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ABSTRACT Single image super-resolution is known to be an ill-posed problem, which has been studied
for decades. With the developments of deep convolutional neural networks, the CNN-based single image
super-resolution methods have greatly improved the quality of the generated high-resolution images.
However, it is difficult for image super-resolution to make full use of the relationship between pixels in
low-resolution images. To address this issue, we propose a novel multi-scale residual hierarchical dense
network, which tries to find the dependencies in multi-level and multi-scale features. Specially, we apply
the atrous spatial pyramid pooling, which concatenates multiple atrous convolutions with different dilation
rates, and design a residual hierarchical dense structure for single image super-resolution. The atrous-spatial-
pyramid-pooling module is used for learning the relationship of features at multiple scales; while the residual
hierarchical dense structure, which consists of several hierarchical dense blocks with skip connections, aims
to adaptively detect key information from multi-level features. Meanwhile, dense features from different
groups are connected in a dense approach by hierarchical dense blocks, which can adequately extract local
multi-level features. Extensive experiments on benchmark datasets illustrate the superiority of our proposed
method compared with state-of-the-art methods. The super-resolution results on benchmark datasets of
our method can be downloaded from https://github.com/Rainyfish/MS-RHDN, and the source code will
be released upon acceptance of the paper.

INDEX TERMS Convolutional neural networks, deep learning, multi-scale residual hierarchical dense,
image super-resolution

I. INTRODUCTION

S
INGLE image super-resolution (SISR) aims to recon-
struct a high-resolution (HR) image from its low-

resolution (LR) version. Image super-resolution is widely
used in many computer vision fields, such as video surveil-5

lance, remote sensing, and image sensing. However, SISR
is a typically ill-posed problem as the image degradation
process is usually irreversible and lots of tiny textures are
missing in LR images. Several high-resolution images can
be potentially generated from a given LR image. Recently,10

deep convolutional neural networks have been applied in
many tasks, ranging from low-level (image restoration, SISR,
etc.) to high-level (image classification, object detection, etc.)
vision fields, and have shown great improvements compared

with conventional methods. 15

Currently, CNN-based SISR methods, which learn an ef-
fective nonlinear mapping function from LR images to HR
images directly, have greatly improved the quality of the
super-resolved image. Among them, Dong et al. [1] firstly
used a deep convolutional neural network called SRCNN, 20

consisting of three convolutional layers, to address the SISR
problem. Since then, lots of deep-learning SISR methods
have been developed. VDSR [2] provides remarkable per-
formance by increasing the depth of the network to 20,
proving the importance of the network depth for detecting 25

effective features of images. SRCNN and VDSR involve the
interpolated images for pre-processing, whose spatial size is
the same as the HR images. FSRCNN [3] was proposed to
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FIGURE 1. The main architecture of our proposed multi-scale residual hierarchical dense network (MS-RHDN). The blue and yellow arrows denote dense connections, while the
green arrow denotes a shortcut connection. The MS-RHDB component is detailed below.

extract features from original LR images and then upscale
the spatial size at the end of the network by a deconvolu-30

tional layer. Extracting features directly in LR images instead
of interpolated images reduces computations greatly, which
becomes a major choice of image super-resolution. LapSRN
[4] progressively reconstructs super-resolved images with
increasing scales of input images and its improved version35

MS-LapSRN [5] handles the multiple upsampling scales in
one single model. Lim et al. applied a simplified ResNet [6]
architecture by removing the unnecessary batch normaliza-
tion layer to build a wide network EDSR [7] and a multi-
scale deep one MDSR, which won the NTIRE2017 Super-40

Resolution Challenge [8]. Tai et al. [9] proposed recursive
and residual learning based DRRN to reduce model parame-
ters.

All these methods try to make full use of image infor-
mation or features to improve performance, which include45

increasing the network depth, widening channels, or applying
recursive learning. However, most CNN-based SISR models
do not take full advantage of the multi-level information from
different convolutional layers. Furthermore, these methods
usually neglect to use the information from different scales.50

Objects in images may be similar at different scales and
information from different scales may give some clues to help
generate high-quality HR images.

To address this issue, we propose a novel network based
on the multi-scale structure and residual hierarchical dense55

connection. The dense connection extracts more information
from different layers. We use two levels of dense connections
to detect local and global multi-level features. To extract

multi-scale features, we simply apply the residual atrous-
spatial-pyramid-pooling structure to fully make use of the 60

information from multiple scales in the LR images. For
stabilizing the network and easing the training difficult, we
use residual learning to detect more informative features.

Overall, the main contributions of our method are three-
fold: 65

• We propose a unified framework multi-scale residual
hierarchical dense network for image super-resolution.
Our method aims at making full use of multi-scale and
multi-level features in the LR input image.

