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Abstract 

 

 

The robustness of effects indicating a spatial component associated with abstract reasoning is 

tested.  Judgments regarding hierarchical orderings tend to be faster and more accurate when 

the dominant element in any pair from the order (e.g., the older, richer, etc.) is presented on 

the left of the screen as compared to the right (left-anchoring effect).  This signature effect is 

investigated in three conditions (Experiment 1), each implementing a different timing regime 

for the elements in each pair, during learning.  Thereby, the construction of a mental 

representation of the ordering was exposed to a potentially competing spatial simulation, that 

is, the well-known “mental timeline” with orientation from left (present) to right (future).  

First, the left-anchoring effect for order representations remained significant when timeline 

information was congruent with the presumed left-anchoring process, that is, the dominant 

element in a pair was always presented first.  Second, the same effect remained also 

significant when the timeline-related information was random, that is, the dominant element 

being presented  either first or second.  Third, the same effect was found to be still 

significant, when the timeline-related information was contrary to the left-anchoring process, 

that is, the dominant element being presented always second.  Experiment 2 replicates the 

target effect under random timeline information, controlling for color as a stimulus feature. 

The results are discussed in the context of a theoretical model that integrates basic 

assumptions about acquired reading/writing habits as a scaffold for spatial simulation, and 

primacy/dominance representation within such spatial simulations. 
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People appear to use spatial representations to learn rank orders, for example, pairs A > 

B, B > C, etc., with A, B etc. being replaced by first names, and “>” denoting some 

comparator, replaced, for example, by “older”, or “taller”.  Such comparators represent 

abstract concepts, that is, they do not a priori imply any spatial extension, situation, or 

orientation in space.  There exists long-standing experimental evidence suggesting that 

spatial processes nevertheless might be involved in the learning of such materials.  For 

example, the so-called symbolic distance effect (SDE) has often been demonstrated.  Queries 

on pairs of wider distances are usually responded to with greater speed and accuracy than 

those of narrower distances (e.g., DeSoto, London, & Handel, 1965; Smith & Foos, 1975; for 

a review Leth-Steensen & Marley, 2000).  These classical results have been interpreted as 

indicative of an analogue representation being formed out of the initial piecemeal information 

that was learned (e.g., Holyoak & Patterson, 1981).  This interpretation has been challenged 

on the grounds of demonstrations how equivalent experimental effects can be predicted 

without the assumption of spatial processes taking place (see Leth-Steensen & Marley, 2000).  

Therefore it is still unclear to what extent a spatial representation of an order is necessary for 

distance effects to occur, or even, more mildly, to what extent such effects are reliably 

associated with spatial representations.   

The approach taken here rests on the argument that support for the contribution of 

spatial processes in forming mental representations might consist in the demonstration of 

lateral asymmetries.  There exists evidence for a left-bias, that is, left-to-right oriented 

representation of numbers (Dehaene et al., 1993; Gevers, Verguts, Reynvoet, Cassens, & 

Fias, 2006; Ito & Hatta, 2004), and the mental time line in Western participants (Fuhrman & 

Boroditsky, Gevers, Reynvoet, & Fias, 2003; Gevers, Caessens, & Fias, 2005; Gevers, 

Reynvoet, & Fias, 2003; Ouellet, Santiago, Lupianez, Perez, & Funes, 2007; Santiago, Funes, 
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& Lupiáñez, 2010; Tversky, Kugelmass, & Winter, 1991).  In the present research, we focus 

on this left-anchoring effect:  Participants who are used to read from left to right are predicted 

to be faster to respond and, perhaps, more accurate, when the dominant element of a linear 

order (e.g., the oldest, fastest etc.) appears on the left side, compared to the right side, in a 

pair of elements.  We predict a spatial bias to occur for the learning of abstract orderings as 

mentioned above. Crucially, we investigate two potentially determining factors for such a 

bias: a) dimensional magnitude (“older”, or “taller”, etc.) and b) the mental time line, as 

explained below.  

Basic assumptions 

In an earlier series of experiments, we (von Hecker, Klauer, Wolf, and Fazilat-Pour, 

2016) provided initial evidence for spatial processes associated with the learning of (and 

subsequent reasoning about) linear orders, such as A is older than B, B is older than C, C is 

older than D, and so forth.  As conclusion, spatial processing was seen as a part of 

constructing a mental representation of such orders.  This claim rested on the finding that 

when later prompted to indicate, for example, the older one in any pair such as AB, AC, AD, 

BC, BD, etc., participants were quicker (and sometimes more accurate) when the older 

person was presented on the left side of the computer screen, as compared to the right side 

(left-anchoring effect).   

This bias was explained by one general, and two more specific assumptions.  As a 

general assumption, the rank order is mentally represented by a horizontal line, that is, a 

spatial mental model as suggested in classical literature (e.g., DeSoto, London, & Handel, 

1965; Smith & Foos, 1975; for a review Leth-Steensen & Marley, 2000).  Specific 

Assumption 1 explains the directionality of that line:  There is a tendency to use learned 

reading/writing habits as a scaffold for determining the origin, or starting point, of the 

simulated order (i.e., left for Westerners; the effect reversed to a right side advantage when 
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tested in Iranian samples with right-to-left reading/writing background, von Hecker et al., 

2016).  The line is then constructed in the direction away from the origin, that is, from left to 

right in Westerners.  Specific Assumption 2 explains the semantics of the line: To determine 

which end of the dimension (e.g., old or young, poor or rich, etc.) to place at the origin, one 

uses primacy in a very general sense.  Primacy within linear orders is usually derived from 

dominance in magnitude (e.g., which element in a pair represents the greater magnitude, for 

example, of age, power, wealth, or even green-ness, compared to the other, see von Hecker et 

al., 2016)1.  Response times should be faster in trials that show the dominant element on the 

screen in the same spatial orientation as it has within the mental representation (congruent 

trials), as compared to trials in which both orientations are opposite (incongruent trials).  

