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Abstract  38 

In this work, a method to study the formation of syngas during the underground coal gasification (UCG) process 39 

and its reactive transport in the surrounding strata is proposed. It combines a thermodynamic equilibrium 40 

stoichiometric model of the cavity reactions with a coupled thermo-hydraulic-chemical-mechanical (THCM) 41 

framework of COMPASS code for the transport of UCG products away from the cavity. With the input 42 

information of coal properties obtained from the South Wales coalfield, gasification reagents (air and steam) and 43 

thermodynamic conditions (initial temperature and pressure), the thermodynamic equilibrium model developed 44 

provides the maximum yield of gasification products and temperature from a UCG system. Gasification results 45 

giving the syngas composition with the highest percentage of methane and carbon dioxide, are then used as the 46 

chemical (gas) and thermal boundary conditions for the coupled thermo-chemical model of the THCM framework 47 

to analyse the variations of temperature and gas concentrations, in strata surrounding the UCG reactor. For that 48 

purpose, a set of numerical simulations considering three porous media (coal, shale and sandstone) with different 49 

physico-chemical properties is conducted. The gasification results demonstrate that increasing the amount of 50 

steam injected in the UCG reactor decreases the temperature of the system as well as the concentration of carbon 51 

monoxide and nitrogen, while benefiting the production of hydrogen, methane and carbon dioxide. The numerical 52 

simulations performed using the THCM model indicate that multicomponent gas diffusion and advection are 53 

competing transport mechanisms in porous media with intrinsic permeability higher than 1 mD (sandstone), while 54 

the gas diffusion becomes a dominant transport process in porous media with an intrinsic permeability lower than 55 

1 mD (coal and shale). Moreover, the simulation results of reactive transport of methane and carbon dioxide in 56 

different porous media demonstrate the significance of considering the adsorption effect in the gas transport in 57 

the overall UCG process. In particular, the retardation of the gas front due to gas sorption is the most pronounced 58 

in coal, followed by shale and then sandstone. In conclusion, the model presented in this study demonstrates its 59 

potential application in managing the environmental practices, reducing pollution risk and securing greater public 60 

and regulatory support for UCG technology. 61 
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1. Introduction 66 

Coal reserves significantly exceed those of oil and gas, however less than one-sixth of the world’s coal is currently 67 

economically accessible using conventional mining methods [1]. Underground coal gasification (UCG) is a 68 

process whereby coal deposits that are either too deep underground or too costly to be extracted using traditional 69 

mining techniques, are converted into a combustible gas, commonly known as syngas. A UCG operation consists 70 

of a series of injection and production wells drilled into a coal seam where reactant gases, i.e. air, oxygen or steam, 71 

are supplied (Fig. 1). As having a fully instrumented UCG trial with comprehensive data extraction is challenging 72 

and expensive, computational modelling offers an inexpensive way for predicting the complex interaction of 73 

various processes involved during and beyond the UCG operation.  74 

 75 

Fig. 1. Schematic diagram of the overall UCG process 76 

         An extensive literature review given in Khan et al. [2] and Perkins [3], suggests that current numerical 77 

models predominantly focus on the phenomena of coal gasification and cavity formation [3], the product gas 78 

compositions and quality [4-6], underlying thermo/mechanical/chemical reactions and heat and mass transport 79 

phenomena in the permeable bed and newly formed cavity [7-12]. Those numerical models are then applied to 80 

predict the effect of various physical and operating parameters on the performance of the UCG process and provide 81 

suggestions for the economic and technical feasibility of UCG technology. For instance, an innovative 82 

thermodynamic underground coal gasification model was proposed firstly by Klebingat et al. [12] to optimize the 83 

coupled synthesis gas quality and simultaneously reduce tar yields under given geological boundary conditions 84 

and then applied further by Klebingat et al. [13] to provide a predictive UCG analysis taking into account tar 85 

production control and economic gas quality constraints to achieve optimum operating options in view of 86 

synthesis gas quality and reduced tar production. Other models focus on the geo-mechanical phenomena in the 87 

surrounding strata dealing with the stress-strain changes as a result of thermo-mechanical induced effects and 88 

potential surface subsidence changes [14, 15].  89 



Besides primary gas components, i.e. methane, hydrogen, carbon monoxide and carbon dioxide, a number 90 

of organic and inorganic contaminants, such as phenols, benzene, sulphates, metal and metalloid elements can be 91 

generated and released during the UCG process [16]. The UCG has been performed in over 75 trials throughout 92 

the world, and despite most of the UCG trials not experiencing significant environmental issues, potential 93 

pollution is the biggest public and regulatory concern [17]. Several researchers who focused on the generation 94 

and transport of contaminants via experimental and numerical analyses [18-25] have suggested that operating the 95 

UCG process above the hydrostatic pressure can pose an environmental concern due to the chemical reactions in 96 

the groundwater environment depending on mineral composition, temperature, concentration of syngas 97 

components and the chemical composition of groundwater. However, modelling of contaminant transport and 98 

reactions received less attention as it is a complex process with multiple aspects involving heat, mass, stress-strain 99 

and physico-chemical reactions [18, 26]. For example, little is known of how the gas sorption affects the gas 100 

migration around the UCG cavity and whether it can help to retard potential gas leakage. Upadhye et al. [27] 101 

concluded that general hydrogeological models are not appropriate for predictions and assessments related to 102 

groundwater pollution and environmental issues in the context of UCG as such models often do not include the 103 

complexity of the processes and effects involved in UCG. Therefore, modelling platforms possible to 104 

simultaneously simulate the production of syngas, the environmental impact of UCG products both in liquid and 105 

gaseous state and the geo-mechanical impacts of the UCG in complex multi-well configurations are therefore 106 

required to enhance the understanding of all the environmental aspects related to UCG [3]. Performing such work 107 

is also crucial in order to demonstrate to the regulatory bodies and the public under which conditions UCG can be 108 

feasible without generating environmental damage and pollution. 109 

In this paper, a comprehensive thermodynamic and coupled thermo-hydro-chemical-mechanical (THCM) 110 

modelling approach is presented. Through specific process parameters, a thermodynamic equilibrium 111 

