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____________________________________________________________________ 

Abstract 

    Rule learning is a special type of machine learning approaches, and its key 

advantage is the generation of interpretable models, which provides a transparent 

process of showing how an input is mapped to an output. Traditional rule learning 

algorithms are typically based on Boolean logic for inducing rule antecedents, which 

are very effective for training models on data sets that involve discrete attributes only. 

When continuous attributes are present in a data set, traditional rule learning approaches 

need to employ crisp intervals. However, in reality, problems usually show shades of 

grey, which motivated the development of fuzzy rule learning approaches by employing 

fuzzy intervals for handling continuous attributes. While a data set contains a large 

portion of discrete attributes or even no continuous attributes, fuzzy approaches cannot 

be used to learn rules effectively, leading to a drop in the performance. In this paper, a 

multi-stage approach of mixed rule learning is proposed, which involves strategic 

combination of both traditional and fuzzy approaches to handle effectively various 

types of attributes. We compare our proposed approach with existing algorithms of rule 

learning. Our experimental results show that our proposed approach leads to significant 

advances in the performance compared with the existing algorithms. 

Keywords: Fuzzy classification; Fuzzy rules; Machine learning; Rule learning. 

_____________________________________________________________________ 

1. Introduction  

Rule learning is one of the popular approaches of machine learning, especially 

given its advantage on interpretation of how a rule based model is used to map an input 

into an output. In the algorithmic setting, rule learning can be achieved through two 

main strategies, namely, divide and conquer (DAC) and separate and conquer (SAC). 

The DAC strategy aims at generating a set of rules automatically represented in the 
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form of a decision tree [25], i.e., each individual rule can be extracted from a branch of 

the tree (traversing from the root to a leaf node). Therefore, the DAC strategy is also 

known as the Top-Down Induction of Decision Trees (TDIDT) [29]. In contrast, the 

SAC strategy aims at generating a set of rules in the ‘if-then’ form directly from training 

data in a sequential manner [28], i.e., one rule is generated first and the instances 

covered by this rule are deleted from the training set before initiating the generation of 

the next rule on the basis of the remaining instances. Therefore, the SAC strategy is 

also known as the covering approach [30]. In order to distinguish these two strategies, 

we use the two terms ‘decision tree learning’ and ‘rule learning’ for referring to the 

DAC strategy and the SAC strategy, respectively, in the rest of this paper. 

In practice, both the decision tree learning and rule learning approaches can be 

used for classification and regression tasks in the setting of supervised learning, 

depending on the actual type of data outputs. In particular, when the output is discrete 

(categorical), the supervised learning task needs to be defined as training of 

classification models (classifiers). Therefore, the trained decision trees or rules can be 

referred to as classification trees or classification rules in this context. When the output 

is continuous (numerical), the supervised learning task needs to be defined as training 

of regression models. Therefore, the trained decision trees or rules can be referred to as 

regression trees or regression rules in this context.  

In this paper, we focus on classification tasks and investigate effective ways of 

advancing the performance of rule-based classification. Traditional approaches are 

typically based on Boolean logic, which indicates that the generated rules involve one 

or more hard conditions [30], i.e., a rule cannot be used to classify an instance unless 

some attribute values of the instance are satisfactory (meeting all the conditions). In 

this setting, the outcome of rule-based classification would be deterministic so the 

trained rules are usually called deterministic rules [29]. 

In real word applications, traditional approaches that are used to train deterministic 

rules can generally result in a high risk of overfitting, due to two main reasons. Firstly, 

real data usually remain a high level of uncertainty [31]. For example, the data quality 

is unknown indicating the possible case of noise [24]. Also, real data are likely to be 

incomplete and it is very uncertain how well the data can be representative of a full 

population (data distribution) in a specific domain [23]. From the above points of view, 

deterministic rules trained on real data would be less generalizable, leading to the case 

that the hard conditions involved in the rules can leave new instances uncovered by any 

of the rules or make new instances incorrectly covered by one or some of the rules. In 

other words, due to the low generalizability of the deterministic rules, new instances 

are likely to be incorrectly classified or unclassified, while the binary truth value 

(indicating that the joint conditions involved in a rule are fully met or not) is shifted 
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sharply from 0 to 1 or in the opposite way. On the other hand, the majority of real world 

problems cannot be simply formulated as black and white, i.e., these problems show 

some shades of grey [22, 45]. For example, a condition may be partially met to a certain 

degree although it is not fully met. On the basis of the above argumentation, fuzzy logic 

has been employed more popularly for reducing the risk of overfitting and advancing 

the performance of rule-based classification. 

Although fuzzy rule learning approaches can be used to deal more effectively with 

continuous attributes in comparison with traditional rule learning approaches, while a 

data set contains only discrete attributes or a small portion of continuous attributes, 

traditional approaches would be more suitable, since fuzzy approaches cannot handle 

discrete attributes leading to a drop in the classification performance. In this context, it 

would be very necessary to propose a mixed rule learning approach that is capable of 

handling more effectively various types of attributes. On the other hand, existing 

approaches of rule learning typically involve only a single stage of learning. In order to 

increase the depth of learning, it has become more necessary to let a learning approach 

involve multiple stages. In this paper, we thus propose a mixed rule learning approach, 

which involves a multi-stage fuzzy rule learning part for handling continuous attributes 

in more depth and a traditional rule learning part for handling both discrete attributes 

and continuous attributes in diverse ways. In this way, we can achieve to take 

advantages of fuzzy approaches for handling continuous attributes without loss of the 

effectiveness of dealing with discrete attributes. 

The rest of this paper is organized as follows. Section 2 provides a review of rule 

learning and some existing algorithms are analyzed in details for identifying their key 

limitations. In Section 3, we present some preliminaries on fuzzy logic and rule-based 

classification and illustrate our proposed multi-stage approach of mixed rule learning. 

In Section 4, we provide details on the setting of our experiments and discuss the 

experimental results. In Section 5, we draw the conclusions by stressing the 

contributions of our work and suggesting some further directions.  

 

2. Related Work 

As mentioned in Section 1, the rule-based models trained through the DAC and 

SAC strategies are automatically represented in two different forms. In particular, the 

former strategy leads to the automatic representation of decision trees, whereas the 

latter directly results in the representation of ‘if-then’ rules. The main reason is due to 

the essential difference between learning of decision trees and learning of ‘if-then’ rules 

in terms of algorithmic design [25]. In other words, decision tree learning is achieved 

essentially through recursive selection of attributes for the nodes of the decision tree 
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being trained, whereas rule learning is achieved through iterative selection of attribute-

value pairs to form the antecedents of the rule being learned [28]. 

In the context of decision tree learning, the most classic algorithms include ID3 

[38], C4.5 [40] and CART [5]. In particular, the ID3 algorithm is designed to employ 

entropy or information gain as the heuristics for attribute selection, i.e., for each node 

of the decision tree being trained, the attribute that obtains the minimum entropy or the 

maximum information gain is selected to show how a training set is split into subsets. 

The ID3 algorithm has demonstrated the capability of training decision trees that show 

very high accuracy of classification especially on the chess end game data set [37]. 

However, the ID3 algorithm can only handle discrete attributes, i.e., when continuous 

attributes are present in a data set, it is necessary to employ a method of discretization 

to change the numeric values of each attribute into multiple intervals [8]. In order to 

achieve direct handling of continuous attributes as part of the decision tree generation 

process, the C4.5 algorithm was proposed in [40] as a successor of the ID3 algorithm. 

In addition, the C4.5 algorithm was also enhanced to deal directly with missing values, 

which usually occur from real data. 

