fabricated by a KIT-6-templating strategy) had a high activity for this reaction as a result 
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of its large surface area and 3D ordered mesoporous structure.667 The preparation method and 

post-treatment process can influence the oxidation performance of MnCeOx mixed catalysts.668,669 

Tang et al.668 reported that MnOx-CeO2 prepared by a modified co-precipitation method (adopting 

Mn(NO3)2·6H2O and KMnO4 as Mn precursor) had a much higher catalytic activity for total 

formaldehyde oxidation than analogous samples obtained by the sol-gel and co-precipitation 

methods (with Mn(NO3)2·6H2O as Mn precursors). This was explained by the modified 

co-precipitation method leaded to a higher proportion of Mn4+ species and richer lattice oxygen 

on the surface of catalyst. Quiroz et al.669 revealed that treating the MnOx-CeO2 catalysts with an 

aqueous H2SO4 solution could promote their catalytic activities when the solubility limit of Mn in 

CeO2 was exceeded (i.e., Mn content > 50 wt.%). This was due to the acid treatment oxidizing the 

Mn species to a higher valence state via a Mn dismutation reaction (Fig. 15i). The presence of Mn 

cations and its ability to improve the activity of spinel ferrites for formaldehyde oxidation was 

also reported.670,671 This Mn substitution increased the lattice oxygen content, which facilitated 

the reduction of ferrite and enhanced the overall oxidative ability of Fe3+ and Mn cations on 

catalyst surface. 

It has been reported that the catalytic performance of various cobalt oxides is influenced by 

their morphology, cobalt source and preparation conditions.655,672-674 Nano-Co3O4, 2D-Co3O4 and 

3D-Co3O4 catalysts were prepared by Li and co-workers672 and tested in the oxidation of 

formaldehyde. They revealed that the Co3O4 catalyst with a 3D mesostructure possessed the 

highest activity with 100% of formaldehyde oxidized at 130 °C (WHSV of 30,000 mL∙g-1∙h−1), 

which was associated with its three-dimensional porous channel structure, larger specific surface 

area, abundant active surface oxygen species and active Co3+ species on the exposed (220) crystal 

facet. Bai et al.673 also found that the use of β-cyclodextrin had a strong impact on the final 

properties of Co3O4/ZrO2 catalysts produced with different cobalt sources (cobalt nitrate, acetate 

and acetyl acetonate), both in terms of reducibility and dispersion of active species. The best 

combination was obtained using cobalt nitrate with a β-cyclodextrin : cobalt ratio of 1 : 10. Fan et 

al.674 found that the KHCO3-precipitated Co3O4 was the most active catalyst which was linked to 

the presence of K+ and CO3
2-, regenerated hydroxyl groups on the catalyst and favorable 

Co3+/Co2+ ratio (Fig. 15ii). Recently, Huang et al.675 revealed that addition of aqueous alkali 

(NaOH/KOH) could greatly promote the catalytic acitivity of 3D-NiCo2O4 nanosheets (Fig. 16) in 
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this reaction. This was in related to the abundance of surface OH- which could directly react with 

formate species to produce CO2 and water. Similar results regarding the promotional effect of 

alkali on Pd- and Pt-based catalysts in this reaction were also proposed in relating studies.676-678 

  Pt-, Au-, Ag- and Rh-based catalysts were reported for formaldehyde incineration.679-681 

Pt-based catalysts exhibit extraordinarily high activity in this reaction even at room 

temperature.682,683 However, Ag-based catalysts are less active than that of Pt- or Au-based 

catalysts, with operating temperatures generally higher than 100 °C.684-687 It was reported that the 

type and morphology of support, constitution and active phase and dispersion of Pt sites have 

large effects on the catalytic performance of Pt supported catalysts in this reaction.688-692 The 

higher catalytic activity of Pt/K-OMS in formaldehyde oxidation than that of Ag/K-OMS was 

presented by Wang and co-workers.693 Following this, TiO2 supported noble metal (Au, Rh, Pd 

and Pt) catalysts were prepared and used for this reaction by Zhang and He,658 and they revealed 

that Pt/TiO2 had the best activity with 100% formaldehyde coverted at room temperature (GHSV 

of 50,000 h-1). Various silica supports such as fumed SiO2, porous granular SiO2 and SBA-15 

were adopted to prepare Pt catalysts. It was found that the fumed SiO2 supported Pt catalyst 

(Pt/f-SiO2) showed the best formaldehyde oxidation activity, due to the presence of a higher ratio 

of metallic Pt species.688 

Yu et al.689 found that the Pt/nest-like MnO2 had a higher catalytic activity for formaldehyde 

incineration than that of Pt/cocoon-like MnO2 and Pt/urchin-like MnO2. The incorporation of 

transitional metals (e.g., Mn, Ni and Fe) into Pt-based catalysts has been found to promote their 

oxidation activities. Shen and co-workers683 suggested that the Pt/MnOx-CeO2 catalyst with a Mn : 

(Mn+Ce) molar ratio of 0.5 exhibited the highest catalytic activity. Chen et al.690 revealed that 

MnO2 had a clear promotional effect on catalytic performance of Pt/TiNT catalysts (TiNT: TiO2 

nanotube arrays), with 95% of formaldehyde conversion over 0.2 wt.% Pt/MnO2/TiNT being 

achieved at 30 °C with a WHSV of 30,000 mL∙g-1∙h-1 (Fig. 15iii). Recently, the promotional 

effect of nickel hydroxide on Pt/γ-Al2O3 in this reaction has also been proposed by researchers 

from the same group.691 The promotional effect of Fe on Pt/γ-Al2O3 catalysts was studied by Jia 

and co-workers.694 They found that the sample with an Fe : Pt ratio of 1 : 1 possessed the highest 

activity in the oxidation of formaldehyde ascribable to more accessible Pt-O-Fe active sites. 

  Various reducible oxides (CeO2 and FeOx) and irreducible oxides (γ-Al2O3, SiO2 and HZSM-5) 
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were prepared and adopted as the support for Au-based catalysts. The results revealed that the 

Au/γ-Al2O3 catalyst had the highest formaldehyde oxidation activity and stability.695 CeO2 and 

MnO2 are two types of active supports for noble metal nanoparticles. 3DOM Au/CeO2 catalysts 

were synthesized by Zhang et al.,696 with 100% conversion of formaldehyde being observed at 

75 °C (WHSV of 66,000 mL∙g-1∙h-1), much lower than the traditional powdered Au/CeO2. 

Following on from this work, the 3DOM Au/CeO2-Co3O4 catalysts were prepared and used for 

this reaction. The results revealed that the synergistic effect between CeO2 and Co3O4 could 

greatly accelerate the surface oxygen migration and activate the Au species which enabled a 

100% conversion of formaldehyde at 39 °C (WHSV of 15,000 mL∙g-1∙h-1).697 The catalytic 

oxidation of formaldehyde over mesoporous Au/Co3O4 and Au/Co3O4-CeO2 was also investigated 

by Hao and co-workers,698 in which they revealed that the 2D Au/Co3O4 exhibited the best 

activity with 52.1% of CO2 yield for formaldehyde oxidation at 25 °C with a GHSV of 55,000 h-1 

(Fig. 15iv). 

Bimetallic (Au-Pt and Au-Pd) catalysts have also been reported for formaldehyde 

low-temperature oxidation.699,700 Au-Pt bimetallic supported on nest-like MnO2 catalysts were 

synthesized by Yu et al.,699 and they proposed that the Au0.5Pt0.5/MnO2 catalyst exhibited the 

highest catalytic activity for this reaction due to the synergistic effect between Au-Pt 

nanoparticles.  

3.4.5. Acetaldehyde 

  Acetaldehyde is common place in paints, adhesives and exhaust gases. The prominence of 

acetaldehyde as a pollutant has been linked with an increase in the incidence of oral cavities, 

esophagus and pharyngeal cancers as well as the sick building syndrome.701,702 Mn oxides have 

demonstrated good catalytic activities with high sintering resistance which makes them cheap 

alternatives to noble metal catalysts for the catalytic oxidation of acetaldehyde.703 The structure of 

Mn oxide (OMS-2) comprises a peculiar sharing of 2 × 2 [MnO6] octahedral chains that form 

one-dimensional tunnel structures with pore size of 0.46 nm × 0.46 nm. This material possesses 

excellent hydrophobicity and strong affinity for VOCs.704 Wang and Li609 synthesised OMS-2 

catalysts with different precursors and sulfate-acidification. It was found that the acidification 

resulted in a decrease in activity. An OMS-2 catalyst prepared using MnSO4 as a precursor 
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exhibited the best catalytic performance with the Mn-O bond being described as the main 

determinant of the catalytic activity toward acetaldehyde oxidation. 

The adsorption and dissociation of acetaldehyde on oxidized and reduced CeOx(100) thin films 

was investigated by Mullins and Albrecht,705 who found that acetaldehyde decomposed on 

oxidized CeO2(111). The primary products were found to be CO, CO2 and water as well as trace 

amounts of crotonaldehyde and acetylene. The reaction pathway on reduced CeO2−x(100) was 

similar with that of the oxidized CeO2(111); however, the inability to react with surface O on the 

reduced surface resulted in H2 rather than water desorption, and carbon being deposited on the 

surface rather than evolution of CO and CO2. 

An efficient Pt/CeO2/ZSM-5 catalyst for acetaldehyde oxidation (T100 of 200 °C; GHSV of 

1200 h-1) was proposed by Yamashita and co-workers.706 Both the synergistic effect of 

atomization of Pt nanoparticles by addition of a small amount of CeO2 and the enriched 

adsorption of organic molecules in ZSM-5 were described as being responsible for its superior 

activity. Yasuda et al.701 reported that the addition of polyvinylpyrrolidone (PVP) could enhance 

the specific surface area and surface Pt2+ ratio of Pt/CeO2-ZrO2-Bi2O3 catalysts synthesized by the 

wet impregnation method, and that the presence of PVP during synthesis procedure significantly 

promoted the activity in this reaction. 

  Nikawa et al.707 revealed that small Au nanoparticles (< 3 nm) modified TiO2 caused the rapid 

and strong adsorption of gaseous acetaldehyde under humid conditions, while the adsorption of 

acetaldehyde on unmodified TiO2 was low and weak. The catalytic performances of Pd, Pd-Cu 

and Pd-Au supported Nb2O5 catalysts were investigated by Bozon-Verduraz and co-workers.708 

The results suggested that the addition of Au or Cu inhibited the catalyst deactivation with the 

best performance in total oxidation being obtained with Pd-Au/Nb2O5. This was ascribed to Au → 

Pd electron donation, which prevented the surface oxidation of Pd particles. 

Various metal oxide-supported Ru catalysts (Ru/CeO2, Ru/SnO2, Ru/ZrO2 and Ru/γ-Al2O3) 

were studied in the total oxidation of acetaldehyde. Ru/CeO2 showed the highest activity 

(acetaldehyde completely oxidized at around 210 °C; flow rate of 100 mL∙min-1) among these 

catalysts due to the high dispersion of Ru sites. The catalytic activities of Ru/ZrO2 and 

Ru/γ-Al2O3 were enhanced by a reduction treatment due to the formation of ruthenium in the 

metallic state; however, the formation of intermetallic core-shell species resulted in the 
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deterioration of catalytic activity of Ru/SnO2.
709 

3.4.6. Acetone 

Acetone is a common organic solvent which has been widely used in many industries such as 

plastics, drugs, semiconductors, printed circuit boards, electronic teminal products, varnishes and 

adhesives.579,710-712 Acetone can cause environmental hazards and is harmful to human health. For 

example, inhalation of acetone vapor can irritate the respiratory tract and cause coughing, 

dizziness, dullness, and headaches. Higher concentrations can lead to depression of the central 

nervous system operation, narcosis, and unconsciousness.713,714 The catalytic oxidation of acetone 

is therefore an important subject of research, with work generally focussing on transitional metal 

oxides (e.g., Cu, Mn, V and Ce)-based catalysts. 

Martínez-Arias et al.346 reported that the performance of Ce-based oxides in oxidation reactions 

was greatly enhanced by incorporation of CuO into the CeO2 lattice, and that the activity of CeO2 

supported CuO catalysts in oxidation reactions was even comparable to that of the NMSCs. 

Synergistic effects between Ce and Cu were also found in our previous work.40,449,715 CuxCe1-xOy 

mixed metal oxides with different Cu contents were prepared and tested for this reaction. The 

Cu0.13Ce0.87Oy catalyst was found to be the most active; however, the long-term stability of 

Cu0.13Ce0.87Oy still required improvements due to the formation of bulk CuO.714 The subsequent 

work revealed that the calcination temperature had a significant influence on the activity and 

stability of Cu0.13Ce0.87Oy catalysts. The sample calcined at 700 °C exhibited the best catalytic 

activity, over which 100% acetone conversion could be reached at around 200 °C (flow rate of 

200 mL∙min-1). In addition, the catalysts calcined from 400 to 700 °C possessed good stability for 

this reaction.716 Following this, CuCeOx nanofiber catalysts were synthesized by Qin et al.717 

using an electrospinning method. The results demonstrated that nanofiber catalysts possessed 

better acetone oxidation performance than catalysts prepared by the urea-nitrate oxidation and 

sol-gel methods. A Cu0.50Ce0.50Ox nanofiber catalyst possessed the highest activity primarily due 

to Ce ions with unusual oxidized states (Ce3+) as well as large specific surface areas and abundant 

oxygen vacancies in the catalyst. Zheng and co-workers718 reported that CuO supported on 

Ce-modified and Zr-pillared montmorillonite catalyst had good activity for acetone incineration, 

with 100% acetone converted at 230 °C. 
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The low-temperature catalytic oxidation of acetone over different metal (Cu, Co, Ni, Mn and 

Fe)-modifed CeO2 and supported on Al-containing mesoporous silica particles (Al-MSPs) was 

studied by Lin and Bai.719 The team found that Ce was the main active species for all catalysts in 

the complete oxidation of acetone, and Mn acted as an appropriate promoter for improving the 

activity of Ce/Al-MSPs catalysts. Of the catalysts studied, Mn-Ce/Al-MSPs with a Mn : Ce molar 

ratio of 2 : 1 was found to be the most active catalyst for achieving maximum acetone conversion 

at temperatures of 100-200 °C (Fig. 17i). This was linked with the synergistic effect in MnCeOx 

mixed oxides, resulting in higher amount of Ce3+ and Mn4+ species, enhanced reducibility of 

catalyst and improved acetone adsorption ability.719 Mn-modified hydrophobic TiO2-SiO2 mixed 

oxides were also adopted for this reaction. The catalytic activity of these materials was dependant 

on the surface area, surface oxygen and hydrophobic property of sample.720 Gil et al.721 reported 

that the SmMnOx mixed oxide had a higher acetone oxidation activity than that of single Mn 

oxide. Furthermore, the SmMnOx catalyst calcined at 800 °C possessed the best catalytic activity. 

A series of Mn oxides supported on unpillared and Al- and Zr-pillared forms of two natural 

clays (montmorillonite and saponite) were prepared and applied in this reaction. It was found that 

the Mn/pillared montmorillonite had better activity than the Mn/pillared saponite. The stability of 

the catalysts supported on the unpillared clays was higher than that of those supported on the Al- 

and Zr-pillared clays.722 Fe and Mn mixed oxides pillared clays with varying Mn to Fe ratios were 

successfully synthesized, and revealed that catalyst with high Mn content (Mn(III) : Fe(III) = 16 : 

4) acted as a better catalyst for acetone decomposition.723 

It is well known that transition metal perovskites such as LaMO3 (M = Mn and Co) are highly 

efficient oxidation catalysts. Porta and co-workers724 suggested that the LaMnO3 form had a 

higher catalytic activity in deep oxidation of acetone than that of LaCoO3. The LaMnO3 surface 

also demonstrated a higher adsorption of VOCs. It was also noted that an increase in oxygen 

partial pressure was beneficial for this reaction. The higher acetone oxidation activity of 

perovskite-type oxides (SrMnO3, FeMnO3, and La0.6Pb0.2Ca0.2MnO3) compared to spinel-type 

materials (CuFe2O4, MgFe2O4, and Ni0.5Co0.5O4) was confirmed by Ignat and co-workers (Fig. 

17ii).725 Recently, Rezlescu et al.713 further proved that the partial substitution (20%) of Mn by Ce 

ions could significantly improve the catalytic activity of SrMnO3 in this reaction. This effect was 

ascribed to smaller crystallite sizes, larger specific surface area and the presence of Ce and Mn 
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cations with variable valences in the perovskite structure. 

V2O5/TiO2 catalysts with excellent catalytic performance have been widely studied in oxidative 

processes such as VOC oxidation and photocatalysis.726,727 The redox properties of V2O5/TiO2 

catalysts can be tuned by modification of the electronic interaction between TiO2 and VOx 

species.728,729 TiO2 nanofiber supported V2O5 catalysts with hierarchical structures were 

fabricated by combining electrospinning and hydrothermal growth methods.730 The results 

demonstrated that a 5 wt.% V2O5/TiO2 nanofiber catalyst illustrated the highest acetone oxidation 

activity (T90 = 300 °C; GHSV of 360,000 mL·g-1·h-1) (Fig. 17iii). 

The catalytic performance of mesoporous silica supported metal oxide catalysts was studied by 

Wang and Bai731 in total decomposition of acetone. The studies revealed that a supported Ce 

catalyst had a higher activity than that of Mn, Cu, Fe, or Al supported ones. Spherical mesoporous 

silica particles (MSPs) possess various advantages over mesoporous materials manufactured via 

batch processes such as a higher rate of production, higher packing density and a lower pressure 

drop during operation.731 A series of bimetallic Ce/Al catalysts supported on mesoporous silica 

were investigated by Lin and Bai.732 The authors proposed that the catalytic oxidation of acetone 

was mainly governed by the surface redox properties and acidity of the catalyst. A spherical 

Ce/Al-SiO2 sample prepared with an aerosol-spraying temperature of 300 °C had a high surface 

acidity and strong reducibility and also appeared to be one of the best catalyst for this reaction. 

3.4.7. Methyl ethyl ketone 

Methyl ethyl ketone (MEK) is a widely used chemical due to its outstanding solvent properties 

and low cost. It is used as a solvent in synthetic resins, adhesive manufacturing, textile dyeing and 

printing, and electronic equipment manufacturing. Furthermore, MEK is a dewaxing agent in the 

refining of lubricant oils and a denaturing agent for alcohols.733 The emission of MEK to 

atmosphere can lead to human health concerns and wider environmental problems. 

The complete oxidation of MEK over various transition metal (Mn, Co, Cr, Fe and Ni)-doped 

ZrO2 (cubic) catalysts were reported by Pataskar and co-workers.734 The results demonstrated that 

the Cr/ZrO2 catalyst had the highest activity for MEK oxidation, whereas the Ni/ZrO2 exhibited 

the lowest activity. A series of LaBO3 (B = Cr, Co, Ni and Mn) and La0.9K0.1MnO3+δ perovskites 

were prepared and tested in this reaction. The catalytic activity is sequenced as: LaMnO3> 
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LaCoO3 ≈ LaNiO3> LaCrO3 for 100% MEK conversion. Doping with K promoted the catalytic 

activity of LnMnO3 perovskite due to the increase in surface area and proportion of Mn4+ on the 

surface as well as the formation of non-stoichiometric oxygen. MEK, when oxidized to CO2, goes 

through acetaldehyde and small amounts of methyl vinyl ketone and diacetylas intermediate 

products.735 The performance of Mn2O3 and Mn3O4 in this reaction (alkali and acid ions were 

added to the solids) has been investigated by Gil and co-workers.736 The addition of Na and Cs 

resulted in a considerable improvement of the performance, while sulfate had a negative effect.  

Picasso et al.737 proposed that flow-through catalytic membranes based on Fe2O3, prepared by 

the precipitation method, showed a higher efficiency in this reaction than their bulk catalyst 

counterparts, with total oxidation of MEK at around 255 °C. Similar results were also reported in 

their previous work regarding the catalytic oxidation of MEK over Pt/Al2O3 membrane 

catalysts.738 Recently, Jian et al.739 proposed that the MnOx nanowires with highly exposed {101} 

facets of Mn3O4 had a higher MEK destruction activity than that of MnOx nanocubes, nanorods 

and nanospheres respectively exposing {321} facets of Mn2O3, {110} facets of MnO2, and {101} 

and {112} facets of Mn3O4. The authors argued that high affinity of MEK molecule on MnOx 

{101} facets greatly promoted the oxidation process (Fig. 18). 

Hierarchically micro-mesostructured Pt/K-Al-SiO2 catalysts with regular nanorod (Pt/KA-NRS) 

and spherical nanoflower-like (Pt/KA-SNFS) morphologies were prepared and adopted in MEK 

oxidation in our previous work.740 We found that Pt/KA-NRS catalysts exhibited exceptional low 

temperature activity, CO2 selectivity and stability for MEK oxidation. This was related to their 

regular morphology, high Pt0 content and dispersion, excellent MEK adsorption capacity and 

superior O2/CO2 desorption capability at flow temperatures. Our subsequent work proved that the 

incorporation of Mn cations could remarkably promote the activity of Pt/SiO2 catalysts.741 The 

presence of a Pt-O-Mn moiety weakened the Mn-O bonding interactions, which ultimately 

promoted the mobility of lattice oxygen in Mn2O3. Whilst, the Mn4+/Mn3+ redox cycle in Mn2O3 

allowed for the donation of electrons to the Pt nanoparticles, enhancing the proportion of Pt0/Pt2+ 

and in turn increasing the activity and stability of catalyst. 