Starting from these assumptions, new questions arise because primacy can clearly be 

derived from other indicators, too.  For example, sequential steps in counting may influence 

the orientation of the mental number line from small numbers (left) to larger numbers (right) 

in Western cultures (see Dehaene, Bossini, & Giraux, 1993; Maass & Russo, 2003; Tversky, 

Kugelmass, & Winter, 1991; Zebian, 2005).   An influence from the sequence of action 

elements in time (e.g., counting steps) would point to a potential role of the time line in 

determining the mental representation of order.    

 

Experiment 1  

For the left-anchoring effect, it is unclear to what extent the assumed spatial 

construction is genuinely related to the concept of dimensional magnitude.  Alternatively, the 

constructive process could be guided or at least be influenced by other mental representations 

which are salient at the time of learning, causing the left-anchoring effect.  Time is a 

candidate concept here.  It is well established that time is itself represented as a dimension 

stretching out from left to right (from early to late) in Western participants (see above).  It is 
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therefore possible that participants would take their pre-existing, well-overlearned time line 

as a model or scaffold for the actual order dimension they are in the process of constructing.  

Hence, the experiment to be reported addresses the possible influence of the mental time line 

on the construction of an abstract linear order.   

Three conditions were run in a between-groups design.  In Group 1, the primacy of 

elements in each presented pair during learning was consistently identical for time and 

magnitude, i.e., the element presented first was always the dominant element as in von 

Hecker et al. (2016).  In Group 2, primacy of elements in a pair was random with regard to 

time, that is, the first or the second element in a pair was randomly chosen to be the dominant 

element.  In Group 3, the second element in a pair was always presented as dominant 

element, thus pitting time and dominance against each other, as competing for primacy.  In a 

subsequent test phase, two elements were presented horizontally on the screen, with the 

dominant element being on the left or on the right.  Participants had to quickly press a button 

on the side where they thought the dominant element appeared (see below).  Responses were 

expected to be faster and more accurate when the side of the presented dominant element in a 

pair corresponded to the side where the maximum of the dimension was anchored within the 

hypothetical mental model.  Responses were expected to be slower when there was no such 

correspondence.  

We predicted that if spatial processing in the service of constructing the actual linear 

order is genuinely tied to the left-anchoring effect, and primacy derived from dimensional 

dominance alone, then such an effect should be robust across all three group conditions.  If 

however spatial construction is influenced or even entirely determined, at stimulus 

acquisition, by the pre-existing orientation of the time line, and primacy derived from it, then 

there should be left-anchoring in Group 1, no anchoring effect in Group 2 (dominant element 

in random position), and a right-anchoring effect in Group 3.  Whether or not the group factor 
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moderates the left-anchoring effect and, in particular, the question whether any anchoring 

effect occurs in Group 2 (when temporal priority is controlled for) is of central theoretical 

interest for interpreting previously obtained anchoring effects (e.g., von Hecker et al., 2016) 

as being independent from other salient dimensions with ties to the horizontal line.  

Therefore, the present intention was to test for main effects associated with the side of 

dominant element, as well as for an interaction between that factor and the group factor.  

With the current assumptions, we predicted that participants usually construct an 

analogue spatial mental model as suggested in classical literature (e.g., DeSoto, London, & 

Handel, 1965; Smith & Foos, 1975; for a review Leth-Steensen & Marley, 2000).  For any 

pair of two elements from such a spatial mental model, a display exhibiting a spatial 

orientation which is incongruent with the spatial orientation in the mental model (e.g., the 

dominant element appearing on the right side) should cause interference, and slow down the 

response.  In order to test the construction of the model, and to replicate the SDE, we will 

introduce pair distance as a factor in all analyses.  According to the SDE, responses are 

expected to be more accurate, and also quicker, for pairs at a wider as compared to a 

narrower distance within the spatial model.  

 

Method 

This research was pre-registered with the Open Science Framework (OSF, von Hecker, 

Klauer, & Aßfalg, 2017).   

Participants 

In the series of experiments reported in von Hecker et al. (2016) we obtained a 

medium-sized effect of Cohen’s dz = .48 on average for the anchoring effect (Borenstein, 

Hedges, Higgins, & Rothstein, 2009) with meta-analytic procedures2.  Since we planned to be 

able to analyse groups separately, we conducted a power analysis based on the above effect 
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size, a t-test between two dependent measures (dominant element left or right), one-tailed 

testing, stipulating a power of 1 - β = .80 and an alpha-level of .05 [deleted: “…. a correlation 

between repeated measures of r = .8”] (GPower 3.1.3., Faul, Erdfelder, Buchner, & Lang, 

2009), yielding a minimal required sample size of n = 29 per group.  Taking a conservative 

approach on the basis of this analysis, we planned for a minimum of 40 participants per 

group, and 120 participants in total3.  

All participants were sampled from the subject pool of the second and third authors' 

department, mostly comprising undergraduate students with German-spoken backgrounds.  