On the other hand, the CART algorithm was developed in [5] for generating binary 

decision trees, which is essentially different from the ID3 and C4.5 algorithms in terms 

of dealing with multi-valued discrete attributes. In particular, when a discrete attribute 

Ai involves more than two categorical values, if ID3 or C4.5 is adopted for training a 

decision tree, the selection of the attribute Ai for a non-leaf node would result in m 

branches corresponding to the m values of the selected attribute Ai, towards growing 

the tree. In contrast, if the CART algorithm is adopted, the non-leaf node resulting from 

the selection of the attribute Ai would only lead to two branches – one showing the 

positive case (e.g., ‘age= young’) and the other showing the negative case (e.g., ‘age≠ 

young’). For the above example, if the attribute ‘age’ contains three values, namely, 

‘young’, ‘old’ and ‘middle-aged’, then the selected value ‘young’ would be judged as 

the most effective one to discriminate between different classes. More details on the 

difference between ID3/C4.5 and CART have been explained in [25]. 

Since decision tree learning algorithms generally have the risk of producing 

models that overfit training data, more researchers have been motivated to develop 

pruning algorithms to simplify decision trees for improving the generalizability. For 

example, the reduced error pruning (REP) algorithm [10] has been successfully applied 

to the C4.5 algorithm for simplifying decision trees [39]. Also, the cost complexity 

pruning (CCP) algorithm [6] has been effectively used for simplifying decision trees 

that are trained using the CART algorithm [11]. Some other popular pruning algorithms 

include the pessimistic error pruning (PEP) algorithm [35] and the minimum error 

pruning (MEP) algorithm [36]. On the other hand, ensemble learning approaches have 
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been used to boost the effectiveness of decision tree learning. For example, the Bagging 

[5], Random Subspace [15] and Boosting [12] approaches have been used jointly for 

creating decision tree ensembles. In addition, several other ways have been taken for 

advancing the performance of decision tree learning algorithms, namely, incorporating 

cost functions into the heuristics for attribute selection [20] and employing fuzzy logic 

[44] for fuzzification of continuous attributes to train fuzzy decision trees [2, 18, 19].  

As pointed out in [13], decision tree learning algorithms usually result in the 

production of complex trees, even if pruning algorithms are used for simplification. On 

the other hand, it has been pointed out by Cendrowska in [7] that decision tree learning 

algorithms can lead to the replicated subtree problem, which not only increases the risk 

of overfitting but also results in high computational complexity. In order to address the 

above issue, it has been the motivation for some researchers to develop algorithms for 

learning rules by following the SAC strategy. In particular, the Prism algorithm was 

developed in [7] as a representative example of rule learning algorithms. Another 

popular algorithm of rule learning is called Ripper [9].  

The nature of the Prism algorithm is to select in turn each of the predefined K 

classes as the target class and then learn a set of rules from the training set for the target 

class, i.e., there are totally K sets of rules learned in parallel from the same training set 

and each rule is learned by discriminating the target class from the other classes. This 

target class based strategy of learning usually results in a large number of rules that 

could form a complex rule-based classifier [28]. In order to achieve the complexity 

reduction, some pruning algorithms have been adopted to simplify rules that are 

generated using the Prism algorithm, e.g., Jmid-pruning [32]. Also, the PrismCTC 

algorithm has recently been developed in [28] as a variant of the Prism algorithm 

through modifying the target class selection strategy, for both improving the 

classification performance and reducing the complexity of the trained rule-based 

classifiers. In addition, the Information Entropy based rule generation (IEBRG) [26] 

and Gini-Index Based Rule Generation (GIBRG) [25] algorithms have been developed 

by shifting the learning strategy to a non-target class based one, for overcoming the 

limitations of the Prism algorithm, i.e., the learning of each rule is achieved through 

discrimination between different classes without the need of selecting a target class. 

The nature of the Ripper algorithm is to select iteratively an attribute-value pair as 

a rule antecedent, based on the FOIL information gain [9]. Since the algorithm involves 

a pruning action taken as soon as a rule is completely generated and a global 

optimization stage is involved after the whole rule set has been generated, the algorithm 

is more robust to noisy data and thus less likely to result in overfitting, in comparison 

to the Prism algorithm. However, the Ripper algorithm is still based on Boolean logic 

leading to the production of deterministic rules. When a data set contains a large number 
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of continuous attributes with high variability on the attribute domains, it would still be 

difficult to avoid overfitting, due to the case that the binary truth value that shows 

whether an instance is covered by a rule can be shifted sharply from 0 to 1 (or in the 

opposite way), even if the values of some attributes are just changed slightly. In order 

to make the Ripper algorithm more robust, the Fuzzy Unordered Rule Induction 

Algorithm (FURIA) has been developed in [16] for fuzzifying the antecedents of each 

rule generated using the Ripper algorithm, which has led to an improvement of the 

performance of rule-based classification. 

FURIA is a fuzzy rule learning algorithm that does not need to consider all 

continuous attributes for generating rule antecedents, which is different from those 

earlier fuzzy rule learning algorithms that typically employ all continuous attributes for 

generating rule antecedents, e.g., the mixed fuzzy rule formation algorithm [4]. 

However, in reality, it is very likely that a data set contains not only continuous 

attributes but also discrete attributes. In this case, fuzzy rule learning approaches that 

only consider continuous attributes for generating rule antecedents would not be 

capable to perform well on learning rules from the above-mentioned type of data sets. 

Moreover, existing approaches of fuzzy rule learning typically involve only a single 

learning stage based on the crisp labels originally assigned to training instances. As 

mentioned in Section 1, real data may show some shades of grey, which indicates the 

necessity to include the intensity score (membership degree) for each class as a new 

continuous attribute (numeric label) of an instance for fuzzy rule learning. In Section 3, 

we will introduce how to achieve numeric labelling of instances for in-depth learning 

of fuzzy rules alongside diversified learning of traditional rules, through adopting our 

proposed multi-stage approach of mixed rule learning. 

3. Multi-stage approach of mixed rule learning 

In this section, some preliminaries are provided to introduce the theories of fuzzy 

logic and fuzzy rule-based systems. Furthermore, our proposed multi-stage approach of 

mixed rule learning is illustrated in details and some theoretical justifications are also 

given to show how the proposed approach can be more effective to lead to advances in 

the performance of rule-based classification. 

3.1 Preliminaries 

Fuzzy logic is based on the fuzzy set theory [44], which employs a fuzzy membership 

degree 𝑡𝑣𝑓 ∈ [0, 1] instead of a binary membership degree 𝑡𝑣𝑓 ∈ {0, 1} for making a 

judgement. In the context of machine learning, fuzzy classification is achieved by 

measuring the degree to which an instance xi belongs to a class ct, i.e., the membership 

degree 𝜇𝑐𝑡
(𝑥𝑗), where the class ct is considered as a fuzzy set S and the instance xj is 

defined as an element e of the fuzzy set S. In order to determine the membership degree 
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of an element e to a fuzzy set S, a membership function ս needs to be defined for the 

fuzzy set S as shown in Fig. 1 as an example of a popularly used trapezoidal 

membership function, where the horizontal axis indicates the numeric value v of a 

continuous attribute x (i.e., an element of the fuzzy set S) and the vertical axis indicates 

the membership degree of the value of attribute x to the fuzzy set S (i.e., 𝜇𝑠(𝑣)). In 

machine learning, the purpose of defining a membership function is to fuzzify a 

continuous attribute, i.e., it is to map the numeric value of a continuous attribute of an 

instance to the membership degree of this numeric value to a fuzzy set defined for the 

continuous attribute. 