3.4.8. Ethyl acetate 

Ethyl acetate (EA) is one of the most widely used, ascendant, and stable fatty acid esters used 
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as an organic raw material and solvent for coatings and plastics. EA can cause severe 

environmental pollution and harm to the health of human beings. Catalytic oxidation can 

eliminate EA from the air in high efficiency and low energy consumption.742,743 Many catalyst 

systems such as Mn-, Cu-, Cr-, Co-, Pt-, Ru- and Au-based catalysts have been developed to 

target a more efficient elimination of EA (Table 4). 

Table 4 Summary of some active catalysts for ethyl acetate (EA) oxidation. 

Catalyst Reactant composition Space velocity/Flow rate 
T90 

(°C) 
Ref. 

ACMn1.0a 1000 ppm EA, Air balance 280 mLmin-1 218 134 

Mn0.5Ce0.5Ox 1800 ppm EA, Air balance 50 mLmin-1 < 230 413 

Mn/SBA-15b 315 ppm EA, Air balance 500 mLmin-1 < 250 744 

8.3%Mn/SBA-15c 560 ppm EA, Air balance 500 mLmin-1 265 745 

Hollandite manganese 200 ppm EA, Air balance 200 mLmin-1 < 210 746 

Cu10/Al2O3-Md 1802 mgm-3 EA, Air balance 5,000 h-1 250 748 

CuCe0.75Zr0.25/ZSM-5 1000 ppm EA, Air balance 24,000 h-1 248 751 

Cu/Co-charcoal 600 ppm EA, Air balance 18,000 mLg-1h-1 < 210 753 

meso-Cr-240e 1000 ppm EA, Air balance 20,000 h-1 190 754 

20%Co/activated carbon 0.88% EA, Air balance 66,000 mLg-1h-1 210 757 

15%Co-La/CeO2 1000 ppm EA, Air balance 500 mLmin-1 244 758 

La0.6Sr0.4CoO2.78 1000 ppm EA, Air balance 20,000 h-1 170 743 

Ce1Cu2-EMf 466.7 ppm EA, Air balance 53,050 h-1 194 759 

Ce0.5Co0.5 1000 ppm EA, 25% O2, N2 balance 60,000 mLg-1h-1 195 760 

1%Ru/CeO2 0.1% EA, Air balance 10,000 mLg-1h-1 < 200 764 

a Catalyst synthesized by the auto-combution (AC) method and with Mn2+ : Mg2+ ratio of 1.0; b Catalyst with 

KMnO4 as the Mn precursor (Mn : Si = 0.21); c SBA-15 was impregnated by KMnO4 for three times; d With 

glass fiber corrugated honeycomb monolith (M) as the support; e Precursor heated at 240 °C; f Prepared by the 

evaporation method (EM). 

The effect of Mn precursors in the synthesis MnOx-SBA-15 catalysts for the deep oxidation of 

EA was reported by Montes and co-workers.744 They found that the Mn oxide phase obtained 
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heavily depended on the precursor used. Nitrate precursors mainly produced pyrolusite whereas 

acetate produced non-crystalline oxide phase with low oxidation state; permanganate produced a 

mixture of cryptomelane and birnessite. The activity of the catalysts depended on the crystalline 

phase, with the most active catalysts being those with Mn4+/Mn3+ pairs (Fig. 19i). Following this 

work, the SBA-15-supported Mn catalysts with various metal loadings were prepared by the same 

group via a multi-step impregnation method. The results revealed that the remaining P123 and the 

presence of K+ in Mn precursors were responsible for the reduction of permanganate to a mixture 

of Mn4+ and Mn3+ and formed cryptomelane-like phases. EA oxidation activity was again found 

to be directly proportional to the Mn average oxidation state and basic nature of K was shown to 

promote the catalytic activity.745 

Mixed metal oxides have also developed for total oxidation of EA.134,341,413 MnOx-CeO2 

catalysts prepared by a urea oxidation method were reported by Delimaris and Loannides.413 It 

was stated that the larger surface area of MnOx-CeO2 catalysts offset their lower specific activity 

allowing complete conversion of the VOC at lower temperatures compared to the single oxides. 

Recently, Chen et al.746 proposed that a hollandite Mn oxide (HMO) catalyst could efficiently 

control both typical particulate matter (PM) and VOC (EA and ethanol) emissions from biomass 

combustion. They revealed that typical alkali-rich PMs such as KCl particles were disintegrated 

and the K+ ions were trapped in the HMO “single-walled” tunnels. The K+-trapping HMO 

increased the electron density of the lattice oxygen (Fig. 19ii) and the redox ability, thus 

promoting the oxidation of soot, PMs and typical VOCs. 

Supported Cu materials are some of the highest activity catalysts for EA oxidation. Silica 

supported Cu catalysts were extensively reported in the literature.747-752 Tsoncheva et al.747 

proposed that Cu and Ce bi-component supported on 3D-structured KIT-6 provided better 

catalytic activity than that of SBA-15-supported ones as finely dispersed CuO nanoparticles were 

prone to form over KIT-6 support. The effects of a mesoporous silica support on this reaction 

over Cu-Cr/Silica catalysts were also studied in the same group. It was suggested that the CuCrO4 

species were predominantly formed over SBA-15, leading to a high selectivity to the partial 

oxidation of EA. Alternatively, the formation of CuCr2O4 species is typical for SiO2 (Cab-o-sil 

M5) based materials, which contributes to a higher selectivity to CO2 in EA oxidation.750 

CuCexZr1-xOy/ZSM-5 (x = 0, 0.25, 0.5, 0.75 and 1.0) catalysts were recently prepared by Dou and 
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co-workers.751 The results suggested that the CuCe0.75Zr0.25Oy/ZSM-5 catalyst had the best 

performance due to its excellent reducibility, offering complete conversion of EA into CO2 at a 

temperature of 270 °C with a GHSV of 24,000 h-1 (Fig. 20i). More recently, Liao et al.753 

indicated that the Cu-Co/charcoal catalysts possessed very high acivity with EA being completely 

oxidized at just 212 °C (flow rate of 30 mL∙min-1). 

  Xia et al.754 synthesized mesoporous Cr2O3 with ordered 3D hexagonal polycrystalline 

structures at different temperatures with KIT-6 as the hard template. The reslts revealed that the 

catalyst obtained at 240 °C had the best activity, with EA being totally oxidized at around 260 °C 

at a GHSV of 20,000 h-1. Rotter et al.755 found that the chromia aerogel (α-CrOOH) with a high 

specific surface area (630 m2·g-1) was a powerful catalyst for EA oxidation. 

Various supported Co catalysts were developed and studied in the deep oxidation of EA. Cobalt 

oxide modified SBA-15, KIT-5 and KIT-6 mesoporous silicas were synthesized by Linden and 

co-workers.756 It was found that supports with larger mesopores facilitated the formation of 

spinel-type Co3O4, which was highly active in this reaction. AC has been used as a support to 

provide favorable conditions for the formation of well-dispersed active species. Xie et al.757 found 

that preparation of a Co/AC catalyst in an air atmosphere promoted the formation of reactive 

oxygen species, leading to a high EA oxidation ability compared with the sample synthesized in 

nitrogen atmosphere. Gómez et al.758 and Hernández-Garrido et al.551 reported that Co/La-CeO2 

was very active in the oxidation of EA, even more than the Pt/La-CeO2 catalyst. 

CuCeOx, NiCeOx and CoCeOx mixed oxides were studied for this reaction by Figueiredo and 

co-workers.759 Ir was found that the CoCeOx oxide catalyst had the highest oxidation activity with 

EA being totally oxidized at 225 °C with a GHSV of 53,050 h-1. It was suggested that the 

catalytic activity was related to the surface area, amount of Ce contained in the samples, 

calcination temperature and reducibility of the catalysts (Fig. 20ii). Recently, a series of 

CeO2-CoOx catalysts with various Ce to Co ratios have been investigated for this reaction, in 

which Ce0.5Co0.5Ox catalysts could achieve 100% conversion of EA at 200 °C. This was 

associated with the enriched lattice oxygen.760 

Catalytic oxidation of EA over noble metal (Pt, Ru and Au) supported catalysts were also 

reported in several works.516,709,761-764 In general, supported Ru catalysts show higher acitivity in 

this reaction compared with Pt- and Au-based catalysts. Catalytic oxidation of EA over Ru/CeO2, 
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Pt/CeO2, and Pd/CeO2 was studied by Eguchi and co-workers,764 and revealed that the Ru/CeO2 

showed the best catalytic activity with 90% of EA converted at 180 °C (flow rate of 100 

cm3∙min−1), followed by Pt/CeO2 and Pd/CeO2 (Fig. 20iii). The low temperature reducibility of 

precious metal speciesis most likely the reason for the high activity observed. A series of 1.0 

wt.% Au supported catalysts (Au/CuO, Au/Fe2O3, Au/La2O3, Au/MgO, Au/NiO, and Au/Y2O3) 

were prepared and investigated in EA incineration.516 The Au/CuO catalyst was found to have the 

highest activity (T90 = 272 °C; flow rate of 500 cm3∙min−1) and the authors profposed that this 

activity was related to the reducibility of support and the Au nanoparticle size. 

3.5. Chlorinated VOCs 

Chlorinated VOCs (CVOCs, such as dichloromethane, 1,2-dichloroethane, trichloromethane, 

tetrachloromethane, tetrachloroethane, vinyl chloride, dichloroethylene, trichloroethylene, 

tetrachloroethylene, chlorobenzene and dichlorobenzene) are hazardous compounds due to their 

strong bioaccumulation potential, acute toxicity and resistance to degradation.765,766 These highly 

volatile compounds often have long atmospheric lifetimes and have widespread applications in 

formulations and processing of paints, adhesives, drugs manufacturing and as solvents in 

chemical reactions.33 Halogenated VOCs have a significant impact in the depletion of the ozone 

layer and as a source of radicals in the atmosphere which in turn contribute to the greenhouse gas 

effects. The 100-year global warming potential (GWP) of halogenated VOCs range from 10 to 

1800, which is far higher than that of CO2 with a GWP of only one.767 

3.5.1. Dichloromethane 

Dichloromethane (DCM) is one representative of CVOCs used widely as a solvent which is a 

vesicant and harmful to the respiratory and central nervous systems of humans.768,769 DCM is also 

the most stable chlorinated-alkane and very difficult to be decomposed naturally in the 

environment. The environmentally friendly decomposition of DCM at low temperatures is a hot 

topic and studied by many researcher groups.770-776 V-, Cr-, Ce- and Pt-based catalysts as well as 

various zeolites such as HFAU, HY, HMOR and HZSM-5 were investigated in the deep 

decomposition of DCM. 

V-containing catalysts have commonly been shown to possess good stability in Cl2-HCl 

atmosphere. Vx-SBA-15 materials have been prepared by a direct synthesis approach, and this 
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method is favored for the incorporation of V into the silica walls with formation of isolated 

sites.777 It was found that V was present mainly as isolated sites with tetrahedral coordination, and 

these isolated V sites were catalytically active towards DCM conversion.778 V-Ni mixed oxides 

supported on anatase TiO2 were synthesized by Huang and co-workers.779 It was revealed that the 

activity of V-Ni/TiO2 was superior to that of V/TiO2 and Ni/TiO2 in DCM oxidation (Fig. 21i). 

DCM could be completely converted into CO2, HCl, and a small amount of CO over the 

V-Ni/TiO2 catalyst at 350 °C (WHSV of 15,000 mL∙g-1∙h-1) without the formation of other toxic 

by-products. The high catalytic activity, selectivity and stability of the V-Ni/TiO2 catalyst could 

be owing to the oxidative dehydrogenation (ODH) ability, enhanced reducibility of active oxygen 

species and suitable strength of Lewis acidic sites (LAS) upon introduction of nickel oxide. 

Cr-containing oxides are very effective for CVOC oxidation. Kang and Lee780 found that CrOx 

supported on AC was effective in the deep oxidation of DCM due to the presence of highly 

dispersed Cr6+ species on catalyst surface. CrOx/Al2O3 catalysts were also testied in DCM 

oxidation. The best catalyst (18 wt.% Cr) could completely oxidize DCM at 350 °C (GHSV of 

20,000 h−1) due to the presence of a large amount of Cr in a high oxidation state.781 Wu and 

co-workers782 reported that the Cr/HZSM-5 catalyst possessed a higher stability than that of 

Cu/HZSM-5 and Fe/HZSM-5 in this reaction (Fig. 21ii). The mechanism of deactivation for 

Fe/HZSM-5 was found to be coking due to its lower ability to oxidise intermediate products, 

while the formation of stable Cu(OH)Cl species was the primary reason for the deactivation of 

Cu/HZSM-5. Structured metal oxides with active species confined in a robust matrix can 

overcome the disadvantages of the supported metal catalysts in the oxidation of CVOCs.783,784 A 

series of spinel type CoCr2O4 catalysts calcined at different temperatures were prepared and tested 

in this reaction. The results demonstrated that the catalyst calcined at 400 °C had the best 

performance with 90% of DCM oxidized at 257 °C with a GHSV of 15,000 h−1 (Fig. 21iii). It was 

proposed that the high activity of this catalyst was mainly linked with the large surface area which 

provided more surface acidic sites and active oxygen species.785 

Ce/TiO2 catalysts were prepared and used for DCM incineration by Wu and co-workers.786 The 

authors revealed that pure TiO2 oxide tended to deactivate due to the strong adsorption and 

accumulation of Cl species over the surface. However, surface Cl could be rapidly removed by 
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CeO2, which leaded to a reduced poisoning effect of Cl on Ce/TiO2 and an enhanced activity and 

stability in this reaction. Subsequent work found that the preparation method also had a 

significant influence on the catalytic performance of Ce/TiO2, resulting in differences in exposure 

of TiO2 and CeO2 at the catalyst surface and varying interaction between TiO2 and CeO2. They 

proposed that the solid mixing method exhibited the best catalytic activity (T97 = 335 °C; GHSV 

of 30,000 h−1) and anti-chlorine capability compared with the samples synthesized by 

impregnation and hydrothermal methods.787 Recently, a two-stage Ce/TiO2-Cu/CeO2 catalyst with 

separated catalytic functions was designed by Wu and co-workers.788 The results demonstrated 

that 97% of DCM could be converted at 330 °C (GHSV of 30,000 h−1) with fewer undesired CO, 

Cl2, and CxHyClz by-products. Furthermore, the conversion and CO2 yield were well maintained 

even in the presence of water. 

Results obtained in Lu’s group789 indicated that catalytic behavior in the oxidation of DCM 

could be influenced by surface acidity and redox properties of catalysts. The addition of Pt 

enhanced the activity of CeO2-Al2O3 due to the promotion of surface acidity (by introduction of 

chlorine species using H2PtCl6 as the precursor) and reducibility of the catalyst most likely via the 

formation of Ce-Pt-O solid solution (Fig. 21iv). Similar results were also suggested by Keiski and 

co-workers.790 Further work in Lu’s group791 found that the addition of K greatly promoted the 

activity of Pt/Al2O3 in this reaction (Fig. 21v) which was attributed to the presence of Pt-O-Kx 

species. These species could significantly accelerate the decomposition of formate intermediates 

formed on the Al2O3 surface and thus promote the overall reaction. Pitkäaho et al.792 reported that 

Pt-catalysts showed the best performance in this reaction, followed by PtPd- and Pd-catalysts. 

Moreover, the incorporation of V2O5 can improve the catalytic performance of Pt/Al-catalysts, 

which has a positive effect on DCM oxidation selectivity to HCl. Magnoux and co-workers793 

suggested that the Pt dispersion over Pt/Al2O3 had no apparent effects on DCM oxidation rates. 

Al2O3 was found to be highly active and play an important role in catalytic oxidation by enabling 

the transformation of DCM into CO, CH3Cl, and HCl. Catalytic oxidation of DCM over Pt/HFAU 

catalysts was also studied in the same group,794 and they revealed that DCM transformation was 

independent of Pt particle size and Pt content. DCM was firstly hydrolysed into HCl and 

formaldehyde on the BAS over HFAU, after which formaldehyde was oxidized into CO2 and 

water on the Pt sites. 
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Zeolite molecular sieves were widely used as catalysts and catalyst supports in the catalytic 

oxidation of CVOCs due to their well defined pore structure, superior thermal stability and ion 

exchange characteristics.795,796 López-Fonseca et al.797 reported that the dealumination process 

created strong acid sites over zeolites, leading to a higher catalytic activity for DCM oxidation. 

Further work revealed that the H-MOR, H-ZSM-5 and H-Y protonic zeolites exhibited excellent 

activity for this reaction (H-MOR > H-ZSM-5 > H-Y) and promising selectivity towards the 

formation of HCl. As mentioned earlier, the BAS are believed to be effective for DCM 

adsorption.798 Pinard et al.799 reported that the catalytic oxidation of DCM over Na zeolite 

involves four successive steps: (1) the reaction of DCM with the ONa groups leading to the 

formation of chloromethoxy species and liberation of NaCl; (2) the hydrolysis of chloromethoxy 

species into hydroxymethoxy species with liberation of HCl; (3) the desorption of formaldehyde 

leading to the formation of hydroxyl groups, and the oxidation of formaldehyde to CO, CO2, and 

water; (4) the recovery of the ONa groups by reaction of NaCl, produced in dechlorination step, 

with the hydroxyl groups. Catalytic oxidation of DCM over NaFAU and HFAU was further 

studied by Zhang et al.800 in their recent work where NaFAU was found to be more active than 

HFAU as it facilitated the adsorption and dechlorination steps. The dechlorination of DCM was 

predicted to be the rate-determining step. 

3.5.2. 1,2-dichloroethane 

1,2-dichloroethane (1,2-DCE) is one of the most important chlorinated VOCs emitted in 

industrial flue gases,801-803 since it is used as an intermediate in the production of polyvinyl 

chloride. Additional uses are as a solvent in metal degreasing and paint removers, a starting 

material for paint, and a dispersant for plastics and elastomers.804,805 NMSC materials were 

seldom used in the deep oxidation of 1,2-DCE, and most of reported works were focused on Co- 

and Ce-based catalysts as well as zeolites (Table 5). 

Table 5 List of some reported catalysts for 1,2-dichloroethane (DCE) low-temperature oxidation. 

Catalyst Reactant composition Space velocity/Flow rate T90 (°C) Ref. 

Co3O4 nanocube 1000 ppm 1,2-DCE, Air balance 30,000 h-1 340 809 

CeO2 nanorod 1500 ppm 1,2-DCE, Air balance 15,000 h-1 < 230 821 

10%CeZ/IM-Ea 1000 ppm 1,2-DCE, Air balance 15,000 h-1 245 805 
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5%VOx/CeO2 450 ppm 1,2-DCE, Air balance 15,000 mLg-1h-1 225 823 

4.4%Fe-CeO2-STb 500 ppm 1,2-DCE, Air balance 15,000 mLg-1h-1 237 820 

45%CeO2/HZSM-5 1000 ppm 1,2-DCE, Air balance 30,000 mLg-1h-1 < 275 824 

CeO2/USYc 1000 ppm 1,2-DCE, Air balance 10,000 h-1 < 260 825 

CeO2-USY-IMd 1000 ppm 1,2-DCE, Air balance 15,000 h-1 245 826 

CeO2-USYc 1000 ppm 1,2-DCE, Air balance 75 mLmin-1 245 827 

(Ce,Co)xO2/HZSM-5 1000 ppm 1,2-DCE, Air balance 9,000 h-1 230 837 

CeO2-TiO2
e 1000 ppm 1,2-DCE, Air balance 15,000 h-1 275 829 

(Ce,Co)xO2/Nb2O5 1000 ppm 1,2-DCE, Air balance 9,000 h-1 270 830 

Ce0.5Zr0.5Ox 1000 ppm 1,2-DCE, Air balance 30,000 h-1 < 260 833 

CeO2-ZrO2-CrOx 1000 ppm 1,2-DCE, Air balance 15,000 h-1 262 836 

0.5%Pt/CrOOH 0.5% 1,2-DCE, Air balance 46,000 h-1 317 802 

a ZSM-5 support impregnated with excess of precursor-ethnol solvent (Z/IM-E); b Synthesized by solvothermal 

method; c Mass ratio of CeO2 : USY was 1 : 8; d Prepared by the impregnation method; e Ce : Ti molar ratio of 

14. 