Participants received course credit or €5.00 for their participation.  They were randomly 

assigned to one of the three groups.  Inclusion criteria were: Age between 17 and 45 years, 

mother tongue German, normal or corrected-to-normal visual acuity.  These criteria were 

monitored by the experimenters but sometimes, for logistical reasons, could be checked only 

after the experiment had been completed.  In such cases we excluded participants violating 

the inclusion criteria after participation.  Furthermore, participants with incomplete data due 

to computer problems were also excluded.  In total, data from 132 participants were collected 

(Group 1: 33 female, 10 male; Group 2: 30 female, 15 male; Group 3: 35 female, 9 male; 

total mean age = 24.4 years).  See Results section below for the impact of exclusion 

procedures on that number.   

Materials  

Six German adjectives were used to denote six semantically different order relations 

(German translations of older, richer, taller, smarter, stronger, and faster), to be used in the 

six experimental blocks (one adjective per block, and “more sportive” for a practice block).  

In each block, a separate set of five German first names was randomly assigned to that block 

(here denoted as A, B, C, D, and E), out of a large pool of names, matched for frequency of 

recent use.  The set of names used matched the participant’s gender, in order to avoid 
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differences between in- versus out-group perceptions with respect to some of the semantic 

comparators we used.  All possible pairwise combinations (n = 10) of the five names 

constituted the stimuli in each block.  In the learning phase, these pairs were presented 

centrally, one name after the other, whereas in the test phase, pairs were presented 

horizontally with a gap between them.  Presentation was in blue, green, or black letters on a 

white background.  

Procedure 

A PsychoPy (Peirce, 2007) script used for running the experiment is available in the 

OSF repository for download (https://osf.io/cn89q/).  After reading instructions, participants 

were seated approximately 60 cm in front of a computer screen.  First, they underwent a 

practice block consisting of four pairs to be learned, each after a 1 s fixation cross.  A pair 

was presented for practice at the centre of the screen, one name after the other, each name 

appearing for 1.5 s and separated by a blank screen for 800 ms.  Instructions asked 

participants in all three groups to consider the name written in blue letters as the dominant 

one (e.g., the older person).   Within each pair trial, either the first or the second name was 

shown in blue colour (and the other name in green colour).  Immediately after presenting a 

learning pair, a test item was prompted for practice.  In it, the two names were presented 

horizontally, with the dominant name randomly assigned to the left or the right.  Participants 

were instructed to press one of two horizontally arranged response buttons according to the 

side of the dominant name.  There was a 2 s blank screen separation between the practice 

trials.  When a participant committed an error during practice, they were presented with the 

practice instructions and the four practice trials again, until they achieved an error-free 

practice run. 

After practice, participants were then presented with the learning phase of the first 

experimental block.  In the learning phase, participants viewed all ten possible pairs twice, in 
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two cycles such that all possible pairs occurred once before all of them were presented again.  

The sequence of pairs was determined randomly for each cycle, excluding a repetition of 

pairs at the connection between the two cycles.  The timing of stimuli was identical to the 

way described above, and 2 s blank screen intervals occurred between individual learning 

pairs.  In all groups, the dominant and non-dominant names appeared in blue and green 

letters, respectively.  In Group 1, the dominant name appeared always first.  In Group 2, 

either the first or the second name was presented in blue letters as dominant, determined 

randomly for each pair, but with the order of the two names within a pair held constant 

between the two cycles of pairs during learning (as in the two other groups as well).   In 

Group 3, the dominant name appeared always second.  As a result of this part of the 

procedures, participants had been given all necessary information in order to construct a 

mental model of the hierarchy, incorporating all elements (i.e., names A to E) in an ordered 

sequence from maximum (i.e., the oldest) to minimum (i.e., the least old).  Whether or not 

such an order had been indeed constructed was ascertained by testing for replication of the 

SDE (see below), expecting more accurate and faster responses to pairs from wider than 

narrower distances in rank position.  

After each learning phase, a test phase followed immediately.  Each test pair trial began 

with a 1 s fixation stimulus (“X”) at the centre of the screen.  After that interval, the pair was 

presented in black letters as described above, with an open response interval.  There was a 

2000 ms blank screen interval between any two consecutive test trials.  A test phase consisted 

of 40 items, that is, all ten possible combinations were presented four times.  Test cycles, 

invisible to the participant, were programmed such that all ten pairs were presented before the 

next cycle began.  Left- vs. right-orientation of the dominant person was determined 

randomly for each pair across the four cycles such that each pair appeared twice with the 

dominant person left and twice with the dominant person right.  Two specially prepared 
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mouse devices were used for responses.  These devices had marked buttons to indicate the 

use of the forefinger of each hand, that is, on the right mouse button of the left mouse, and on 

the left mouse button of the right mouse.  This enabled participants to hold their hands in a 

comfortable position using both mouse devices simultaneously, while being also able to 

quickly respond.  Before each block started, an instruction screen told participants to keep the 

two index fingers on the marked mouse buttons during the experiment.  The participants’ task 

in each test phase was to indicate as quickly and accurately as possible the side where the 

dominant person appeared (i.e., the older, taller, etc.).   

Learning and test phases as described occurred six times, corresponding to the six order 

dimensions older, richer, taller, smarter, stronger, and faster, assigned to blocks in random 

order.  In between blocks, a series of four easy arithmetic problems was solved as 

interpolated task, to clear participants’ short-term memory from the previous set of names.  

One session lasted between 30 and 40 minutes, including debriefing.  