 

Fig. 1. Trapezoidal membership function [22] 

The definition of a membership function can be achieved in practice by using 

expert knowledge or through inductive reasoning on real data. As shown in Fig. 1, the 

essence of defining a membership function is to determine the four parameters a, b, c 

and d for the trapezoidal shape, where b and c are defined, respectively, as the lower 

bound and the upper bound of the core region [b, c] for an element to obtain a full 

membership to the fuzzy set, and a and d are defined, respectively, as the lower bound 

and the upper bound of the support region (a, b) ˅ (c, d) for an element to gain a non-

zero membership degree to the fuzzy set. When the upper bound and the lower bound 

of the core region are equal, i.e., b = c, then the defined membership function would 

become triangular and the core region would be represented by a single point at which 

the membership degree of an element for the fuzzy set is equal to 1. There is another 

extreme case that the shape of the membership function becomes rectangle and thus 

there is no support region available for an element of the fuzzy set to obtain a 

membership degree between 0 and 1, i.e.,  𝜇𝑠(𝑣) ∈ {0, 1}, while a = b and c = d. 

Fuzzy classification is typically undertaken by constructing a fuzzy-rule based 

system, which can be represented in the following form: 

Rule 1: if A1 is T11 and A2 is T21 and … and Ad is Td1 then class = c1, 
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Rule 2: if A1 is T12 and A2 is T22 and … and Ad is Td2 then class = c2, 

                           ⁞ 

Rule m: if A1 is T1m and A2 is T2m and … and Ad is Tdm then class = cm. 

In the setting of fuzzy rule learning, each antecedent (e.g., A1 is T11) of a fuzzy rule is 

generated essentially through defining a fuzzy set Tik for an attribute Ai. The number of 

antecedents for each rule is the same as the dimensionality of the training data if the 

fuzzy rule learning algorithm, e.g. the mixed fuzzy rule formation algorithm [4], needs 

to select all continuous attributes. In contrast, there are also some algorithms that do 

not need to consider all continuous attributes for generating fuzzy rules, e.g., FURIA 

[16]. In this case, the number of antecedents for each rule is usually less than (but 

possibly equal to) the dimensionality of the training data that contain only continuous 

attributes. The above set of fuzzy rules represents the case that each rule has a unique 

consequent (class), but it is possible in real world applications that some rules have the 

same consequent (class), i.e., the number of classes may be less than m. 

In the fuzzy rule-based classification stage, there are generally three main 

operations, namely, fuzzification, inference and defuzzification. The fuzzification 

operation is to transform the numeric value of each attribute Ai of the instance xj into 

the membership degree to a fuzzy set Tik defined for attribute Ai involved in rule Rr. The 

inference operation is to compute the firing strength of each rule Rr using a T-norm, i.e., 

to compute the membership degree of the instance xj to the class ct shown in the 

consequent of rule Rr. Based on the firing strength of each rule Rr, we can compute the 

overall membership degree of the instance xj to each class c using a T-cornorm, i.e., 

this is to combine the firing strengths of the rules for each class ct to obtain the overall 

membership degree of the instance xj to ct. 

A T-norm is essentially to conjunct the membership degrees obtained from all the 

antecedents of rule Rr, which show the degrees to which the values of the attributes of 

the instance xj satisfy the antecedents of rule Rr. Some commonly used T-norms include 

the Min T-norm (Eq. (1)) [44], the Product T-norm (Eq. (2)) [14], Lukasiewicz’s T-

norm (Eq. (3)) [34] and Yager’s T-norm (Eq. (4)) [43] are shown as follows: 

⊤ (𝜇𝑆1
(𝑣1𝑗), 𝜇𝑆2

(𝑣2𝑗) , … , 𝜇𝑆𝑛
(𝑣𝑛𝑗)) = min

1≤𝑖≤𝑛
{𝜇𝑆𝑖

(𝑣𝑖𝑗)},               (1) 

 ⊤ (𝜇𝑆1
(𝑣1𝑗), 𝜇𝑆2

(𝑣2𝑗) , … , 𝜇𝑆𝑛
(𝑣𝑛𝑗)) =  ∏ 𝜇𝑆𝑖

(𝑣𝑖𝑗)𝑛
𝑖=1  ,                    (2)      

⊤ (𝜇𝑆1
(𝑣1𝑗), 𝜇𝑆2

(𝑣2𝑗) , … , 𝜇𝑆𝑛
(𝑣𝑛𝑗)) = 𝑚𝑎𝑥{0, (∑ 𝜇𝑆𝑖

(𝑣𝑖𝑗)𝑛
𝑖=1 ) − 1} ,         (3) 

⊤ (𝜇𝑆1
(𝑣1𝑗), 𝜇𝑆2

(𝑣2𝑗) , … , 𝜇𝑆𝑛
(𝑣𝑛𝑗)) = 1 − 𝑚𝑖𝑛 {1, [∑ (1 − 𝜇𝑆𝑖

(𝑣𝑖𝑗))
𝑤

𝑛
𝑖=1 ]

1

𝑤
}.  (4) 
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In Eqs. (1)–(4), Si denotes the fuzzy set defined for the attribute Ai and vij is the value 

of attribute Ai of the instance xj.  

A T-cornorm is essentially to combine the membership degrees 

𝜇𝑐𝑡

𝑅1(𝑥𝑗), 𝜇𝑐𝑡

𝑅2(𝑥𝑗) , … , 𝜇𝑐𝑡

𝑅𝑚(𝑥𝑗) obtained from multiple rules R1, R2, …, Rm for the same 

class ct so that we can compute the overall membership degree of the instance xj to the 

class ct. Some commonly used T-cornorms included the Max T-cornorm (Eq. (5)) [44], 

the Product T-cornorm (Eq. (6)) [14], Lukasiewicz’s T-cornorm (Eq. (7)) [34] and 

Yager’s T-cornorm (Eq. (8)) [43] are shown as follows: 

⟘ (𝜇𝑐𝑡

𝑅1(𝑥𝑗), 𝜇𝑐𝑡

𝑅2(𝑥𝑗) , … , 𝜇𝑐𝑡

𝑅𝑚(𝑥𝑗)) = max
1≤𝑟≤𝑚

{𝜇𝑐𝑡

𝑅𝑟(𝑥𝑗)} ,               (5) 

⟘ (𝜇𝑐𝑡

𝑅1(𝑥𝑗), 𝜇𝑐𝑡

𝑅2(𝑥𝑗) , … , 𝜇𝑐𝑡

𝑅𝑚(𝑥𝑗)) = ∑ 𝜇𝑐𝑡

𝑅𝑟(𝑥𝑗)𝑚
𝑟=1 −  ∏ 𝜇𝑐𝑡

𝑅𝑟(𝑥𝑗)𝑚
𝑟=1 ,       (6) 

⟘ (𝜇𝑐𝑡

𝑅1(𝑥𝑗), 𝜇𝑐𝑡

𝑅2(𝑥𝑗) , … , 𝜇𝑐𝑡

𝑅𝑚(𝑥𝑗)) = 𝑚𝑖𝑛{1, ∑ 𝜇𝑐𝑡

𝑅𝑟(𝑥𝑗)𝑚
𝑟=1  } ,             (7) 

⟘ (𝜇𝑐𝑡

𝑅1(𝑥𝑗), 𝜇𝑐𝑡

𝑅2(𝑥𝑗) , … , 𝜇𝑐𝑡

𝑅𝑚(𝑥𝑗)) = 𝑚𝑖𝑛 {1, (∑ (𝜇𝑐𝑡

𝑅𝑟(𝑥𝑗))
𝑤

𝑚
𝑟=1 )

1

𝑤
}.       (8) 

Each T-norm has a corresponding T-cornorm (e.g., the Min T-norm is dual to the Max 

T-cornorm under the order revising operation) and they make up a dual pair that is 

referred to as fuzzy norm. Therefore, the above four pairs of T-norms and T-cornorms 

shown in Eqs. (1)–(8) can be referred to as the Min/Max norm, the Product norm, 

Lukasiewicz’s norm and Yager’s norm. From Eqs. (4) and (8), we can see that Yager’s 

norm involves a power parameter ѡ. When the value of the parameter ѡ is set to 1, 

Yager’s norm would be identical to Lukasiewicz’s norm, which indicates that 

Lukasiewicz’s norm is a special case of Yager’s norm. According to the empirical 

investigation made in [14], a popular value set for the power parameter ѡ is 2, and we 

can thus refer it to as Yager’s [2.0] norm, which is the one used in this paper for 

experimentation (to be reported in Section 4). 