Co3O4 with a spinel structure has been shown to be one of the most efficient catalysts in total 

oxidation of VOCs.806-808 Co oxides with different nanostructures (nanocube, nanosheets and 

nanorods) were prepared and adopted in the oxidation of 1,2-DCE. It was found that the 

nanocube-shaped Co3O4 had the best activity, achieving total oxidation of 1,2-DCE towards CO2, 

HCl, and Cl2 at 400 °C (GHSV of 30,000 h−1) without any other by-product formation.809 

For the supported Co3O4 catalysts, the activity depends mainly on the nature of the support and 

the metal oxide-support interactions.810 De Rivas et al.811 synthesized a series of Co3O4 catalysts 

using varuous routes, and found that catalyst prepared by the precipitation method, with a particle 

size of 10 nm, gave the highest activity. This was found to be higher than that of the supported 

noble-metal catalysts for 1,2-DCE oxidation.811 Co/SBA-15 catalysts prepared by the wet 

impregnation method were recently reported by de Rivas and co-workers.812 The results revealed 

that the incorporation of cobalt leaded to the formation of BAS and LAS, and the pores of 

SBA-15 prevented the excessive growth of cobalt oxide crystals at high temperatures, thus 

improving their redox property. The simultaneous participation of the acid and redox sites 
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markedly accelerated the 1,2-DCE oxidation process. 

Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) has been intensively investigated as a porous support 

as the presence of phosphate groups can stabilise the structure of active sites and allow the tuning 

of acid-base properties by varying the calcium : phosphorus ratio.813-815 Moreover, the ability of 

hydroxyapatite to undergo cation and anion exchanges, due to the presence of two types of 

zeolite-like channels, allows modifications in its chemical properties without damaging its typical 

hexagonal structure.816 These characteristics offer hydroxyapatite catalysts as a new generation of 

materials with synergistic metal-support interactions which can improve their catalytic 

activity.817,818 Co supported calcium-deficient hydroxyapatite (Ca : P = 1.5) catalysts were studied 

in the deep oxidation of 1,2-DCE.819 It was indicated that the Co-rich catalysts contained easily 

reducible Co3+ and Co2+ and had a high stability and excellent CO2 selectivity, while activity of 

pure HAP support suffered a significant decay with time due to chlorination (Fig. 22i). 

  Fe doped CeO2 nanosheets with 2D nano-structure were synthesized by Wang et al.820 with 

three different methods (hydrothermal (HT), cold co-precipitation (CP) and solvothermal (ST)) 

and used in the deep oxidation of 1,2-DCE. The results demonstrated that the 5 wt.% Fe-CeO2-ST 

exhibited a better catalytic activity and lower selectivity to polychlorohydrocarbon by-products 

due to its large concentration of oxygen vacancies and active surface oxygen. The authors 

proposed that the stability and selectivity of Fe-CeO2-ST could be further improved via the 

loading of VOx or RuO2.
820 

  Supported CeO2 catalysts and CeO2-based oxides were extensively studied and showed 

promising results in the oxidation of CVOCs due to their remarkable redox properties, thermal 

stability, and resistance to Cl-poisoning.821-823 Microporous zeolites such as ZSM-5 and USY 

were usually adopted as the supports for CeO2 in the oxidation of 1,2-DCE. Gutiérrez-Ortiz and 

co-workers805 found that the activity of CeO2/H-ZSM-5 catalysts in this reaction was greatly 

influenced by the synthesis route, and they proposed that catalytic behaviour of CeO2/H-ZSM-5 

could be explained on the basis of the synergistic effects of oxygen mobility and acid sites. The 

catalyst synthesized via impregnation in ethanol possessed the highest activity due to this 

procedure leading to a highly dispersed CeO2 with a larger amount of oxygen vacancies. Recently, 

Dai et al.824 synthesized a sandwich-structured CeO2@HZSM-5 core-shell hybrid catalyst, which 

inhibited the formation of poly-chlorinated hydrocarbon by-products during 1,2-DCE oxidation. 
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This ability arose due to the presence of CeO2 with a high activity for the Deacon reaction which 

was not directly exposed to 1,2-DCE or HCl molecules. Various Y zeolite (USY, HY and SSY) 

supported CeO2 catalysts were studied in this reaction in which the CeO2/USY catalyst exhibited 

the best activity with 98% conversion at 270 °C (GHSV of 10,000 h−1).825 The high stability of 

CeO2/USY catalyst was confirmed by Zhou and co-workers.826 It was also demonstrated that the 

supported catalyst with a CeO2 : USY ratio of 1 : 8 possessed the best catalytic activity which was 

ascribed to a high dispersion of CeO2 species and a more favourable combination of acidity and 

redox properties.827 

  The application of CeO2-based mixed oxides in the catalytic oxidation of 1,2-DCE was also 

reported in the literature.828-830 Ce-Zr mixed oxides appearas attractive candidates in the oxidation 

of CVOCs due to the favourable combination of acid and redox properties.831 Furthermore, Ce-Zr 

mixed oxides are also highly resistant to thermal aging and induced chlorine poisoning.822,832 

Rivas et al.833 examined this reaction over Ce-Zr mixed oxides after treating them with H2SO4 or 

HNO3 (1M). A significant increase in the activity was observed with sulphated oxides ascribed to 

the increase in total acidity and concentration of active sites with a moderate/strong acid strength. 

In contrast, no activity variation could be observed for the samples modified with nitric acid. 

Ce-Cr mixed oxides and CeCr supported catalysts were also reported in the literature in this 

reaction.834,835 Yang et al.836 proposed that the addition of ZrO2 improved the catalytic activity 

and stability of CeO2-CrOx. It was revealed that the catalytic performance of Ce-Cr mixed oxides 

could be further improved by loading CeO2 and CrOx over suitable supports such as HZSM-5 and 

Nb2O5.
830,837 For example, researchers synthesized different Ce-Cr/zeolite (HZSM-5, H-BETA, 

USY and H-MOR) catalysts and found that the Ce-Cr/HZSM-5 had the highest activity which 

converted 90% of 1,2-DCE at 230 °C with a flow rate of 75 mL∙min-1 (Fig. 22ii).837 

3.5.3. Vinyl chloride 

Large amounts of vinyl chloride (VC) is released in industrial processes such as raw material 

production, synthetic resin, textile dyeing and printing, leather manufacturing and reprocessing of 

polyvinyl chloride.838 For instance, high concentrations of VC (up to 1-2%) are released from the 

production process of polyvinyl chloride, which leads to environmental damage and detrimental 

effects on human health.839 
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Supported Ru catalysts were considered for the total oxidation of VC because of their high 

resistance to chlorine species (adsorbed Cl can be removed via the Deacon reaction on RuO2) and 

excellent activity in oxidation and reduction reactions. An example of this is the industrial 

oxidation of hydrogen chloride to chlorine.840,841 Wang et al.842 reported that Ru-modified Co3O4 

had improved catalytic activity and HCl selectivity in VC oxidation compared with bulk Co3O4 

and Ru/SiO2. The Ru supported Co3O4 catalyst demonstrated higher activity than that of Ru 

doped Co3O4 material due to the high reducibility of Co oxides, along with interaction between 

Ru species on the surface and Co3O4 phase. 

The effect of B-site substitution by Co, Ni and Fe on catalytic performances of LaMnO3 oxides 

was studied by Giroir-Fendler and co-workers.843 They revealed that all the substituted samples 

showed a higher catalytic activity than the pure LaMnO3, with the Ni-substituted sample 

displaying the best catalytic performance with 90% of VC converted at 210 °C (GHSV of 15,000 

h-1). The effect of A-site substitution (by Sr, Mg and Ce) on the catalytic performance of LaMnO3 

in VC oxidation was further investigated by the same authors,844 who found that the partial 

substitution of La by cerium and magnesium had positive effects on their catalytic performances, 

whereas strontium substitution negatively impacted the performance. The Ce-doped perovskite 

catalyst demonstrated the highest catalytic performance due to the higher specific surface area and 

its low-temperature reducibility. 

3.5.4. Trichloroethylene 

Trichloroethylene (TCE) is a common chlorinated VOC which is present in adhesives, paints, 

and coatings.845,846 TCE is a pollutant that has been classified likely carcinogenic to humans by 

the International Agency for Research on Cancer (IARC).847 TCE is also one of the responsible 

components for the depletion of stratosphere as well as being one of the components of the 

photochemical smog.848,849 In addition, TCE is one of the major contaminants of aquifers, largely 

due to its high density (> 1.0 g·m-3) that causes the stratification at the bottom of groundwater.850 

The catalytic deep oxidation of TCE has been comprehensively studied over a plethora of 

materials, such as transition metal (Mn, Fe, Cr, Ce and Cu) supported catalysts,451,771,851-856 

perovskite-type oxides,857,858 hydrotalcite derivedoxides,859 Pt-, Pd, and Ru-based catalysts860,861 

and zeolites.202,795,862,863 
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  Divakar et al.851 stated that the incorporation of Fe could improve TCE oxidation activity of 

zeolites (HZSM-5 and H-Beta), with the synthesis procedure influencing the activity of the 

resultant Fe-zeolite catalyst. In their recent work, the influence of preparation method on Fe 

species and catalytic activity of Fe-ZSM-5 in TCE oxidation were investigated.864 It was found 

that extra framework Fe nanoparticles present in ZSM-5 were primarily responsible for oxidation 

rather than the acidic sites. The sample prepared by an ion exchange method had higher catalytic 

activity than samples prepared via an impregnation or solid state ion exchange method. The 

deactivation of Fe-ZSM-5 catalysts was found to be due to the formation of FeCl3 rather than 

coke deposition. 

  Cr oxide and Cr supported catalysts were studied in the deep oxidation of TCE.853 Miranda et 

al.865 stated that the activity of bulk Cr oxide was higher than that of Mn/γ-Al2O3. Moreover, the 

presence of water increased the stability of Cr oxide due to the Deacon equilibrium, whereas the 

Mn catalyst showed the opposite behavior. Meyer et al.796 reported that the Cr exchanged USY 

zeolite (Cr-Y) had higher activity than samples of Co-Y, Mn-Y and Fe-Y in TCE oxidation which 

was attributed to the higher acidity of Cr-Y. A strong synergistic effect of Cr2O3-CeO2 and USY 

was also explored by Zhou and co-workers.866 They discovered that the interaction between Cr2O3 

and CeO2 species led to an optimum ratio of strong to weak acid sites, and also improved the 

mobility of oxygen species over Cr2O3-CeO2-USY catalysts. This was found to be beneficial to 

the dehydrochlorination and deeper oxidation of CVOCs. Lee and Yoon867 revealed that the 

presence of a small amount of Ru could enhance the overall catalytic performance (acitivity, CO2 

selectivity and stability) of CrOx/Al2O3 catalyst as highly dispersed Ru oxides rendered less active 

Cr3+ to more active Cr6+. 

  Dai et al.854 found that bulk CeO2 had high activity for TCE oxidation which could be ascribed 

to its surface basicity, high mobility of oxygen and oxygen-supplying ability. However, the 

activity of CeO2 quickly diminished due to the strong adsorption of HCl or Cl2 produced from the 

decomposition of TCE and the blockage of active sites (e.g., basic sites and active oxygen sites). 

Gutiérrez-Ortiz and co-workers822 confirmed that the addition of Zr into the CeO2 lattice 

improved the catalytic activity and stability of CeO2 in TCE oxidation due to the enhanced Ce4+ 

reducibility, lattice oxygen mobility and acidic property. 

  Hydrotalcites are two-dimensional layered synthetic materials with alternating positively 
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charged mixed metal hydroxide sheets and negatively charged interlayer anions.868 The 

calcination of hydrotalcites leads to the formation of mixed oxides with interesting properties for 

catalytic removal of CVOCs, such as small particle sizes, large specific areas and homogeneous 

dispersion of the metals.869,870 Blanch-Raga et al.859 synthesized different Mg(Fe/Al), Ni(Fe/Al) 

and Co(Fe/Al) mixed oxides derived from hydrotalcite-like compounds and tested them in TCE 

total oxidation. They found that the Co catalysts had the highest activity, followed by Ni and Mg 

catalysts. The activity of all catalysts improved when iron was substituted by Al as the presence 

of Al enhanced the acid property of catalysts and generated reactive O2
- species that are able to 

oxidize the TCE. 

  Mayenite (Ca12Al14O33) is a mesoporous calcium Al2O3 with a characteristic crystalline 

structure. In contrast to aluminosilicate zeolites, the framework of mayenite is composed of 

interconnected cages with a positive electric charge per unit cell and two constituent molecules, 

[Ca24Al28O64]
4+ and the remaining two oxide ions O2−, which is often labelled “free oxygen”, are 

trapped in the cages defined by the framework.871 The ability of storing O2− ions in the cages is a 

valuable property of mayenite which is exploited in catalysis. These oxygen ions can migrate 

between the surface and the bulk at temperatures higher than 400 °C, which results in a unique 

ionic conductivity.872 Very recently, the catalytic oxidation of TCE over mayenite was reported by 

Rossi and co-workers.873 The results demonstrated that mayenite had a high catalytic activity and 

excellent recyclability and thermal stability for this reaction. TCE was totally converted to CO2 

and the released chlorine was incorporated in the mayenite structure. The high performances of 

the catalyst was connected with its oxidative properties due to the presence of O2−and O2
2− anions 

sites that favoured the total oxidation of TCE and avoided the coke formation. 

  Solid acid supported Pt and/or Pd catalysts were also used for CVOC oxidation.860 Pt/Al2O3 

and Pd/Al2O3 catalysts are highly active in this reaction.874,875 A synergistic effect was found 

between noble metal and acid sites of Pd/H-BETA.876 However, these catalysts presented a 

remarkable selectivity to C2Cl4, especially in those containing LAS. Wang and co-workers877 

proposed that the phosphoric phases interacted with Pt sites in Pt/P-MCM-41 catalysts, resulting 

in the change of Pt oxidation state and Brønsted acid strength. The catalytic oxidation of TCE 

over these catalysts showed that modification with phosphoric acid enhanced the catalytic 

performance without the formation of tetrachloroethylene by-product. 
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3.5.5. Chlorobenzene 

Chlorobenzene (CB) is another typical chlorinated contaminant resulting from industrial 

processes.878 As such it is frequently used as the model pollutant for CVOCs because it is a 

precursor or intermediate product of polychlorinated wastes. For example, CB is used as the 

model compound for highly toxic polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) due to the 

structural similarity to these pollutants.768,879 Most of work regarding the deep catalytic oxidation 

of CB focused on Mn- and V-based materials880-884 and Pt,885 Pd813,886 and Ru887,888 supported 

catalysts (Table 6). Various other works studied catalysts such as perovskite-type oxides, Cu-, U- 

and Fe-based mixed oxides.530,889-897 

Table 6 Summary of some typical catalysts for chlorobenzene (CB) oxidation. 

Catalyst Reactant composition Space velocity (h-1) 
T90 

(°C) 
Ref. 

1%V9%Mo/TiO2 200 ppm CB, 20% O2, N2 balance 6000 240 916 

Mn/KIT-6a 5000 ppm CB, Air balance 20,000 211 898 

MnOx/TiO2
b 100 ppm CB, Air balance 36,000 < 120 899 

MnOx/TiO2-carbon nanotubec 3000 ppm CB, Air balance 36,000 150 900 

Sn-MnCeLaOx
d 2500 ppm CB, 20% O2, N2 balance 20,000 210 902 

MnCeLaOx
e 1000 ppm CB, 10% O2, N2 balance 15,000 < 250 904 

11%MnOx/CeO2 nanoparticles 2500 ppm CB, 20% O2, N2 balance 20,000 275 906 

CeOx-MnOx/TiO2
f 2500 ppm CB, Air balance 10,000 198 908 

Cu0.15Mn0.15Ce0.7Ox
g 600 ppm CB, Air balance 30,000 255 892 

La0.8Sr0.2MnO3 1000 ppm CB, 10% O2, N2 balance 15,000 291 889 

1% Ru/Ti-CeO2
h 550 ppm CB, Air balance 15,000 < 225 887 

1%Ru-CeO2 550 ppm CB, Air balance 15,000 250 923 

a Mn : Si molar ratio of 1 : 3; b Mn : Ti molar ratio of 1 : 4; c Prepared by the sol-gel method; d Sn : 

(Sn+Mn+Ce+La) = 0.08; e Mn : (Mn+Ce+La) = 0.86; f Catalyst calcined at 400 °C (Ce : Mn : Ti molar ratio of 

1 : 1 : 8); g Synthesized by the homogeneous coprecipitation method; h Ti-CeO2 support was synthesized by the 

co-precipitation method with tetrabutyl titanate as the precursor. 

A series of metal (Mn, Cu, Fe, Cr, and Sn) loaded mesoporous silica (KIT-6) catalysts were 
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studied and found that the Mn/KIT-6 (Mn : Si = 1 : 3) possessed the highest activity in this 

reaction (T90 = 210.7 °C; GHSV of 36,000 h−1) (Fig. 23i).898 Mn catalysts on various supports 

(TiO2, Al2O3 and SiO2) were also investigated with the MnOx/TiO2 demonstrating the best 

activity. It was found that the highly dispersed MnOx could be converted into active 

oxychlorinated manganese species.833 Tian et al.899 further reported that the MnOx/TiO2 catalyst 

prepared by the sol-gel route with Mn : Ti of 1 : 4 had the best CB oxidation activity compared 

with samples prepared by solvothermal and co-precipitation methods. The promotion effect of 

CNTs on MnOx/Al2O3 and MnOx/TiO2 catalysts for CB oxidation was suggested to be due to the 

superior aromatic adsorption performance of CNTs (π-π interaction between benzene ring and 

CNTs).900,901 Liu and co-workers418 stated that the addition of Sn into MnTiOx mixed oxides 

markedly enhanced its stability in this reaction (Fig. 23ii). This was linked to a lower average 

energy being required to desorb Cl species and the absence of MnOxCly on the active sites during 

the reaction. The above results were also studied and confirmed with SnMnCeLaOx composites 

for CB oxidation.902 

  MnOx-CeO2 mixed oxides and supported MnOx-CeO2 catalysts have been widely studied in the 

total oxidation of CB. Wang et al.903 prepared MnOx-CeO2 mixed oxides with different Mn : 

(Mn+Ce) ratios, and found that the MnOx(0.86)-CeO2 sample exbibited the best catalytic acitivity 

and completely oxidized CB at 254 °C with a GHSV of 15,000 h-1 (Fig. 23iii). Subsequent work 

indicated that the addition of La promoted the dispersion of MnCeOx and MnOx as well as 

enhanced the stability of MnCeOx in CB oxidation.904,905 The effect of CeO2 morphology 

(nanoparticle and nanorod) on the performance of MnOx/CeO2 in CB oxidation was reported by 

Liu and co-workers,906 who found that the MnOx/CeO2 nanoparticles possessed a higher catalytic 

activity. 

  Many types of oxides have been used as the support for Mn-Ce mixed oxides such as γ-Al2O3, 

TiO2, ZSM-5 and cordierite.882,907-909 Li and co-workers907 suggested that the Mn8Ce2/γ-Al2O3 

was the most active catalyst in all MnxCey/γ-Al2O3 samples which was attributed to its higher 

reducibility. Subsequent work by the group revealed that the addition of Mg decreased the 

interaction of Mn and Ce species supported on γ-Al2O3. Mg addition also promoted the dispersion 

of Mn and Ce phases and formation of a Ce-Mn-O solid solution, leading to high activity, good 

selectivity and promising stability of the Mn-Ce-Mg/γ-Al2O3 catalyst.910 He et al.908 stated that Ce 
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and Mn species form a solution of MnCeOx with perturbed oxygen environments at calcination 

temperatures of 400 °C which contributed to the high catalytic activity of CeOx-MnOx/TiO2. Chen 

and co-workers882 revealed that the Mn8Co1Ce1/cordierite exhibited high activity (T90 = 325 °C; 

GHSV of 15,000 h−1) and stability for CB oxidation due to the synergistic effect of Ce, Mn and 

Co and the formation of more lattice defects, more oxygen vacancies and smaller crystallite sizes. 

