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Iron-Catalyzed Borrowing Hydrogen C-Alkylation of
Oxindoles with Alcohols

Mubarak B. Dambatta,[a] Kurt Polidano,[a] Alexander D. Northey,[a] Jonathan M. J. Williams,[b]

and Louis C. Morrill*[a]

A general and efficient iron-catalyzed C-alkylation of oxindoles

has been developed. This borrowing hydrogen approach em-

ploying a (cyclopentadienone)iron carbonyl complex (2 mol%)

exhibited a broad reaction scope, allowing benzylic and simple

primary and secondary aliphatic alcohols to be employed as al-

kylating agents. A variety of oxindoles underwent selective

mono-C3-alkylation in good-to-excellent isolated yields (28 ex-

amples, 50–92% yield, 79% average yield).

The oxindole framework is present in a diverse array of natural-

ly occurring compounds.[1] Furthermore, oxindoles that are

mono- or disubstituted at the C3 position are commonly em-

ployed in drug discovery programs,[2] with examples including

the development of HIV-1 non-nucleoside reverse transcriptase

inhibitors, spirocyclic compounds with anti-cancer and anti-in-

flammatory properties, and antagonists of progesterone and 5-

hydroxytryptamine7 (5-HT7) receptors (Scheme 1A). The tradi-

tional method for alkylation of unprotected oxindoles employs

toxic alkyl halides and exhibits poor selectivity (mono- vs. dia-

lkylation, C- vs. N-alkylation) alongside the generation of stoi-

chiometric quantities of undesired byproducts.[3] An alternative

approach employs the borrowing hydrogen (BH) principle, also

known as hydrogen autotransfer, which allows bench-stable

and inexpensive alcohols to be used as alkylating agents, gen-

erating water as the sole byproduct.[4] Recent progress in this

area has provided alternatives to commonly employed pre-

cious-metal catalysts through the development of catalysts

based on earth-abundant first-row transition metals.[5]

The BH alkylation of oxindoles with alcohols, which selec-

tively produces mono-C3-alkylation products, has been report-

ed through heterogeneous catalysis[6] and by employing ho-

mogeneous precious-metal catalyst systems based on rutheni-

um and iridium.[7] However, with respect to earth-abundant

first-row transition-metal catalysis, only sporadic examples

appear in the literature, in each case forming only a minor

component of a broader study.[8] As such, the development of

a general catalytic BH C-alkylation of oxindoles with well-de-

fined complexes based on earth-abundant first-row transition

metals is required and would represent a valuable addition to

the synthetic toolbox. To this end, herein we report the use of

a bench-stable (cyclopentadieneone)iron(0) carbonyl complex

(2 mol%) for the selective mono-C3-alkylation of various oxin-

doles with both benzylic and simple primary and secondary ali-

phatic alcohols as alkylating agents (Scheme 1B).[9]

To commence our studies, we selected the C3-benzylation of

oxindole 2 with benzyl alcohol 1 (1.2 equiv.) as a model system

(Table 1). After extensive optimization,[10] it was found that a

BH system composed of the bench-stable (cyclopentadieneo-

ne)iron(0) carbonyl complex 3 (2 mol%),[11] triphenylphosphine

Scheme 1. Oxindole importance and project overview.
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(4 mol%) to form the active catalyst, and K2CO3 (0.5 equiv.) as

base in xylenes ([2]=0.5m) at 150 8C for 24 h enabled the effi-

cient C-benzylation of 2, giving 4 in 97% yield based on
1H NMR spectroscopy and 90% isolated yield (entry 1).[12] Im-