• We propose a residual hierarchical dense module to 70

focus on global and local multi-level features. We use
sub-dense blocks (SDBs) to adaptively obtain the es-
sential parts of the dense features. Skip connections are
applied for efficient network training and performance
improvements. 75

• We propose a residual multi-scale structure to detect
multi-scale features, which can be readily applied to
other super-resolution networks. Such multi-scale struc-
ture further improves the performance of the network.
In addition, our model obtains much better SR perfor- 80

mance than previous CNN-based methods.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces related work on image super-resolution.
Section 3 presents the proposed method. Section 4 gives
experimental results on benchmark datasets. Visual compar- 85

isons with other methods are also included. To show the
effectiveness of the components in our network, Section 5
gives the network investigations. Finally, Section 6 draws

2 VOLUME 4, 2016
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conclusions.

II. RELATED WORK90

The SISR methods can mainly be categorized into
three classes: interpolation-based methods [10]–[13],
reconstruction-based methods [14]–[16], and learning-based
methods. The interpolation-based methods, such as bilinear
interpolation and bicubic interpolation, are simple and fast,95

but suffer from over-smoothed textures and thus are not able
to produce high-quality images. The reconstruction-based
methods are flexible and usually use prior knowledge to
produce high-frequency details. However, these methods are
usually time-consuming and suffer from rapid degeneration100

of performance with the increasing upsampling factor.
The learning-based methods attempt to learn mappings

from LR space to HR space directly. Freeman et al. [17]
firstly used Markov random fields (MRF) to generate syn-
thetic images, where the parameters of the model are learned105

from the examples. Chang et al. [18] used locally linear
embedding (LLE) [19] to find the resolutions from the linear
combination of nearest neighbors. ANR [20] proposed by
Timofte et al. uses sparse learned dictionaries and applies the
coefficients calculated from LR patches to the corresponding110

SR patches directly. A+ [21], an improved version of ANR,
learns regressors on all training patches. There also exist SR
methods based on decision trees or random forests such as
[22]–[26] to address the SISR problem.

Recently, deep-learning based methods have shown great115

improvements in image super-resolution. Specifically, Dong
et al. [1] firstly proposed a deep convolutional neural network
SRCNN for the SISR problem. The depth of the network
plays an important role in many vision tasks, Kim et al.
proposed VDSR [2] with remarkable performance, which120

increased the depth of the network. To reduce the parame-
ters and find the dependencies of different proceeding time,
DRRN [9] uses recursive learning and the memory block
with the deeper network. Instead of interpolating the original
LR images to the desired size before putting them into the125

networks, FSRCNN [3] extracted features from the original
LR images and used a deconvolutional layer to upscale
the spatial size at the end of the network, which greatly
reduced the computations. This manner is commonly used in
recent SR methods. LapSRN [4] progressively reconstructs130

the HR image with increasing scales of input images. MS-
LapSRN [5], an improved version of LapSRN, uses a multi-
scale training strategy to handle the multiple upsampling
scales in one single model. Shi et al. [27] proposed ESPCN,
which introduces a sub-pixel convolutional layer for efficient135

upsampling. Lim et al. [7] proposed EDSR and a multi-scale
deep MDSR, which removed the unnecessary batch normal-
ization layer from the ResNet [6] architecture. SRMDNF [28]
is proposed to handle multiple degradations by concatenating
degradation maps and images as the input to the network140

and adaptively learn to produce high-quality images under
different blur kernels of downsampling. ZSSR [29] (zero-
shot super-resolution) uses an unsupervised approach to learn
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FIGURE 2. Multi-scale residual hierarchical dense block (MS-RHDB).

the mapping from LR images to HR images, whose training
data are generated by downsampling the test data. D-DBPN 145

[30] uses an error-correcting feedback mechanism for SR
by iterative up and downsampling. RDN [31] proposed by
Zhang et al. uses residual and dense connections and achieves
state-of-the-art performance. Zhang et al. [32] proposed
RNAN, where local and non-local attention blocks are used 150

to adaptively rescale features with soft attention.

In order to produce photo-realistic SR images, Ledig et
al. [33] firstly introduced residual learning and generative
adversarial network (GAN) to decrease the distance between
the distributions of real images and SR images. However, 155

the images generated by SRGAN still contain noise and
artifacts. Wang et al. [34] introduced an enhanced SRGAN,
which applied relativistic GAN [35] to the discriminator and
adopted residual scaling [36], smaller initialization, and net-
work interpolation, to remove artifacts and won the first place 160

in the 2018 PIRM-SR challenge in region 3. For producing
realistic SR images, many loss functions have been proposed.
The perceptual loss [37] is proposed to reduce the pixel-
wise distances of high-level features produced by pre-trained
models, e.g. VGG19 [38]. Contextual loss [39] maintains the 165

image statistics and approximates the KL-divergence.

Making full use of the information in the LR images
is the key to produce plausible SR images. To investigate
multi-scale and multi-level features, we propose a multi-scale
residual hierarchical dense network to obtain results with 170

improvements in quality and quantity. We will introduce our
method in the next section.