  Supported V oxide constitutes a very important class of catalytic materials which are resistant 

against CVOCs.884,911-913 Huang et al.883 proposed that a VOx/CeO2 catalyst with monomeric VOx 

had the highest catalytic activity in the deep oxidation of CB. Here, the VOx greatly improved the 

stability of VOx/CeO2 catalysts through retarding the exchange of Cl for basic surface lattice 

oxygen of the CeO2 (Fig. 23iv). TiO2 has good mechanical, thermal and anticorrosive properties, 

and it promotes the formation of a well-dispersed monolayer of the VOx active phase.914 It was 

demonstrated that the addition of SO4
2−species to TiO2 enhanced the acidity and leaded to a 

higher activity in this reaction. The beneficial effect of the sulfated TiO2 was due to an increase in 

the amount of BAS which promotes the adsorption of aromatics on the support. An increase in the 

LAS also improves the spreading of the VOx phase on the surface of the catalyst.728,915 Huang et 

al.916 revealed that the addition of MoO3 to V2O5/TiO2 improved the catalyst redox properties and 

enhanced the CB oxidation activity at low temperatures. However, the formation of low amounts 

of polychlorinated compounds over V2O5-WO3/TiO2 and V2O5-MoO3/TiO2 was reported by 

Busca and co-workers.917 

  Topka et al.918 prepared monometallic noble metal (Pt or Au) catalysts supported on Ce-Zr 

mixed oxide by an impregnation method, and found that Pt catalysts were more efficient than Au 

analogues due to their superior redox property. The lower acidity of Pt catalysts was not found to 

be detrimental to their performance in CB oxidation. The catalytic oxidation of CB over Pt 

catalysts supported on H-ZSM-5 and H-Beta was studied by Crisafulli and co-workers.885 The 

results demonstrated that the activity of Pt/zeolite catalysts was higher for samples with lower 

SiO2 : Al2O3 ratios (30 and 50). Different amounts of polychlorinated benzenes (PhClx) were 

produced on the catalysts in the order of Pt/H-ZSM5 < Pt/H-beta < Pt/γ-Al2O3. The smaller size 

of the zeolite channels hinders the chlorination of PhCl to PhClx. The formation of significant 

amounts of PhClx over Pd-based catalysts (especially at high temperatures) was also reported in 

the literature.766,886,919 
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  Ru-based catalysts were industrially implemented for the large-scale chlorine production via 

HCl oxidation (Deacon process) due to its higher reactivity, extraordinary stability (limited 

chlorination and resistance against HCl and Cl2 exposure) and easier Cl2 evolution.881,882 The 

catalytic oxidation of CB over Ru doped CeO2 catalysts was investigated by Lu and 

co-workers.922,923 They revealed that the Ru/CeO2 exhibited outstanding activity and stability. 

Subsequent work proposed that doping of Ti enhanced the activity and stability of Ru/CeO2 

catalysts in CB oxidation which was ascribed to a higher proportion of exposed oxygen vacancies 

and the high energy lattice plane of CeO2.
887 

3.5.6. 1,2-dichlorobenzene 

  1,2-dichlorobenzene (o-DCB) is a common industrial solvent for a range of applications such 

as wax, resin and rubber, as well as being used as a degreasant and cleaning agent. o-DCB has 

frequently been used in the literature as a model pollutant molecule because its structural 

similarity to 2,3,7,8-tetrachloro-dibenzodioxin (TCDD) which is the most toxic among a range 

PCDDs.924-926 The catalytic incineration of o-DCB is largely centred on V-, Fe-, Ti- and 

Mn-based oxides.927-931 

  The catalytic oxidation of o-DCB was systematically investigated over a series of transition 

metal oxides (Cr2O3, V2O5, MoO3, Fe2O3 and Co3O4) supported on TiO2 and Al2O3. The results 

suggested that the TiO2-supported catalysts are more active than the corresponding 

Al2O3-supported ones (except Co oxide catalysts), indicating that the metal oxide-support 

interactions are significant in this reaction. Among all catalysts, Cr2O3- and V2O5-based materials 

are the most active ones.932 Choi et al.933 reported that a vanadia-titania aerogel catalyst with a 

high surface area and chemical homogeneity possessed superior activity and thermal stability in 

o-DCB oxidation. Moon and co-workers927 reported that V2O5/TiO2 catalysts synthesized by a 

thermal decomposition method showed a good performance in o-DCB decomposition at low 

temperature, with 95% of o-DCB converted at 200 °C (WHSV of 18,000 mL∙g-1∙h−1). Albonetti et 

al.934 proposed that the LAS and BAS over V2O5/TiO2 and V2O5-WO3/TiO2 had strong influences 

on their catalytic performance in this reaction (Fig. 24i). It was found that the BAS significantly 

increased the conversion of o-DCB but leaded to the formation of partial oxidation products such 

as dichloromaleic anhydride. The LAS were suggested to act as absorbing sites, promoting the 
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further oxidation of intermediates to CO and CO2. The presence of water decreases o-DCB 

conversion but plays a positive role in COx selectivity due to the reduction of BAS and the 

hydrolysis of the an hydride during wet oxidation tests.934 

  It was repored that the Ca-doped Fe oxide catalysts exhibit higher catalytic activity in the 

decomposition of CVOCs compared with analogous single Fe oxide materials. This was attributed 

to the strong interaction between Fe2O3 and CaO which facilitates Cl− exchange between CaCO3 

and FeCl3 (formed from the reaction of α-Fe2O3 with o-DCB).935-937 CaCO3/α-Fe2O3 

nanocomposites were synthesized by Ma et al.938 adopting a one-pot method. The sample with 9.5 

mol% Ca had the highest activity in o-DCB oxidation due to the easier formation of formate 

species on the surface which are then oxidised through to CO. However, the particle-like 

CaCO3/α-Fe2O3 nanocomposite did not perform well under high water vapor content and at lower 

temperatures (< 350 °C). Based on these results, CaCO3/Fe2O3 nanorods with excellent catalytic 

activity (T100 = 350 °C for the sample with 2.8 mol.% Ca; GHSV of 88,000 h-1), water-resistance 

and thermal stability were further obtained by Chen and co-workers.935 The authors attributed the 

excellent catalytic performance to the unique surface morphology and interfacial microstructure 

composed of CaCO3 and α-Fe2O3 nanorods. The morphology and microstructure of the catalysts 

plays an important role in the catalytic performance. Hollow microspheres with low density, high 

surface area, stability and excellent surface permeability have received increasing interest for 

application in heterogeneous reactions.939 Zheng and co-workers929 revealed that the optimal 

Ca-doped FeOx hollow microsphere (9.7 mol% Ca) exhibited not only excellent catalytic activity, 

water-resistant performance and stability, but low Ea (21.6 kJ·mol-1) in deep oxidation of o-DCB. 

  Mn-modified Co3O4 catalysts with spinel structure were prepared by Cai et al.807 using the 

co-precipitation method. The results revealed that the catalyst with a Co : Mn ratio of 9 : 1 

presents the highest activity (T90 = 347 °C; GHSV of 15,000 h-1) and good stability which was 

ascribed to the synergetic effect between the activation of o-DCB on Co2+ sites and subsequent 

oxidation by surface active oxygen in Co3O4 nanoparticles. Recently, Zhang and co-workers931 

reported that addition of Ce or Ce+Fe into MnOx oxides promoted the formation of an amorphous 

powder rather than a crystalline material which enhanced their specific surface area and redox 

property, leading to an overall higher activity for o-DCB incineration. 

  Choi et al.940 reported that nano-sized Fe3O4@TiO2 composites exhibited a higher o-DCB 
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oxidation activity than that of pure Fe3O4 and TiO2. It was suggested that oxygen vacancies on 

Fe3O4+δ played an important role in the adsorption and reaction of CO, and TiO2 provided oxygen 

to the Fe3O4+δ sites. Recently, Ce1−xTixO2 mixed oxides with various Ti : (Ce+Ti) ratios were 

prepared by a sol-gel method and used in the catalytic oxidation of o-DCB. The results 

demonstrated that the incorporation of Ti distorted the crystal structure and thus greatly increased 

the acidity and oxygen mobility at high temperatures. The catalyst with a Ti : (Ce+Ti) ratio of 0.5 

was shown to achieve the best performance in this reaction (Fig. 24ii). Ti improves the stability of 

Ce1−xTixO2 catalysts by retarding the exchange of Cl with basic lattice oxygen and hydroxyl 

groups.930 

3.6. Nitrogen-containing VOCs 

Nitrogen-containing VOCs (NVOCs) (e.g., acetonitrile, ethylenediamine, n-butylamine, 

pyridine and acrylonitrile) are widely used in industrial processes. For instance, acrylonitrile is 

used to make acrylic fibers, resins, and nitrile elastomers, and is employed as an intermediate in 

the production of adiponitrile and acrylamide.941 The crucial point for NVOCs catalytic oxidation 

lies in the control of NOx generation and prevention of secondary pollutants.942-944 

Guerrero-Pérez et al.945 indicated that the Sb-V-O/γ-Al2O3 catalyst synthesized via a tartrate 

method was a good candidate to eliminate NVOCs. This synthesis method provided dispersed Sb 

oxide and optimized the VSbO4-Sb interphase, resulting in superior selectivity to N2. PILC 

supported CrOx-CeO2 mixed oxides were studied in the oxidation of NVOCs.946-948 

Na-montmorillonite and different pillared interlayered clay (Al-PILC, Zr-PILC, Ti-PILC and 

Al2O3/Ti-PILC) supported CrCe catalysts were reported by Zhou and co-workers946 in deep 

oxidation of n-butylamine and ethylenediamine. The results demonstrated that the mesoporous 

structure and the acid sites improved the catalytic activity of supported CrCe catalysts. 

CrCe/Ti-PILC and CrCe/Al2O3/Ti-PILC had higher catalytic activity than other catalysts. The 

strong adsorption of ethylenediamine on the acid sites leaded to a lower activity compared with 

n-butylamine. Subsequent work suggested that addition of an appropriate amount of CeO2 

enhanced the interaction between Cr and Ce, increasing the acid strength and mobility of active 

oxygen species on the catalyst. 8CrCe(6:1)/Ti-PILC exhibited the best catalytic performance and 

control of NOx in n-butylamine oxidation.948 
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Nitrile gases such as acetonitrile and acrylonitrile are commonly classified as very toxic 

nitrogen-containing VOCs and can lead to serious environmental problems due to their hazardous 

properties.949 Noble metal (e.g., Pt and Pd) catalysts were found to be undesirable for nitrile 

oxidation due to the formation of NOx.
950,951 Among transition metal-based catalysts, porous 

silica- or titania-supported copper catalysts have been reported to show the excellent performance 

in nitrile oxidation.952,953 A series of M/SBA-15 (M = Cu, Co, Fe, V and Mn) and noble metals 

(Pd, Ag and Pt) catalysts were prepared via the impregnation method and further used in 

acetonitrile oxidation by Chen and co-workers.949 Cu/SBA-15 was found to exhibit a near 

complete CH3CN conversion with a N2 selectivity of 80% at temperatures higher than 350 °C. 

Nanba et al.941 revealed that Cu/ZSM-5 with a Cu loading of > 2.3 wt.% show a high N2 

selecivity (exceeding 90% above 350 °C) in acrylonitrile oxidation. The authors proposed that N2 

formation from NH3 proceeds on Cu2+, resulting in the formation of Cu+ ions, which were then 

oxidized to Cu2+ at around 300 °C. Thus, a high N2 selectivity over Cu-ZSM-5 was attained over 

a wide range of temperatures by the reaction over the square-planar Cu2+. Subsequent work 

indicated that over Cu/ZSM-5 catalyst, acrylonitrileis mostly converted to isocyanate (-NCO), 

which was likely converted to adsorbed NH3 by hydrolysis. N2 was formed by the reaction of 

adsorbed NH3 and adsorbed nitrate or by oxidation of adsorbed NH3. It was reported that the 

presence of water suppressed the desorption of acrylonitrile and reduced the temperature of N2 

evolution.954 

  The high acrylonitrile decomposition activity of supported Ag catalysts was also reported by 

Obuchi and co-workers.955 Here, it was found that the activity was greatly influenced by the type 

of material used to support Ag, with TiO2 being described as an effective support. This Ag/TiO2 

catalyst was composed of both metallic and oxidized Ag species. The metallic Ag exhibited a 

high acrylonitrile oxidation activity, whereas the oxidized Ag exhibited high acrylonitrile 

hydrolysis activity.956 The influence of the TiO2 crystal structure on acrylonitrile oxidation was 

also studied. The results indicated that the anatase phase of TiO2 favours the formation of ionic 

Ag, whereas the rutile phase favours that of metallic Ag. The Ag/anatase-TiO2 catalyst exhibited 

a high NH3 and N2 selectivity at low and high temperatures, respectively.957 

3.7. Sulfur-containing VOCs 
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3.7.1. Methyl mercaptan 

Methyl mercaptan (CH3SH) is a highly odorous sulfur-containing volatile organic compound 

(SVOCs) and is widely distributed in petroleum products and industry off-gases.958-960 Even a 

small amount of CH3SH in the atmosphere is harmful and can have adverse effects on humans.961 

The presence of CH3SH is also a source of catalyst deactivation during many catalytic reactions 

such as synthesis of methanol and ammonia.962 Catalytic abatement is regarded as an effective 

method for the complete removal of CH3SH as it is both environmentally friendly and 

economically feasible. It produces low waste products and does not require the addition of any 

reagents during the desulfurization processes.963-965 

CeO2 is well known as a major catalyst for CH3SH catalytic decomposition.966 CeO2 

nanoparticles were prepared by He et al.967,968 using a convenient microwave-assisted sol-gel 

method. The results suggested that CeO2-based catalysts are effective sulfur absorbents at high 

temperature. Various Ce-S compounds including cerium sulfide (Ce2S3) and cerium sulfate 

(Ce(SO4)2) are formed. The formation of Ce2S3 in the latter period of reaction causes a severe 

decline in the catalytic activity. Doping the surface with appropriate metal ions, especially some 

trivalent rare earth cations with different ionic radii, can enhance the stability of pure CeO2. A 

series of rare earth (Y, Sm, and La) doped CeO2 composite oxides were synthesized by He et 

al.969 and evaluated in CH3SH catalytic decomposition. A higher population of oxygen vacancies 

and increased basic sites were observed in the rare earth doped CeO2 catalysts. A Y doped CeO2 

sample (Ce0.75Y0.25O2-δ) with a moderate increase in basic sites demonstrated a higher stability 

than CeO2, while the La doped CeO2 catalyst with highest alkalinity possessed the lowest stability. 

The superior stability of Ce0.75Gd0.25O2-δ for CH3SH oxidation was proposed in their recent 

work.970 

HZSM-5 zeolite was considered as a good candidate for catalytic decomposition of CH3SH, 

over which complete decomposition to H2S and some hydrocarbons (CH4, C2H6 and C2H4) was 

achieved above 550 °C.971,972 However, the stability of a pure HZSM-5 zeolite catalyst is not 

satisfactory, and serious deactivation of the catalyst can be observed. This is due to the presence 

of strong acid sites which usually promotes the formation of coke deposits.24,973 Recently, 

HZSM-5 zeolite catalysts modified with various rare earth metals (Nd, Er, and Y) were prepared 

and used for CH3SH catalytic decomposition.960 The addition of rare earth metals significantly 
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improved the activity and stability of HZSM-5. A 13 wt.% Nd/ZSM-5 catalyst was found to 

exhibit the best performance. Characterization results revealed that the concentration of strong 

acid sites in the HZSM-5 catalysts decreased after rare earth metals addition, while the 

concentration of basic sites increased (displayed better adsorption ability to CH3SH).960,974 

3.7.2. Dimethyl disulfide 

Dimethyl disulfide (DMDS) is difficult to oxidize when compared with other SVOCs present in 

the waste gas streams. Moreover, DMDS is among the most odorous compounds due to its low 

human detection threshold (2.5 μg·m-3),975 which makes its complete removal an important issue. 

Wang et al.976-978 reported that the addition of molybdenum promoted the catalytic activity of 

CuO/γ-Al2O3 in deep oxidation of dimethyl disulfide. The catalyst with a formula of 5 wt.% 

Cu-10 wt.% Mo/sulfated-γ-Al2O3 (γ-Al2O3 treated with sulfuric acid) was shown to have the best 

activity. The performance of a CuO-MoO3/γ-Al2O3 catalyst was further promoted in subsequent 

work by the addition of Cr.979 A 5 wt.% Cu-6 wt.% Mo-4 wt.% Cr/sulfated-γ-Al2O3 sample was 

found to possess the highest DMDS oxidation activity and sulfur resistance. 

Among transition and noble metals, Au shows the lowest reactivity towards sulfur which is 

ascribed to its high electronegativity. This result in Au is not readily reacting with other 

electronegative elements such as sulfur.980 Recently, Au, Cu and Pt catalysts supported on Al2O3, 

CeO2 and CeO2-Al2O3 were investigated in the oxidation of DMDS. The results demonstrated that 

the Au/CeO2-Al2O3 catalyst had good stability during over a 40 h test. The presence of Cu 

resulted in the significant generation of formaldehyde instead of CO2, and Pt catalysts exhibited 

over-oxidation or potential for deactivation when supported on Al2O3 and CeO2-Al2O3.
963 The 

stable and efficient DMDS incineration capability of a Au/TiO2 catalyst was proposed by Keiski 

and co-workers.981 

It was reported that an amorphous SiO2-Al2O3 support increases the material’s resistance 

against sulfur poisoning.982 Furthermore, the isoelectric point of SiO2 can be enhanced by addition 

of Al2O3 as this improves the interaction between support and active metals.983 Darif et al.984 

found that the doping of SiO2 leaded to a more selective and stable catalyst 

(Pt-Cu/(Al2O3)0.8(SiO2)0.2), however the DMDS conversion over Pt-Cu/(Al2O3)0.8(SiO2)0.2 was 

close to that of Pt-Cu/Al2O3. Recently, the sulfur deactivation process of Pt/Al2O3 catalyst was 
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further studied by Keiski and co-workers.975 They proposed that the decrease in the activity of 

industrially aged Pt/Al catalyst originated from a number of factors. The decrease in the active 

surface area due to support sintering, chemical poisoning from sulfate formation, increase in Pt 

particle size and formation of highly oxidized Pt(IV) species that were less tolerant against sulfur 

were all described as major issues. The addition of SiO2 (20 mol%) into the Al2O3 support 

enhanced the stability and sulfur resistence of Pt catalyst (Fig. 25). 

4. Monolithic catalyst for VOC destruction 

  For practical applications, the use of structured materials which exhibit good structural and 

thermal stabilities, induce only a minimal pressure drop, and possess a good tolerance to plugging 

are desirable properties for a catalytic reactor.985,986 For this reason, extruded materials such as 

monoliths are ideal structures for supporting catalysts as they are typically exhibit high surface 

areas and possess numerous parallel channels, which reduces pressure drops across the catalyst 

bed. They are also highly tunable; monoliths can be produced in many different sizes and shapes, 

and can be synthesized from lots of different materials, including; metal wires, meshes or 

foams,987-990 metallic or ceramic membrances,109,991 and cordierite honeycomb materials,992,993 

which have attracted increasing attention due to their high mechanical strength and heat transfer 

capacity. 

 

 

  In general, wire-mesh structured monoliths possessa high thermal conductivity and mechanical 

strength, making them applicable to several industrial and environmental processes.994 A great 

variety of wire-mesh monoliths currently exist and their applicability is typically determined by 

the diameter of their internal channels and the diameter and material of the wire used.994-996 The 

catalytic oxidation of n-hexane, acetyl acetate and toluene was investigated over Pt-CeO2 

deposited on monolithic stainless steel wire meshes (Fig. 26i). The results from these experiments 

confirmed that all of these VOCs could be completely oxidized at temperatures ranging from 200 

to 350 °C. The excellent mechanical stability of these materials was confirmed by an ultrasound 

method.997 Li et al.987 demonstrated that a series of Pd-based FeCrAl wire-mesh monoliths could 

be prepared by an electroless plating methodology. The Pd/FeCrAl catalysts had no alumina 
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interlayers in their structure and consisted of between 0.3 and 0.4 wt.% Pd. These catalysts were 

calcined at 800 °C and determined to be highly active and stable for the total oxidation of toluene. 

The high activity and stability was suggested to be attributed to the in situ formation of a molten 

PdO phase (0.1-1 μm in diameter). Kuśtrowski and co-workers998 also confirmed that 

plasma-deposited cobalt oxide suported knitted wire gauzes were highly effective as for the 

oxidation of n-hexane (Fig. 26ii). The reaction was demonstrated to be first-order with an  

activation energy of 143.5 kJ/mol. A plug-flow reactor model was proved to reflect the real 

reactor performance with satisfactory accuracy. 