stoichiometric model for calculating syngas concentrations and reaction temperature has been coupled with the 112 

existing THCM framework of the COMPASS software which has a background of high-performance simulations 113 

of three-dimensional multiphase, multicomponent reactive transport in porous geomaterials [28-30]. The 114 

developed model is then applied to investigate the gas migration and the effect of its sorption on transport through 115 

different geological media (coal, shale and sandstone) surrounding the UCG cavity, considering the scenario of 116 

potential syngas leakage. 117 

 118 

2. Theoretical framework 119 



In this section, a theoretical framework is presented consisting of a thermodynamic equilibrium stoichiometric 120 

model and a coupled thermo-chemical model contained within the thermo-hydraulic-chemical-mechanical 121 

framework of the COMPASS Code (Fig. 2). The thermodynamic equilibrium model has been developed based 122 

on the previous work on biomass and coal gasification [31, 32] and is being incorporated within the COMPASS 123 

framework through the boundary condition interface, i.e. the results of individual syngas concentrations and the 124 

reactor temperature serve as an input for the reactive transport modelling. The COMPASS code is a coupled 125 

thermo-hydro-chemical-mechanical model, previously developed at the Geoenvironmental Research Centre by 126 

Thomas and co-workers [28-30, 33, 34] to address various geo-environmental issues. COMPASS is based on a 127 

theoretical formulation that can be described as a mechanistic approach. The various mechanisms of behaviour 128 

are included in an additive manner with inter-related couplings being accommodated. The model is based on mass 129 

conservation for moisture, gas and chemical transport and energy equation for the heat transfer. Mechanical 130 

behaviour is also included via an appropriate constitutive relationship using the elasto-plastic approach.  131 

 132 

Fig. 2. Numerical approach consisting of a thermodynamic equilibrium stoichiometric model and a coupled 133 

thermo-hydraulic-chemical-mechanical framework of the COMPASS code 134 

 135 

The COMPASS code has been successfully extended by including the advanced geochemical model PHREEQC 136 

(version 2) [35]. Through both equilibrium and kinetically controlled geochemical reactions, the model is capable 137 

to simulate the reactive transport and fate of multicomponent and dissolved chemicals and gases. The geochemical 138 



reactions considered in the coupled model include phase transformation, ion exchange, precipitation and 139 

dissolution of minerals, surface complexation and redox reactions. The transport model (COMPASS) and the 140 

geochemical model (PHREEQC) are linked together using a sequential non-iterative approach [29]. Further details 141 

of the applied models are provided in the following sections. 142 

 143 

2.1. Thermodynamic model 144 

The production of syngas using gasification is a complex process that depends on several factors including the 145 

composition of feedstock, the gasifier conditions, temperature and pressure, and the type and amount of oxidiser 146 

and moderator. A thermodynamic equilibrium modelling approach is widely used to evaluate the performance of 147 

gasification system in terms of product gas composition and efficiency [31, 32]. 148 

The global gasification reaction for one mole of feedstock can be represented as: 149 

𝐶𝐻𝑥𝑂𝑦𝑁𝑧 + 𝑚(𝑂2 + 3.76𝑁2) + 𝑛𝐻2𝑂 + 𝑤𝐻2𝑂

→ 𝑥1𝐻2 + 𝑥2𝐶𝑂 + 𝑥3𝐶𝑂2 + 𝑥4𝐻2𝑂 + 𝑥5𝐶𝐻4 + (𝑧
2⁄ + 3.76𝑚)𝑁2 

(1) 

where 𝐶𝐻𝑥𝑂𝑦𝑁𝑧 is the chemical formula for the feedstock/coal, subscripts 𝑥, 𝑦 and 𝑧 are the number of moles of 150 

hydrogen, oxygen, nitrogen in feedstock per mole of carbon, 𝑛 represents the amount of moisture per mole of 151 

feedstock, 𝑚 represents the amount of air supply per mole of feedstock and 𝑤 represents the amount of steam 152 

supply in mole per mole of feedstock. The coefficients 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 represent the number of moles of H2, 153 

CO, CO2, H2O and CH4, respectively. The molar concentrations of syngas products and gasification temperature 154 

together comprise of six unknowns and are output data from the model. Hence, six equations are required to 155 

determine six unknowns, three of which will be obtained from the mass balance for the global gasification 156 

reaction. 157 

Carbon balance gives: 158 

𝑥2 + 𝑥3 + 𝑥5 = 1  (2) 

Hydrogen balance gives: 159 

2𝑥1 + 2𝑥4 + 4𝑥5 = 𝑥 + 2𝑛 + 2𝑤 (3) 

Oxygen balance gives: 160 

𝑥2 + 2𝑥3 + 𝑥4 = 𝑦 + 2𝑚 + 𝑛 + 𝑤 (4) 

To obtain the remaining equations, chemical reactions as an integral part of the gasification process are 161 

used. By combining the Boudouard reaction and the water-gas reaction, the water-gas shift reaction can be 162 

obtained and is given as [36]: 163 



𝐶𝑂 + 𝐻2𝑂 = 𝐶𝑂2 + 𝐻2 (5) 

Methanation reaction gives: 164 

𝐶 + 2𝐻2 = 𝐶𝐻4 (6) 

The equilibrium constant for the water-gas shift reaction is: 165 

𝐾1 =
𝑥1𝑥3

𝑥2𝑥4

 (7) 

The equilibrium constant for the methanation reaction is: 166 

𝐾2 =
𝑥5

𝑥1
2 (

𝑃

𝑥𝑇𝑃0

)
−1

 
(8) 

where 𝑥𝑇 is the total sum of all the product gaseous species, 𝑃 is the pressure and 𝑃0 is the standard reference state 167 

pressure. 168 

In order to solve the non-linear equations (7) and (8), the values of the reaction constants must be calculated 169 

using the following equation: 170 

𝑙𝑛𝐾𝑖 =
−∆𝐺0

𝑅𝑇
 

(9) 

Where 𝑅 is the universal gas constant and ∆𝐺0 is the standard Gibbs function at a given temperature 𝑇. 171 