Results 

Data preparation 

Amongst the 132 initial participants (43 in Group 1, 45 in Group 2, and 44 in Group 3), 

three had eyesight problems (two in Group 2 and one in Group 1) and were excluded from 

the analysis.  Two participants were further excluded because German was not their native 

language (one each from Groups 1 and 2).  Average accuracy and latency was continuously 

monitored via Boxplot tests while targeting the pre-registered sample sizes for the three 

groups.  In this process, that is, prior to any analyses, participants were excluded when they 

were extreme outliers according to Tukey’s criterion (i.e., three times the interquartile range 

above or below the upper or lower quartile, respectively, in the current participant sample’s 

distribution of average accuracy rates or average correct response latencies).  Using this 

method, three participants were excluded on the grounds of low accuracy (two from Group 2 
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and one from Group 3), as well as two participants on the grounds of slow responding (two 

from Group 2), such that the remaining sample sizes were 42 for Group 1, 38 for Group 2, 

and 42 for Group 3.  Note that the exclusion criteria had been preregistered (von Hecker et 

al., 2017). 

With respect to the hypotheses, we analysed latencies, as well as accuracy data for 

correct responses.  In previous studies (von Hecker et al., 2016), the target anchoring effects, 

although mostly occurring in latencies, sometimes also occurred in accuracies, or in both.  

Latencies were trimmed within each participant according to the Tukey criterion based on 

excluding outliers with values larger (smaller) than the upper (lower) quartile plus (minus) 

1.5 times the interquartile range in the individual’s distribution of latencies (see Clark-Carter, 

2004, Chapter 9).  All data were analysed using t-tests and linear mixed models (Jaeger, 

2008; Judd, Westfall, & Kenny, 2012), using the package afex (Singmann & Bolker, 2014) 

within the programming language R (R Core Team, 2013).  Cohen’s dz will be reported for 

those effects that are relevant to the hypotheses.  We also report Bayes factor values for 

critical comparisons related to the hypotheses, as calculated using the package Bayes Factor 

in R (Morey, Rouder, & Jamil, 2015)4.   

Latency and accuracy data were each analysed in two steps.  Linear mixed models were 

estimated (for the accuracy data: generalized linear mixed models with logistic link function) 

with participants as random factor, and it was first determined which random structure would 

best fit the data.  Subsequently, a final model with appropriate random effects was used to 

evaluate fixed effects (see Jaeger, 2008; Judd, Westfall, & Kenny, 2012).  Such models 

provide more test power as compared to the conventional ANOVA approach by including, if 

statistically appropriate, random slopes for within-Ss factors, as a function of participants, 

into the predictive part of the model.   The strategy for selecting a model with appropriate 

random-effects structure is described in the Appendix, along with information about the 
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particular random-effects structure adopted for each model in each experiment.  We report 

effect sizes (Cohen’s dz) for those effects that are interpreted as relevant to the main 

hypothesis.  Here, Cohen’s dz refers to the standardized mean difference between the 

conditions with dominant elements on the left vs. right, across all other conditions, while 

accounting for correlations of dependent measures (Morris & DeShon, 2002). 

Response latencies  

Table 1 lists the response latencies.  The final model had fixed effects for group (1 – 3), 

block (1 – 6), side of dominant element (left vs. right) and pair distance (1 step, …, 4 steps).  

A main effect of block showed that average responses got quicker across blocks 1 to 6 (M1  = 

1033 ms; M2 =  995 ms; M3 = 982 ms; M4 = 966 ms, M5 = 941 ms; M6 = 948 ms) reflecting 

increased practice with the task, F(5, 131.35) = 2.33; p = .05.  Relevant to the main 

hypothesis, side of dominant element had a significant effect, F(1, 24269.64) = 28.83; p < 

.001, dz = 0.34.  Participants were faster responding to the dominant stimulus in a pair if that 

stimulus was presented on the left side (Mleft = 963 ms) than the right side (Mright = 992 ms).  

There was a main effect of pair distance, F(3, 213.41) = 198.53; p < .001, showing again the 

symbolic distance effect, (M1 step = 1109 ms;  M2 steps = 1045 ms; M3 steps = 938 ms; M4 steps = 

815 ms), that is, participants responded faster when the distance in steps between the 

elements of a pair was large compared to small.  In terms of interactions, group significantly 

interacted with block, F(10, 131.35) = 2.18; p = .02, suggesting that the practice effect across 

blocks was most pronounced in Group 3 (dominant element always second).  Also, there was 

a significant interaction between block and pair distance, such that the symbolic distance 

effect, measured as the difference in latency (ms) between the narrowest (1 step) and the 

widest pair distance (4 steps), increased from Block 1 to a plateau in Blocks 4 - 6 (Block 1: 

189 ms; Block 2: 295 ms; Block 3: 308 ms; Block 4: 341 ms; Block 5: 320 ms; Block 6: 311 

ms).  No further significant effects emerged.  Notably, there was no significant interaction 



Robust anchoring 

15 

between group and side of dominant element, F(2, 24270.73) = 1.39; p = .25, which suggests 

that the left-anchoring effect was not moderated by the group factor.  The Bayes factor4 in 

favour of a model identical to the one specified above, but without the group x side of 

dominant element interaction, against the full model as initially specified, was 381.91, 

indicating “extreme evidence” (Jeffreys, 1961) in favour of the superior, more parsimonious 

model, which constitutes support against incorporating this particular interaction as a part of 

the model.  