  Porous structured foams and membranes can increase turbulence and radial mixing in gas 

streams, which can reduce laminar flow and mass transfer issues in monoliths or honeycombs 

catalysts.999-1002 Zhao et al.592 synthesized a white graphene foam (consisting of a 

low-dimensional boron nitride nanosheet; 3D BN) with multi-level pores, atomically thin walls 

and a specific surface area of 681 m2·g-1 (Fig. 26iii). Ag was subsequently supported onto this 

material and tested for the oxidation of methanol. Over this catalyst, a 95 % methanol conversion 

was achieved at temperatures as low as 110 °C (GHSV of 40,000 h−1); substantially lower than 

the T90 observed over a Ag/γ-Al2O3 catalyst, which was also notably less stable. Ribeiro et al.989 

explored how the method of preparing Pt zeolite coated cordierite foams affected catalytic 

performance in the oxidation of toluene. The authors revealed that the open structure of the foams, 

the formation of a homogeneous thin zeolite layer and the size of the deposited Pt particles were 

greatly affected by the dipping procedure used. Recently, a facile strategy for the in situ growth of 

hierarchical Co3O4 nanostructures on the surface of a 3D nickel foam was reported by Ye and 

co-workers (Fig. 26iv).1003 The authors determined that materials with columnar Co3O4 

nanoclusters on nickel foam exhibited excellent catalytic activities for the oxidation of toluene; 

with the best catalyst, full toluene oxidation was achieved at 270 °C with a GHSV of 20,000 h-1 

(50 °C lower than that of Co2AlO4 catalysts) (Fig. 26v and vi). Wang et al.1004 revealed that a 

Mn/ZSM-5 membrane catalyst with a paper-like stainless steel fiber (PSSF) morphology could 

achieve 2-propanol conversion greater than 90% at 222 °C (GHSV of 7643 h-1), which is a far 

lower temperature than that observed over a granular Mn/ZSM-5 catalyst (T90 = 297 °C). Porous 

Cu/Mn binary oxide modified ZSM-5 catalyst were also prepared by the same group;614 the most 

efficient of these catalysts was a Cu-Mn(1:6)/ZSM-5/PSSF, which achieved a 2-propanol 
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conversion greater than 90% at 210 °C under the GHSV of 3822 h-1. In a subsequent study, Yan 

et al.633 reported that over a Co/ZSM-5/PSSF catalyst, isopropanol conversions greater than 90% 

could be achieved at ca. 220 °C (GHSV of 7643 h-1); similar to that observed over the 

Mn/ZSM-5/PSSF. This was achieved in a zeolite membrane reactor, which is much more efficient 

than a traditional particle fixed bed reactor. In addition, porous Co-Cu-Mn mixed oxide modified 

ZSM-5/PSSF catalysts were also confirmed to be efficient for the total oxidation of 2-propanol by 

the same researchers.109 Huang et al.1006 reported that 3D Co0.65Mn2.35O4 (grown on carbon textile 

substrates) nanosheets exhibited remarkably long-term durability and high catalytic activity for 

the oxidation of formaldehyde; a full conversion was achieved at 100 °C with a GHSV of 120,000 

mLh-1g-1. Recently, Chen and co-workers991 prepared a series of monolithic Mn/Ce-based 

ceramic membrane (CM) catalysts (Fig. 27i). The catalysts were prepared using an impregnation 

method and characterization of these materials revealed that the fibrous CMs possessed a unique 

interconnected, uniform pore structure, and the MnOx-CeO2 active phase was homogenously 

dispersed into the porous CMs support. A catalyst with a MnOx : CeO2 ratio of 3 : 1 exhibited the 

highest activity for the total oxidation of benzene (T90 = 244 °C; GHSV = 5000 h-1) and was 

determined to be stable with up to 90 vol.% of water in the stream (20 °C). The high activity of 

this catalyst was associated with its good low temperature reducibility, abundance of active 

oxygen and a synergetic effect between MnOx and CeO2.. 

  Metallic monoliths are also considered to be promising catalysts for the oxidation of VOCs. 

This is typically attributed to their excellent heat transfer, good ductility and mechanical 

stability.1007 However, the industrial application of these materials is often limited, due to their 

high cost, low chemical stability and difficulties associated with immobilizing catalysts on to 

them.999,1008 Cordierite monoliths (2MgO∙2Al2O3∙5SiO2) are highly porous, often have good 

thermal and chemical stabilities and exhibit excellent refractoriness and coating adherence. These 

materials typically have a high resistance to elevated temperatures and temperature shocks 

because of their low thermal expansion coefficient, making them suitable for application as a 

monolithic catalyst support.992,1009,1010 It is often necessary to use an inorganic oxide pre-coat 

(washcoat), which can increase the surface area of the material and act as a secondary support for 

the active phase. The most common washcoat material is γ-Al2O3, but numerous other materials 

such as La2O3, CeO2, ZrO2, carbons and zeolites have also been investigated.557,573,758,993,1011-1013 
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The method used for the deposition of the secondary support can also influence the resultant 

catalytic performance. Various strategies have been implemented for the initial coating of the 

monolith, which is generally followed by the subsequent deposition or immobilization of the 

active phase.1014 

  Huang et al.1011 investigated the catalytic combustion of toluene over cordierite-supported 

Ni-Mn composite catalysts, which were prepared by a wet impregnation method. The authors 

reported that the catalytic activity of the synthesized materials was strongly dependent on a 

number of factors, which included; the molar ratio of Ni/Mn, the loading of the Ni-Mn oxide and 

the calcination temperature. A catalyst with a Ni/Mn ratio of 0.5 displayed the highest activity for 

the oxidation of toluene; a 92.1% conversion of toluene was observed at 300 °C. This catalyst had 

a 10 wt.% Ni/Mn loading and was calcined at 400 °C. Azalim et al.1012 proposed that the high 

activity of Mn-Ce-Zr/cordierite catalysts for the oxidation of n-butanol was heavily dependent on 

the method used to immobilize the active phase. In this study, corresponding Mn-Ce-Zr/cordierite 

catalysts were synthesized by one-pot precipitation (Ce, Mn and Zr nitrates mixed together) and 

impregnation (Mn loaded over the Ce-Zr washcoated phase). The catalysts prepared in the one pot 

precipitation were determined to be significantly more active than the corresponding impregnated 

catalysts. The notable differences in performance were attributed to the former method producing 

a highly active thin layer of Mn-Ce-Zr, which exhibited a high specific surface area and was 

easily reducible. 

  Jin and co-workers993 prepared a series of Pd/CexY1-xOδ/cordierite honeycomb catalysts and 

determined that the CexY1-xOδ washcoat exhibited a better adhesion and had a higher vibration- 

and heat-resistance when compared to other conventional washcoats. The formation of 

CeO2-Y2O3 and PdO phases at high calcination temperatures resulted in increased thermal 

stability. The highest catalytic activity for the oxidation of toluene was exhibited by a 

Pd/Ce0.8Y0.2Oδ/cordierite honeycomb catalyst; full oxidation of toluene was observed at 210 °C. 

Carbon-coated monoliths have also been considered as catalyst supports for industrial 

applications due to their mechanical resistance, and desireable chemical and textural 

properties.557,1015 Carbon nanofiber (CNF)-coated monoliths with a very thin, homogeneous, 

well-adhered CNF layer were investigated as supports by Morales-Torreset al.1013 for the 

decomposition of ethylene over Ni particles. These catalysts were determined to be more active 
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for the oxidation of benzene than toluene or m-xylene, which was ascribed to a better 

aromatic-support dispersive interaction. The study indicated that the CNF-coated monoliths were 

also more affective supports than alumina for Pt or Pd catalysts in the gas phase catalytic 

combustion of BTX at low temperatures; the CNF surface is more hydrophobic than that of 

γ-Al2O3.
1013 

  The structure of the support on the monolith can also influence the resultant activity in VOC 

oxidation reactions. Pérez-Cadenas et al.1016 investigated how the pore structure of carbon-based 

monoliths effected the performance of Pd supported catalysts. For this, a number of different 

monoliths were used; a classical square channel cordierite modified with α-Al2O3 to block any 

macroporosity in the cordierite and round the channel cross-sections (HPM); a composite 

carbon/ceramic monolith with micropores (WA); and a monolith consisting of mesopores (WB) 

(Fig. 27ii). The activity of these catalysts was determined to decreases in the order of Pd/WB > 

Pd/WA > Pd/HPM. The notable difference in the activity of these catalysts evidenced the 

influential effect of the surface area. In another study, monolithic cordierite catalysts with Au 

nanoparticles supported on Ce0.5Zr0.5O2 were prepared by washcoating with powdered 

gold/ceria-zirconia (AuCeZr) and by deposition of gold on the monolith washcoated with 

ceria-zirconia (Au/CeZr). Characterization of these materials indicated that the Au/CeZr catalyst 

exhibited a smaller mean Au particle size (ca. 6.7 nm) and was more active for the oxidation of 

ethanol (T50 = 80 °C) than the AuCeZr catalyst, which had a mean Au particle size of ca. 13.2 nm 

(T50 = 120 °C).1017 Recently, Lu and co-workers1018 reported an efficient, economic and simple 

strategy for the synthesis of Pt/TiO2 monolith catalysts, which involved spraying a dispersed 

Pt/TiO2 liquid on different substrates (Fig. 28). This study revealed that a Pt/TiO2 cordierite 

monolithic catalyst, which had a Pt loading of 0.1 wt‰, exhibited excellent catalytic activity (T90 

= 212°C; GHSV of 3000 h-1) and stability (without deactivation during a 120 h test) for the 

oxidation of toluene. This catalyst also displayed good vibration resistance; a mass loss of only 

0.11% was reported after 1 h of ultrasonic vibration under experimental conditions. 

  When designing catalytic systems for total oxidation reactions, detailed data concerning the 

effects of mass and heat transfer on the catalytic reaction rates should be considered carefully.1019 

In the case of fixed beds with small catalyst particles, both interparticle and intraparticle 
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diffusional limitations are minimized when a highly turbulent flow is employed, but comes at the 

cost of a high pressure drop. With honeycomb monoliths, the flow inside the channels is deeply 

laminar, but the pressure drop is negligible, which is a prerequisite for many environmental 

processes.551 When the monolith is operated at low temperatures, catalytic reaction rates are 

typically slow, which ultimately limits the overall conversion of the reactant. At higher 

temperatures, mass transfer typically has a much weaker dependence on temperature than reaction 

rates and is therefore, more likely to become rate-limiting.1020 The correct interpretation of the 

mass transfer phenomena occurring in the oxidation process is essential to define operating 

conditions for the affective removal of VOCs.1021 

  Hayes et al.1020 studied the influence of the washcoat and channel shape on mass transfer and 

concluded that for non-uniform washcoats, the Sherwood numbers and hence the mass transfer 

coefficient, varies along the gas solid interface. The authors determined that the washcoat 

thickness, channel radius and angular diffusion in the washcoat; caused by variable thickness in 

non-symmetrical geometries, were the three predominant factors that determined mass transfer in 

this system. Hayes et al.1022 subsequently used a 2D finite element monolith reactor model to 

study external and internal heat transfer in ceramic monoliths for the catalytic oxidation of 

propane. The authors determined that heat radiation and conduction effected the outlet 

temperature, with axial conduction resulting in the most significant effects. A separate study 

invoked the use of a 2D heterogeneous model to also investigate behavior in monolithic 

reactors.1023 The authors reported that both inter- and intra-phasic diffusion limitations had to be 

considered when modeling complex reactor configurations like monolith reactors, especially 

given that monoliths with thicker catalytic layers are typically operated at higher temperatures. 

The authors concluded that the 2D model was suitable to describe the overall behavior of the 

monolith reactor and in particularly, assisted with identifying the effect of every single process; 

the interphasic mass transfer, the chemical reaction and the intraphasic mass transfer. Similar 

results were also put forth by Rodríguez and Cadús,1024 who explored the catalytic oxidation of 

oxygenated VOCs (ethanol and acetaldehyde) over manganese-copper mixed oxide catalysts in a 

monolithic reactor using an isothermal 1D heterogeneous model. This study revealed that the 

overall rate of the process was, under some reaction conditions limited by internal diffusion (e.g., 

thick washcoats and high conversions of VOCs); however, the overall process rate was limited by 
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external mass transfer resistance to the catalyst at high temperatures and/or monoliths with poor 

interfacial areas. 

  The washcoat often has a non-uniform thickness, as coatings often tend to accumulate on 

corners which has a detrimental effect on catalyst performance. It is therefore vitally important 

that such factors are incorporated into models for mass transfer resistances to ensure that the 

performance of monolithic reactors are accurately assessed.1025 The effect of catalyst 

accumulation at the corners of a square section channel was investigated by Borio and 

co-workers.1026 Non-uniform coatings resulted in a considerable deterioration in the averaged 

effectiveness factors of two reactions; the catalytic oxidation of ethanol and acetaldehyde. The 

decrease in the reactor performance, resulting from the catalyst accumulation, was magnified as 

the feed concentration increased. Due to the reduction in performance, higher feed temperatures 

and/or lower space velocities were necessary to ensure the complete destruction of the VOC was 

achieved. 

  Klenov et al.1027 studied the influence of flow rate on heterogeneous reactions over porous 

honeycomb monoliths with triangular channels. It was determined that there was no stabilization 

of the reacting flow over the whole of the channel length under the reaction conditions used in 

this study (Fig. 29i). The most radical changes of the gas streams appeared near the channel inlet, 

which caused the highest localized rates of interphase exchange processes; the resultant difference 

in rates observed was upto two orders of magnitude different (Fig. 29ii). A higher reaction rate 

existed in the initial section due to penetration of the feed components into the catalyst channels 

through the frontal surface, leading to an increase in the effectiveness factor (Fig. 29iii). The 

reaction rate limitation by the transport of reagents inside porous wall was observed along the 

monolith length. 

5. Influence of reaction conditions 

Based on the results reported in the literature, it can be cocluded that the reactivity of VOCs 

over catalysts generally follows the order of alkanes < arenes < esters < ketones < alcohols < 

aldehydes,15,194,382,579,1028-1030, and heteroatom (S/Cl)-containing hydrocarbons are usually more 

stable than those of aliphatic hydrocarbons and arenes.408,1031 However, the oxidation behavior of 

VOCs is also greatly influenced by reactant composition and reaction conditions. 



101 
 

5.1. Effect of water vapor 

Water is often present in flue gases emitted from various industries and is also one of the 

products of VOC catalytic oxidation. The effects of water vapor on catalytic activity were 

explored and reported, and the role of water in VOC catalytic oxidation is very complex, 

depending on many factors such as catalyst component, VOC type and reaction conditions. In 

most cases, water vapor is found to act as an inhibitor for VOC oxidation. Marécot et al.1032 

reported that the presence of water inhibited the oxidation of propane and propene over Pd and Pt 

supported Al2O3 catalysts due to decreasing of active surface for the reactions. The inbibition 

effects of catalytic deep oxidation of ethylacetate to CO2 over Pt/γ-Al2O3 and Pt/TiO2-WO3 

catalysts were also found by Verykios and co-workers.1033 It is interesting to note that the water 

promotes the decomposition of ethylacetate, which hydrolyzes to ethanol and acetic acid. 

However, the obvious inhibition effect of water on conversion of ethylacetate over 

cryptomelane-type Mn oxide was also reported recently.1034 

The inhibition effects of water on the catalytic oxidation of aromatic hydrocarbons (e.g., 

benzene, toluene, o-xylene and styrene) were also investigated. Park and co-workers537 proposed 

that the presence of water vapor in the feed had a negative impact on the activity of 1.0 wt.% 

Pt/HRM(400) catalyst (HRM(400): acid-treated red mud calcined at 400 °C) in the oxidation of 

benzene, toluene, o-xylene and hexane. Similar results were also found over a Ru-5Co/TiO2 

catalyst in benzene oxidation at low temperature (210 °C), whereas the catalytic efficiency was 

barely influenced at higher temperature (230 °C).1035 Pan et al.1036 revealed that presence of water 

vapor had a significant and negative effect on the catalytic activity of CuO/γ-Al2O3, CuO/SiO2 

and CuO/TiO2 catalysts in styrene oxidation due to the competitive adsorption of water molecules. 

Among them, CuO/TiO2 exhibited the best durability to water vapor, while CuO/γ-Al2O3 had the 

poorest. Further studies revealed that the presence of water vapor had a negative effect on toluene 

oxidation activity over CuMn-based catalysts due to the competition of water and toluene 

molecules for adsorption on surface active sites.1037 Similar results were also reported by 

Verykios and co-workers.1038 Recent work reported by Li et al.381 suggested that the water vapor 

had a significant negative influence on the activity of mesoporous Co3O4 catalysts in toluene 

oxidation (toluene conversion dropped from 90% to 61% in the presence of 5 vol.% of water 

vapor at 225 °C), while this effect could be fully eliminated after removing the water. The 
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inhibition effect of water vapor on toluene oxidaiton over CeO2 hierarchical microspheres was 

also reported by Li and co-workers.1039 

The inbibition effects of water vapor on CVOCs were reported by different researchers. 

Bertinchamps et al.1040 indicated that water had two negative effects on VOx/TiO2, 

VOx-WOx/TiO2 and VOx-MoOx/TiO2 catalysts in CB oxidation, that is, the reduction of the V 

phase and decrease in the number of strong BAS which were involved in the adsorption of CB. 

Dai et al.1041 reported that the presence of water not only obviously inhibited the oxidation of 

1,2-DCE over VOx/CeO2 materials mainly due to the blockage or competitive adsorption of active 

sites, but had retarding effect on strong Brönsted acid sites from VOx species. Their following 

work indicated that the presence of water also dramatically inhibited the activity of 

CeO2@HZSM-5 for 1,2-DCE oxidation; however, water also completely suppressed the 

formation of PCHs by-products.824 A high Si : Al ratio can also improve the water-resistance due 

to the increase in hydrophobicity. Analogous results were obtained in 1,2-DCE and TCE 

incineration over Ce-Cr supported catalysts and Ce-Zr mixed oxides.830,837,1031 

Although water is commonly regarded as a poison in the catalytic oxidation of VOCs, in some 

cases, the presence of water vapor may be beneficial. Kullavanijaya et al.1042 reported that water 

enhanced the catalytic oxidation of cyclohexene over Pt and Rh catalysts on CeO2-Al2O3 supports, 

possibly due to high activity of Rh and Pt for steam reforming. Dai and co-workers501 proposed 

that the enhancement in catalytic activity for toluene oxidation over 0.27 wt.% Pt/3DOM 

26.9CeO2-Al2O3 in the presence of moisture could be ascribed to an enhanced reoxidation of 

reduced CeO2 by water. Subsequent work from the same group also suggested that the presence of 

water vapor had a positive effect (beneficial to oxygen activation) and a negative effect 

(competitive adsorption of water and reactant molecules) on toluene oxidation over the Au-based 

catalysts.528 The positive effects of water vapor on the catalytic oxidation formaldehyde were 

reported. Wang et al.1043 indicated that both surface bound water and atmospheric water 

compensated the consumed hydroxyl groups to sustain the oxidation of formaldehyde over 

birnessite. Additionally, atmospheric water stimulated the desorption of carbonate via a water 

competitive adsorption, leading to a recovery in the birnessite activity. Leung and co-workers1044 

reported that hydroxyl radicals (·OH) from water vapor dissociation favored the adsorption and 

transfer of oxygen on the Pd/TiO2 catalysts, which enhanced formaldehyde oxidation. 
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  For catalytic incineration of CVOCs, many researchers have demonstrated the positive role 

water can play in removing Cl- from the active sites which prevents the deactivation of 

catalysts.932,1040 Zhang et al.1045 revealed that a Pt-structured anodic Al2O3 catalyst also 

demonstrated a high chlorine-resistance under moisture atmospheres, as water promoted the 

reaction of DCM transformation to clean chloride by-products from active sites. H-zeolites were 

strongly hydrated restoring hydroxyl groups to maintain their activities under wet conditions.1046 

Water vapor can act as hydrolysing agent and a source of hydrogen to help decrease by-product 

formation. Abdullah et al.1047 proposed that the presence of water increased the CO2 yield in TCE 

oxidation over a H-ZSM-5 catalyst by supply of hydrogen and suppressing chlorine-transfer 

reactions. López-Fonseca et al.1048 stated that the presence of water in the gaseous stream 

exhibited substantial beneficial effects on the performance of noble metal supported zeolite 

materials since water acted as an efficient cleaning agent for chlorine species from the surface of 

the catalysts. Furthermore, the addition of water was also important for producing the desired HCl 

rather than Cl2, and the formation of tetrachloroethylene also considerably decrease. Analogous 

results were also reported by González-Marcos and co-workers,874 who found that the preesence 

of water could promote complete oxidation of TCE to CO2 and greatly improved HCl selectivity 

over Pt/Al2O3 and Pd/Al2O3 catalysts, while the selectivities to C2Cl4 and Cl2 were greatly 

reduced.  

  In order to avoid the inhibition effect of water, hydrophobic supports have been utilized to 

expel water from catalyst surface. Wu and Chang513 reported that the use of a Pt/SDB (SDB: 

porous styrene divinylbenzene copolymer) catalyst produced better result for toluene oxidation in 

presence of water, over which 100% conversion of toluene could be achieved at 150 °C (GHSV of 

21,000 h-1), much lower than other catalysts (Pt/AC01 and Pt/AC03) with less hydrophobic 

supports. Xia et al.394 revealed that the hydrophobicity and hydrothermal stability of Pt/MCM-41 

catalysts could be increased when the MCM-41 was prepared in a fluoride medium, and found 

that this catalyst shows remarkable hydrothermal stability for toluene oxidation in the presence of 

21,000 ppm of water. Chen et al.498 suggested that the Pt-R/Meso-KZSM-5 catalyst was 

extraordinarily stable and exhibited negligible inhibition by water during toluene oxidation which 

was assigned to the good hydrophobicity of zeolite with a high Si : Al ratio. Similar results for 

toluene oxidation over hydrophilic SiO2-supported NiO or NiO-TiO2 were reported by Kim and 
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co-workers.303 AC has also been reported to be a suitable support for catalysts in the complete 

oxidation of VOCs due to its hydrophobic character. For example, the activity of Pt-10Ce/C 

catalyst in ethanol and toluene oxidation is only slightly influenced by water vapor due to the 

hydrophobic character of AC support, which prevents the adsorption of water.631 

The role of water vapor in the catalytic oxidation of VOC is rather complex, particularly at low 

temperatures. As a consequence, the effect of water vapor on specific VOC-containing catalytic 

oxidation should be considered in the design of industrial pilot plants and practical applications. 