III. PROPOSED METHOD

In this paper, our method aims to reconstruct a high-
resolution image ISR ∈ RWr×Hr×C from a low-resolution 175

image ILR ∈ RW×H×C , where W and H are the width and
height of the LR image, r is the upscaling factor, and C is the
number of channels of the color space. Fig.1 shows the main
framework of our network, whose components are detailed
below. 180

VOLUME 4, 2016 3
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A. NETWORK ARCHITECTURE

Our proposed multi-scale residual hierarchical dense network
(MS-RHDN) consists of three main components: shallow
feature extraction FSF, deep feature extraction FDF, and fea-
ture reconstruction FREC. We use one convolutional layer to185

extract the shallow features H0, including edges, corners,
etc., from ILR:

H0 = FSF(I
LR), (1)

where H0 is the input to the deep feature extraction mod-
ule. In deep feature extraction, we use M sequential multi-
scale residual hierarchical dense blocks (MS-RHDB) and a190

global fusion layer FGF to extract and fuse multi-scale and
multi-level features. Furthermore, a global skip connection is
introduced to make the main parts of the network focus on
high-frequency information. Formally, we have

HDF = FDF(H0)

= H0 + FGF([H1, H2, ..., Hm, ..., HM ])

with Hm = Fm
MSD(Hm−1) ,

(2)

where Fm
MSD denotes the mapping of the m-th MS-RHDB;195

[·] stands for the concatenation operator. Finally, the feature
reconstruction module produces a high-resolution image ISR

based on the feature HDF:

ISR = FREC(HDF) = Fconv(Fup(HDF)) . (3)

Here the feature reconstruction module is composed of an
upscaling layer Fup and a convolutional layer Fconv. There200

have been a number of advanced upsampling structures, e.g.,
deconvolutional layer, sub-pixel convolution, EUSR [40].
Here we adopt the sub-pixel convolution, which has been
shown effective in previous works such as EDSR [7] and
RDN [31].205

To define a proper loss function, researchers have de-
signed different loss functions such as L2, L1, perceptual,
and adversarial losses. In our work, we choose L1 loss in
order to reduce computational complexity. Given a training
set {ILR

i , IHR
i }Ni=1, where ILR is obtained by down-sampling210

from IHR with scaling factor r, the L1 loss is defined as:

L1(I
SR
i , IHR

i ) =
1

Wr ×Hr × C

×

C∑

c=1

Wr∑

w=1

Hr∑

h=1

||Fθ(I
LR
i )(w, h, c)− IHR

i (w, h, c)||1,
(4)

where W , H , and C stand for the width, height, and channels
of the low-resolution image respectively and r is the scaling
factor. Fθ denotes the function of our network and θ stands
for the set of parameters, which are updated by stochastic215

gradient descent.

B. MULTI-SCALE RESIDUAL HIERARCHICAL DENSE

BLOCK (MS-RDHB)

The proposed MS-RHDB framework mainly contains three
components: a hierarchical dense module, a memory unit,220

and a multi-scale block. This section details the hierarchical
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FIGURE 3. Residual multi-scale block (MSB) architecture.

dense module and the memory unit. Detailed description of
the multi-scale block is given in Section III-C.

Hierarchical dense module (HDM) The hierarchical
dense module is built to adequately exploit multi-level fea- 225

tures. In the module, K sub-dense blocks (SDB) are arranged
in a dense manner. Detailed description of SDB is introduced
in Section III-D. In general, an HDM takes Hm−1 as input,
and outputs an intermediate feature HHDM

m . Formally, this
procedure is described as: 230

HHDM
m = Fm

HDM(Hm−1)

= FK
SDB([Hm−1, S1, ..., Sk, ..., SK−1]),

(5)

where Fm
HDM denotes the function of an HDM in the m-th

MS-RHDB block; and FK
SDB denotes the function of the K-

th SDB that constitutes Fm
HDM. Sk denotes the output of the

k-th SDB, whose input is the concatenation of outputs of the
previous k − 1 SDBs. Formally, Sk can be presented as: 235

Sk = F k
SDB([Hm−1, S1, ..., Sk−1]), (6)

where F k
SDB denotes the function of the k-th SDB. Sk con-

tains G feature-maps, where G is the number of channels and
also known as growth rate in [41].

Memory unit. After extracting multi-level features with
a set of SDBs, we use a memory unit [42] to integrate 240

these features, which is supposed to adaptively extract unified
information. Furthermore, a memory unit is also useful to
reduce the number of feature-maps, thus reducing the number
of parameters and computations. Specifically, the memory
unit is defined as: 245

HMU
m = Fm

MU([Hm−1, S1, ..., Sk, ..., SK ]), (7)

where Fm
MU denotes the mapping function of the memory

unit in the m-th MS-RHDB; and HMU
m is the output of Fm

MU.
Following [9] [31], the memory unit is represented with
a 1 × 1 convolutional layer. Finally, we use a multi-scale
structure, which will be introduced in section III-C, to extract 250

4 VOLUME 4, 2016
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features from different scales for taking full advantage of
fused features by the memory unit. A skip connection is in-
troduced for a similar purpose to the global skip connection.
The final output of the m-th MS-RHDB is obtained by:

Hm = Hm−1 + Fm
MS(H

MU
m ), (8)

where Fm
MS denotes the function of the multi-scale block in255

the m-th MS-RHDB.