The dependence of ∆𝐺0  on temperature can be expressed through heat of formation which is further 172 

expanded in terms of specific constants as [37]: 173 

𝑑𝑙𝑛𝐾

𝑑𝑇
=

∆𝐻0

𝑅𝑇2
  

(10) 

∆𝐻0

𝑅
=

𝐽

𝑅
+ (∆𝐴)𝑇 +

∆𝐵

2
𝑇2 +

∆𝐶

3
𝑇3 −

∆𝐷

𝑇
 

(11) 

Substituting equation (11) in (10) and integrating we get, 174 

𝑙𝑛𝐾 =
−𝐽

𝑅𝑇
+ ∆𝐴𝑙𝑛𝑇 +

∆𝐵

2
𝑇 +

∆𝐶

6
𝑇2 +

∆𝐷

2𝑇2
+ 𝐼 

(12) 

From equation (9) and (12) the dependence of ∆G on temperature can be written as: 175 

∆𝐺0 = 𝐽 − 𝑅𝑇 (∆𝐴𝑙𝑛𝑇 +
∆𝐵

2
𝑇 +

∆𝐶

6
𝑇2 +

∆𝐷

2𝑇2
+ 𝐼) 

(13) 

where the data for constants ∆𝐴, ∆𝐵, ∆𝐶, ∆𝐷 can be obtained from [38]. The constants 𝐽 and 𝐼 are calculated from 176 

equations (11) and (13) at temperature of 298 K. 177 

By incorporating the tabulated values and constants the expression for equilibrium constants obtained are: 178 

𝑙𝑛𝐾1 =
5872.39

𝑇
+ 1.86𝑙𝑛𝑇 − 2.7 × 10−4𝑇 −

58200

𝑇2
− 18.01 

(14) 



𝑙𝑛𝐾2 =
7083.41

𝑇
− 6.567𝑙𝑛𝑇 + 3.733 × 10−3𝑇 − 3.6 × 10−7 +

35050

𝑇2
+ 32.5 

(15) 

To obtain the gasification temperature, the energy balance is used: 179 

∆ℎ𝑓,𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 + 𝑛ℎ𝑓,𝐻2𝑂
0 + 𝑤ℎ𝑓,𝐻2𝑂

0 + 𝑚ℎ𝑓,𝑂2

0 + 3.76𝑚ℎ𝑓,𝑁2

0

= 𝑥1(ℎ𝑓,𝐻2

0 + 𝐶𝑝,𝐻2
∆𝑇) + 𝑥2(ℎ𝑓,𝐶𝑂

0 + 𝐶𝑝,𝐶𝑂∆𝑇)

+ 𝑥3(ℎ𝑓,𝐶𝑂2

0 + 𝐶𝑝,𝐶𝑂2
∆𝑇) + 𝑥4(ℎ𝑓,𝐻2𝑂

0 + 𝐶𝑝,𝐻2𝑂∆𝑇)

+ 𝑥5(ℎ𝑓,𝐶𝐻4

0 + 𝐶𝑝,𝐶𝐻4
∆𝑇) + (𝑧

2⁄ + 3.76𝑚)(ℎ𝑓,𝑁2

0 + 𝐶𝑝,𝑁2
∆𝑇) 

(16) 

where ℎ𝑓is the enthalpy of formation and ∆𝑇 = 𝑇 − 𝑇𝑟𝑒𝑓 where 𝑇𝑟𝑒𝑓 is 298 K. 180 

The data for heat of formation of all the species involved in equation (16) can be obtained from JANAF 181 

thermochemical tables [39]. The specific heat, 𝐶𝑝, as a function of temperature can be expressed as [38]: 182 

𝐶𝑝 = 𝑅 [𝐴 + 𝐵𝑇𝑎𝑣 +
𝐶

3
(4𝑇𝑎𝑣

2 − 𝑇𝑟𝑒𝑓𝑇) +
𝐷

𝑇𝑟𝑒𝑓𝑇
] 

(17) 

where 𝐴, 𝐵, 𝐶, 𝐷 are tabular values and 𝑇𝑎𝑣 = (𝑇𝑟𝑒𝑓 + 𝑇)/2. 183 

The model was developed in FORTRAN programming language, with the solution of the non-linear 184 

equations being achieved using the Newton-Raphson method. The solution procedure for the thermodynamic 185 

equilibrium model can be found in Jarungthammachote and Dutta [31]. 186 

 187 

2.1.1. Verification and validation 188 

For the verification exercise, the results of syngas composition of the present model are compared with the results 189 

of the numerical model developed by Jarungthammachote and Dutta [31] for gasification of rubber wood as a 190 

biomass feedstock. The comparison is made by setting the gasification temperature fixed at 1100 K for moisture 191 

contents of 16% and 14% with air supply rates of 0.4647 and 0.4591 kmole per kmole of biomass, respectively. 192 

Fig. 3 shows that the results from both models are in excellent agreement with each other. This consolidates the 193 

accuracy of the computational algorithm developed for thermodynamic equilibrium model for gasification. 194 
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Fig. 3. Comparison of the results obtained using the developed model with the model developed by 195 

Jarungthammachote et al. [31] for different air to fuel ratios and moisture contents in rubber wood at a fixed 196 

temperature of 1100 K: (a) m = 0.4647, moisture content = 16%; (b) m = 0.4591, moisture content = 14% 197 

 198 

The model is further compared with the experimental data on gasification of lignite reported by Patel et al. 199 

[36]. The results obtained are for air supply of 0.45 kmole at a fixed gasification temperature of 1100 K. Fig. 4 200 

shows reasonable agreement with the results of the model and the experimental data. The slight deviation in results 201 

can be attributed to assumptions such as ideal gas behaviour, modelling of different reaction zones as a single 202 

zone, absence of tar etc. The lower concentration of methane is because the methanation reaction does not reach 203 

equilibrium at higher temperatures. 204 
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Fig. 4. Comparison of the results using the developed model with the experimental results by Patel et al. [36] for 206 

gasification of lignite 207 

 208 

2.2. COMPASS Code 209 

The governing equations of the coupled thermal, hydraulic, chemical and mechanical framework of the 210 