After the overall membership degree of the instance xj to each class ct is obtained, 

the final classification is made through the defuzzification operation by assigning the 

instance xj the class cmax that obtains the maximum membership degree. 

 

3.2 The proposed multi-stage approach of mixed rule learning 

The proposed multi-stage approach of mixed rule learning involves two main parts. 

The first part is to create a decision tree ensemble that consists of two decision trees as 

the base classifiers, where the first base classifier is trained on the original feature set 

using the C4.5 algorithm without pruning and the second base classifier is trained by 
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discretizing all continuous attributes in the original feature set by using Fayyad and 

Irani’s MDL method [11] and then using the preprocessed feature set to build a decision 

tree using C4.5 with reduced error pruning [10]. The second part is to create mn (1≤ n 

≤ N) fuzzy ensembles at each of the predefined N stages of fuzzy rule learning, while 

m shrink heuristics are used for conflict avoidance. In particular, each single fuzzy rule-

based classifier is trained using the mixed fuzzy rule formation algorithm [4] with a 

selected fuzzy norm (e.g., the Min/Max norm) as well as a selected shrink heuristic 

(e.g., border-based shrink), and then algebraic fusion of the fuzzy rule-based classifiers 

trained using the same shrink heuristic is taken using a fusion rule. In this section, we 

describe the whole procedure of the proposed multi-stage approach of mixed rule 

learning in a step-by-step manner. 

The whole procedure is also illustrated in Fig. 2, which shows that a decision tree 

ensemble is simply created only at the first stage of training but multiple fuzzy 

ensembles are created at each training stage. In particular, each fuzzy ensemble consists 

of f fuzzy rule-based classifiers, which are trained using the f selected fuzzy norms, 

respectively. However, the f fuzzy rule-based classifiers in the same ensemble need to 

be trained using the same shrink heuristic. According to the empirical investigation in 

[14], both shrink heuristics and fuzzy norms can have impacts on the performance of 

the mixed fuzzy rule formation algorithm. Therefore, we adopt m shrink heuristics to 

achieve effective creation of diversity externally among m fuzzy ensembles and also 

adopt f fuzzy norms to create diversity internally among f fuzzy rule-based classifiers 

in the same ensemble. 

In terms of training a single fuzzy classifier, the mixed fuzzy rule formation 

algorithm is designed essentially to learn fuzzy rules sequentially in an instance-by-

instance manner, i.e., each instance is checked, and then a new rule is generated or some 

existing rules are adjusted. In the whole procedure, there may be three possible cases, 

namely, ‘covered’, ‘commit’ and ‘shrink’. In particular, if an instance xj is not covered 

by any existing rules, then the ‘commit’ case is reached and a new rule Rt is generated 

to cover this instance xj by setting fuzzy sets involved in the rule antecedents. In order 

to let the instance xj obtain the membership degree of 1 to the generated rule Rt, each 

fuzzy set Si shown in an antecedent of this rule Rt is defined by initializing the lower 

and upper bounds (bi and ci) of the core region of Si according to the value vij of the 

attribute Ai of this instance xj and initializing the lower and upper bounds (ai and di) of 

the support region to cover the entire domain of the attribute Ai. For example, if the 

value vij of the attribute Ai is 2.2 and the domain of this attribute is [1.1, 5.6], then the 

initialized values of a, b, c and d would be 1.1, 2.2, 2.2 and 5.6, respectively. Once a 

new rule Rt is generated, a so-called anchor 𝜆 is set as a parameter, which remembers 

the instance xj that triggered the generation of this rule Rt and will be used in the next 
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epoch of fuzzy rule learning for further adjusting the set of generated fuzzy rules (to be 

discussed later in this section). 

 

Input: Initial training set D11, test set D’. 

Output: Class label lj for each instance xj’. 

Initialize: The index (t) of the training stage is initialized to 1, i.e., t = 1, the index (i) of a training set 

used at training stage t is initialized to 1, i.e., i = 1; 

Create a decision tree ensemble E0 using training set D11 through the two steps below: 

Step 1: Train the first unpruned decision tree DT1 by using the C4.5 algorithm. 

Step 2: Discretize all continuous attributes in D11 and then train the second pruned decision tree DT2      

by using the C4.5 algorithm alongside the reduced error pruning algorithm; 

If the number of continuous attributes Nc ≥ Nmin (the minimum number) Then  

  While t ≤ Ns (the number of training stages) Do 

    While i ≤ 2t-1 Do 

      For the index of shrink heuristic a = 1, 2,…, m Do 

         For the index of fuzzy norm b = 1, 2,…, n Do 

           Train a fuzzy rule-based classifier htiab on 𝐷𝑡i using the mixed fuzzy rule formation 

algorithm alongside the selected fuzzy norm b;  

             For each training instance xj Do 

                Predict its numeric label 𝜇𝑐𝑘

ℎ𝑡𝑖𝑎𝑏(𝑥𝑗) for each class ck 

             End For 

          End For 

         A fuzzy ensemble is created using shrink heuristic a; 

     Fusion of the n fuzzy classifiers to obtain the fused membership degree 𝜇𝑐𝑘

𝑓𝑢𝑠𝑒𝑟𝑡𝑖𝑎(𝑥𝑗) by    

     averaging the membership degrees 𝜇𝑐𝑘

ℎ𝑡𝑖𝑎1(𝑥𝑗), 𝜇𝑐𝑘

ℎ𝑡𝑖𝑎2(𝑥𝑗), . . 𝜇𝑐𝑘

ℎ𝑡𝑖𝑎𝑛(𝑥𝑗) for each class ck; 

     Use the fused membership degree 𝜇𝑐𝑘

𝑓𝑢𝑠𝑒𝑟𝑡𝑖𝑎(𝑥𝑗) as the numeric label (a new continuous     

       attribute added into training set 𝐷𝑡i) for each class ck at the next training stage t+1, i.e., 

𝐷𝑡i  is updated to become a new training set used for the next training stage t+1; 

  End For 

  End While 

  End While 

End If 

For each test instance xj’ Do 

   Classify xj’ through algebraic fusion of decision tree ensemble E0 and all fuzzy ensembles; 

End For 

Fig. 2. Procedure of the proposed multi-stage mixed rule learning approach. 
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If an instance xj is already covered by an existing rule Rk, i.e., the instance xj has a 

membership degree 𝜇𝑅𝑘
(𝑥𝑗) ∈ (0, 1] to the rule Rk, then the ‘covered’ case is reached. 

In this case, the core regions of some fuzzy sets shown in some antecedents of the rule 

Rk need to be adjusted by letting the values of the corresponding attributes fall into the 

core regions of these fuzzy sets, such that the instance xj will obtain a full membership 

(i.e., 𝜇𝑅𝑘
(𝑥𝑗) = 1) to the rule Rk. In other words, for each attribute Ai, if its value vij 

does not yet fall into the core region [bik, cik] of the corresponding fuzzy set Si, then the 

lower or upper bound (bik or cik) of the core region needs to be modified to ensure 𝑏 ≤

𝑣𝑖𝑗 ≤ 𝑐, such that the membership degree of the value vij of the attribute Ai is equal to 

1, i.e., 𝜇𝑆𝑖
(𝑣𝑖𝑗) = 1. Overall, once the ‘covered’ case is reached, the rule Rk that covers 

the instance xj must be adjusted to enable that the instance xj falls into the core region 

([b1k, c1k] ˄ [b2k, c2k] ˄ … ˄[bnk, cnk]) of the rule Rk. 