C. MULTI-SCALE BLOCK (MSB)

As discussed above, multi-scale information is useful in
generating high-quality super-resolution images. In this sec-
tion, we elaborate on our multi-scale block used in (8).260

As shown in Fig.3, the MSB mainly consists of an atrous-
spatial-pyramid-pooling (ASPP) structure and a local skip
connection.

The ASPP structure is firstly introduced in DeepLabV3
[43] for handling different sizes of objects in street-scene265

segmentation. ASPP consists of several parallel atrous con-
volutional layers with different dilated rates. In our model,
we apply ASPP to detect useful components of the fused
hierarchical dense features. In addition, to make the network
efficient and stable, we add a local skip connection to each270

ASPP. Formally, our multi-scale block is defined as:

HMS
m = HMU

m + Fm
ASPP(H

MU
m ), (9)

where Fm
ASPP denotes the function of the ASPP structure in

the m-th MS-RHDB; and HMS
m denotes the output of the m-

th MSB.

D. SUB-DENSE BLOCK (SDB) 275

In order to extract local multi-level features, we introduce
a sub-dense neural network. As introduced above, an HDM
is constructed by stacking several SDBs in a dense man-
ner, where SDBs are used to extract local multi-level fea-
tures from previous concatenated features. Because the input 280

channels of each SDB may be different, the number of
convolutional layers is determined by the number of the
input feature-maps. More feature-maps need more layers. As
shown in Fig.4, SDB contains four components: bottleneck-
like compression (BLC), local dense group (LDG), input 285

shortcut connection (ISC), and compression shortcut connec-
tion (CSC).

Firstly, we use a BLC, which is a bottleneck-like method
by a 3 × 3 Conv layer for reducing parameters and compu-
tations. After compressing the number of feature-maps into 290

G, we stack several conv blocks in a manner similar to the
DenseNet [41], until the number of feature-maps equals that
of the input in LDG. A conv block consists of a concatenation
operator applied to all the previous features, a convolutional
layer with kernel size of 3 × 3, and an activation layer, 295

as shown in Fig.4. The input of the k-th SDB, Sk, is the
concatenation of the outputs of the previous k− 1 layers and

VOLUME 4, 2016 5
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TABLE 1. Quantitative results with the BI degradation model. The best and second best results are highlighted and underlined respectively.

Method Scale
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×2 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.80 0.9339
SRCNN [1] ×2 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946 35.60 0.9663
FSRCNN [3] ×2 37.05 0.9560 32.66 0.9090 31.53 0.8920 29.88 0.9020 36.67 0.9710
VDSR [2] ×2 37.53 0.9590 33.05 0.9130 31.90 0.8960 30.77 0.9140 37.22 0.9750
LapSRN [4] ×2 37.52 0.9591 33.08 0.9130 31.08 0.8950 30.41 0.9101 37.27 0.9740
MemNet [42] ×2 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195 37.72 0.9740
EDSR [7] ×2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
SRMDNF [28] ×2 37.79 0.9601 33.32 0.9159 32.05 0.8985 31.33 0.9204 38.07 0.9761
D-DBPN [30] ×2 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775
RDN [31] ×2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780
RNAN [32] ×2 38.17 0.9611 33.87 0.9207 32.32 0.9014 32.73 0.9340 39.23 0.9785
SDNND [44] ×2 38.07 0.9610 33.77 0.9195 32.25 0.9026 32.55 0.9332 – –
MS-RHDN (ours) ×2 38.26 0.9615 33.92 0.9206 32.36 0.9020 33.02 0.9367 39.33 0.9781
MS-RHDN+ (ours) ×2 38.31 0.9617 34.01 0.9212 32.40 0.9025 33.24 0.9382 39.50 0.9785

Bicubic ×3 30.39 0.8682 27.55 0.7742 27.21 0.7385 24.46 0.7349 26.95 0.8556
SRCNN [1] ×3 32.75 0.9090 29.30 0.8215 28.41 0.7863 26.24 0.7989 30.48 0.9117
FSRCNN [3] ×3 33.18 0.9140 29.37 0.8240 28.53 0.7910 26.43 0.8080 31.10 0.9210
VDSR [2] ×3 33.67 0.9210 29.78 0.8320 28.83 0.7990 27.14 0.8290 32.01 0.9340
LapSRN [4] ×3 33.82 0.9227 29.87 0.8320 28.82 0.7980 27.07 0.8280 32.21 0.9350
MemNet [42] ×3 34.09 0.9248 30.00 0.8350 28.96 0.8001 27.56 0.8376 32.51 0.9369
EDSR [7] ×3 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476
SRMDNF [28] ×3 34.12 0.9254 30.04 0.8382 28.97 0.8025 27.57 0.8398 33.00 0.9403
RDN [31] ×3 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653 34.13 0.9484
SDNND [44] ×3 34.41 0.9277 30.25 0.8425 29.10 0.8076 28.35 0.8571 – –
MS-RHDN (ours) ×3 34.76 0.9302 30.61 0.8475 29.29 0.8104 28.95 0.8681 34.40 0.9497
MS-RHDN+ (ours) ×3 34.82 0.9305 30.71 0.8490 29.34 0.8114 29.16 0.8712 34.69 0.9510