COMPASS code to study the behaviour of unsaturated soils have already been provided elsewhere [28, 29, 33, 211 

40]. Furthermore, the governing equations for the reactive transport of multicomponent gas in a single porosity 212 

unsaturated medium have been given in Sedighi et al. [41], assuming an ideal gas behaviour. Hosking et al. [30] 213 

presented the governing equations for multicomponent reactive chemical transport in dual porosity geomaterials 214 

as well as the aspects related to non-ideal gas flow at high pressures.  215 

For the purpose of this work, a coupled thermal-chemical model of the COMPASS framework has been 216 

used. The existing thermal model was further extended to incorporate temperature dependence of gas conductivity 217 

as well as to consider the variations of thermal conductivity and heat capacity with temperature of different porous 218 

media adopted in this study. Furthermore, geochemical reactions are included via the sorption/desorption module 219 

of the COMPASS code to study the effect of sorption on gas transport.  220 

The governing equation of heat transfer has been developed based on the energy conservation law in 221 

𝜕

𝜕𝑡
[𝐻𝑐(𝑇 − 𝑇𝑅)] = −∇𝜆𝑇∇𝑇 

(18) 

where 𝐻𝑐  is the heat storage capacity, 𝑇 is the soil/rock temperature, 𝑇𝑅 is a reference temperature, and 𝜆𝑇 is the 222 

thermal conductivity. Heat convection is neglected in this work due to the dominate role of heat conduction in 223 

low permeability medium [42]. 224 



A mass conservation equation is applied to derive the multicomponent gas chemical transport in which the 225 

temporal derivative of the gas chemical accumulation is equal to the spatial gradient of the flux. A sink/source 226 

term is added allowing for chemical reactions. The governing equation is given by: 227 

𝜕

𝜕𝑡
[𝜃𝑐𝑔

𝑖 ] + 𝑅𝑖 = −∇[𝑐𝑔
𝑖 𝑣𝑔] + ∇[𝐷𝑖∇𝑐𝑔

𝑖 ] 
(19) 

where 𝑐𝑔
𝑖  is the ith gaseous chemical component and 𝐷𝑖  is the effective diffusion coefficient derived from the free 228 

fluid diffusion coefficient to account for the tortuous diffusion paths in a porous medium [30]. 𝜃 is the volumetric 229 

gas content represented by multiplying porosity 𝑛 and degree of gas saturation 𝑆𝑔. 230 

Using Darcy’s law for the advective flux, the expression for 𝑣𝑔 is: 231 

𝑣𝑔 = −𝑘 [∇
𝑢𝑔

𝜌𝑔𝑔
+ ∇𝑧] 

(20) 

where 𝑧 is the elevation and 𝑘 is the gas conductivity which can be expanded to give: 232 

𝑘 =
𝐾𝜌𝑔𝑔

𝜇𝑔

 
(21) 

where 𝐾 is the intrinsic permeability and 𝜇𝑔 is the absolute gas viscosity which is included using the approach in 233 

which viscosity depends on composition, temperature and pressure [30]. The viscosity model is expressed as: 234 

𝜇𝑔 = 0.1[𝑓(𝜇𝑔
0) + 𝜇𝑔

𝐷] (22) 

where 𝑓(𝜇𝑔
0) is a function of the gas mixture viscosity at low pressure and 𝜇𝑔

𝐷 is an adjustment for dense gases. 235 

The bulk gas pressure, 𝑢𝑔 , can be expressed in terms of the sum of concentrations of the chemical 236 

components in the gas phase, given by: 237 

𝑢𝑔 = 𝑍𝑅𝑇 ∑ 𝑐𝑔
𝑗

𝑛𝑔

𝑗=1
 

(23) 

where 𝑍 is the compressibility factor (equal to 1 in ideal gas case), 𝑅  is the universal gas constant, 𝑇 is the 238 

temperature, and 𝑛𝑔 is the number of gas components. 239 

Development of a sink/source term for chemical reactions, 𝑅𝑖, is limited here to adsorption and desorption 240 

of gases by solids and can be expressed as: 241 

𝑅𝑖 = 𝜌𝑠

𝜕𝑠𝑖

𝜕𝑡
 

(24) 

where 𝜌𝑠 is the dry bulk density of the solid and 𝑠𝑖 is the adsorbed amount of the ith chemical component which 242 

has been calculated using the extended Langmuir isotherm [30]: 243 



𝑠𝑖 =
𝑛𝑖𝑏𝐿

𝑖 𝑍𝑅𝑇𝑐𝑔
𝑖

1 + 𝑍𝑅𝑇 ∑ 𝑏𝐿
𝑗
𝑐𝑔

𝑗𝑛𝑔

𝑗=1

 
(25) 

where 𝑛𝑖  is the Langmuir capacity and 𝑏𝐿
𝑖  is the reciprocal of the Langmuir pressure. In this approach, it is 244 

assumed that the sorption process is sufficiently fast compared to the transport speed. Hence, the local chemical 245 

equilibrium between the adsorbed gas phase and the free gas phase is considered to exist.  246 

 A numerical solution of the two governing partial differential equations is achieved with the finite element 247 

method for spatial discretisation and the finite difference method for temporal discretisation [28, 29, 33, 40]. The 248 

THCM model of the COMPASS code has been extensively verified, validated and applied for a range of geo-249 

environmental/geo-energy applications. In regards to the thermo-chemical model used in this work, the thermal 250 

aspects of the model have been verified against analytical solutions and validated against experimental data on 251 

heat propagation in various types of soils and rocks [34, 43, 44]. Also, the multicomponent high pressure ideal 252 

and real gas transport and its sorption in coal have been verified against analytical solutions for pure diffusive and 253 

advective-diffusive gas transport as well as the comparison of simulation results with those presented in the 254 

literature for an alternative numerical model and validated against experimental data [30, 45]. Details of the 255 

numerical formulation and computational aspects have been discussed in previous publications mentioned above 256 

and therefore, the details are not repeated here. 257 

 258 

3. Problem setup 259 

During underground coal gasification, the process gas will tend to escape from the cavity if there is an outward 260 

pressure gradient. In order to prevent this, a common practice is to ensure that the fluid flow from the strata 261 