To test robustness of the left-anchoring effect in each group, we further examined the 

side of dominant element effect, running models of similar structure as above for each group 

separately.  In Group 1, the crucial main effect of dominant side was significant, F(1, 

8523.63) = 11.30; p = .0008, dz = 0.40 (Mleft = 963 ms; Mright = 990 ms) which was also the 

case in Group 2, F(1, 7556.76) = 17.44; p < .0001, dz = 0.48 (Mleft = 933 ms; Mright = 974 ms), 

as it was in Group 3, F(1, 8229.65) = 3.31; p = .07, dz = 0.21 (Mleft = 991 ms; Mright = 1009 

ms) which corresponds, in line with our power-planning (see above) to a one-tailed t-test 

result at p = .0355.   

Accuracy 

Table 1 lists the mean accuracies. The overall error level was 11%.  The final model 

had the same fixed effect structure as the one for latencies.  Block yielded a significant effect, 

χ2(5) = 91.62; p < .001, showing an increase in accuracy over the first five blocks of the 

experiment (M1  = .851; M2  = .914; M3  = .926; M4 = .933, M5 = .946; M6 = .930), probably 

reflecting a practice effect.  Pair distance had a significant effect, χ2(3) = 226.85; p < .001, 

replicating the classical symbolic distance effect (see above), that is, participants were more 

accurate when the distance in steps between the elements of a pair was large compared to 

small (M1 step = .841; M2 steps = .916; M3 steps = .947; M4 steps = .962).  The interaction between 

group and block was significant as well, χ2(10)= 20.29; p < .03, indicating that the presumed 
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practice effect was most pronounced in Group 2, which is plausible because the task was 

comparatively most complex in this group (dominant element in random position).  Lastly, 

the interaction between block and pair distance yielded a significant effect, χ2(15) = 48.68; 

p < .001.  Inspecting the differences in percentage correct between distances reflecting the 

narrowest (1 step) and the widest (4 steps) pair distance, it appears that the symbolic distance 

effect is more pronounced in the first half of the experiment than in the second half (Block 1: 

15%; Block 2: 13%; Block 3: 10%; Block 4: 9%; Block 5: 15%; Block 6: 11%).  In terms of 

the main hypothesis, there are no significant effects in the accuracy data, neither in terms of a 

side of dominant element main effect, χ2(1) = 0.0; p > .99; Bayes factor: 6.48 (moderate 

evidence in favour of the full model without side of dominant element as predictor and its 

interactions, compared to the full model itself), nor in terms of the particular interaction 

between group and side of dominant element, χ2(2) = 1.45; p = .48;  Bayes factor: 169.89 

(extreme evidence in favour of the full model without that particular interaction versus the 

full model itself).  This outcome is quite common.  In previous research, the left-anchoring 

effect has been visible mainly in response latencies, and only sporadically in accuracies (see 

von Hecker et al., 2016). 

 

Experiment 2 

Experiment 2 was conducted for two reasons.  First, we aimed at a replication of the 

left-anchoring effect especially under the conditions of Group 2, where the mental time line 

could not serve as diagnostic scaffold for model construction, since first and second elements 

within the presented series of pairs were randomly chosen to be the dominant one.  In this 

situation, with no other cue than dimensional dominance, a spontaneous left-anchoring is 

predicted and should be replicable.  Second, as prompted by a reviewer’s query, we wanted 

to investigate whether the color of the dominant element could play any role.  For this 
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purpose, and different from the method used for Group 2 in Experiment 1,  half of the 

participants in the present experiment received displays in which dominance was indicated by 

names written in blue, whereas dominance was indicated by names written in green for the 

remainder of participants.  

 

Method 

This research was also pre-registered with the Open Science Framework (OSF, von 

Hecker, Klauer, & Aßfalg, 2018).   

Participants 

All participants were sampled from the subject pool of the second and third authors' 

department, mostly comprising undergraduate students with German-spoken backgrounds.  

Forty-nine participants were recruited who received course credit or €5.00 for their 

participation (27 female, 22 male; total mean age = 24.7 years).  The inclusion criteria were 

the same as in Experiment 1.   

Materials and Procedure 

All materials and experimental procedures were the same as in Experiment 1, except 

the assignment of color to stimulus dominance, which was blue for one half of the sample, 

and green for the other half.  Instructions during the practice trials were modified 

accordingly.  

Results and Discussion 

Data preparation 

Amongst the 49 initial participants three were excluded from the analysis, as outliers 

after a boxplot analysis for overall accuracy, so the remaining sample size was N = 46.  All 

data preparation in terms of applying the Tukey criterion to latencies were identical to 

Experiment 1.  
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Response latencies  

Table 2 lists the response latencies.   Color was included as an additional fixed factor in 

the modelling.  The final model had fixed effects for color (dominant: blue vs. green), block 

(1 – 6), side of dominant element (left vs. right) and pair distance (1 step, …, 4 steps).  A 

main effect of block showed that average responses got quicker across blocks 1 to 6 (M1  = 

1128 ms; M2 =  1097 ms; M3 = 1047 ms; M4 = 1089 ms, M5 = 1058 ms; M6 = 996 ms) again 

reflecting increased practice with the task, F(5, 50.60) = 3.30; p = .01.  Relevant to the main 

hypothesis, side of dominant element had a significant effect, F(1, 71.72) = 6.72; p = .01, dz = 

0.25.  Participants were faster responding to the dominant stimulus in a pair if that stimulus 

was presented on the left side (Mleft = 1053 ms) than the right side (Mright = 1085 ms).  There 

was also a main effect of pair distance, F(3, 78.56) = 100.32; p < .001, showing again the 

symbolic distance effect, (M1 step = 1222 ms;  M2 steps = 1129 ms; M3 steps = 1026 ms; M4 steps = 

895 ms), that is, participants responded faster when the distance in steps between the 

elements of a pair was large compared to small.  No further effects were significant, in 

particular, the interaction between color and side of dominant element was insignificant, F(1, 

71.72) = .76; p = .39.   