Bicubic ×4 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866
SRCNN [1] ×4 30.48 0.8628 27.50 0.7513 26.90 0.7101 24.52 0.7221 27.58 0.8555
FSRCNN [3] ×4 30.72 0.8660 27.61 0.7550 26.98 0.7150 24.62 0.7280 27.90 0.8610
VDSR [2] ×4 31.35 0.8830 28.02 0.7680 27.29 0.7260 25.18 0.7540 28.83 0.8870
LapSRN [4] ×4 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7551 29.09 0.8900
MemNet [42] ×4 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630 29.42 0.8942
EDSR [7] ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
SRMDNF [28] ×4 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7731 30.09 0.9024
D-DBPN [30] ×4 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137
RDN [31] ×4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151
RNAN [32] ×4 32.49 0.8982 28.83 0.7878 27.72 0.7421 26.61 0.8023 31.09 0.9149
SDNND [44] ×4 32.21 0.8954 28.54 0.7817 27.55 0.7364 26.23 0.7914 – –
MS-RHDN (ours) ×4 32.62 0.8998 28.85 0.7881 27.75 0.7424 26.72 0.8059 31.30 0.9179
MS-RHDN+ (ours) ×4 32.70 0.9009 28.97 0.7901 27.81 0.7438 26.92 0.8101 31.62 0.9205

Bicubic ×8 24.40 0.6580 23.10 0.5660 23.67 0.5480 20.74 0.5160 21.47 0.6500
SRCNN [1] ×8 25.33 0.6900 23.76 0.5910 24.13 0.5660 21.29 0.5440 22.46 0.6950
FSRCNN [3] ×8 20.13 0.5520 19.75 0.4820 24.21 0.5680 21.32 0.5380 22.39 0.6730
SCN [45] ×8 25.59 0.7071 24.02 0.6028 24.30 0.5698 21.52 0.5571 22.68 0.6963
VDSR [2] ×8 25.93 0.7240 24.26 0.6140 24.49 0.5830 21.70 0.5710 23.16 0.7250
LapSRN [4] ×8 26.15 0.7380 24.35 0.6200 24.54 0.5860 21.81 0.5810 23.39 0.7350
MemNet [42] ×8 26.16 0.7414 24.38 0.6199 24.58 0.5842 21.89 0.5825 23.56 0.7387
MS-LapSRN [5] ×8 26.34 0.7558 24.57 0.6273 24.65 0.5895 22.06 0.5963 23.90 0.7564
EDSR [7] ×8 26.96 0.7762 24.91 0.6420 24.81 0.5985 22.51 0.6221 24.69 0.7841
D-DBPN [30] ×8 27.21 0.7840 25.13 0.6480 24.88 0.6010 22.73 0.6312 25.14 0.7987

MS-RHDN (ours) ×8 27.13 0.7820 25.13 0.6471 24.89 0.6016 22.76 0.6326 24.94 0.7907
MS-RHDN+ (ours) ×8 27.32 0.7876 25.27 0.6505 24.96 0.6037 22.93 0.6388 25.21 0.7971

Hm−1, which contains k×G channels. As a result, the LDG
in the k-th SDB requires k − 1 convolutional layers to reach
the same number of channels as that of the input. Formally,300

the LDG is described as:

SLDG
k = F k

LDG([S
BLC
k−1, Sk−1,1, ..., Sk−1,d, ..., Sk−1,k−1]),

(10)
where SBLC

k−1 is the output of BLC, and Sk−1,d is the output of
the d-th Conv in the k-th SDB. F k

LDG denotes the function of
the local dense group in the k-th SDB and SLDG

k is its output.
Similarly, the input of the d-th Conv is the concatenation of305

proceeding layers. In SDB, the local dense group adaptively
detects local multi-level features according to the amount of

information that the input has.
ISC and CSC. At the same time, the ISC stands for an

element-wise addition in the input Sk−1 and the multi-level 310

features Sk−1,k−1. After that, we apply a 1× 1 Conv to fuse
the number of feature-maps into G. Finally, the compressed
feature SBLC

k−1 is added to the output of the fusion block
by CSC. These two shortcut connections are important for
detecting more informative cues and improving performance, 315

as well as stabilizing the network.