surrounding the cavity must be towards it [46]. However, under specific conditions where coal acts as a confined 262 

aquifer surrounded by low permeability strata, a layer of unreacted coal may exist around the upper part of the 263 

cavity where the surrounding coal drains off water and the pores are partially filled with gas [46]. This is 264 

schematically shown in Fig. 5. The zone of unreacted coal could be extended even further in dipping coal seams 265 

where the gas could flow a long distance in the up-dip direction [46]. 266 



 267 

Fig. 5. Potential of gas escape where a shoulder of unreacted coal may exist in the upper part of the coal seam 268 

surrounding the cavity (adapted from Camp and White [46]) 269 

 270 

This work is therefore trying to provide further understanding of how the amount of water injected into the 271 

cavity affects the concentration of the individual syngas components and the reaction temperature. Furthermore, 272 

it is studied how the primary product gases, i.e. methane, hydrogen, carbon monoxide, carbon dioxide and 273 

nitrogen, flow through the overlying strata. As methane and carbon dioxide are very potent greenhouse gases, it 274 

is also investigated whether sorption of these gases on the surrounding rock, upon their potential escape from the 275 

cavity, can retard their propagation and provide a potential for their storage. 276 

 277 

3.1. Domain and material properties 278 

Coal seams are often overlaid by low permeable rocks such as shales and mudstones, and more permeable 279 

sandstones which is also the case for the South Wales Coalfied [47]. A recent study of the South Wales coalfield 280 

through exploratory drilling for environmental monitoring purposes has suggested that samples from various 281 

depths exhibit mineralogic characteristics of shale deposits and that several thick coal seams are overlaid by 282 

sandstone layers [48]. Furthermore, through continuous monitoring of ground water level in the boreholes in a 283 

duration of more than 2.5 years, it was shown that the water level in one of the boreholes is around 350 m below 284 

the surface [48]. Therefore, a sensitivity analysis considering gas flow through mudstone/shale, sandstone and 285 

coal in partially dry conditions, assuming the degree of water saturation of 0.61 as a reasonable value for the 286 

materials studied [49-51], has been considered in this study to reflect the real geological conditions experienced 287 

in the coalfield.  288 

The system is represented as a 30 m long domain with 1 m height, discretised into 300 equally-sized 4-289 

noded quadrilateral elements. A summary of the material parameters is given in Table 1. As shown in the table, 290 



thermal conductivity and heat capacity of the materials studied have been considered as a function of temperature. 291 

Several studies conducted analyses of gas sorption in porous geo-materials over a range of temperatures, on coals 292 

up to 350 K [52] and shales up to 318 K [53], and have suggested that the sorption capacity decreases with an 293 

increase in temperature as the sorption is an exothermic process [52, 53]. However, literature data on the sorption 294 

of different gases under high-temperature conditions that can be experienced in the surroundings of the UCG 295 

cavity is very scarce. Hence, in this work the sorption properties of different materials represent sorption at 296 

isothermal conditions. Sorption data at the temperature of 313 K and 318 K are adopted for the cases of CO2 and 297 

CH4 on coal, respectively. Sorption of the same gases on shale is taken at 318 K, while the sorption of CO2 and 298 

CH4 on sandstone is represented at 323 K and 296 K, respectively. It should be noted that the sorption parameters 299 

for shale and sandstone were obtained by fitting the Langmuir curve to the experimental data provided in the 300 

literature (Table 1). 301 

 302 

3.2. Model parametrization and boundary conditions  303 

The thermodynamic equilibrium model is used to analyse the effect of steam supply ranging from 0.35 to 1.55 304 

kmol on the product gas composition and the reaction temperature. Furthermore, air is considered to be a primary 305 

gasifying agent at a constant injection of 0.5 kmol. Coal properties of an anthracite coal from the South Wales 306 

coalfield have been used as an input for the thermodynamic equilibrium model. For that purpose, Proximate and 307 

ultimate analysis data given in Table 2 have been used [54].  308 

Based on the results provided by the thermodynamic equilibrium model, a scenario generating the highest 309 

amount of CO2 and CH4 is used as input, i.e. boundary condition for the reactive transport model of the COMPASS 310 

code. Initial and downstream boundary conditions are assumed to be atmospheric. The simulation considered an 311 

arbitrary injection pressure of 20 bar which would represent UCG at a minimum depth of 200 m below ground 312 

level. The simulation period is 30 days. 313 

4. Results and discussion 314 

In this section, the simulation results on gasification temperature and syngas formation as well as heat and gas 315 

propagation through different porous media obtained using the thermo-chemical model of the COMPASS code 316 

are presented. Subsequently, the results on gas propagation in the same porous media are shown and analysed 317 

with emphasis on the effect of gas sorption on gas transport. 318 

 319 

 320 



Table 1. Parameter values used in simulations 321 

Material parameters Sandstone Coal Shale/Mudstone 

Porosity [%] 25 [55] 25 [56]  25 [57] 

Permeability [mD] 1.0 [58] 0.1 [34] 0.01 [57] 

Density [kg.m-3] 2650 [58] 1376 [34] 2316 [59] 

Thermal conductivity 

[W.m-1.K-1] 

𝜆 =

1
(0.000497 ∗ 𝑇 + 0.764518)⁄  

[60] 

𝜆 = 3 ∗ 10−6 ∗ 𝑇2 −

0.001 ∗ 𝑇 + 0.2625 

[61] 

𝜆 =

1
(0.000288 ∗ 𝑇 + 0.749849)⁄  

[60] 

Heat capacity [J.kg-1.K-

1] 

810 [60] 𝐶𝑝 = −0.001 ∗ 𝑇2 +

2.1418 ∗ 𝑇 +

854.83 [61] 

𝐶𝑝 = 0.0007 ∗ 𝑇2 − 1.1434 ∗ 𝑇 +

1336 [60] 

Langmuir pressure 

(CO2) [MPa] 

2.83  [62] 0.61 [54] 1.0 [53] 

Langmuir capacity 

(CO2) [mol/kg] 

0.49 [62] 1.73 [54] 0.285 [53] 

Langmuir pressure 

(CH4) [MPa]  