5.2. Promotion effect of ozone 

  The use of ozone in catalytic oxidation is a promising new technology for VOC elimination as 

higher conversions can be achieved at lower reaction temperatures when compared with those 

conducted with molecular oxygen.1049-1051 Ozone-induced active oxygen species on the surface of 

catalysts plays a significant role in VOC oxidation.1052 Previous work has indicated that using 

ozone can reduce the temperature required for oxidizing VOCs by approximately 200 K, and thus 

leading to increased energy efficiency.1053 There are many examples which focus on the 

low-temperature oxidation of typical VOC pollutants (e.g., benzene,1054-1056 toluene,1057-1059 

chlorobenzene,1060,1061 1,2-dichloroethane,1062 dimethyl sulfide1063,1064 and naphthalene1065) in 

ozone catalytic oxidation system. 

SiO2-supported catalysts are effective for ozone utilization because the catalysts exhibit a low 

ozone/VOC decomposition ratio compared with other supported catalysts. 5 wt.% Mn oxide 

supported on SiO2, Al2O3, TiO2 and ZrO2, with 1000 ppm of ozone has been used to completely 

decompose 100 ppm of benzene at temperatures lower than 100 °C. Herein, SiO2 was found to be 

the most efficient support.1056 An excellent activity in the catalytic oxidation of benzene with 

ozone and a superior efficiency for ozone utilization was recently reported over a Mn/SiO2 

catalyst.1066 Similar results were also revealed by Huang et al.1067,1068 in the catalytic ozonation of 

benzene. Catalyst surface area was found to be an important factor in obtaining high catalytic 

activity.1056,1069 Einaga et al.1070 reported that manganese oxides dispersed on USY zeolite can 

completely oxidize benzene to CO and CO2 in the presence of water vapor at room temperature. 

The high activity of Mn in the oxidation of VOCs can be attributed to the better capability for 

decomposition of ozone among transition metal oxides.1071 As a result of the decomposition of 
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ozone on Mn oxides, highly active oxygen species (peroxide and atomic oxygen) are formed 

which can contribute to oxidation of VOCs at low temperatures.1072 Teraoka and co-workers1073 

further proposed that the addition of Cu, Ni and Fe (especially Cu) to Mn oxides enhanced the 

activity and stability of the Mn/SiO2 catalyst in benzene oxidation with ozone. 

  The effect of Mn loading (1, 5, 10 or 20 wt.%) on the total oxidation of toluene by ozone using 

Al2O3 supported manganese oxide catalysts was studied by Chen and co-workers.1057 It was 

suggested that lower Mn loadings possess higher activity in the oxidation of toluene. Ozone 

decomposition was more facile over these materials resulting in higher rate of toluene oxidation. 

It is reported that the combination of transition metal oxides and noble metals can lead to an 

enhancement in overall catalytic activity in the oxidation of VOCs by oxygen.364,576 Rezaei’s 

additional work1058 found that the addition of Pt improves activity of Mn oxides, leading to 

complete conversion of toluene at 70 °C (WHSV of 300 L∙g-1∙h−1). However, Pd is found to be 

ineffective in enhancing activity of Mn oxides, mainly due to a lack of atomic interaction between 

Pd and Mn. They proposed that the interaction between Pt and Mn occurred via the surface 

oxygen of Mn oxide clusters. The increasing dispersion of Pt atoms in the presence of Mn, and 

interaction with Mn increased the electron occupancy of Mn 3d orbital, which was more favorable 

for the decomposition of ozone and consequently oxidation of toluene. Teramoto et al.1059 

combined the advantageous of a ZrCeOx solid solution (superior oxygen storage capacity) and 

SiO2 (large suface), and found that Zr0.77Ce0.23O2-SiO2 provides the best resulted in terms of 

toluene conversion and CO2 selectivity. The authors indicated that the catalyst performance in 

toluene decomposition significantly depended on the capability of catalyst to retain the active 

oxygen species formed by ozone. 

CNTs have been reported to be an excellent VOC adsorbent and the addition of CNTs into 

metal oxide catalysts can promote VOC oxidation.1074,1075 MnOx/CNTs materials were prepared 

by an impregnation method and their catalytic oxidation performances of CB with the assistance 

of ozone were investigated. The results suggested that ozone efficiently promoted CB catalytic 

oxidation over MnOx/CNTs, and CO2 selectivity above 95% could be achieved at 80 °C (GHSV 

of 36,000 h−1). Moreover, MnOx/CNTs catalysts showed good stability and resistance to chlorine 

poisoning in presence of ozone.1061 The promotion effect of ozone on CB oxidation over 

CuOx/CNTs was also reported.1076 



106 
 

5.3. Existence of NOx 

  Berinchamps et al.1077,1078 reported that the presence of NO induced an increase in CB 

conversion over VOx/TiO2, VOx-WOx/TiO2 and VOx-MoOx/TiO2 catalysts. CB conversion 

continued to increase dramatically when a higher NO concentration was implemented. They 

proposed that the vanadia phase firstly gave its lattice oxygen to oxidize CB following the Mars 

van Krevelen mechanism. In parallel, the NO was oxidized into NO2 principally on the doped 

phase of WOx or MoOx. The in situ produced NO2 was then able to replace or assist O2 in the 

reoxidation of the reduced vanadia sites, leading to the regeneration of active vanadia sites. These 

could once again relinquish their lattice oxygen atoms leading to the liberation of NO in the same 

amount as it had been introduced in the stream. This higher oxidation capacity of NO2 than O2 in 

the reoxidation of the vanadia reduced sites induced a speeding up of the oxidation cycle in the 

first step, which corresponds to the increase in CB conversion.1078 Zhang and co-workers1079 

proposed that the existence of NOx could dramatically promote the oxidation of methanol as 

demonsrated by the reduced reaction temperature and significantly enhanced CO2 selectivity. 

  Mrad et al.1029 found that the existence of NO can compete with propene for the active metal 

sites causing a reduction in propene conversion over CuMgAlFeOx hydrotalcite-like catalysts. 

Similar results were also obtained by Samojeden and co-workers1080 who revealed that the 

conversion of ethanol on the modified layered aluminosilicates decreases slightly in the presence 

of NOx. However, the presence of NOx in the reaction mixture does not affect the stability of the 

used catalysts. 

5.4. Mutual effect of miscellaneous VOCs 

  Generally, industrial flue gas streams contain a mixture of VOCs with different physical and 

chemical properties (Table S3) rather than a single compound. Special attention has been paid to 

the relatively few scientific studies involving mixtures of VOCs since the catalytic reaction of a 

component in a mixture cannot be predicted solely from the behavior of the individual 

components. To understand the mutual effects of representative VOCs contained in industrial 

exhausts is extremely important especially when one component of a gas stream is significantly 

more toxic than other components, and research on its behavior in mixtures is not available. 

  The presence of other molecules usually inhibits the oxidation of VOCs attributed to the 
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competition among different VOC pollutants and reaction intermediates for adsorption 

sites.203,1081 In the vast majority of cases, aromatic hydrocarbons demonstrate significant 

inhibition effects on aliphatic hydrocarbons. Burgos et al.1082 found that catalytic oxidation rate of 

2-propanol over a Pt-Al2O3/Al monolith significantly decreased in the presence of toluene and 

MEK due to the competitive adsorption over Pt sites. Similarly, the inhibition effect of o-xylene 

on the catalytic oxidation of isopropanol over NaX zeolite was reported by Magnoux and 

co-workers.1030 The authors demonstrated that the concentration of o-xylene influenced the 

formation of secondary products (e.g., propene and coke) resulting from the isopropanol 

transformation. More recently, a significant inhibition effect of o-xylene in the oxidation of 

cyclooctane was proposed by Bozga and co-workers.1083 Santos et al.579 reported that toluene 

inhibited both EA and ethanol oxidation (especially for EA) over a cryptomelane catalyst. On the 

contrary, toluene oxidation is only slightly inhibited by the presence of EA, while the presence of 

ethanol has a promoting effect. Co-existence of EA and ethanol has a mutual inhibitory effect on 

each other, which is more evident in the case of EA.579 Reciprocal inhibition effects of EA and 

ethanol as well as the suppressive effect of toluene on EA and ethanol over MnOx/γ-Al2O3 

catalyst were also revealed by Cadús and co-workers.1084 Our previous work demonstrated that 

propanal oxidation over CuCeOx mixed oxides could be remarkably suppressed by introduction of 

toluene, while the presence of propanal had a negligible effect on toluene oxidation (Fig. 30).449 

Dangi et al.1085 found that methyl tert-butyl ether conversion was distinctly inhibited by benzene 

over a monolith Pt/Al2O3 catalyst, while no inhibition effects were seen for methyl tert-butyl ether 

on benzene. 

  The co-existence of aromatic hydrocarbons can lead to the inhibition of each other when they 

reacted together. Ordóñez et al.1086 reported that the presence of both benzene and toluene 

inhibited the conversion of each other over Pt/γ-Al2O3 catalyst. In addition, n-hexane did not 

affect the conversion of benzene and toluene, while the presence of benzene or toluene inhibited 

the oxidation of n-hexane. Similar results regarding the mutual suppressive effects of benzene and 

toluene were also reported in our previous work.1087 It was found that EA demonstrated a clear 

inhibitory effect on benzene oxidation, while EA had a promoting effect on toluene conversion. 

  The existence of hydrogen-containing aliphatic/aromatic hydrocarbons has different effects on 

the oxidation of CVOCs. Gutiérrez-Ortiz et al.203 proposed that 1,2-DCE, TCE, and n-hexane 
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inhibited each other over CexZr1-xO2 mixed oxides due to competitive adsorption. Additionally, 

selectivity to HCl during the oxidation of 1,2-DCE or TCE was noticeably enhanced when 

n-hexane was co-fed into the reaction. Similar results were also found using other H-rich 

additives such as toluene and water in 1,2-DCE or TCE oxidation.953,955 Wang et al.774 found that 

the addition of toluene had no effect on the decomposition of CH2Cl2, although it suppressed 

CH3Cl formation. 

The catalytic oxidation of CB on a Pt/γ-Al2O3 catalyst in binary mixtures with various 

hydrocarbons (e.g., toluene, benzene, cyclohexane, cyclohexene, 1,4-cyclohexadiene, 2-butene 

and ethene) was explored. Herein, it was found that the addition of hydrocarbons increases the 

rate of conversion of CB. The co-feeding of hydrocarbons invariably reduces the output of 

polychlorinated benzenes, especially for toluene, ethene, and 2-butene.1088 Similarly, the 

promotion effects of other VOCs (e.g., toluene, ethanol and acetone) on the catalytic oxidation of 

TCE and trichloromethane over Pt-Pd-based catalysts have been reported.1089 

Musialik-Piotrowska and Mendyka1090 stated that both hydrocarbons and ethanol enhanced CB 

oxidation over Pt-based catalyst, while 1,2-DCE conversion was inhibited in the presence of these 

additives. The promotional effects seen with the presence of heptanes in CB oxidation over 

Pt/γ-Al2O3 catalysts were also reported by Brink et al.1091 and Jong et al.1092 Magnoux and 

co-workers1093 revealed that the presence of benzofuran in a benzofuran/o-DCB mixture clearly 

improved the conversion of chlorinated compounds, decreased the production of chlorinated 

by-products and enhanced the selectivity to CO2. 

  The mutual effect of VOC mixtures is also dependant on catalyst type and component. Activity 

of two noble metal catalysts (Pt and Pd) supported on a metallic monolith and perovskite 

(La0.5Ag0.5MnO3) on a cordierite monolith was comprehensively tested in the oxidation of toluene, 

n-heptane, ethanol, ethyl acetate, acetone, MEK and TCE.1081 The results indicated that each 

compound in the reaction mixtures strongly enhances TCE oxidation only over Pt catalyst. 

Alternatively, the promoting effect on TCE oxidation over Pd catalystis only observed for toluene 

and ethanol. Over La0.5Ag0.5MnO3 supported catalyst, all non-chlorinated compounds are found to 

inhibit TCE oxidation. The presence of TCE is found to inhibit the oxidation of all compounds 

added over both noble metal catalysts; however, it has no influence on ethanol, ethyl acetate, 

acetone, and MEK oxidation over the perovskite supported catalyst.1081 
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The above results demonstrate that it is necessary to carefully select not only the catalyst to be 

used but also the reaction conditions when treating industrial flue gases containing different 

mixtures of organic compounds and chlorinated hydrocarbons. 

6. Catalyst deactivation and regeneration 

6.1. Catalyst coking, poisoning and sintering 

A promising catalyst for industrial applications should present not only high catalytic activity, 

but also good stability and durability. However, most catalysts suffer from different kinds of 

deactivation such as coking, poisoning and thermal sintering under operating conditions of 

catalytic VOC oxidation.1094 Carbonaceous deposits (coking) on the catalyst often occur with the 

oxidation of VOCs and can lead to a loss in oxidation activity of the catalysts. Active sites 

poisoned by chloride, sulfide, nitride, bromide or other reaction intermidiates have been widely 

reported and studied in VOC oxidation,228,909,975,1095-1097 especially for the heteroatom-containing 

VOCs. Coking and poisoning can disable active sites and/or obstruct the pores of catalyst. The 

selectivity in oxidation reactions may also be altered as the former may decrease the effective 

diffusivity of reactants and products while the latter may reduce the intrinsic rate of formation of 

reaction products. A catalyst can also be deactivated by the loss of active sites or a change in 

relative distribution of active sites due to the structural changes of the catalyst caused by thermal 

sintering.1094 

Intermediates produced during VOC oxidation are one of the major sources of catalyst 

deactivation (coking).1098,1099 Ihm et al.1100 found that the deactivation during oxidation of 

n-hexane over Pd/Al2O3 was mainly due to the formation of carbonaceous intermediates. Antunes 

et al.1101 reported that the carbonaceous deposits, mainly composed of aromatic hydrocarbons and 

oxygenated aromatic compounds (the latter being predominant at low temperature), were usually 

found inside the pores of Cu/NaHY catalysts during the deep oxidation of toluene. The increase 

of Cu content promoted the oxidation of toluene and facilitates the removal of coke. Dégé et al.547 

proposed that the formation of coke over Pd/HFAU catalysts in xylene oxidation was attributed to 

the acidic properties of catalyst (the lower the number of acid sites and the slower the coke 

formation). Our previous work also found that the zeolites with higher acidity facilitated the 

formation of coke in deep oxidation of benzene, toluene and EA.168 Two types of coke, that is, 
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“light coke” (monoaromatic polysubstituted compounds) and “hard coke” (polyaromatic 

compounds), were revealed by Ribeiro and co-workers1102 in the deep oxidation of methyl 

cyclohexane with HUSY zeolites. Similar results were also reported by Hosseini et al.239 for 

propene and toluene oxidation over Au-Pd loaded TiO2 catalysts. 

  The influence of chlorine on catalysts is a major problem leading to deactivation in the 

oxidation of CVOCs. The majority of catalysts used for the oxidation of CVOCs were deactivated 

to different extents by chlorine attack.46,830,854 Zeolites with high specific surface areas, variable 

pore structures and remarkable acidic properties present excellent catalytic performance for 

CVOC oxidation.227 However, zeolite catalysts are usually subjected to coking and/or chlorine 

poisoning during the oxidation processes. The effect of coking on the stability of H-zeolites 

depends strongly on their pore channel structure. The detrimental effect chlorine, specifically over 

the BAS, is most severe when oxidizing molecules with a H : Cl ratio < 1, since the hydrogen 

atoms present are not sufficient to restore the consumed hydroxyl groups.854,1046,1103 Wu and 

co-workers782 found that coking was the primary reason for Fe-O/HZSM-5 catalyst in the 

oxidation of DCM which was attributed to its lower oxidation capacity toward the intermediate 

products. Cu-O/HZSM-5 catalyst was found to be severely poisoned by chlorine species owing to 

the formation of stable Cu(OH)Cl species. Aranzabal et al.1046 revealed that both coke formation 

and chlorine poisoning were the causes of H-zeolites (H-ZSM-5, H-MOR and H-BEA) rapid 

deactivation during TCE oxidation. Chlorine atoms cause the irreversible deactivation of zeolites 

by attacking the BAS, leading to structural changes. Subsequent work confirmed that the 

deactivation of H-zeolites in TCE oxidation leads to a decrease in the selectivity to HCl and CO2, 

and an increase in the selectivity to tetrachloroethylene and tetrachloromethane.862 

  Sulfur-containing VOCs may deactivate the catalyst and reduce the efficacy of catalytic 

incineration. It is reported that the poisoning effects of sulfur is more apparent for 

Al2O3-supported catalysts than those of silica-supported catalysts.159 Yu et al.1104 attributed the 

poisoning effect of sulfur on Pd/Al2O3 to the formation of aluminum sulfate above 473 K. Chu et 

al.1105,1106 also concluded that (CH3)2S and C2H5SH had poisoning effects on Pt/Al2O3 catalyst, 

especially at low temperatures. Darif et al.984 revealed that doping of SiO2 over Al2O3 leaded to a 

more selective and stable catalyst for dimethyl disulfide oxidation. Recently, their additional work 

has confirmed that sulfate formation during dimethyl disulfide oxidation was one of the most 
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important contributing factors in the deactivation of industrially aged Pt/Al2O3 catalyst.975 

  Catalysts can also be deactivated by thermal sintering, which re-disperses active sites and alters 

the physicochemical properties of catalysts.87,753 Catalytic oxidation of benzofuran and a 

benzofuran/o-DCB binary mixture over zeolite catalysts was investigated by Magnoux and 

co-workers.1093 It was found that 1.2 wt.% Pt/HY catalyst initially deactivated during the first 24 

h reaction due to Pt sintering, leading to a collapse of the cristallinity of the zeolite. Zhang et al.839 

proposed that the coking and chlorine attack were not the main reasons for LaMnO3 catalyst 

deactivation in VC oxidation, but rather parameters such as lower specific surface area, weakened 

low-temperature reducibility, lower Mn4+/Mn3+ molar ratio and inhibited surface oxygen mobility 

of the used catalyst caused by sintering. 

Catalyst deactivation can also be attributed to the presence of water in exhaust gases or water 

formed in situ during VOC oxidation reactions. However, water can also play a positive role in 

the case of CVOC oxidation, namely, removing deposited chlorine on catalyst surface as well as 

reacting with chlorine to produce HCl by the Deacon reaction.874,932 Dai et al.854 reported that 

trichloroethlyene oxidation was inhibited at lower water concentrations (3%), but enhanced to a 

certain extent at higher water concentrations (12%). Additionally, HCl selectivity was much 

improved with the addition of water to the feed by combination of hydrogen species with surface 

bound chlorine. Wu and co-workers909 found that the presence of water could not only protect the 

active sites of Mn0.8Ce0.2O2 from accumulated chlorine poisoning, but acted as H·and OH·radical 

source to deeply oxidize CB over MnxCe1-xO2/H-ZSM5. Guillemot et al.1103 proposed that water 

vapor played an important role in tetrachloroethylene oxidation and limited catalysts (Pt/HY, 

Pt/NaY, and Pt/NaX) deactivation by acting as metallic site cleanser. 

6.2. Catalyst regeneration 

  The economical feasibility of any industrial catalytic process is based on the catalyst activity, 

selectivity, and durability, but also on the possibility of regeneration (or reactivation) and reuse. 

The ability to regenerate a catalyst depends upon the reversibility of the deactivation process. 

Several approaches, such as heat treatment, ozone oxidation, chemical regeneration and oxygen 

plasma treatment, are available for the regeneration of catalysts. 

Carbonaceous deposits are relatively easily removed through gasification with H2, O2, water or 
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O3. The temperature required to gasify these deposits varies with the type of gas, the structure and 

reactivity of the deposits, and the activity of catalyst. In general, carbonaceous deposits can be 

rapidly removed with oxygen at moderate temperatures (400-600 °C).1107,1108 Kim and Shim1109 

found that the air pretreatment significantly enhanced the catalytic activity of the spent Fe-based 

catalysts in toluene oxidation at 400 °C. However, their results indicated that the hydrogen 

pretreatment had a negative effect on catalytic activity due to the formation of metallic Fe. Han et 

al.1110 proposed that the NiO/SiO2 catalyst in toluene oxidation could be regularly regeneratred 

under reaction conditions at 450 °C. Duprez and co-workers1111 also indicated that the 

carbonaceous deposits over a PtCe catalyst could be totally removed by diluted oxygen at 

moderate temperature. Deactivated industrial catalysts (by carbon or coking) were usually 

regenerated in air. However, because of the exothermic nature of the combustion reaction, 

particular attention must be given to regeneration conditions, that is, oxygen should be diluted 

with an inert gas and the regeneration temperature should be carefully controlled to prevent 

overheating and subsequent thermal degradation of the catalyst.1107 Alternatively, regeneration by 

ozone is an attractive low temperature process for coke removal due to the high oxidizing activity 

of this compound.1112-1115 For instance, Copperthwaite et al.1113 showed that an ozone-enriched 

oxygen treatment could restore activity of deactivated ZSM-5 zeolite under mild conditions 

(150 °C), while a temperature of about 450 °C was necessary with oxygen only. 