E. IMPLEMENTATION DETAILS

In this section, we specify some implementation details of
our proposed MS-RHDN. We set the kernel size of all the
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Urban100
img_004

HR Bicubic SRCNN [1] FSRCNN [3] VDSR [2]
PSNR/SSIM 21.08/0.6788 22.13/0.7635 22.02/0.7628 22.37/0.7939

LapSRN [4] EDSR [7] D-DBPN [42] SRMDNF [28] MS-RHDN
22.41/0.7989 24.07/0.8591 23.74/0.8497 22.92/0.8192 24.88/0.8756

Urban100
img_074

HR Bicubic SRCNN [1] FSRCNN [3] VDSR [2]
PSNR/SSIM 22.16/0.5622 22.72/0.6200 22.73/0.6180 23.07/0.6415

LapSRN [4] EDSR [7] D-DBPN [42] SRMDNF [28] MS-RHDN
23.14/0.6520 24.12/0.7362 23.99/0.7234 23.41/0.6752 24.58/0.7606

Urban100
img_092

HR Bicubic SRCNN [1] FSRCNN [3] VDSR [2]
PSNR/SSIM 16.57/0.4417 17.55/0.5447 17.70/0.5561 18.14/0.6011

LapSRN [4] EDSR [7] D-DBPN [42] SRMDNF [28] MS-RHDN
18.19/0.6076 18.92/0.6661 18.90/0.6596 18.57/0.6306 19.72/0.6976

Manga109
YumeiroCooking

HR Bicubic SRCNN [1] FSRCNN [3] VDSR [2]
PSNR/SSIM 24.68/0.7849 26.22/0.8464 26.38/0.8496 26.89/0.8703

LapSRN [4] EDSR [7] D-DBPN [42] SRMDNF [28] MS-RHDN
26.92/0.8739 27.74/0.8972 28.27/0.9079 27.51/0.8897 29.14/0.9256

FIGURE 5. Visual comparison for 4× SR with the BI model on the Urban100 and Manga109 datasets. The best results are highlighted.

convolutional layers to 3 × 3, except for the fusion layers,320

whose kernel sizes are set to 1 × 1. The number of MS-
RHDB is set to M = 10. In each MS-RHDB, we set the
number of SDBs as K = 5. The number of convolutional
layers in LDG is decided adaptively, depending on the input.
As an illustration, the LDG in the k-th SDB stack k − 1325

convolutional layers organized in a dense manner to get the
same number of channels as the input. We set the growth
rate as G = 64. We use ESPCN [27] to upscale the coarse
resolution feature-maps to fine ones in our reconstruction
module. At the tail of the network, we use 3 convolutional330

filters to generate high-quality super-resolved images with 3
color channels.

Difference to RDN. Here, we mainly summarize three
differences between our method and the RDN [31]. First,
both RDN and our model use dense connections. However,335

multi-level dense connections are adopted in our MS-RHDN,
compared to one level in RDN. Second, we apply multi-

scale blocks to our MS-RHDN, which aims at extracting
multi-scale information from features, while RDN ignores
this important information. Third, we proposed SDBs to learn 340

local hierarchical features instead of simple convolutional
layers in RDN. Experiments in the next section show that our
MS-RHDN outperforms RDN in benchmark datasets with
less parameters.

IV. EXPERIMENTAL RESULTS 345

In this section, we conduct quantitative and visual compar-
isons with several state-of-the-art methods on benchmark
datasets under two commonly used image degradations: bicu-
bic downsampling and blur-downsampling, respectively.

A. SETTINGS 350

We use the DIV2K dataset [8] as our training set, which
contains 800, 100 and 100 images of 2K-resolution for
training, validation, and testing, respectively. The LR images
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TABLE 2. Quantitative results with the blur-down degradation model. Best and second best results are highlighted and underlined.

Method Scale
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×3 28.78 0.8308 26.38 0.7271 26.33 0.6918 23.52 0.6862 25.46 0.8149
SPMSR [46] ×3 32.21 0.9001 28.89 0.8105 28.13 0.7740 25.84 0.7856 29.64 0.9003
SRCNN [1] ×3 32.05 0.8944 28.80 0.8074 28.13 0.7736 25.70 0.7770 29.47 0.8924
FSRCNN [3] ×3 26.23 0.8124 24.44 0.7106 24.86 0.6832 22.04 0.6745 23.04 0.7927
VDSR [2] ×3 33.25 0.9150 29.46 0.8244 28.57 0.7893 26.61 0.8136 31.06 0.9234
IRCNN [47] ×3 33.38 0.9182 29.63 0.8281 28.65 0.7922 26.77 0.8154 31.15 0.9245
RDN [31] ×3 34.58 0.9280 30.53 0.8447 29.23 0.8079 28.46 0.8582 33.97 0.9465
MS-RHDN (ours) ×3 34.76 0.9292 30.67 0.8468 29.32 0.8098 28.83 0.8648 34.49 0.9491
MS-RHDN+ (ours) ×3 34.82 0.9298 30.75 0.8481 29.32 0.8108 29.04 0.8679 34.78 0.9505

are obtained by bicubic downsampling (BI) from the source
high-resolution images. At testing, we use five standard355

benchmark datasets: Set5 [48], Set14 [49], BSD100 [50],
Urban100 [51], and Manga109 [52]. We transform the im-
ages into YCrCb color space and evaluate the performance
by PSNR and SSIM on the Y channel.