3.86  [63] 1.2 [52] 1.71 [53] 

Langmuir capacity 

(CH4) [mol/kg] 

0.175 [63]  1.52 [52] 0.184 [53] 

 322 

Table 2. Proximate and ultimate characteristics of coal considered in the model simulations [54] 323 

Proximate analysis  Ultimate analysis  

Moisture content 0.91% Total carbon content 89.5% 

Ash 4.62% Sulphur content 0.87% 

Volatile matter 5.73% Hydrogen content 3.16% 

Fixed carbon content 88.7% Nitrogen content 1.31% 

  Oxygen content 0.33% 

 324 

4.1. Reactive transport boundary conditions 325 

The results of the thermodynamic model are given in Fig. 6 and 7. It is shown in Fig. 6 that steam supply affects 326 

the gasification temperature, i.e. increase in the amount of steam submitted to the system decreases the temperature 327 

in the UCG cavity by 115 K, i.e. from 1224 K to 1109 K for the range of the steam supply considered. This is 328 

related to the fact that steam gasification is a highly endothermic reaction which favours the generation of 329 

hydrogen. This can be confirmed from Fig. 7 where it is visible that an increase in steam supply benefits the 330 

hydrogen and methane production, while it reduces the concentration of carbon monoxide generated. In particular, 331 

the concentration of hydrogen increases from 11.9% to 17.75%, concentration of methane from 0.35% to 1.62% 332 

and concentration of carbon monoxide decreases from 23.59% to 10.17%. However, the CO2 concentration  333 
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Fig. 6. The effect of steam supply on the gasification temperature 335 
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Fig. 7. The effect of steam supply on the syngas composition (on dry basis) 337 

 338 

Table 3. Reactive transport boundary conditions 339 

Upstream boundary conditions Initial conditions Downstream boundary conditions 

Fixed gas concentrations at 20 bar: 

Cg (CO2) = 36.19 mol.m-3 

Cg (CH4) = 3.51 mol.m-3 

Cg (H2) = 38.51 mol.m-3 

Cg (CO) = 22.06 mol.m-3 

Cg (N2) = 116.59 mol.m-3 

 

 

Fixed temperature: 

T = 1108.75 K 

Initial gas concentrations at 1bar: 

Cg (CO2) = 0 mol.m-3 

Cg (CH4) = 0 mol.m-3 

Cg (H2) = 0 mol.m-3 

Cg (CO) = 0 mol.m-3 

Cg (N2) = 32.31 mol.m-3 

Cg (O2) = 8.59 mol.m-3 

 

Initial temperature: 

T = 298 K 

Fixed gas concentrations at 1 bar: 

Cg (CO2) = 0 mol.m-3 

Cg (CH4) = 0 mol.m-3 

Cg (H2) = 0 mol.m-3 

Cg (CO) = 0 mol.m-3 

Cg (N2) = 32.31 mol.m-3 

Cg (O2) = 8.59 mol.m-3 

 

Fixed temperature: 

T = 298 K 



increases from 6.57% to 16.68%. Hence, small amounts of steam injection should be encouraged since net 340 

calorific value of syngas increases based on increase in yield of H2 and CH4. Higher methane yield is obtained if 341 

gasification takes place at lower temperatures and higher pressure. Higher amounts, then considered in this study, 342 

of steam injection should be avoided owing to drop in CO and increase in CO2 concentration. As mentioned, the 343 

simulation results providing the highest amounts of CO2 (16.68%) and CH4 (1.62%) as well as the corresponding 344 

gasification temperature of 1108.75 K are used as boundary conditions for the reactive transport model to analyse 345 

the heat and gas propagation in different porous media surrounding the UCG cavity. A complete overview of the 346 

reactive transport boundary conditions is given in Table 3. 347 

4.2. Heat transport 348 

Fig. 8 shows the temperature distribution in the domain at the end of the studied period. It can be observed that 349 

for the different geological formations considered in this study, the influenced areas of temperature are limited to 350 

round 5.0 m. As the heat transfer in this work was governed by conduction only, some minor differences can be 351 

observed due to the different thermal conductivities and heat capacities of three materials considered in this study, 352 

as indicated in Table 1. 353 
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Fig. 8. The distribution of temperature after 30 days in different porous media 355 

 356 

4.3. Gas propagation  357 

The propagation of syngas components in different porous media at the end of the studied period is given in Fig. 358 

9, where the transport of CO2, CH4, H2, CO and N2 is presented in Fig. 9a, 9b, 9c, 9d and 9e, respectively.  359 

Fig. 9a shows that CO2 reaches the distance of 16.0 m in sandstone, which is further in comparison to gas 360 

propagation up to 6.8 m in coal and 5.9 m in shale. For other gases studied in Fig.9b, 9c, 9d and 9e, it can also be 361 

observed that the gas front in the sandstone is located further than in coal and shale. In addition, the gas front of 362 



CO2, CH4, CO and N2 is minimum 8.6 m and 5.9 m for H2 further in sandstone compared to other materials (coal 363 

and shale). Such observation is mainly related to the difference in intrinsic permeabilities of different porous 364 

media (sandstone 1mD > coal 0.1 mD > shale 0.01mD), leading to the differences of gas conductivities which 365 

controls the gas advection in porous media.  366 

(a) 

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

6.8 m

G
as

 c
o

n
ce

n
tr

at
io

n
 (

m
o

l/
m

3
)

Distance (m)

 CO2-coal

 CO2-shale 

 CO2-sandstone 

5.9 m 16.0 m

 

(b) 

0 2 4 6 8 10 12 14 16 18 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
as

 c
o

n
ce

n
tr

at
io

n
 (

m
o

l/
m

3
)

Distance (m)

 CH4-coal

 CH4-shale  

 CH4-sandstone 

6.9 m 7.7 m 16.3 m

 

(c) 

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

G
as

 c
o
n

ce
n
tr

at
io

n
 (

m
o
l/

m
3
)

Distance (m)

 H2-coal

 H2-shale 

 H2-sandstone 

12.5 m12.1 m 18.4 m

 

(d) 