Catalyst sintering is generally irreversible. However, metal redispersion is possible under 

certain conditions in selected noble metal systems. The reactivation of thermally sintered Pt/Al2O3 

catalysts used in the simultaneous oxidation of CO and propene has been achieved by an 

oxychlorination treatment.1116 The redispersion mechanism of Pt clusters is broadly accepted on 

an atomic scale by the formation of chloride-containing surface complex [PtIVOxCly]s.
1117 

  Some poisons such as chlorine can be selectively removed by chemical washing or heat 

treatments. Vu et al.768 reported that the activity of a partially deactivated MnCuOx/TiO2 catalyst 

(due to the formation of oxychlorinated Cu and Mn species) during CB oxidation could be 

recovered by treatment in air at 350 °C. Gallastegi-Villa et al.1118,1119 proposed that wet air was 

more effective (especially at higher temperature) than dry air to regenerate catalytic activity of 

H-Beta in 1,2-DCE and TCE oxidation as it aided both coke and chlorine removal. 
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6.3. Anti-deactivation catalysts 

The stability of the catalyst is clearly a determining factor in industrial applications. Chen et 

al.1120 reported a porous Co-Cu-Mn/ZSM-5 membrane/PSSF catalyst. It was found that the 

catalyst possessed an excellent reaction stability, demonstrated by a high catalytic activity (90%) 

during the 550 h long-term catalytic oxidation of 2-propanol. The superior catalytic stability of 

1.6Au/CeO2 catalyst for 2-propanol oxidation at different reaction temperatures (120 and 150 °C) 

was reported by Liu and Yang.636 Abdelouahab-Reddam et al.631 revealed that the 

Pt-10Ce/Carbon catalysts showed no deactivation during a test for 100 h in ethanol and toluene 

oxidation. Furthermore, humid conditions had an insignificant influence on this catalyst. Recently, 

Ye and co-workers502 presented a highly stable Pt/CeO2-1.8 catalyst, which could work properly 

for 120 h with different toluene inlet concentrations and be completely negligible for 5 vol% 

water vapour at 155 °C. Other catalysts such as Au/3DOM LaCoO3 and Co3O4/3DOM 

La0.6Sr0.4CoO3 with satified reaction stability in the oxidation of toluene were also reported.395,436 

Rei and co-workers1121 proposed that the Pt/h-BN (hexagonal boron nitride) was a very active and 

stable catalyst for VOC oxidation even under a high temperature environment (500 °C) owing to 

the high thermal conductivity and water resistant ability of h-BN. 

Chlorine attack is a primary reason for catalyst deactivation during CVOC oxidation. In recent 

years, several kinds of catalysts with high resistence to chlorine poisoning and coking were 

reported. Liu and co-workers418 indicated that the SnOx-MnOx-TiO2 catalysts had excellent 

anti-deactivation ability during CB oxidation due to the lower average energy required to desorb 

Cl species and to the absence of MnOxCly on the active sites during the reaction. Wu et al.910 

developed a Mn-Ce-Mg/Al2O3 catalyst which presented high CB oxidation stability at 400 °C (no 

deactivation could be found during 1000 h reaction). Besides, the superior catalytic stability of 

MnOx/TiO2
881, MnCeLaOx

905 and Ru/Ti-CeO2
887 for CB destruction were reported. Recently, Dai 

et al.824 developed a sandwich-structured CeO2@HZSM-5 core-shell composite, and found that 

this catalyst had good activity and resistance to coking and chlorine poisoning in catalytic 

oxidation of 1,2-DCE (Fig. 31i and ii). This was due to the formed non-activated coke species and 

polyaromatic species being more easily removed via an in situ oxidation by the active oxygen 

species from CeO2. The exposed HZSM-5 is also tolerant to the chlorination of acid sites and 

prevents the direct adsorption of HCl on CeO2. Zhou and co-workers1122 revealed that the addition 
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of CeO2 or/and CuO obviously improved the durability of USY material in 1,2-DCE long-term 

oxidation because of the slight coke deposition and preserved high density of acid sites (Fig. 

31iii). In their following work, the authors proposed that the strong interaction between Cr2O3 and 

CeO2, along with the synergy between Cr2O3-CeO2 and USY zeolite resulted in less coke deposit 

and slight HCl attack on the Cr2O3-CeO2/USY catalysts and improved resistance to chlorination 

of active components.866 Similar synergistic effects among CeO2, Cr2O3, and HZSM-5 zeolite in 

the oxidaiton of CVOCs (1,2-dichloroethane, dichloromethane, and trichloroethylene) were also 

proved by the same group.855 

7. Oxidation kinetics and mechanism 

7.1. Kinetic models 

  In general, three models are adopted to explain the mechanism of deep catalytic oxidation of 

VOCs, that is, the Langmuir-Hinshelwood (L-H) model, Eley-Rideal (E-R) model, and Mars-van 

Krevelen (MVK) model. The validity of each model strongly depends on the characteristics of 

catalysts as well as the nature of the VOCs being studied. Amongst, the MVK model has been 

widely used for kinetics modeling of hydrocarbon oxidation reactions, especially over metal oxide 

catalysts. 

The L-H model assumes that the reaction occurs between the adsorbed oxygen species and 

adsorbed VOC molecules, and the controlling step of this model is the surface reaction between 

these two adsorbed molecules. The L-H model can be respectively subdivided into the single site 

L-H model and duel site L-H model according to VOC molecules and oxygen species adsorb on 

analogous active sites or different active sites. Hosseini et al.1123 reported that the oxidation 

reaction of toluene and propene over Pd-Au/TiO2 catalysts followed the L-H model where the 

molecules of oxygen and VOC were in competition for adsorption on the surface of catalyst. 

Tseng and Chu1124 proposed that the catalytic oxidation of styrene over MnO/Fe2O3 could be 

described by the L-H model. Garetto and Apesteguía369 found that benzene oxidation on Pt/Al2O3 

catalyst proceeded via an L-H mechanism, and similar results were also obtained by Danciu and 

co-workers1125 for methyl isobutyl ketone oxidation. Tseng et al.1126 revealed that the kinetic 

behavior of methyl isobutyl ketone oxidation could be accounted for by the MVK model and L-H 

model (molecular oxygen adsorption). Heynderickx et al.1127 compared the L-H, E-R, and MVK 
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models for predicting the oxidation kinetics of propane over CuO-CeO2/γ-Al2O3 catalysts, and 

found that the L-H rate equation provided the best description of the experimental data. Oxidation 

of propane was also studied by Kaichev et al.123,1128 over a nickel foil. The team proposed that the 

oxidation over metallic Ni surface occurred via the L-H mechanism, whereas the MVK 

mechanism prevailed when the reaction proceeded over NiO. Todorova et al.1129 reported that the 

oxidation of n-hexane over single component manganese and bi-component Co-Mn catalysts 

proceeded through the MVK mechanism, while the L-H mechanism was more probable for the 

Co sample. 

Based on the E-R model, the oxidation reaction occurs between adsorbed oxygen species and 

gas phase reactant molecules (or between adsorbed reactant and gas phase oxygen). The 

controlling step of the E-R model is the reaction between an adsorbed molecule and a molecule 

from the gas phase. The E-R rate expression was found to be appropriate to describe the kinetics 

of cyclohexane oxidation over Co/AC catalysts.218 Aranzabal et al.1130,1131 proposed that a 

five-step reaction network scheme, based on the E-R model, provided an accurate correlation of 

the experimental data for TCE oxidation over Pd/Al2O3 catalyst. Recently, Bozga and 

co-workers1083 revealed that cyclooctane oxidized over Pt/γ-Al2O3 followed the E-R type 

mechanism, whereas the o-xylene combustion was explained by the L-H scheme. 

  The MVK model (two-step redox model) assumes that the reaction occurs between the 

oxygen-enriched sites of catalyst and adsorbed VOC molecules. The adsorbed VOC molecules 

react with oxygen species in the catalyst, resulting in the reduction of the metal oxide. And then, 

the reduced sites are reoxidized immediately by the gas phase oxygen present in the feed. The 

reduction and oxidation rates must be equal in a steady state, and the VOC oxidation rate can be 

expressed by the following equation according to the MVK model: 

O V O V
V

O V O V

- =
δ

K K P P
r

P P K K
 

where, -rV: reaction rate (mol·m-3·s-1); KO, KV: rate constant of catalyst reoxidation and VOC 

oxidation, respectively; PO, PV: reaction partial pressure of O2 and VOC reactant, respectively; δ: 

stoichiometry coefficient of O2 in VOC oxidation. 

  Kinetic behaviors of VOC oxidation over metal oxide-based catalysts are usually described by 

the MVK model. Genuino et al.541 indicated that catalytic oxidation of benzene, toluene, 
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ethylbenzene and xylenes over Mn oxide and Cu-Mn mixed oxide proceeded via the MVK 

mechanism. Similar results were obtained by Kim and Shim1132 for catalytic oxidation of benzene, 

toluene, and o-xylene over Ce-Cu/γ-Al2O3 catalysts. Catalytic oxidation of EA and toluene over 

Cu-Ce-Zr-ZSM-5/TiO2,
382 Au/MOx (M = Cu, Fe, La, Mg, Ni, and Y)516 or Pd/ZSM-51087 obeyed 

the MVK scheme. In addtion, the catalytic oxidation behaviours of toluene over Ce-Co/La-Co 

mixed oxides,429 Co3O4/La-CeO2
1133 and Cu-Mn spinels1134 can be interpreted by the MVK model. 

Li et al.1135 revealed that the catalytic combustion of benzene over the NiMnO3/CeO2/Cordierite 

catalyst obeyed the MVK mechanism. Arzamendi et al.1136 found that the catalytic oxidation of 

MEK over Pd-Mn/Al2O3 catalysts could be explained by the MVK model. The applicability of 

MVK model in complete combustion of propane and MEK over Cr/ZrO2 was proved by 

Choudhary and Deshmukh.1137 Catalytic oxidation of propene over Au-MOx/Al2O3 (M = Ce, Mn, 

Co, and Fe),235 Cr/saponite1138 or α-Fe2O3 films1139 followed the MVK mechanism, and the 

destruction behaviours of other oxygen-containing hydrocarbons (dimethyl ether over transition 

metals (Fe, Co, Ni, Cu and Cr) cryptomelane-type manganese,1140 methanol over Pd/Y598 and 

2-propanol over Cu-Co mixed oxides643) and alkanes (isobutene over Au-MOx/CeO2 (M = Mn, Fe, 

Co, and Ni)88 and n-hexane over γ-MnO2
1141) are also proved to be reasonably fitted by the MVK 

model. 

7.2. VOC oxidation mechanism 

Confirmation of the surface oxidation mechanisms of VOCs over heterogeneous catalysts is of 

great importance to supplement catalyst design. However, many factors such as the catalyst 

elemental composition, the catalyst physicochemical properties, the pollutant composition and 

reaction condition can all drastically influence the surface mechanisms taking place. Below are 

some pertinent examples of reaction mechanism determined over various catalysts for a range of 

different VOCs. 

7.2.1. Aliphatic and aromatic hydrocarbons 

7.2.1.1. Propane 

  Garetto et al.157 reported on the catalytic oxidation mechanism of propane over Pt/zeolite (HY, 

ZSM-5, Beta and KL) catalysts (Fig. 32i). It was proposed that the rate-determining step was the 

dissociative chemisorption of propane on Pt, which involved the cleavage of the weakest C-H 
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bond followed by its subsequent interaction with oxygen atoms adsorbed on adjacent sites. In a 

parallel oxidation pathway, propane was adsorbed and activated on surface sites in the 

metal-oxide interfacial region and reacted with oxygen spilled-over from Pt. 

7.2.1.2. Ethylene and propene 

  A generalized mechanism for the catalytic oxidation of ethylene over Ag/zeolite (ZSM-5, Beta, 

Y and Mordenite) catalysts was proposed by Yang et al.256 (Fig 32ii). In this mechanism, its 

proposed that the overall reaction occurs in four steps: (1) the adsorption and activation of 

ethylene on a Brønsted acid site in the Ag/zeolite catalyst, leading to the formation of an adsorbed 

ethylene species; (2) the attack of an active oxygen species on this adsorbed ethylene species; (3) 

C-C cleavage in the adsorbed ethylene species to produce formaldehyde; (4) oxidation of these 

surface-bound formaldehyde species into carbonic acid, which undergoes sequential oxidation to 

CO2 and H2O. 

  The mechanisms of propene oxidation over various catalysts (Pt/Al2O3, Pt/BaO/Al2O3 and 

Pt/SO4
2−/Al2O3) were proposed by Weng and co-workers.228 In this study, it was porposed that 

propene adsorbed on Pt/Al2O3, proceeds from acrylates tocarboxylates and formates, before 

finally undergoing oxidation into CO2 and H2O. Over Pt/BaO/Al2O3 however, BaO modification 

leads to the formation of a more reactive enolic species, making sequential oxidation more 

favourable. The formation of active oxygen species was also observed at the Pt-Ba interface, 

leading to an increase in the oxidation rate of CO. For the Pt/SO4
2−/Al2O3 sample, di-σ bonded 

propene was strongly adsorbed on the catalytic surface, leading to a suppression in the oxygen 

activation on Pt. Therefore, initial oxidation occured through the consumption of S=O bond to 

provide necessary O atoms. The intermediate CO resulted in Pt poisoning, blocking the Pt sites 

for further propene oxidation, until operating at high reaction temperature (Fig. 32iii). 

7.2.1.3. Benzene and toluene 

  The reaction mechanism for benzene oxidation over a MnOx/TiO2 catalyst was studied by Zhu 

and co-workers,296 the observations of which were acquired from in situ FTIR experiments. As 

shown in Fig. 33, benzene first reacts with the active Mn center, giving a phenolate species with 

two conjugated structures. The oxygen-containing group was considered to act as an 

electron-donatorand ortho-para positioned director; the phenolate species could be easily oxidized 
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into o-benzoquinone and p-benzoquinone. Following this, the ring opening occurred with the 

catalyst promoting and the attack of the active oxygen species, affording the small molecule 

intermediates such as maleate and acetate species before undergoing sequential oxidationto (CO, 

CO2, and H2O). 

  Liao et al.51 reported that toluene adsorbs on the surface of polyhedra MnOx catalysts and is 

partially oxidized to benzyl alcohol, which can transform into benzaldehyde and benzoic acid. By 

increasing the reaction temperature, the benzene ring opens to form maleic anhydride, which can 

then undergo sequential oxidation to CO2 and H2O. 

7.2.3. Heteroatom-containing VOCs 

7.2.3.1. Ethanol and 2-propanol 

  Zhou et al.618 suggested that ethanol could be oxidized to produce acetaldehyde and acetic acid 

over nano-CeO2 catalysts because of the existence of surface active oxygen species (O*). In 

addition to various condensation products such as ethyl acetate, acetal and ethyl ether were also 

detected, the formation of which was attributed to the presence of acid/base sites (A/Bc) on the 

surface catalyst. It was confirmed that ethanol, the oxidation intermediates and condensation 

products could all be oxidized to produce CO2 in air; a high CO2 selectivity was therefore 

observed (Fig. 34i). 

  A reaction mechanism for the oxidation of 2-propanol over Au/CeO2 catalysts was proposed by 

Liu and Yang (Fig. 34ii).636 The authors indicated that the mechanism begins with the dissociative 

adsorption of gaseous 2-propanol to produce 2-propoxide surface species. From this intermediate, 

it was postulated that 2-propoxide either undergoes dehydration to propene over strong acid sites 

or dehydrogenation over moderate/weak acid sites or strong basic sites. In this example, the 

former reaction is dominant. 

7.2.3.2. Formaldehyde and acetaldehyde 

  The mechanism for the catalytic oxidation of formaldehyde over TiO2 supported with Pt, Rh, 

Pd and Au catalysts was proposed by Zhang and He.658 It was determined that that formaldehyde 

is first oxidized into surface dioxymethylene species and subsequently, formate species, which  

decompose to form surface-bound CO species (rate-determining step in the formaldehyde 

oxidation mechanism) before finally being oxidized to CO2 (Fig. 35i). In our previous work, we 
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determined that Co3O4{110} facets composed mainly of Co3+ cations over Au/Co3O4 and 

Au/Co3O4-CeO2 catalysts were the active site in formaldehyde oxidation,698 over which 

formaldehyde could be oxidized to formate, further oxidized to carbonateand is finally dissociated 

to CO2 (Fig. 35ii). Liu et al.1143 demonstrated that formic acid and formate are the primary 

intermediates for formaldehyde oxidation. The formate can then undergo transformation into the 

corresponding carbonate and hydrocarbonate, which can also lead to incomplete oxidation and the 

deposition of carbon on the surface of CeO2 support (Fig. 35iii). 

  Tada and co-workers707 proposed a reaction mechanism for the total oxidation of acetaldehyde 

over Au/TiO2 materials (Fig. 36). They demonstrated that acetaldehyde and O2 were firstly 

adsorbed at the dual perimeter sites of Au/TiO2 catalyst, over which acetaldehyde was 

thermocatalyzed by adsorbed O2, yielding acetic acid. The formed acetic acid moved to the TiO2 

surface where surface Ti4+ ions and bridged oxygen can act as a Lewis acid or base sites. The 

acetate ion and proton derived from the dissociation of acetic acid is strongly adsorbed on surface 

Lewis acid and base sites. Upon heating to 548 K, the adsorbed acetic acid undergoes 

decomposed to CO2 and H2O via a gold ketenylidene intermediate species by thermocatalysis 

over Au/TiO2. 

7.2.3.3. Methyl ethyl ketone 

We have previously reported on the reaction mechanism for the oxidation of methyl ethyl 

ketone (MEK) over Pd/ZSM-5 and Pd-Ce/ZSM-5 (PCxZ) catalysts.31 We determined that the 

introduction of CeO2 increased the number of by-products formed in the reaction. Ce-containing 

catalysts promoted the dehydration of a reaction intermediate (3-hydroxybutan-2-one) to form 

acetaldehyde, which lead to the formation of numerous secondary products such as acetone, 

1-penten-3-one and 3-buten-2-one, 3-methyl.  

In more recent work, we have investigated the catalytic oxidation of MEK over Pt/K-Al-SiO2 

nanorods (Fig. 37). The MEK molecules firstly adsorb onto Brønsted acid sites on the catalyst 

surface, before the monodispersed metallic Pt located in close proximity to surface K, interacts 

with the MEK leading to its oxidation. MEK was converted into 2,3-butandiol and diacetyl via 

2-butanol and acetoin intermediates. The 2,3-butandiol intermediate was oxidatively cleaved to 

form acetaldehyde and the diacetyl was cleaved to form acetaldehyde and acetic acid. 
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Acetaldehyde and aceticacid were considered the primary C2 scission product of MEK oxidation, 

which further converted into formaldehyde and formic acid over the Brønsted acid sites and 

finally were seuqneitally oxidized to CO2 and H2O.740 We have also investigated the catalytic 

oxidation of MEK over Mn3O4 metallic oxide catalysts; the results of which suggested that MEK 

oxidation to CO2 predominantly proceeds via a diacetyl intermediate species.1142 

7.2.3.4. Dichloromethane and tetrachloromethane 

  Oxidation mechanisms of CVOCs have also been extensively studied and discussed in the 

literature. It is generally agreed that dissociation of the C-Cl bond occurs first and is the 

rate-determining step. Hindermann and co-workers1147 indicated that adsorbed dichloromethane 

(DCM) molecules could react with surface hydroxyl groups in a γ-Al2O3 catalyst to yield 

chloromethoxy species. The sequential reaction of this species leads to the formation of a 

chemisorbed formaldehyde analogue and formed methoxy or formate groups. The Cl from DCM 

is released as HCl and/or reacted with γ-Al2O3 to form aluminum chloride. Recently, a two-stage 

Ce/TiO2-Cu/CeO2 catalyst with separated catalytic functions was designed and adopted as a 

catalyst for the removal of DCM by Wu and co-workers.788 The cleavage of the C-Cl and the total 

oxidation of CO were physically isolated in the two-stage system, which avoided not only the 

decrease of acid sites on Ce-Cu/TiO2 catalyst, but also avoided the chlorine poisoning of TiO2 due 

to the strong adsorption of Cl on CuO. A three-step degradation mechanism was proposed, which 

consisted of the adsorption and cleavage of the C-Cl bonds, the deep oxidation of C-H bonds in 

the intermediate species and finally, the oxidation of CO to CO2 (Fig. 38). 