In training, images are augmented by rotating and flipping.360

The batch size is set to 16. Our MS-RHDN is trained based on
image patches and optimized with the ADAM optimizer [53].
The hyperparameters β1 and β2 in the ADAM optimizers
are set to β1 = 0.9 and β2 = 0.999. We randomly crop
48× 48 patches from LR images as the input of the network.365

Following [4], [7], [27], [31], [32], the initial learning rate is
set to 1×10−4, which decays to half every 2×105 iterations.
We implement our model using the Pytorch [54] framework
with a Titan Xp GPU. Training the MS-RHDN roughly takes
one day with 2× 105 iterations.370

B. COMPARISONS WITH STATE-OF-THE-ART METHODS

We compare our model with 13 state-of-the-art image SR
algorithms: SRCNN [1], VDSR [2], FSRCNN [3], SCN [45],
LapSRN [4], MemNet [42], EDSR [7], SRMDNF [28], D-
DBPN [30], RDN [28], RNAN [32], and SDNND [44].375

Similar to [7], [31], [55], we also apply a self-ensemble
strategy, which rotates and flips inputs to generate different
versions of high-resolution images. The corresponding in-
verse transforms are applied to generate an HR image, which
is an average version of all the HR images. This version is380

denoted as the self-ensembled MS-RHDN or MS-RHDN+.

Quantitative comparison. Table 1 shows the results of
the proposed method and state-of-the-art methods for ×2,
×3, ×4, and ×8 SR. We directly adopt the results of RNAN
[32] and SDNND [44]. It can be seen that our MS-RHDN+385

performs the best on all the test datasets in most scaling
factors by a large margin. The MS-RHDN also outperforms
other compared methods even without self-ensemble. This
indicates that our network is effective in detecting compre-
hensive features for reconstructing tiny textures. Besides,390

our MS-RHDN obtains larger margins with the increase of
scaling factors. We argue that it is more essential to make
full use of information in LR images for a large scaling factor.
The observations demonstrate that the multi-scale block and
residual hierarchical dense structure allow our network to395

further extract more informative features and improve the

performance.

Qualitative comparison. Next, we qualitatively compare
our method with state-of-the-art methods. Fig.5 shows the
visual comparisons of SR images generated by our method 400

and the methods compared. We obtain several observations
from Fig.5. For image ‘img_004’ in Urban100, most com-
pared methods produce images with blurring artifacts. What
is worse, most of them cannot recover the detailed textures of
the green horizontal line and lattices. However, our method 405

can generate more tiny textures and remove the artifacts. For
image ‘img_074’, we can find that most compared methods
cannot generate the horizontal line correctly and also suffer
from blurring artifacts. Some of them even produce edges
with wrong directions. By contrast, our MS-RHDN shows 410

great abilities in producing accurate information from the LR
image. For image ‘img_092’, we observe that Bicubic, SR-
CNN, FSRCNN, VDSR, and LapSRN suffer from blurring
artifacts. Even though EDSR, D-DBPN, and SRMDNF can
recover some high-frequency information, the right part of 415

the cropped image generated by these methods shows wrong
directions of the gap with over-smoothed edges. Our MS-
RHDN can be more faithful to the ground truth. For image
‘YumeiroCooking’, due to the abundance of textures, most
compared methods cannot fully recover them and obviously 420

produce blurring artifacts. Our method achieves a better
result, which is more similar to the HR image.

Overall, our method shows better performance both quan-
titatively and visually, as it provides a nice way to make
full use of features in LR images. Our proposed residual 425

hierarchical dense module successfully detects multi-level
features. The multi-scale block is further used to extract
information from multiple scales. Multiple residual connec-
tions are applied to make the network focus on important
parts, and to facilitate the training of the proposed network. 430

Following [31], [47], we further apply our method to
recover images from a blur-down degradation model. A high-
resolution image is first blurred by a Gaussian kernel, and
then downsampled with a scaling factor. The size of the
Gaussian kernel is 7 × 7 with standard deviation of 1.6. 435

We compare our method with 6 state-of-the-art methods:
SPMSR [46], SRCNN [1], FSRCNN [3], VDSR [2], IR-
CNN [47], and RDN [31]. Table 2 shows the results of
our method and the compared methods in terms of PSNR
and SSIM. We observe that our MS-RHDN has much better 440
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Urban100
img_046

HR Bicubic RDN [31] MS-RHDN (ours)
PSNR/SSIM 22.78/0.6859 25.02/0.8364 25.35/0.8498

HR Bicubic RDN [31] MS-RHDN (ours)
PSNR/SSIM 22.78/0.6859 25.02/0.8364 25.35/0.8498

Manga109
MisutenaideDaisy

HR Bicubic RDN [31] MS-RHDN (ours)
PSNR/SSIM 26.62/0.8884 37.17/0.9800 38.36/0.9816

HR Bicubic RDN [31] MS-RHDN (ours)
PSNR/SSIM 26.62/0.8884 37.17/0.9800 38.36/0.9816

FIGURE 6. Visual comparison for 3× SR with the BD model. The best results are highlighted.