portantly, only 1.2 equiv. of the alkylating agent and substoi-

chiometric quantities of base were required for complete con-

version, giving a high-atom-economy process.[13] No alkylation

occurred in the absence of iron precatalyst 3 (entry 2), and

only 26% conversion was observed in the absence of K2CO3

(entry 3). The PPh3-bound [Fe] precatalyst 5 could be em-

ployed, accessing 4 in 95% yield based on 1H NMR spectrosco-

py (entry 4), verifying it as a plausible catalytic intermediate

(see also Scheme 3). Interestingly, from the iron complexes em-

ployed in this study, it was found that the (cyclopentadieno-

ne)iron carbonyl precatalysts 3 and 5, which contain a more

electron-rich cyclopentadienone framework, were uniquely ef-

fective for the desired transformation, whereas the use of alter-

native iron precatalysts 6–10 resulted in low-to-negligible for-

mation of alkylated oxindole 4 (entries 5–9).[14] The reaction

could be performed in the absence of PPh3, albeit in a slightly

diminished yield, indicating thermal activation of the precata-

lyst occurred at 150 8C (entry 10).[11] Substituting triphenyl-

phopshine for trimethylamine N-oxide (4 mol%)[15] also had a

slightly negative impact on the reaction (entry 11). Employing

Cs2CO3 as base resulted in lower conversion to 4 (entry 12).

Lowering the quantity of K2CO3 (entry 13) highlighted that cat-

alytic quantities of base (10 mol%) can be employed, accessing

4 in 88% yield based on 1H NMR spectroscopy. Employing tolu-

ene as solvent (entry 14), increasing the reaction concentration

(entry 15), lowering the reaction temperature (entry 16), reduc-

ing the reaction time (entry 17), or reducing the catalyst load-

ing (entry 18) all lowered the efficiency of the iron-catalyzed

mono-C3-benzylation of 2.

The full scope of the Fe-catalyzed BH C3-alkylation of oxin-

doles was explored, starting with the C-alkylation of oxindole 2

(Scheme 2A,B).[16] Under the optimized reaction conditions

(Table 1, entry 1) a variety of substituted benzylic alcohols

could be employed as alkylating agents, giving the corre-

sponding mono-C3-alkylated oxindoles in excellent isolated

yields (products 4 and 11–24, 52–91% yield). With regard to

the alcohol, sterically encumbered aryl units such as o-tolyl

and 1-naphthyl were tolerated in addition to electron-donating

(4-OMe, 4-OBn) and electron-withdrawing (4-CF3, 4-CN) sub-

stituents. The catalytic system exhibited chemoselectivity, toler-

ating the reducible nitrile and alkene moieties present within

products 19 and 20. 4-Iodobenzyl alcohol was employed as

the alkylating agent, incorporating an additional functional

handle into oxindole 21 for subsequent elaboration through

established cross-coupling methods.[17] Furan-2-ylmethanol and

thiophene-2-ylmethanol were both compatible with this meth-

odology, incorporating an additional heterocycle into prod-

ucts 23 and 24, which were isolated in 77 and 84% yield, re-

spectively. We were pleased to discover that less activated

simple aliphatic alcohols could also be employed as alkylating

agents in this process (products 25–31, 53–84% yield). In each

case, the alcohol was used as solvent to obtain high isolated

yields of the mono-C3-alkylated oxindoles. Under otherwise

identical reaction conditions, decan-1-ol, butan-1-ol, ethanol,

and methanol were all successfully utilized as alkylating

agents. 1,4-Butanediol was also employed as the alkylating

agent, accessing the mono-C3-alkylated oxindole 29 in 53%

isolated yield, with no dialkylation products observed. Remark-

ably, it was found that the unactivated secondary alcohols

propan-2-ol and butan-2-ol were also tolerated, giving alkylat-

ed oxindoles 30 and 31 in excellent isolated yields. This is a

rare example of secondary alcohol compatibility as alkylating

agents in BH catalysis employing earth-abundant first-row tran-

sition-metal catalysts.[9e,f,m,18] Unfortunately, despite examining

a range of alternative reaction conditions, benzylic alcohols

containing nitro or ketone functional groups, allylic alcohols,

propargylic alcohols, and bulkier secondary alcohols (e.g. , 1-

phenylethan-1-ol) were found to be incompatible with this C-

alkylation procedure.