The Bayes factor in favor of the above linear model minus the interaction between 

color and side of dominant element against the full model was 18.27, indicating “strong 

evidence” against this interaction (Jeffreys, 1961). 

Accuracy 

Table 2 lists the mean accuracies. The overall error level was 9%.  The final model had 

the same fixed effect structure as above for latencies.  Block yielded a significant effect, 

χ2(5) = 56.98; p < .001, showing a tendency of increasing accuracy over the first five blocks 

of the experiment (M1  = .865; M2  = .940; M3  = .937; M4 = .941; M5 = .937; M6 = .951), 

reflecting a practice effect.  Pair distance had a significant effect, χ2(3) = 85.74; p < .001, 
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replicating the classical symbolic distance effect (see above), that is, participants were more 

accurate when the distance in steps between the elements of a pair was large compared to 

small (M1 step = .861; M2 steps = .928; M3 steps = .960; M4 steps = .964).  The interaction between 

block and pair distance was also significant, χ2(15) = 26.33; p = .03, showing that with 

increasing practice, the SDE tended to be smaller.  This same effect of diminishing SDE 

tended to be more pronounced when the color assigned to dominant names was green, 

compared to blue,  as a significant triple-interaction between color, block and distance 

indicated, χ2(15) = 29.44; p < .01.  No further effect was significant, in particular, the 

interaction between color and side of dominant element was insignificant, χ2(1) = 0.0; 

p > .99.     

The Bayes factor in favour of the above linear model minus the interaction between 

color and side of dominant element, against the full model, was 19.37, reflecting “strong 

evidence” against this interaction (Jeffreys, 1961).  Overall, Experiment 2 provided a 

replication of the left-anchoring effect under the condition of no valid sequential cue, that is, 

the mental time line could not serve as diagnostic scaffold for model construction.  Color was 

shown to have no influence on the target effect as it did not interact with the side of the 

dominant element.  

 

General Discussion 

Participants who are used to read from left to right are faster to respond when, at a later 

test trial, the dominant element within a pair from a linear order (e.g., the older, faster etc.) 

appears on the left side, compared to the right side.  This left-anchoring effect, as reported 

earlier (von Hecker et al., 2016) proved replicable and robust under three conditions designed 

to address alternative influences during the mental construction of the rank order.  We asked 

the question whether a well-researched, strong, spatial simulation, that is, the mental time line 
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(Fuhrman & Boroditsky, Gevers, Reynvoet, & Fias, 2003; Gevers, Caessens, & Fias, 2005; 

Ouellet, Santiago, Funes, & Lupianez, 2010; Santiago, Lupianez, Perez, & Funes, 2007; 

Tversky, Kugelmass, & Winter, 1991) would interfere with the construction of a linear order 

by degrees of dominance.  Assuming a salient mental time line, the prediction in favour of 

such an influence (time line influence) is that any order element that is acquired first in a pair 

has primacy, thus is the one to be assigned, in terms of a spatial representation, to the left side 

of the second element that is acquired later in time.  The extreme formulation of this 

hypothesis is that the mental time line, or indeed any other spatial simulation that is salient 

during construction, is the main or even the exclusive determinant of the left-anchoring 

effect.  The competing prediction (primacy influence) is that even in the presence of an 

available alternative spatial simulation during the construction phase, reasoning about 

comparative levels of magnitude is largely independent of such alternative influences.  

According to this argument, construction follows the overlearned reading/writing habits and 

therefore unfolds, for Westerners, from left to right.  Additionally it is assumed that 

dimensional magnitude within the order translates into dominance, therefore primacy, in 

terms of spatially represented order position, such that the dimensional maximum is placed 

on the left.   

The obtained results from both studies presented here speak in favour of the latter set of 

assumptions, that is, primacy influence.  As manipulation check, the symbolic distance effect 

(e.g., Smith & Foos, 1975) was replicated, suggesting that participants formed analogue 

representations of rank orders out of the initial piecemeal information that was learned 

(Holyoak & Patterson, 1981; Leth-Steensen & Marley, 2000).  Importantly, in Experiment 1 

we found strong evidence for left-anchoring of the orders in Groups 1 (dominant-first) and 2 

(dominant-random).  Whilst in Group 1 processes 1 (time line influence) and 2 (primacy 

influence) were congruently applicable, in Group 2 time line influence was not applicable 
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because the information pertaining to the mental time line, and therefore to the positioning of 

elements on that line, was randomised.  Experiment 2 replicated left-anchoring under 

conditions of Group 2 of Experiment 1, now also controlling for color which was shown to 

have no influence on this effect (see above for Bayes factors from both accuracy and latency 

sections).  Therefore, in order to explain the strong left-anchoring effect observed in Group 2 

of Experiment 1 and in Experiment 2, we need to refer to primacy influence and the above 

assumptions regarding reading/writing, magnitude and primacy, as plausible mechanisms.  

The result in Group 3 (Experiment 1) again supports the robustness of primacy influence.  

This is a condition in which the mental time line is salient and provides an alternative 

scaffold for construction during the learning phase.  But this scaffold is incongruent with the 

one implied by primacy influence.  The significant left-anchoring effect even in this 

condition means that participants tended to follow the implications of reading/writing, 

magnitude and primacy, despite the presence of an alternative scaffold.   