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25
G

as
 c

o
n

ce
n

tr
at

io
n

 (
m

o
l/

m
3
)

Distance (m)

 CO-coal

 CO-shale 

 CO-sandstone 

7.6 m6.8 m 16.2 m

 

(e) 

0 2 4 6 8 10 12 14 16 18 20
30

40

50

60

70

80

90

100

110

120

G
as

 c
o
n

ce
n
tr

at
io

n
 (

m
o
l/

m
3
)

Distance (m)

 N2-coal

 N2-shale 

 N2-sandstone 

7.0 m6.1 m 16.0 m

 

  

Fig. 9. Concentration of five different syngas components at the end of studied period (30 days) in three different 367 

porous media: coal, shale and sandstone: (a) Carbon dioxide, (b) Methane, (c) Hydrogen, (d) Carbon monoxide 368 

and (e) Nitrogen 369 

 370 



In sandstone, gas front of H2 is located at 18.4 m, further than that of CO2, CH4, CO and N2, which are 16.0 m, 371 

16.3 m, 16.2 m, and 16.0 m, respectively. Similar gas propagation can also be observed in coal and shale. The 372 

reason why H2 propagates further in the domain than other gases is related closely to the gas diffusion coefficients. 373 

CO2, CH4, CO and N2 have very similar diffusion coefficients: 1.42×10-5 m2/s for CO2, 1.96×10-5 m2/s for CH4, 374 

1.9×10-5 m2/s for CO, and 1.5×10-5 m2/s for N2, while the diffusion coefficient of H2 (6.11×10-5 m2/s) is 375 

approximately 5 times higher compared to other gases. It was stated by Nazaroff and Sextro [64] that the 376 

importance of gas diffusion increases when the permeability value of porous media is lower than 1.7×10-11 m2. 377 

Hence, both gas diffusion and advection contribute to the gas transport in these three porous media, but gas 378 

diffusion plays a higher role than gas advection in the cases of coal and shale. Despite one order of magnitude 379 

difference in intrinsic permeability values of coal and shale, the location of gas breakthrough fronts differ between 380 

0.4 to 0.9 m, depending on the gas considered. However, it appears that advection and diffusion are competing 381 

mechanisms in sandstone as, despite the same porosity of shale and sandstone, gas fronts differ up to 9.2 m. 382 

4.4. Effect of sorption on gas flow 383 

It is observed in Fig. 10a that the gas front of CO2 in coal is located at round 6.8 m from the injected surface. 384 

When gas adsorption is considered, the Langmuir pressure, which is the pressure at which one half of the 385 

Langmuir volume can be adsorbed [65], plays an important role in the gas distribution. The total gas pressure in 386 

the case without adsorption is presented in Fig. 10c. At the injection face, gas pressure is 2.0 MPa, much higher 387 

than the Langmuir pressure of CO2 in coal (0.61 MPa), leading to quick adsorption of CO2 at a distance of 0.2 m 388 

and a very low CO2 concentration at greater distance from the injection site. In terms of CH4 (Fig. 10b), its gas 389 

front is located at the distance of 7.7 m for the case of non-adsorption and 0.5 m under consideration of adsorption 390 

due to the higher total gas pressure at the injection face compared to the Langmuir pressure of CH4 in coal (1.2 391 

MPa). Therefore, the similar variation tendency of CO2 can also be identified for CH4, presenting the importance 392 

of adsorption in the study of gas transport.   393 
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Fig. 10. The distribution of gas concentrations in coal with and without considering gas sorption at day 30: (a) 394 

Carbon dioxide, (b) Methane and (c) total gas pressure in the case without adsorption 395 

 396 

The distribution of CO2 concentrations in shale with and without adsorption is presented in Fig. 11a. The 397 

gas front positions in the cases of no adsorption and with considering adsorption are 5.9 m and 0.8 m, respectively. 398 

Fig. 11b shows the gas propagation of CH4 in shale with and without adsorption, allowing a gas front move to 1.8 399 

m and 6.9 m, respectively. It can be observed in Fig. 11c that the total gas pressure (2.0 MPa) is larger than the 400 

Langmuir pressure of CO2 (1.0 MPa) and CH4 (1.71 MPa) in shale, leading to the efficient adsorption of gases in 401 

the first 0.8 m and 1.8 m distances, respectively. 402 
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Fig. 11. The distribution of gas concentrations in shale with and without considering the gas sorption at day 30: 403 

(a) Carbon dioxide, (b) Methane and (c) total gas pressure in the case without adsorption 404 

 405 

Fig. 12a illustrates the distribution of CO2 in sandstone with and without consideration of adsorption, 406 

presenting the gas fronts located at 1.4 m and 16.0 m, respectively. Langmuir pressure of CO2 (2.83 MPa) is 407 

slightly larger than the total gas pressure at the injection face (Fig. 12c). Thus, CO2 is absorbed efficiently and its 408 

concentration decreases to smaller values at the distance of 1.4 m. However, the Langmuir pressure of CH4 (3.86 409 

MPa) is larger than the total gas pressure at the injection face, leading to further transport of CH4, up to 4.1 m, in 410 

sandstone compared to that of CO2 (Fig. 12b).  411 



(a) 

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

16.0 m1.4 m

G
as

 c
o
n

ce
n
tr

at
io

n
 (

m
o
l/

m
3
)

Distance (m)

 CO2 (Sandstone-no adsoprtion)

 CO2 (Sandstone-after adsoprtion)

 

(b) 

0 2 4 6 8 10 12 14 16 18 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
as

 c
o
n

ce
n
tr

at
io

n
 (

m
o
l/

m
3
)

Distance (m)

 CH4 (Sandstone-no adsoprtion)

 CH4 (Sandstone-after adsoprtion)

4.1 m 16.3 m

 

(c) 

0 2 4 6 8 10 12 14 16 18 20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
re

ss
u
re

 (
M

P
a)

Distance (m)

 Total gas pressure

 Langmuir Pressure (CO2)

 Langmuir Pressure (CH4)

 

  

Fig. 12. The distribution of gas concentrations in sandstone with and without considering the gas sorption at day 412 

30: (a) Carbon dioxide, (b) Methane and (c) total gas pressure in the case without adsorption 413 