Next, we explored the scope of the reaction with respect to

variation within the oxindole component (Scheme 2C). By em-

ploying the optimized reaction conditions (Table 1, entry 1) a

variety of substituted oxindoles underwent efficient and selec-

tive mono-C3-alkylation with benzyl alcohol (products 32–37,

Table 1. Optimization of the Fe-catalyzed oxindole C-benzylation.[a]

Entry Variation from “standard” conditions Yield[b] [%]

1 none 97 (90)

2 no [Fe] precatalyst 3 <2

3 no K2CO3 26

4[c] 5 (2 mol%) instead of 3 95

5 6 (2 mol%) instead of 3 18

6 7 (2 mol%) instead of 3 5

7 8 (2 mol%) instead of 3 5

8 9 (2 mol%) instead of 3 5

9 10 (2 mol%) instead of 3 5

10 no PPh3 activator 90

11 Me3NO (4 mol%) instead of PPh3 92

12 Cs2CO3 (0.5 equiv.) instead of K2CO3 85

13 K2CO3 (0.1 equiv.) 88

14 toluene instead of xylenes 91

15 [2]=1m 93

16 130 8C 86

17 reaction time=6 h 92

18[d] [Fe] precatalyst 3 (1 mol%) 73

[a] Reactions performed with oxindole 2 (1 mmol) and bench-grade xy-

lenes. [2]=0.5 m. [b] Yield after 24 h as determined by 1H NMR spectros-

copy of the crude reaction mixture with 1,3,5-trimethylbenzene as the in-

ternal standard. Isolated yield given in parentheses. [c] No PPh3.

[d] 2 mol% of PPh3.
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50–92% yield). Oxindoles containing halogen substitution at

the 5-position (5-Br, 5-Cl, and 5-F) in addition to N-methyl, N-

benzyl, and N-phenyl substitution were all well tolerated. Bar-

bituric acids are a class of activated amides that have been

shown to participate as competent nucleophiles in homogene-

ous BH alkylation processes employing precious-metal cata-

lysts.[19] By using the [Fe] precatalyst 3 (4 mol%), it was found

that a selection of N-alkyl barbituric acid derivatives underwent

efficient C5-monoalkylation, giving products 38–42 in 50–75%

isolated yield (Scheme 2D). This iron-catalyzed process is the

first example of a BH alkylation of barbituric acid derivatives

employing an earth-abundant transition-metal catalyst. Un-

fortunately, piperdin-2-one and 1-tosylpiperdin-2-one were

found to be incompatible with this protocol, with complex re-

action mixtures obtained across a range of reaction conditions

explored.

To obtain insights into the reaction mechanism, the a,b-un-

saturated amide 43 was synthesized and subjected to the

“standard” C-alkylation reaction conditions, which produced 4

in 71% yield based on 1H NMR spectroscopy, indicating that

43 is a plausible reaction intermediate (Scheme 3A). In line

with this observation and previous related investigations,[11] a

plausible reaction mechanism begins with CO decoordination

of the [Fe] precatalyst 3 by PPh3 to form the active iron com-

plex, which abstracts hydrogen from benzyl alcohol in the

presence of base to form the required transient reactive ben-

zaldehyde intermediate (Scheme 3B). Subsequent nucleophilic

attack of oxindole 2 generates the b-hydroxy amide 44, which

undergoes rapid base-catalyzed E1cB dehydration to form the

a,b-unsaturated amide 43. Finally, reduction of 43 by the iron-

hydrogen complex gives the C3-alkylated product 4 with re-

generation of the active iron complex.

In conclusion, we have developed a general and efficient Fe-

catalyzed C-alkylation of oxindoles with benzylic and simple

primary and secondary aliphatic alcohols as alkylating agents

through the borrowing hydrogen approach. A variety of oxin-

doles underwent selective mono-C3-alkylation in excellent iso-

lated yields (28 examples, 50–92% yield, 79% average yield).

Ongoing studies are focused on further applications of earth-

abundant first-row transition metals in catalysis, and these re-

sults will be reported in due course.[20]

Scheme 2. Scope of the Fe-catalyzed C-alkylation of oxindoles. Reactions performed with oxindole starting material (1 mmol) and bench-grade xylenes. All

yields are isolated yields after chromatographic purification. Reagents and conditions: [a] alcohol used as solvent; [b] [Fe] precatalyst 3 (4 mol%), PPh3

(8 mol%); [c] K2CO3 (0.5 equiv.).
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