It is important to note similarities and differences between this and existing work on 

mental model construction that has already shown left-to-right bias.  For example, Jahn, 

Knauff, and Johnson-Laird (2007) demonstrated that their participants constructed models of 

input information such as “TV – table – chair” working from left to right, linking this 

tendency to a cultural bias to scan in the trained direction of reading and writing (Chan & 

Bergen, 2005; Spalek & Hammad, 2005).  In a similar way, work by Román, El Fathi, and 

Santiago (2013) shows that auditorily presented materials such as “the table is between the 

lamp and the TV” were graphically represented by their participants in a way consistent with 

their learned reading/writing direction.  However, the input information used in the above 

examples is genuinely spatial in the first place, whereas this is not the case in our materials.  

Rather, the present approach suggests two things. First, dimensions that a priori do not imply 

any spatial extension, situation, or orientation (e.g., older, richer, smarter etc.) are 
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nevertheless adapted to a (linear) spatial representation, as a dimension.  Second, the abstract 

relation of dominance, that is, the meaning of this dimension, is spatially represented by left-

anchoring the maximum magnitude at the left side of the mental model, and constructing the 

dimension rightwards with the constraint that any element situated to the left of another will 

be the dominant one when comparing the two.  Therefore, whereas the literature cited above 

shows reading / writing habits to have an effect on the construction of mental models of 

spatial layouts, our approach suggests that reading /writing habits have an effect on non-

spatial, abstract dimensions of reasoning as well.  

To the extent that, overall, substantial evidence in support of left-anchoring is accepted 

from the present studies, our general interpretation is that there is a spontaneous, largely 

time-independent tendency to construct rank-orders from left to right, and that temporal 

influences incongruent to primacy influence, even if made salient and presented consistently, 

as in Group 3 (Experiment 1), are not strong enough to abolish or reverse the effect.  

Consequently, we posit that primacy influence, that is, defining the origin for model 

construction according to reading/writing habits, and placing the element highest in 

dominance at that origin, is sufficiently robust, or fundamental, to be impervious to such 

presentational influences.  We are not adopting a strictly encapsulated view of primacy 

influence, as being a part of some “central reasoning system” (Fodor, 1983; Sloman, 1996; 

Pylyshyn, 1999; Anderson, 2007).  Instead, our view is closer to what Boroditsky and 

Ramscar (2002) have called a “milder view” of embodiment: the roots of the process lie in 

physical experiences of some action dynamic (reading/writing), but its application later on, 

after consolidation, proceeds largely independent of physical parameters, including 

presentational conditions.  The present research thereby not only attests to the robustness of 

the left-anchoring effect, but also contributes to the fascinating question of how 
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presentational factors and more centrally driven, basic mechanisms of model construction 

interact. 
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Footnotes 

 

 

1 

Deriving primacy as an abstract and generalised dimension from more proximal, 

empirically more accessible magnitude is germane to the process of metaphoric blending as 

discussed in Casasanto (2009). 

 

2 

The meta-analysis across the 8 experiments in von Hecker et al. (2016) was conducted 

with the R package “rmeta” (Lumley, 2015). 

 

3 

We ran an alternative power analysis based on dz= 0.48, focusing on the alternative 

hypothesis that the left-anchoring effect is caused by temporal order that leads one to expect 

an interaction between group and the factor “side of the dominant element”. Conceptualizing 

the interaction as a between-participants comparison between the three groups with respect to 

the left-anchoring effect, assuming alpha = .05, to achieve 1-beta = .80, we used the menu 

“ANOVA: Fixed effects, omnibus, one-way” (GPower 3.1.3., Faul, Erdfelder, Buchner, & 

Lang, 2009), stipulating effect sizes of .48, .0, and -.48, for Groups  1, 2, and 3, respectively. 

This yielded a total N of 66.  Given the a priori assumed effect size, the planned total N of 

120 ensures sufficient power to detect the interaction effect, as conceptualized in the above 

way. 

 

 

 

4 



Robust anchoring 

29 

Bayes factors were computed with function lmBF of the R-package BayesFactor, 

version 0.9.2+ (Morey, Rouder, & Jamil, 2015), with parameters rscaleRandom and 

rscaleFixed set to the default values of “nuisance” and “medium”, respectively. 

 

5 

Completing the intended methods of analysis as preregistered (von Hecker et al., 2017), 

we also used a composite measure, as aggregated across accuracy and inverse latency 

(response speed) data, after z-standardisation of both types of variables.  These results closely 

mirror the previously reported results.  
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Appendix: Modelling of effects 

Experiment I 

In order to determine which random effect structure to assume, we used generalized linear 

mixed models with random effects for participants for accuracy data, and linear mixed models 

with random effects for participants for the latency data. 

Model comparisons were performed in a two-steps procedure: In the first step, we fitted four 

models for each data type (a1, a2, a3, a4 for accuracy data, and tm1, tm2, tm3, and tm4 for 

latency data).  All of these models had the same fixed effect structure, that is, presentation 

side of the dominant element, pair distance and block as well as their interactions.  All models 

had a random intercept for participants.  Models a4 and tm4 had only this intercept, so these 

models are minimal.  Models a1 / tm1 also had a random slope for block as function of 

participant, whereas a2 / tm2 had a random slope for dominant side instead, and a3 / tm3 had 

a random slope for pair distance instead.  These models were then compared using the Chi 

square difference statistic .  Models of a given type 1, 2, or 3 were compared with the 

corresponding model of type 4, the minimal model.  If there was a significant difference in 

fit, the particular type of random slope as specified in the non-minimal model under 

comparison was then retained for the final model, afinal, resp., tfinal.  In a second step, these 

final models were assembled and run in order to evaluate the respective fixed effect structure 

from those models (see Jaeger, 2008).  This strategy thus considers random intercepts and 

random slopes for the main effects of the experimental design.  Models with more complex 

random effects structures (e.g., random slopes for interactions) could not be estimated in 

reasonable amounts of time.  The analyses employed the statistical programming language R 

(R Core Team, 2016), using the package lme4 (Bates, Maechler, Bolker, & Walker, 2015) 

and afex (Singmann, Bolker, Westfall, & Aust, 2018). 