 414 

As shown above, Langmuir pressure values considered in this study have a strong impact on the amount 415 

of adsorbed gases. However, the equilibrium modelling approach taken in this work to consider sorption also has 416 

an impact on the sorbed amount. Using the equilibrium sorption approach, it is assumed that the sorbed amount 417 

in the rock matrix is in equilibrium with the free gas concentrations in the pores and fractures [54]. This means 418 

that applying a fixed concentration boundary would cause instantaneous sorption at the boundary and reduction 419 

of the free gas concentration. However, as gas adsorption is known to be a kinetic reaction, which would include 420 

gas exchange between the fractures and the rock matrix, diffusion through the matrix and sorption of the gas 421 

molecules on the sorption sites, the equilibrium behaviour is only partially realistic. Implementing a kinetic 422 

approach would require further research investigations to obtain a good understanding of the relationship between 423 

the adsorbed amount at non-equilibrium conditions for the range of porous media considered in this study. 424 



Therefore, the equilibrium approach is adopted for the preliminary study in this paper and provides novel insights 425 

into the effect of gas sorption on gas transport.  426 

Another important aspect related to gas sorption is the potential of the host rock to swell under the 427 

conditions of gas sorption, which is particularly pronounced in coals compared to shale and sandstone. Swelling 428 

of the porous media is understood to be strongly correlated with the sorption amount [66]. The sorption-induced 429 

swelling often results in closure of the existing flow paths, thus reducing the permeability of the porous medium 430 

and affecting the gas propagation [54]. It would have positive implications for retarding the potential gas escape 431 

in the surrounding strata of UCG, especially if there are coal seams located at a certain distance above the UCG 432 

reactor which would then act as a barrier. Thereby, considering sorption and rock swelling for UCG surrounding 433 

strata would provide a potential not just to retard the gas propagation, but also to provide geological storage of 434 

the leaked specific syngas components, such as CH4 and CO2. 435 

As mentioned previously, gas sorption is a temperature dependent process, i.e. the sorption capacity 436 

decreases with an increase in temperature [52]. Hence, future experimental and theoretical studies should be 437 

undertaken to provide further understanding on the impact of high temperatures experienced during the UCG 438 

process on the sorption potential of the UCG products. In conclusion, the cases with and without consideration of 439 

adsorption of CO2 and CH4 in three different porous media (coal, shale and sandstone) are well analysed depending 440 

on their Langmuir isotherms, reflecting the effect of adsorption on the gas propogation and the significance to 441 

consider adsorption in the study of gas transport. 442 

 443 

5. Conclusions 444 

In this study, the thermodynamic equilibrium model is developed and applied to analyse the effect of gasification 445 

reagents on the syngas composition and gasification temperature as well as to provide thermal and chemical (gas) 446 

boundary conditions for the coupled thermo-chemical model contained within the thermo-hydraulic-chemical-447 

mechanical framework of the COMPASS code. The code is then used to study the variations of temperature and 448 

gas concentrations, considering the reactive gas transport mechanisms, in three different porous media (coal, shale 449 

and sandstone) surounding the UCG reactor.  450 

Based on the the simulation results on coal gasification conducted under constant pressure conditions (20 451 

bar) and constant air supply (0.5 kmol), it can be concluded that to achieve a syngas with high contents of methane 452 

and hydrogen, an excess of steam above the stoichiometric on a molar basis for primary gasification reactant (e.g. 453 

air in this study) is recommended. However, this comes at a potential cost of reducing the overall calorific value 454 



of the syngas as the concentration of CO, a gas with high calorific value, significantly decreases. Furthermore, 455 

higher amounts of steam in the system increase the concentration of CO2 in the gas mixture, which poses an 456 

environmental concern and increases the costs associated with CO2 utilisation and storage once it is collected at 457 

the surface facility.   458 

By studying the transport of a gas mixture under the scenario of a potential gas migration from the UCG 459 

reactor into the surrounding strata, it can be inferred that both gas diffusion and advection have a significant role 460 

in the gas transport in such low permeable porous media considered in this study. In particular, gas diffusion and 461 

advection are competing transport mechanisms in porous media with intrinsic permeability higher than 1 mD 462 

(sandstone), while the gas diffusion becomes a dominant transport process in porous media with an intrinsic 463 

permeability lower than 1 mD (coal and shale). Such results confirm the importance of considering low 464 

permeability strata surrounding the UCG reactor, widely recognised in the literature [16, 46], which can act as an 465 

effective barrier to contain the contaminants generated and potentially leaked during the UCG process. 466 

Moreover, the study of gas adsorption of highly potent greenhouse gases, i.e. methane and carbon dioxide 467 

by porous media, emphasised the significance of considering the adsorption effect in the gas transport in the 468 

overall UCG process. Based on the simulation results presented, it can be concluded that the sorption of gases can 469 

retard their propagation in the strata surrounding the UCG cavity which is particularly significant in materials 470 

with high affinity to gases, such as coals and shales. Such observations then suggest that the coal pillars separating 471 

UCG reactors in a multi-well UCG configuration or shale layers located above the UCG target seams, commonly 472 

intersected by thinner coal seams, would adsorb some of the gas that could potentially leak. Although the gas 473 

sorption is a temperature-dependent kinetic process which is not fully considered in this work due to the lack of 474 

available data, this work provides further insights on the importance of considering the adsorption to understand 475 

the gas migration in the area around the UCG reactor. 476 

With the background of rapid-developed UCG technology and the development of integrated UCG models 477 

focusing on syngas production, coal conversion rates and cavity shape, it has been widely suggested that future 478 

work should focus on the development of numerical tools capable to simulate and optimise the production and 479 

composition of the syngas and the environmental and geo-mechanical impacts of UCG products in complex well 480 

configurations [2, 3]. Hence, this study contributes to such work by presenting a numerical framework capable of 481 

studying the formation of UCG products and its reactive transport in the geological formations surrounding the 482 

UCG reactor to address the environmental issues of complicated UCG process, aid in managing the environmental 483 



practices, reducing pollution risk and securing greater public and regulatory support for the UCG 484 

commercialization.  485 
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