For both the ‘covered’ and ‘commit’ cases, it is necessary to take the shrink action 

to avoid conflict of classification. In particular, when an instance 𝑥𝑗 ∈ 𝑐𝑘 is covered 

by a rule Rt of class 𝑐𝑙 ≠ 𝑐𝑘, then the rule Rt must be adjusted to let the instance xj obtain 

no membership (i.e., 𝜇𝑅𝑡
(𝑥𝑗) = 0 ) to the rule. The conflict of classification may 

involve two possible cases: (1) the instance xj obtains a partial membership (the 

membership degree 𝜇𝑆𝑖
(𝑣𝑖𝑗) ∈ (0, 1)) to the rule Rt; (2) the instance xj obtains a full 

membership (the membership degree 𝜇𝑆𝑖
(𝑣𝑖𝑗) = 1) to the rule Rt. In the first case, the 

conflict of classification can be avoided without loss of rule coverage (instances of class 

cl covered by rule Rt), by adjusting the support regions of the fuzzy sets shown in some 

antecedents of the rule Rt. In the second case, the conflict of classification cannot be 

avoided without loss of rule coverage, which means that some instances of cl covered 

by rule Rt will be lost due to the adjustments of the core regions of the fuzzy sets shown 

in some antecedents of the rule Rt. Three shrink heuristics, namely, area-based shrink, 

anchor-based shrink and rule-based shrink, have been proposed and investigated 

empirically in [14] with more details on how to achieve conflict avoidance effectively. 

Once all the training instances have been checked, the first epoch of fuzzy rule 

learning is completed and we obtain an initial set of fuzzy rules. At this point, it is 

necessary to adjust all the rules by turning the core region ([b1k, c1k] ˄ [b2k, c2k] ˄… 

˄[bnk, cnk]) of each rule Rk back to the original status ([v1j, v1j] ˄[v2j, v2j] ˄… ˄[vnj, vnj]) 

represented by its anchor 𝜆 (the instance xj triggering the generation of the rule Rk) but 
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maintaining the support region ([(a1k, b1k)˅(c1k, d1k)] ˄[(a2k, b2k)˅(c2k, d2k)] ˄… ˄[(ank, 

bnk)˅(cnk, dnk)]) of each rule. In other words, for each fuzzy set Si shown in an antecedent 

of rule rk, the core region [bik, cik] of Si needs to be reset to [vij, vij], while the support 

region (aik, bik) ˅ (cik, dik) of Si remains unchanged. In this way, the core regions of the 

fuzzy rules are adjusted based on the training instances covered by these rules and this 

process is repeated for several further epochs until no new rule is generated and/or no 

conflict of classification occurs. As indicated in [4], the above process of resetting and 

adjusting the generated rules usually needs a small number (less than 10) of epochs. In 

the worst case, the number of epochs would not exceed a maximum that is equivalent 

to the total number of training instances. In practice, the maximum number of epochs 

for training a set of fuzzy rules can also be predefined. 

In terms of algebraic fusion of fuzzy classifiers, when different fuzzy norms are 

used as parameters of the mixed fuzzy rule formation algorithm, multiple fuzzy 

classifiers with diversity can be trained to make up a fuzzy ensemble. In this context, 

we can fuse multiple fuzzy classifiers by combining the membership degrees estimated 

by these classifiers for each class. In other words, each instance xj would be assigned 

different membership degrees for each class by using different fuzzy classifiers. In 

order to reduce the potential estimation error of the membership degree for each class, 

it has been a popular practice to combine the membership degrees estimated by different 

classifiers through using a fusion rule [17], such as mean (Eq. (9)), max (Eq. (10)), 

median (Eq. (11)) and product (Eq. (12)), shown as follows: 

𝜇𝑐𝑘

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗) =

1

𝑚
∑ 𝑢𝑐𝑘

ℎ𝑚
ℎ=1 (𝑥𝑗),                      (9) 

𝜇𝑐𝑘

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗) = max

1≤ℎ≤𝑚
{𝑢𝑐𝑘

ℎ (𝑥𝑗)},                  (10) 

𝜇𝑐𝑘

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗) = med

1≤ℎ≤𝑚
{𝑢𝑐𝑘

ℎ (𝑥𝑗)},                 (11) 

𝜇𝑐𝑘

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗) = ∏ 𝑢𝑐𝑘

ℎ (𝑥𝑗)𝑚
ℎ=1 .                      (12) 

In Eqs. (9)–(12), ck denotes a class with the index of k and xj represents an unseen 

instance that is being classified. The denotation  𝑢𝑐𝑘
ℎ (𝑥𝑗) represents the membership 

degree of instance xj estimated by classifier h for class ck and  𝑢𝑐𝑘

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗) thus denotes 

the overall membership degree of instance xj obtained for each class ck through 

combining the membership degrees  𝑢𝑐𝑘
1 (𝑥𝑗), 𝑢𝑐𝑘

2 (𝑥𝑗), … , 𝑢𝑐𝑘
𝑚 (𝑥𝑗) estimated by the m 

classifiers. In this paper, we take the mean rule (shown in Eq. (9)) for algebraic fusion 

of multiple fuzzy classifiers, since it is the one most popularly used in practice [17]. 
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After fusion of multiple fuzzy classifiers, the combined membership degree 

 𝑢𝑐𝑘

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗) of each instance xj for each class ck is used as a numeric label (a new 

continuous attribute) of the instance xj for the next stage of fuzzy rule learning. 

Generally speaking, at each stage (except for the first stage) of fuzzy rule learning, 

multiple fuzzy classifiers are trained separately on the instances that are assigned the 

numeric labels as new continuous attributes, which are essentially the membership 

degrees 𝑢𝑐1

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗), 𝑢𝑐2

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗), … , 𝑢𝑐𝑛

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗) for the n predefined classes) obtained 

through taking the outputs of the algebraic fusion of the fuzzy classifiers trained at the 

previous stage. For example, at the first stage of fuzzy rule learning, there are four 

classifiers trained on the instances that are assigned the original class labels (ground 

truth). After fusion of the four classifiers, for each instance xj, combined membership 

degrees  𝑢𝑐1

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗), 𝑢𝑐2

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗), … , 𝑢𝑐𝑛

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗)  are obtained for the n predefined 

classes and will be used as n numeric labels for training four new classifiers at the next 

stage. The same operation also applies to each test instance for getting n numeric labels 

used at the next stage of testing. This process is repeated until the required number of 

training stages is reached. 

The n numeric labels of each instance xj in a newly created training set for the n 

predefined classes can be obtained through two ways. In particular, the first way is 

achieved by using a previously obtained training set for training m fuzzy classifiers and 

then using each of the m trained fuzzy classifiers to predict the membership degrees 

 𝑢𝑐1
ℎ (𝑥𝑗), 𝑢𝑐2

ℎ (𝑥𝑗), … , 𝑢𝑐𝑛
ℎ (𝑥𝑗) of each instance xj for the n classes c1, c2, …, cn. In this 

way, for each instance xj, m membership degrees can be obtained for each class ck, so a 

combined membership degree for each class ck can be obtained through fusing the m 

fuzzy classifiers. Finally, the combined membership degrees 

  𝑢𝑐1

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗), 𝑢𝑐2

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗), … , 𝑢𝑐𝑛

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗) for the n classes c1, c2, …, cn are used as the n 

numeric labels of instance xj in the newly created trained set used for the next stage of 

fuzzy rule learning and ensemble creation. 