 

 

Latencies 

Model df AIC BIC loglik deviance Δχ2 Δdf p 

t4  146  26857  28044  -13282     26565                               

t1  166  25583  26934  -12626     25251  1313.4     20  < 2.2e-16  

t2  148  26859  28063  -13282     26563  1.4934      2     0.4739 

t3  155  26763  28024  -13226     26453  111.61      9  < 2.2e-16 

tfinal:  Random slopes for block and pair distance, as a function of participants, are kept.   

 

Accuracies 

Model df AIC BIC loglik deviance Δχ2 Δdf p 

a4  145   16526  17727  -8117.8     16236                              

a1          165   16004       17371       -7836.9      15674               561.89        20    < 2.2e-16  

a2  147   16527       17745      -8116.6      16233                    2.4172     2     0.2986 

a3  154   16430       17706      -8061.0      16122                113.59         9    < 2.2e-16 *** 
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afinal:  Random slopes for block and pair distance, as a function of participants, are kept.  

 

AIC = Akaike’s Information Criterion; BIC = Bayesian Information Criterion. 
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Experiment 2 

The model comparisons performed for this experiment had the same structure as in 

Experiment 1.  

 

 

Latencies 

Model df AIC BIC loglik deviance Δχ2 Δdf p 

t4  98  13071  13774  -6437.3     12875                                

t1  118  12781  13627  -6272.6     12545  329.49     20  < 2.2e-16 *** 

t2  100  13066  13783  -6433.1     12866  8.4733      2    0.01446 * 

t3  107  13069  13837  -6427.7     12855  19.315      9    0.02265 * 

tfinal:  Random slopes for block, dominant side and pair distance, as a function of 

participants, are kept.   

 

Accuracies 

Model df AIC BIC loglik deviance Δχ2 Δdf p 

a4  97  5790.9  6499.9  -2798.4    5596.9                             

a1          117  5518.1  6373.3  -2642.1    5284.1  312.78     20  < 2.2e-16 *** 

a2  99  5794.0  6517.6  -2798.0    5596.0  0.8663      2     0.6485 

a3  106  5774.3  6549.1  -2781.1    5562.3  34.592      9   7.03e-05 *** 

 

afinal:  Random slopes for block and pair distance, as a function of participants, are kept.  

 

AIC = Akaike’s Information Criterion; BIC = Bayesian Information Criterion. 
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Table 1  Experiment 1: Mean (SD) accuracies and response latencies by side of dominant element for the three groups, and four levels of pair 

distance.  

 

 

 

 

 

Group 1 Dominant            Pair distance   

                                             person 1 step 2 steps 3 steps 4 steps Total 

           

           

Latency left 1086 (268) 1022 (.111) 926 (302) 840 (323) 963    (316)    

 right 1125 (281) 1048 (285) 946 (296) 912 (368)  990    (327)     

           

           

Accuracy left .878 (.142) .951 (304) .968 (.102)  .968 (.137)  .942      (.129)  

 right .836 (.167) .931 (.127)  .969 (.096)  .962 (.159)  .924      (.150)  
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Group 2 Dominant            Pair distance   

                                             person 1 step 2 steps 3 steps 4 steps Total 

           

Latency left 1053 (334) 1001 (326) 888 (335) 786 (320) 933    (345)      

 right 1102 (346) 1059 (343) 921 (290) 810 (316) 974    (344)   

           

           

Accuracy left .850 (.175)  .920 (.147)  .947 (.134)  .962 (.161)  .920     (.161)  

 right .817 (.178)  .901 (.168)  .930 (.151)  .964 (.151)  .903    (.171)   

           

 

 

 

 

Group 3 Dominant            Pair distance   

                                             person 1 step 2 steps 3 steps 4 steps Total 
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Accuracy left 1126 (333) 1076 (380) 951 (345) 806 (326) 991       (367) 

 right 1158 (390) 1059 (339) 989 (360) 827 (332) 1009       (375) 

           

           

Latency left .834 (.187)  .904 (.170)  .923 (.180)  .958 (.176)  .905     (.184)  

 right .831 (.187)  .890 (.185)  .940 (.135)  .954 (.157)       .904     (.174)  
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Table 2  Experiment 2: Mean (SD) accuracies and response latencies by side of dominant element and four levels of pair distance.  

 

  

 

 

 

 Dominant            Pair distance   

                                             person 1 step 2 steps 3 steps 4 steps Total 

           

           

Latency left 1209  (337) 1109 

 

(362) 1023 

 

(368) 869 

 

(373) 1054     (380)    

 right 1236 

 

(375) 1151 

 

(390) 1029 

 

(352) 922 

 

(457)  1085     (412)     

           

           

Accuracy left 87.3 (15.6) 94.2 (12.1) 96.4 (11.1)  95.8 (16.8)  93.4      (14.5)  

 right 85.0 (16.7) 91.5 (16.6)  95.7 (12.3)  97.1 (13.8)  92.3      (15.7)  

           

 

 

 

 