  In another study, the catalytic activity and selectivity of four zeolite-Y catalysts (H-Y, Co-Y, 

Na-Y, and Co-Y/CA) were investigated for the total oxidation of dichloromethane (DCM) and 

tetrachloromethane (TCM).1146 With DCM, it was proposed that the proton from the hydroxyl 

group in the BAS is dissociated to form the corresponding carbonium ion (CH2Cl2H
+). This is 

then undergoes a sequential reaction to form the corresponding carbenium ion by abstraction of a 

molecule of HCl. The carbenium ion interacts with the O- at the cationic site to form a COHCl 

intermediate species, which subsequently dissociates into COx and HCl and results in the 

restoration of the proton on the BAS.1059 The researchers confirmed that there are major 

differences between TCM and DCM oxidation mechanisms under dry conditions, which was 
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attributed to the absence of a hydrogen source in the former. Following the abstraction of a 

molecule of HCl from the carbonium ion, it is proposed that the C+Cl3 species interacts with 

another BAS. This leads to the dissociatively adsorbed oxygen on the cationic site to form 

phosgene, releasing another molecule of HCl. The phosgene molecule adsorbed on an adjacent 

BAS forms an unstable positively charged haloacylium ion, which chlorinates the zeolitic 

structure to form AlOCl and releases a molecule of CO. Further adsorption of phosgene on the 

AlOCl site resultsin the formation of CO and AlCl3 (Fig. 39). 

7.2.3.5. 1,2-dichloroethane and trichloroethylene 

  The catalytic oxidation of 1,2-dichloroethane (1,2-DCE) over CexZr1−xO2 mixed oxides in dry 

air was studied by Gutiérrez-Oritiz and co-workers.828 They postulated that the oxidation of 

1,2-DCE proceeds via dehydrochlorination into vinyl chloride (VC) in the presence of acid sites. 

In the presence of OH surface species, these sites are protonated leading to the formation of 

carbonium ions, which can be readily attacked by nucleophilic oxygen species from the catalyst to 

form chlorinated alkoxide species. These intermediates readily decompose to generate 

acetaldehyde, which could be further oxidized to acetates and finally degraded to COx (Fig. 40i). 

Similar processes were proposed by Feijen-Jeurissen et al.1148 for 1,2-DCE oxidation over Al2O3; 

in this case, 1,2-DCE is activated via HCl elimination to VC, which is followed by an attack from 

a hydrogen and a surface oxygen on the double bond resulting in the formation of acetyl chloride. 

Acetyl chloride can then be transformed to acetaldehyde by dechloridation, which can 

subsequently undergo a series of oxidative reaction to produce acetate before decomposes to COx 

and H2O. 

The complete catalytic oxidation of trichloroethylene (TCE) over Pd/Al2O3 was investigated by 

González-Velasco and co-workers.1131 In this reaction, its proposed that gas phase oxygen 

molecules are dissociatively adsorbed onto active sites and gaseous TCE reacts directly with 

adsorbed oxygen, leading to CO and CO2 according to the E-R mechanism. The oxidative 

decomposition of TCE involved C-Cl bond dissociation by chemical interaction of the halogen 

with the precious metal and the support. This resulted in precious metal (oxide)-chloride species, 

[M(Ox)Cly], on Al2O3 and aluminum chloride. The [M(Ox)Cly] species then directly decomposes 

to molecular chlorine (Cl2) and also reacts with additional TCE in the feed by transferring 
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chlorine (Cl2) to the double bond. The pentachloroethane intermediate species was spontaneously 

dehydrochlorinated by HCl elimination, resulting in the formation of the more stable 

tetrachloroethylene. CO and C2Cl4 were also assumed to react in the gaseous phase with adsorbed 

atomic oxygen (Fig. 40ii). 

  Miranda et al.1149 proposed that the oxidation of trichloroethylene over a Ru/Al2O3 catalyst 

proceeds via at least three reaction pathways: (1) trichloroethylene reacts with oxygen, yielding 

deep oxidation products (CO2, Cl2 and HCl) directly; (2) the chlorine formed in the first step 

reacts with the double bond yielding pentachloroethane or leads to an elimination reaction 

yielding tetrachloroethene and hydrogen chloride; (3) the pentachloroethane or tetrachloroethene 

reacts with additional chlorine, yielding tetrachloromethane and trichloromethane (Fig. 40iii). 

Finally, all the chlorinated by-products formed can react with oxygen to yield the deep oxidation 

products. 

7.2.3.6. Chlorobenzene and 1,2-dichlorobenzene 

  Chlorobenzene (CB) oxidation mechanisms over CeO2 and Ru/CeO2 were proposed by Lu and 

co-workers.923 The authors suggested that the C-Cl bond in CB was dissociated with relative ease 

over Ce3+/Ce4+ active sites. Its suggested that this is then followed by its oxidation to CO2 and 

H2O by reactive surface oxygen or lattice oxygen. The adsorption of chlorine species on the active 

sites results in the rapid deactivation of the catalyst due to the blocking of the active sites. It was 

proposed that such deactivation can be prevented by the addition of Ru, which catalyzed the 

removal of adsorbed chlorine species via the Deacon reaction (Fig. 41i). 

  The catalytic oxidation of 1,2-dichlorobenzene (o-DCB) in wet air was investigated over 

protonic zeolites (HFAU, HBEA,HMFI, HMCM22 and ITQ2).924 The results from this study 

indicated that the oxidation pathways proceeds through a concerted six centered mechanism, 

where two o-DCB molecules react over the BAS. The first molecule reacts directly with protonic 

center to give HCl, and second one reacts with the first o-DCB molecule to give CB and other 

adsorbed surface species on the framework oxygen of zeolite. It proposed that these adsorbed 

species can then be oxidized by oxygen with the participation of H2O to produce CO2, CO, HCl; 

regenerating the protonic sites of the zeolite. Albonetti et al.895 concluded that both LAS and BAS 

acted as adsorption sites and that chloroaromatics adsorbed via chlorine abstraction on the LAS 
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and hydrogen abstraction on BAS (Fig. 41ii). However, the presence of numerous BAS ultimately 

led to the incomplete decomposition of chlorobenzene. 

7.2.3.7. Acrylonitrile 

  Obuchi and co-workers954 demonstrated that acrylonitrile decomposition over Cu-ZSM-5 

catalysts is initiated by the oxidation of the vinyl group to form gaseous HCN, NOx, surface 

-NCO, and nitrate species. The isocyanate species is hydrolyzed to NH3 and N2 was formed by 

the reaction between adsorbed NH3 with nitrate and by the oxidation of adsorbed NH3 (Fig. 42i). 

Poignant et al.1150 suggested that AN decomposition over Cu-ZSM-5 proceeded via AN 

adsorption → Cu+-CN → Cu+-NC → Cu+-NCO → Cu+-NH3 and that the adsorbed NH3 

subsequently reacts with NO to form N2. 

  The oxidation pathway of AN over Ag-based catalysts was reported by Obuchi and 

co-workers.956 They indicated that AN oxidation proceeds on Ag2O species and NH3 and acrylic 

acid intermediates were respectively oxidized to N2 and COx over metallic Ag. The direct 

oxidation of AN over large metallic Ag particles in Ag/ZrO2 and Ag/MgO formed large amounts 

of NOx and N2O. For Ag-ZSM-5, AN was decomposed into nitrogen-containing products and 

some hydrocarbons over Ag+, Agn
δ+ and Agn clusters (Fig. 42ii). 

8. Typical catalytic reactor and oxidizer 

  Many different types of reactors (e.g., fixed-bed reactors and fluidized-bed reactors) have been 

reported in the literature for the catalytic oxidation of VOCs. Fixed-bed reactors can be 

subdivided into continuous flow fixed-bed reactors and membrane reactors. A series of structured 

catalysts such as monolithic honeycomb catalysts and foam catalysts (detailed research progresses 

can be found in section 4), have been designed to replace conventional granular catalysts with 

high diffusion resistance in the continuous flow fixed-bed reactor, which can improve gas-solid 

contact, enhance the attrition resistance of a given catalyst and reduce pressure drops across the 

system. Recently, Nigar et al.1151 developed a microwave-heated adsorbent-reactor system 

containing an adsorptive DAY zeolite and PtY zeolite (Fig. 43). The reactor was used to 

investigate the continuous oxidation of n-hexane (500 ppm). The zeolites were selectively heated 

by short periodic microwave pulses, which resulted in the desorption of n-hexane and its catalytic 

combustion. The authors found that the reactor was highly efficient, even under realistic humid 
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gas conditions, as these conditions favored more intense microwave absorption, producing a 

faster heating of the adsorptive and catalytic beds. Under these conditions, the continuous 

removal of gaseous VOCs could be achieved with short (3 min, 30 W) microwave heating pulses 

(5 min). 

  Catalysts and porous membranes can be combined in different ways (extractor, distributor and 

contactor) depending on the required applications in a given membrane reactor (Fig. 44i).1152,1153 

Membrane reactors operating in the Knudsen regime under a flow-through configuration, is 

typically adopted for VOC removal as this type of gas-solid contactor provides an intimate 

contact between the molecules and the wall of the pores, thus minimizing any diffusive 

resistance.737,1154 The configuration of the reactor can also have a significant influence on the 

performance of catalysts for the oxidation of VOCs. Fiaty and co-workers1155 compared the 

behavior of a Pt/Al2O3 catalyst in a conventional monolithic reactor and a flow-through 

membrane reactor (contactor type) for the oxidation of propene. It was determined that 

flow-through membrane reactor performs better due to the high contact efficiency between the 

propene, O2 molecules and catalytic active sites (Fig. 44ii). This was subsequently evidenced 

further by Kajama et al.,1156 who also observed that the contactor flow-through membrane 

reactors were highly effective for this reaction. 

  Most of the published work investigating the catalytic oxidation of VOCs employs the use of 

continuous flow fixed-bed reactors. As such, it is important to consider that when supported metal 

catalysts are investigated, much of the reactor volume is occupied by the catalyst support, rather 

than the active catalytic species itself. Syed-Hassan and Li1157 recently proposed an alternative 

approach for the aerobic catalytic oxidation of ethane, which utilized a nanoparticle fluidized-bed 

reactor (Fig. 45). This novel approach benefits from many different merits which include; a low 

pressure drop, good dispersion of the active species, a uniform temperature distribution inside the 

catalyst bed and an absence of intra-particle mass transfer barriers. The preliminary results were 

exceptionally positive and indicated that the fluidized NiO nanoparticles exhibited very different 

characteristics when it was compared with a traditional NiO/SiO2 catalyst. It was determined that 

the lack of a rigid porous structure in the fluidized NiO nanoparticles facilitated the desorption of 

ethyl radicals from the surface of the NiO nanoparticles into the gas phase, which was suggested 
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to initiate further gas-phase radical reactions. This ultimately led to an enhancement in the 

reaction rate over the NiO nanoparticles. 

  Catalysis has been widely used for industrial pollution control, which is likely to be attributed 

to the high activities and selectivites which can be achieved at relatively low reaction 

temperatures. Regenerative catalytic oxidizers (RCOs) and recuperative catalytic oxidizers (COs) 

are of two main catalytic technologies in industrial VOC control. The RCO technique developed 

by Boreskov and Matros1158 in the mid-1970s combines the advantages of catalytic oxidation with 

a thermal recovery system, obtaining high treatment efficiency, low operational temperature, low 

fuel cost and low selectivity to harmful by-products. The combination of these two technologies is 

very much considered to be an energy-efficient method for eliminating VOCs.1159-1161 

  In an RCO system, chambers of inert regenerative materials with high specific heat capacities 

(800-1000 Jkg-1∙K-1) are utilized to heat the VOC stream bycooling burnt gases, through reverse 

flow operation, which can dramatically cut fuel costs. In such systems, catalysts are used to 

reduce the required reaction temperatures and increase the overall efficiency of the VOCs 

oxidation.1162,1163 As shown in Fig. 46, a two bed RCO is predominantly composed of ceramic 

layers, catalyst layers, a natural gasburner/electrical heater (for heat storage), reaction media and 

heat supply. The entry direction of the VOC flow turns over with four combined valves switching 

every 1-2.5 min. The VOC flow is preheated by the ceramic layer when passing through ceramic 

chamber A. Most of the heat can be reserved in the ceramic heat storage media (thermal recovery 

efficiency ≥ 95%) when the reacted flow proceeds down through to ceramic chamber B, and is 

ready to preheat the inlet VOCs for the next cycle.7,1163 

  It is also important to note that there are some other distinct advantages of using RCO besides 

the merits mentioned above: (1) long characteristic cooling times and short characteristic heating 

times for RCOs ensure a stable autothermal operation, despite inlet parameters fluctuating greatly; 

(2) fast start-ups are possible with RCOs as the catalyst temperature does not need to exceed 

250-350°C and this procedure typically only requires between 1 to 3 h operation time, even when 

the catalyst bed is cold; (3) the RCOs purification unit can be used as a source of secondary 

high-potential energy such as steam, hot water and hot gas when the VOC content in the gas 

mixture is higher than 2.5-3.0 gm-3. For these conditions, the released heat can be removed from 
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the hottest area of the packed bed. In some cases, this actually makes the process of gas 

purification profitable.1164,1165 

  Compared to RCOs, COs have space advantages as only a tubular/plate heat exchangeris used 

to replace regenerative thermal ceramic heat storage layers. However, the thermal recovery 

efficiency of a normal CO is generally below 70%, which is attributable to the simpler heat 

exchanger configuration. As such, COs are not suitable to use in large volume industrial streams 

with low VOC concentrations.1166 Taking into account the low initial investment and high 

flexibility, COs are suitable for treating VOC streams with low flowrate (< 5000 m3∙h-1). However, 

its important to note that the use of RCO and CO systems may not always be beneficial: (1) the 

presence of organometallic or inhibiting compounds may reduce catalytic performance; (2) 

certain compounds such as C2 to C5 paraffins, cannot be easily oxidized effectively at 

temperatures lower than 430 °C; (3) emissions should be considered when operating with low 

VOC concentrations and large flowrates.1159 Some new or coupled treating technologies have also 

been developed in an attempt to side-step the disadvantages of single RCOs or CO systems. These 

systems include; photocatalytic oxidation, adsorptive concentration-catalytic oxidation, 

regenerative thermal catalytic combustion and non-thermal plasma assisted catalytic oxidation. 

9. Conclusions and perspectives 

Catalytic oxidation is one of the most promising technologies for VOC removal; it is more 

effective and economical than the conventional thermal incineration techniques, especially for 

application in low concentration pollutant streams (< 0.5 vol.%). This article summarizes the 

progress made on the catalytic oxidation of VOCs over the past two decades from a visual 

approach; focusing on the differing pollutant types and sources. The effects of reaction conditions 

on oxidation efficiency and the causes for catalysts deactivation and protocols for their 

subsequent reactivation were discussed. Kinetic models and oxidation mechanisms for 

representative VOCs were considered and typical catalytic reactors and oxidizers for industrial 

VOC destruction were reviewed. 

Noble metal supported catalysts generally exhibit a superior activity to metal oxide catalysts; a 

trend which is perhaps most pertinent in the total catalytic oxidation of alkanes, alkenes and 

oxygen-containing VOCs. Amongst these, Pt and/or Pd supported catalysts are the most 
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extensively studied, which is likely to be attributable to their high efficiency for the removal of 

VOCs at relatively low temperature. The activity of supported noble metal catalysts is mainly 

governed by the intrinsic properties of the active phase and support, active metal precursor, total 

metal loading, preparation method and status of metal active sites (dispersion, size, morphology, 

and valence). Although noble metal based catalysts often have a higher activity than metal oxide 

catalysts, in general they suffer from several disadvantages, such as; the expense of the metal 

precursors and its poor natural abundance, high volatility and low resistance to heteroatom 

poisoning such as Cl and S; Ru is somewhat an exception to this does, as it has a relatively higher 

tolerance to Cl than other noble metal catalysts. By comparison, the efficiency of single metal 

oxide catalysts for the removal of VOCs is usually considerably lower than that of noble metal 

supported catalysts, but they are typically more tolerant to poisoning. In general, the most active 

single metal oxide catalysts for the complete oxidation of VOC are oxides consisting of Mn, Co, 

Cr, Fe, Ni, and Cu, as these are reducible and can strongly adsorb organic compounds at anionic 

oxygen sites in oxide lattices, leading to the activation of VOC molecules, formation of 

intermediate species and promoting the subsequent complete oxidation. In the field of CVOC 

treatment, especially under humid atmosphere, catalytic hydrolytic oxidation has been happened. 

The metal oxide catalysts (e.g., CrOx and VOx) with high Cl resistance have distinctive 

advantages over noble metal supported catalysts. Similar results are reflected from the 

decompositon of NVOCs (selective catalytic oxidation in general) as the amount of NOx 

by-product over noble metal based materials, is typically much higher than that over transition 

metal catalysts such as Cu-ZSM-5. Great efforts have been made to develop more efficient 

catalysts based on transition metal oxides for the catalytic oxidation of VOCs, the primary aim of 

which is to improve the low-temperature efficiency and ultimate exhibit activity which is 

competitive with that observed over noble metal supported catalysts. Mixed metal oxides have 

significantly different properties (morphology, texture, redox and acid-base) than the single metal 

oxides, which makes mixed metal oxides such as NiMnOx, CuMnOx, and CoMnOx in general, 

possess higher catalytic activities than their analogous single metal oxide forms. Monolithic 

catalysts are highly suited for large scale applications such as the industrial abatement of VOCs. 

Their desirability in such applications is attributed to the low-pressure drop they provide and their 

excellent mass and heat transfer performance. Moving forwards, we consider it to be crucial that 
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data concerning mass and heat transfer effects on catalytic reaction rates is carefully considered 

when designing monolithic systems for the catalytic oxidation of VOCs. 

Water vapor is commonly present in industrial flue gase streams. These streams can often also 

consists of various mixtures of VOCs rather than just a singular pure component. Co-occurrence 

of water vapor in VOCs mixture should have the activity effect on a given catalyst. In most cases, 

water vapor acts as an inhibitor in VOC oxidation due to competitive adsorption and reaction of 

water molecules and reactants on catalytic active sites. The use of hydrophobic supports seems be 

an effective protocol to alleviate such inhibition. The presence of water vapor is however in some 

cases, is beneficial for the oxidation of some VOCs. Water can assist with oxygen activation and 

replenish consumed hydroxyl groups on a given surface. For the catalytic destruction of CVOCs, 

water vapor can also play a positive role in removing Cl- from active sites and can prevent 

catalytic deactivation. Moreover, water can also act as a hydrolysis agent and source of hydrogen, 

which in some cases, can decrease by-product (e.g., poly-chlorinated hydrocarbons, PCHs) 

formation. 

The rates of reaction for a given compound in a stream containing mixtures of VOCs cannot be 

predicted solely from the behavior of the individual components, as mutual effect and reactivity 

of VOC mixtures is related to many parameters such as the catalyst type, pollutant component and 

reaction conditions. In the vast majority of cases, aromatic hydrocarbons have significant 

inhibition effects on aliphatic hydrocarbons, while the inhibition effects of aliphatic hydrocarbons 

on aromatic hydrocarbons are relatively weak. The co-existence of aromatic hydrocarbons can 

also inhibit each other. The existence of aliphatic/aromatic hydrocarbons has different effects on 

the oxidation of CVOCs as the hydrocarbon additive can compete with CVOC molecules for 

adsorption sites. In addition to this, they can act as a source of H, which can reduce the generating 

of hydrocarbon by-products and enhance the selectivity to HCl and CO2. Therefore, special 

attention should be paid to understand how different VOCs can affect the reactivity of one another 

over different catalysts. 

Despite the progress made in this field, many issues remain and must be resolved to meet the 

stringent emission standards in an economical and effective manner. Moving forward, we 

consider that future efforts should focus on the following aspects: (1) developing efficient 

catalysts with highly dispersed active phase or highly exposed reactive facets, abundant defect 
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sites and strong interfacial interactions, for instance, hierarchical porous materials, 

skeleton/channel-confined materials, core-shell structured materials and single-atom catalytic 

materials; (2) designing highly active, universally applicable and stable catalysts, with a strong 

resistance to poisons (particularly for halogenated or sulfur-containing organic pollutants) as the 

practical reaction environments are usually very complicated and trace pollutants including water 

vapor, ammonia and sulfur containing compounds may co-exist in these streams; (3) exploit the 

developments made in the field of molecular modelling; use of theoretical calculations and 

models to simulate mass and heat transfer effects and predict the reaction behavior of given 

systems/reactors, especially for mixed VOCs catalytic destruction; (4) demonstrate how bond 

cleavage and oxidation mechanisms of VOCs are influenced by reaction conditions or time at the 

molecular level. This can be achieved through application of in situ/operando characterization 

techniques such as FTIR, synchrotron radiation, isotopic tracer techniques and highly sensitive 

real-time monitoring techniques such as proton transfer reaction-mass spectrometry; (5) establish 

how different catalytic active sites (i.e., redox center, noble metal active sites and acidic/basic 

center) activate the VOC and intermediate species in order to develop a deeper understanding of 

desirable properties to aid future catalyst design; (6) derive a greater understanding of the 

deactivation or poisoning mechanisms of different catalysts. This can be achieved by establishing 

correlations between the material surface chemistry and its catalytic performance, and through 

exploration of effective regeneration methods (in particular, in situ regeneration) for deactivated 

catalysts, to reduce the operating cost and ultimately, increase industrial viability; (7) 

development of coupling technologies such as adsorptive concentration-catalytic oxidation, 

regenerative thermal catalytic combustion, non-thermal plasma assisted catalytic oxidation, 

ozone-catalytic oxidation and photo induced catalytic oxidation to enhance VOC removal in a 

more efficient and cost-effective way. 
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