The second way of obtaining the n numeric labels of each instance xj in a newly 

created training set is to conduct 10-fold cross validation on the training set. In this way, 

each of the training instances will be treated as an unseen one in a specific one of the 

10 folds and will thus obtain n membership degrees for the n classes as predicted by 

using one of the m fuzzy classifiers trained in the specific fold. Similar to the first way 

described above, the m trained fuzzy classifiers will be fused to obtain combined 
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membership degrees  𝑢𝑐1

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗), 𝑢𝑐2

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗), … , 𝑢𝑐𝑛

𝑓𝑢𝑠𝑒𝑟
(𝑥𝑗) for the n classes c1, c2,…, 

cn, which will be finally used as the n numeric labels of instance xj in the new created 

training set used for the next stage of fuzzy rule learning and ensemble creation.  

In general, the first way of numeric labelling would be more recommended than 

the second way, since 10-fold cross validation may result in the case that training 

instances may not be well representative of test instances in some of the 10 folds. In 

this case, it is very likely to result in incorrect estimation of the fuzzy membership 

degrees for the classes, which could introduce noise in the values of the newly added 

continuous attributes (resulting from numeric labelling of instances). In other words, it 

is crucial to make sure the numeric labelling of instances is highly confident to avoid 

noise in values of the newly added continuous attributes. In this case, the newly added 

continuous attributes can be used as additionally helpful features for learning fuzzy 

rules of better quality. 

The idea of the above multi-stage fuzzy rule learning approach is naturally inspired 

from the theory of deep neural networks in a layer-by-layer processing manner. For our 

proposed approach, the depth depends on the number (N) of training stages, whereas 

the width depends on the number of trained fuzzy classifiers that make up a fuzzy 

ensemble and the number of fuzzy ensembles. From an ensemble learning perspective, 

it is crucial that each single classifier trained as a member of an ensemble must not be 

too weak in terms of its classification performance and different classifiers that make 

up the ensemble need to be diverse and complementary to each other, such that the 

fusion of these classifiers in the ensemble can lead to an effective improvement of the 

overall performance of classification [17]. Similarly, multiple fuzzy ensembles created 

using different shrink heuristics also need to be diverse and complementary to each 

other. From this point of view, the increase of depth would aim for improving the 

overall classification performance, whereas the increase of the width aims to increase 

the diversity between the trained classifiers to maximize the chance for the classifiers 

in an ensemble to be more complementary to each other. The main focus of this paper 

is thus on the increase of both the depth and the width in advancing the performance of 

rule-based classification. 

Finally, all the fuzzy rule ensembles created at the N stages of training are fused 

in an algebraic rule with a decision tree ensemble created at the first stage of training, 

in order to avoid the case that fuzzy approaches cannot learn effectively from a data set 

that contains a very small portion of or even no continuous attributes, leading to low 

performance of rule-based classification. Also, when a data set contains a large portion 

of continuous attributes, various ways of handling continuous attributes through both 

fuzzy and traditional rule learning approaches would be likely to lead to the effective 
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creation of diversity among different classifiers or ensembles, which again indicates the 

necessity to adopt fusion of the fuzzy ensembles and the decision tree ensemble, 

towards advances in the performance of rule-based classification.  

4. Experimental results 

Some experiments are conducted in this section, by using 20 data sets retrieved 

from the UCI machine learning repository [21]. Some of the data sets contain both 

discrete and continuous attributes, whereas the other data sets contain only one type of 

attributes, i.e., either discrete attributes or continuous attributes. The details of the 

selected data sets are provided in Table 1 in terms of their characteristics. 

Table 1  

Data sets used for experiments. 

Dataset name Number of discrete/continuous 

attributes 

Number of 

instances 

Number of classes 

Anneal 

Balance-scale 

Breast-cancer 

Breast-w 

Credit-a  

Credit-g 

Cylinder-bands 

Dermatology 

Diabetes 

Hepatitis 

Ionosphere 

Iris  

Kr-vs-kp 

Labor  

Lymph 

Sponge  

Tae 

Vote 

Wine 

Zoo 

32/6 

0/4 

9/0 

0/9 

9/6 

13/7 

21/18 

33/1 

0/8 

13/6 

0/34 

0/4 

36/0 

8/8 

15/3 

45/0 

2/3 

16/0 

0/13 

16/1 

898 

625 

286 

699 

690 

1000 

540 

366 

768 

155 

351 

150 

3196 

57 

148 

76 

151 

435 

178 

101  

6 

3 

2 

2 

2 

2 

2 

6 

2 

2 

2 

3 

2 

2 

4 

3 

3 

2 

3 

7 

In the setting of the proposed multi-stage approach of mixed rule learning, the 

creation of the decision tree ensemble is achieved to train two decision trees as base 

classifiers at the first stage of training only, where the first base classifier is trained 

simply on the original feature set using the C4.5 algorithm without the simplification 
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of the trained decision tree through pruning and the second base classifier is trained 

through first discretizing all the continuous attributes in the feature set and then building 

the decision tree on the preprocessed feature set with simplification of the trained 

decision tree using the reduced error pruning algorithm [10].  

The creation of fuzzy rule ensembles at each stage of training is achieved to adopt 

two shrink heuristics (anchor-based shrink and border-based shrink) for creating two 

fuzzy ensembles on each of the feature sets given at a specific stage of training. For 

example, at the first stage of training, there is only an original feature set so two 

ensembles are created on the feature set in total using the anchor-based shrink and the 

border-based shrink, respectively. At the second stage of training, there are two newly 

created training sets, since the two fuzzy ensembles created at the first stage of training 

can assign each instance two different membership degrees for each class, i.e., two 

different sets of continuous attributes (reflecting the membership degrees for the classes) 

are separately added to the original feature set to get two new training sets (containing 

all attributes in the original feature set + newly added continuous attributes). In this 

context, there are totally four fuzzy ensembles created at the second stage of training 

on the two new training sets given at this stage, i.e. on each of the two new training sets, 

there are two fuzzy rule ensembles created using the anchor-based shrink and the 

border-based shrink, respectively. In our experiments, the number of training stages (N) 

is set to 2, due to the general small size of each data set. In terms of creation of each of 

the fuzzy rule ensembles, four fuzzy rule-based classifiers are trained using the four 

fuzzy norms, namely, the Min/Max Norm, the Product Norm, Lukasiewicz’s Norm and 

Yager’s Norm, while the same shrink heuristic is used for avoiding conflict of 

classification, i.e., the shrink heuristic used for creation of a fuzzy ensemble is either 

anchor-based shrink or border-based shrink. 

In terms of internal fusion of the base classifiers in an ensemble and external fusion 

of multiple ensembles, the mean rule is used in general. However, when a data set 

contains a small portion of continuous attributes, it is more likely to result in the case 

that the performance of the decision tree ensemble could be considerably better than 

the performance obtained through fusion of all the fuzzy ensembles. In the above case, 

in order to avoid the drop in the performance of the final fusion of the decision tree 

ensemble and the ensemble that consists of all the fuzzy ensembles, the max rule is used 

instead of the mean rule for the final fusion. In addition, when a data set contains only 

one or even no continuous attribute, the second part of the proposed approach for 

creation of multiple fuzzy ensembles at multiple stages of training is thus dropped, i.e., 

only the first part for creation of an decision tree ensemble is involved, in order to avoid 

the case that fuzzy approaches cannot achieve to learn effectively from such a data set 

leading to low performance of classification. 
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For the 20 data sets shown in Table 1, there are six data sets that contain only one 

or even no continuous attribute, namely, ‘Breast-cancer’, ‘Dermatology’, ‘Kr-vs-kp’, 

‘Sponge’, ‘Vote’ and ‘Zoo’. Therefore, on the six data sets, only a decision tree 

ensemble is created for classifying test instances. Also, there are three data sets that 

contain a very small number (less than 4) or a very small portion (less 30%) of 

continuous attributes, namely, ‘Anneal’, ‘Lymph’ and ‘Tae’. Therefore, on the three 

data sets, the max rule is used instead of the mean rule for the final fusion of a decision 

tree ensemble and the ensemble that consists of all the fuzzy ensembles. 