TABLE 3. Investigations of HDM (including ISC, CSC, LDG) and MSB. We observe the best PSNR (dB) values on Set5 (4×) in 100 epochs.

Structure 1 2 3 4 5 6 7 8 9

Hierarchical Dense Module
(HDM)

LDG % % ! ! ! ! ! ! !

ISC % % % ! % ! ! % !

CSC % % % % ! ! % ! !

Multi-Scale Block (MSB) % ! % % % % ! ! !
PSNR on Set5 (4×) 31.50 31.94 31.82 31.87 31.87 31.93 32.01 31.97 32.05

performance on all the benchmark datasets, and MS-RHDN+
achieves the best results. Our methods outperform RDN by
a large margin. The observations indicate that the structure
MS-RHDN is more efficient and has a stronger ability to
recover images from the blur-down degradation model. Fig. 6445

demonstrates visual comparisons for 3× SR under the blur-
down degradation model. For image ‘img_046’ in Urban100,
it is observed that the two patches generated by Bicubic are
totally blurred and lose most details. RDN can recover some
details but produces some edges with wrong directions. In450

contrast, MS-RHDN obtains much better performance with
sharper edges and correct structures. However, it can be seen
from the left parts of the cropped patches on the first line
of Fig. 6 that it is challenging for our method and the RDN
to recover tiny textures, as these textures are badly blurred455

in the input LR image. This problem is also the concern in
other single image super-resolution methods. Nevertheless, if
we zoom in the picture, we can find that our method can still
generate edge effect even in the left part of the cropped patch,
while the RDN cannot. For image ‘MisutenaideDaisy’ in460

Manga109, characters in the two patches produced by Bicu-
bic cannot even be recognized by eyeballing. RDN recovers
some details of the characters with simple structures, e.g., “c”
and “s”. However, some characters in the first patch suffer
from blurring artifacts and lose some structures. In com- 465

parison, MS-RHDN can recover more details and maitain
the right structures. In the second patch, RDN generates
characters with over-smoothed edges and blurring artifacts.
In contrast, our MS-RHDN alleviates the over-smoothness
and blurring-artifacts issues by recovering sharper edges. It 470

also demonstrates the promising potential to make full use of
the multi-level and multi-scale features for SR with a blur-
down degradation model.

V. NETWORK INVESTIGATIONS

We show ablation investigations on the hierarchical dense 475

module and the multi-scale block in table 3. The structure
9 has 10 MS-RHDBs (M=10), 5 SDBs (K=5), and growth
rate (G=32). We set the batch size to 8 for fast training. To
show the superiority of our structure and reduce the influence
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of parameters, we design another 8 network structures with480

approximate parameters by varying the numbers of MS-
RHDB and SDB.

Hierarchical dense module (HDM). To demonstrate the
effect of our HDM, we add in different configurations with
LDG, ISC, or/and CSC. In table 3, when LDG, ISC, and CSC485

are absent, the PSNR value on Set5 is relatively low. The
positive effect of LDG is demonstrated by the performance
improvement from structure 1 to 3. Similarly, ISC and CSC
are significant for producing high-quality images. The perfor-
mance increases with LDG, ISC, or CSC, and we can obtain490

improvements by using all of them. After adding HDMs, the
performance increases to 31.93 dB compared to the structure
1 with 31.50 dB. This demonstrates the efficiency of our
HDM in extracting informative features.

Multi-scale block. Finally, we show the effect of the495

multi-scale block based on the observations from Table 3.

When MSBs are added, the PSNR value increases from 31.93
dB in structure 6 to 32.05 dB in structure 9. Comparisons
between structure 1 and 2 or structure 4 and 7 demonstrate
the effectiveness of the MSB as well. The performance 500

improvements obtained by the MSB indicate that the multi-
scale features have played an important part in generating SR
images.

In Fig.7, we further visualize the training process of these
nine structures on the PSNR of Set5 (×4). We can observe 505

that the curves are consistent with our analyses, and the LDG,
ISC, CSC, and MSB can further improve the performance.
These quantitative and visual analyses show the superiority
and effectiveness of our proposed LDG, ISC, CSC, and MSB
elements. 510

Fig.8 shows comparisons of PSNR versus the number of
parameters of our method and the compared methods. We can
observe that our MS-RHDN and MS-RHDN+ have only half
number of parameters of EDSR [7] and also fewer parameters
than RDN [31]. They also achieve better performance. It 515

demonstrates that our model has a more effective structure
and a better trade-off between performance and model size.

VI. CONCLUSIONS

In this paper, we propose a novel multi-scale residual
hierarchical dense network for high-quality image super- 520

resolution. Our model aims at fully utilizing features in LR
images. Specifically, the residual hierarchical dense struc-
ture is used for adaptively extracting multi-level features.
Meanwhile, the multi-scale block serves to obtain multi-scale
features. Furthermore, residual learning mechanism is used 525

to stabilize the training of our model, and to pay attention to
more informative features. Extensive experiments on bench-
mark datasets illustrate the effectiveness of our MS-RHDN
in image super-resolution.
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