Table 2  

Classification accuracy. 

Dataset C4.5 

[40] 

Prism 

[7] 

PrismCTC1 

[28] 

PrismCTC2 

[28] 

PrismCTC3 

[28] 

PrismCTC4 

[28] 

The 

Proposed 

method 

Anneal 0.98 0.98 0.99 0.99 0.99 0.98 0.97 

Balance-scale 0.78 0.83 0.85 0.85 0.84 0.85 0.80 

Breast-cancer 0.67 0.67 0.66 0.65 0.64 0.67 0.69 

Breast-w 0.94 0.93 0.95 0.95 0.95 0.95 0.96 

Credit-a 0.83 0.80 0.77 0.77 0.78 0.81 0.84 

Credit-g 0.68 0.74 0.70 0.68 0.68 0.70 0.70 

Cylinder-bands 0.58 0.69 0.70 0.70 0.69 0.72 0.69 

Dermatology 0.94 0.84 0.90 0.91 0.88 0.85 0.94 

Diabetes 0.72 0.70 0.70 0.69 0.70 0.73 0.76 

Hepatitis 0.76 0.76 0.82 0.81 0.78 0.83 0.81 

Ionosphere 0.89 0.90 0.92 0.92 0.92 0.92 0.93 

Iris 0.94 0.88 0.94 0.94 0.93 0.92 0.96 

Kr-vs-kp 0.99 0.98 0.98 0.99 0.99 0.98 0.99 

Labor 0.80 0.88 0.81 0.85 0.87 0.84 0.84 

Lymph 0.76 0.78 0.79 0.77 0.78 0.76 0.76 

Sponge 0.93 0.91 0.90 0.93 0.93 0.92 0.93 

Tae 0.53 0.49 0.59 0.57 0.58 0.45 0.61 

Vote 0.95 0.93 0.94 0.94 0.94 0.90 0.96 

Wine 0.91 0.84 0.93 0.93 0.90 0.94 0.96 

Zoo 0.92 0.61 0.80 0.86 0.63 0.86 0.92 

 

The experiments on all the 20 data sets are conducted through hold-out testing, i.e., 

each data set is randomly partitioned into a training set (70%) and a test set (30%). The 

random partitioning of each data set is repeated 100 times and the average accuracy 

obtained over the 100 runs on each data set is used for comparison of the performance 
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of different approaches. Table 2 is presented to show a comparison of the proposed 

approach with the other algorithms of rule learning in terms of the classification 

accuracy, where the four columns “PrismSTC1”, “PrismSTC2”, “PrismSTC3” and 

“PrismSTC4” indicate the performance of the PrismCTC algorithm, while the four 

different heuristics, namely, ‘confidence’ [28], ‘J-measure’ [28], ‘lift’ [28] and 

‘leverage’ [28], are used for rule quality measure, respectively.  

Table 3  

Number of correctly/incorrectly classified instances. 

Dataset C4.5 

[40] 

Prism [7] PrismCTC

1 [28] 

PrismCTC

2 [28] 

PrismCTC

3 [28] 

PrismCTC

4 [28] 

The 

proposed 
method 

Anneal 880/18 880/18 889/9 889/9 889/9 880/18 871/27 

Balance-scale 488/137 519/106 531/94 531/94 525/100 531/94 500/125 

Breast-cancer 192/94 192/94 189/97 186/100 183/103 192/94 197/89 

Breast-w 657/42 650/49 664/35 664/35 664/35 664/35 671/28 

Credit-a 573/117 552/138 531/159 531/159 538/152 559/131 580/110 

Credit-g 680/320 740/260 700/300 680/320 680/320 700/300 700/300 

Cylinder-bands 313/227 373/167 378/162 378/162 373/167 389/151 373/167 

Dermatology 344/22 307/59 329/37 333/33 322/44 311/55 344/22 

Diabetes 553/215 538/230 538/230 530/238 538/230 561/207 584/184 

Hepatitis 118/37 118/37 127/28 126/29 121/34 129/26 126/29 

Ionosphere 312/39 316/35 323/28 323/28 323/28 323/28 326/25 

Iris 141/9 132/18 141/9 141/9 140/10 138/12 144/6 

Kr-vs-kp 3164/32 3132/64 3132/64 3164/32 3164/32 3132/64 3164/32 

Labor 46/11 50/7 46/11 48/9 50/7 48/9 48/9 

Lymph 112/36 115/33 117/31 114/34 115/33 112/36 112/36 

Sponge 71/5 69/7 68/8 71/5 71/5 70/6 71/5 

Tae 80/71 74/77 89/62 86/65 88/63 68/83 92/59 

Vote 413/22 405/30 409/26 409/26 409/26 392/43 418/17 

Wine 162/16 150/28 166/12 166/12 160/18 167/11 171/7 

Zoo 93/8 62/39 81/20 87/14 64/37 87/14 93/8 

 

Table 3 is presented to show a comparison of the proposed approach with the other 

algorithms of rule learning in terms of the number of correctly/incorrectly classified 

instances for each data set. The number 𝑁𝑚𝑖𝑠𝑐 of incorrectly classified instances is 

approximately estimated for each data set according to Eq. (13), shown as follows: 

𝑁𝑚𝑖𝑠𝑐 = (1 − 𝑎𝑣𝑔. 𝐴𝑐𝑐) ∙ 𝑁𝑖𝑛𝑠𝑡,                              (13) 

where Nmisc represents the number of misclassified instances, avg.Acc represents 

the average accuracy and Ninst represents the total number of instances in a data set. As 

mentioned earlier in this section, on each data set, the data partitioning to obtain a 

training set and a test is repeated 100 times, so the classification accuracy is averaged 

over the 100 runs on each data set. In this context, the test sets obtained in the 100 runs 

could have some overlaps, i.e., some instances may be selected more than once for 

testing, while the same instances may be classified correctly in some runs but may also 
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be classified incorrectly in other runs. Therefore, it is not achievable to obtain the 

precise number of misclassified instances for each data set and thus the number of 

misclassified instances for each data set is estimated according to Eq. (13). Similarly, 

the number of correctly classified instances is also approximately estimated for each 

data set by taking the total number of instances minus the number of incorrectly 

classified instances. 

According to the results shown in Table 2 and Table 3, we can see that the 

proposed approach outperforms all the other approaches or performs the same as the 

best one of the other approaches in 13 out of the 20 cases. In comparison with the C4.5 

algorithm, the proposed approach leads to better performance in 14 out of the 20 cases. 

In 5 out of the other 6 cases, the proposed approach performs the same as the C4.5 

algorithm, i.e., there is only one case in which the proposed approach performs worse 

than the C4.5 algorithm. In comparison with the Prism algorithm, the proposed 

approach leads to better performance in 14 out of the 20 cases. In 1 out of the other 6 

cases, the proposed approach performs the same as the Prism algorithm, i.e., there are 

5 cases where the proposed approach performs worse than the Prism algorithm. In 

comparison with PrismCTC1, the proposed approach leads to better performance in 14 

out of the 20 cases. In 1 out of the other 6 cases, the proposed approach performs the 

same as PrismCTC1, i.e., there are 5 cases where the proposed approach performs 

worse than PrismCTC1. In comparison with PrismCTC2, the proposed approach leads 

to better performance in 12 out of the 20 cases. In 3 out of the other 8 cases, the proposed 

approach performs the same as PrismCTC2, i.e., there are 5 cases that the proposed 

approach performs worse than PrismCTC2. In comparison with PrismCTC3, the 

proposed approach leads to better performance in 13 out of the 20 cases. In 3 out of the 

other 7 cases, the proposed approach performs the same as PrismCTC3, i.e., there are 

4 cases where the proposed approach performs worse than PrismCTC3. In comparison 

with PrismCTC4, the proposed approach leads to better performance in 13 out of the 

20 cases. In 3 out of the other 7 cases, the proposed approach performs the same as 

PrismCTC4, i.e., there are 4 cases where the proposed approach performs worse than 

PrismCTC4. 

In order to test whether the performance difference between the proposed approach 

and each of the others is statistically significant (in terms of the classification accuracy 

and the number of correctly/incorrectly classified instances), we conduct the Wilcoxon 

rank tests to obtain the p-value resulting from each pairwise comparison shown in the 

fifth and sixth columns of Table 4. From this table, we can see that statistically 

significant advances in the classification performance have been achieved through 

adopting the proposed multi-stage approach of mixed rule learning, in comparison with 

the other rule learning algorithms, given that the obtained p-value is less than 0.05 for 
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each pairwise comparison, i.e., as shown in the fifth and sixth columns of this table, the 

performance difference between the proposed approach and each of the other 

approaches is statistically significant in terms of both the classification accuracy and 

the number of correctly/incorrectly classified instances. 

Table 4  

Statistical analysis using Wilcoxon rank tests. 

Compared 

methods 

Number 

of 

positive 

cases 

Number 

of 

negative 

cases 

Number 

of ties 

p-value 

(accuracy) 

p-value 

(Number of 

misclassified 

instances) 

Comments 

C4.5 vs the 

proposed 

method 

14 1 5 0% 0.20% Significantly 

better than 

C4.5 

Prism vs the 

proposed 

method 

14 5 1 0.90% 1.30% Significantly 

better than 

Prism 

PrismCTC1 

vs the 

proposed 

method 

14 5 1 1.60% 2.90% Significantly 

better than 

PrismCTC1 

PrismCTC2 

vs the 

proposed 

method 

12 5 3 

 

1.70% 3.20% Significantly 

better than 

PrismCTC2 

PrismCTC3 

vs the 

proposed 

method 

13 4 3 1.50% 1.20% Significantly 

better than 

PrismCTC3 

PrismCTC4 

vs the 

proposed 

method 

13 4 3 2.10% 2.90% Significantly 

better than 

PrismCTC4 

 

The results shown in Tables 2-4 generally indicate that the design of the proposed 

multi-stage approach of mixed rule learning can lead to advances in the classification 

performance through involving various ways of handling continuous attributes and 

avoiding the missing of important information from discrete attributes. In particular, 

continuous attributes are handled through both discretization to obtain crisp intervals 

and fuzzification to obtain fuzzy intervals, which lead to effective creation of diversity 

between decision tree ensembles and fuzzy rule ensembles. Also, when a data set 

contains discrete attributes in addition to continuous attributes, the inclusion of decision 

tree ensemble creation as part of the proposed approach can help complement the 

weakness that fuzzy approaches are unable to handle discrete attributes leading to low 

performance on the data set. Moreover, the creation of multiple fuzzy ensembles 

through using different shrink heuristics would help better create further diversity, 
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while the diversity among fuzzy rule-based classifiers inside each ensemble is already 

created through using different fuzzy norms for classifiers training. 

According to the results shown in Table 2, while a data set contains only 

continuous attributes, the proposed approach generally leads to an improvement of the 

classification performance. In particular, on the ‘Breast-w’, ‘Diabetes’, ‘Iris’ and ‘Wine’ 

data sets, the proposed approach outperforms all the other approaches. On the ‘Balance-

scale’, although the proposed approach is not the best performing one, it still 

outperforms the C4.5 algorithm, which again shows the effectiveness of the proposed 

approach in improving the performance in comparison with the case that the continuous 

attributes are handled through a single way involved in the C4.5 algorithm. 

On the other hand, while a data set contains only one or even no continuous 

attributes, the adoption of the proposed approach without the part of fuzzy ensembles 

creation leads to an improvement of the performance on the ‘Breast-cancer’ and ‘Vote’ 

data sets, which shows that the creation of a decision tree ensemble that consists of both 

unpruned and pruned decision trees leads to diversity creation that helps improve the 

classification performance. On the ‘Dermatology’, ‘Kr-vs-kp’, ‘Sponge’ and ‘Zoo’ data 

sets, the proposed approach performs the same as the C4.5 algorithm, while C4.5 

already shows sufficiently good performance in comparison with the other approaches, 

i.e., C4.5 either outperforms all the variants of Prism or performs the same as the best 

one of the variants of Prism. This phenomenon would indicate that the adoption of the 

proposed approach can effectively keep the performance at the peak without negative 

impact that leads to a drop in the performance.  

Moreover, while a data set contains both discrete and continuous attributes, the 

adoption of the proposed approach leads to an improvement of the performance in some 

cases but also leads to a drop in the performance in some other cases, in comparison 

with the C4.5 algorithm. In particular, on the ‘Credit-a’, ‘Credit-g’, ‘Cylinder-bands’, 

‘Hepatitis’, ‘Labor’ and ‘Tae’ data sets, the adoption of the proposed approach leads to 

an improvement of the performance in comparison with the simple use of the C4.5 

algorithm, which supports the argumentation that the inclusion of the part of decision 

tree ensemble creation into the proposed approach can help better deal with discrete 

attributes and the involvement of various ways of dealing with continuous attributes 

leads to better diversity among different ensembles and the classifiers inside each 

ensemble. However, in some of the cases, the proposed approach performs worse than 

one or some of the variants of Prism, which could be partially due to the case that the 

nature of separate and conquer rule learning approaches makes it more suitable to learn 

rules from the data sets.  

In addition, on the ‘Anneal’ and ‘Lymph’ data sets, the adoption of the proposed 

approach could not lead to an improvement of the performance in comparison with the 
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simple use of the C4.5 algorithm. This is mainly because the case that the two data sets 

contain a very small portion of continuous attributes and the inclusion of the fuzzy rule 

ensembles creation part could not lead to any positive impacts from dealing with 

continuous attributes, but leads to some negative impacts from being unable to deal 

with discrete attributes. However, negative impacts are fairly small as shown in Table 

2, i.e., the performance either remains the same or drops a little bit through the adoption 

of the proposed approach. 

5. Conclusions  

In this paper, the main contribution is that we have proposed a multi-stage 

approach of mixed rule learning for advancing the performance of rule-based 

classification. We have compared the proposed multi-stage approach of mixed rule 

learning with several other existing approaches of rule learning, and the experimental 

results show that our proposed approach outperforms these existing approaches in most 

cases in terms of classification accuracy. Furthermore, the results obtained through 

Wilcoxon rank tests suggest that the degree to which the proposed approach 

outperforms these existing approaches is statistically significant in terms of both 

classification accuracy and the number of misclassified instances. 

In the future, we will investigate in more depth the mathematical combination of 

Boolean logic and fuzzy logic towards developing a more generic rule learning 

approach in the setting of ensemble learning, and will analyze the effectiveness of the 

diversity creation through fusion of multiple rule-based classifiers towards further 

advances in the classification performance. We will also explore the combined adoption 

of multiple ways of membership functions definition [33, 41, 42] towards increasing 

the diversity of fuzzy classifiers trained at each stage of fuzzy rule learning. 

Furthermore, we will develop new ways of diversity creation of rule-based classifiers 

that are trained based on Boolean logic in the case of the absence of continuous 

attributes. Moreover, we will look to apply the proposed rule learning approach in the 

context of multi-criteria decision making [46, 49, 50]. In addition, it is worth to conduct 

in-depth investigation of granular computing techniques [1, 3, 27, 30, 48] to achieve 

deep learning of fuzzy rules in a multi-granularity manner [24], according to the 

inspiration of deep neural networks [47]. 
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