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Functional MRI neurofeedback (NF) allows humans to self-modulate neural patterns in specific brain 

areas. This technique is regarded as a promising tool to translate neuroscientific knowledge into 

brain-guided psychiatric interventions. However, its clinical implementation is restricted by 

unstandardized methodological practices, by clinical definitions that are poorly grounded in 

neurobiology, and by lack of a unifying framework that dictates experimental choices. Here we put 

forward a new framework, termed ‘process-based NF’, which endorses a process-oriented 

characterization of mental dysfunctions to form precise and effective psychiatric treatments. This 

framework relies on targeting specific dysfunctional mental processes by modifying their underlying 

neural mechanisms and on applying process-specific contextual feedback interfaces. Finally, 

process-based NF offers designs and a control condition that address the methodological 

shortcomings of current approaches, thus paving the way for a precise and personalized 

neuromodulation. 

 

The use of functional MRI (fMRI) in neurofeedback (fMRI-NF) has brought new hope to the field of 

self-guided neuromodulation. fMRI-NF allows individuals to modulate spatially localized neural 

patterns in real-time, using contingent rewarding feedback. Accumulating evidence suggests that in 

many cases, attaining significant neural modulations in line with the task protocol (i.e., NF success) is 

followed by corresponding mental and behavioural changes1, thus contributing to bridging the gap 

between brain functionality and our mental experience. Despite this promising prospect, the 

utilization of fMRI-NF for basic science as well as for clinical purposes has been slower than expected. 

This may be due to various methodological constraints, such as the lack of proper control conditions 

and inadequate blinding and randomization, as well as the relatively small sample sizes that 

characterize the field. Furthermore, brain-guided interventions do not correspond with current 

psychiatric categorization, which traditionally relies on subjective reports rather than on 



neurobehavioral substrates2,3. Together, these limitations have hampered tangible conclusions 

regarding the clinical relevance and efficacy of fMRI-NF4–6. 

 

It is generally acknowledged that, to improve precision and efficacy of psychiatric treatments, new 

insights regarding the psychological and neural substrates of maladaptive behaviours should be 

incorporated into the conceptualization of mental disorders7,8. Such insights imply that the brain is 

functionally organized around several neural circuits that subserve perception, motivation, cognition, 

emotion, and social behavior9–12. In line with this, we put forward a new framework termed ‘process-

based NF’, which suggests that NF interventions should target specific dysfunctional mental processes 

by modifying their underlying neural mechanisms (Fig. 1a–c). 

 

A crucial organizing principle in process-based NF is that a correspondence should be established 

between different aspects of the intervention (neural target, feedback interface, outcome measures, 

and study population) and a specific, functionally defined mental process targeted for modulation, 

which in turn should generate exact, evidence-based predictions of clinical efficacy. This principle of 

correspondence and its benefits can be exemplified with the case of NF treatment for major 

depressive disorder (MDD). In common practice, the main outcome measure for MDD treatments is 

symptom severity (for example, Dekte et al.13 and the Hypericum depression trial study group14). 

However, MDD is in fact a clinical syndrome comprised of various distinct groups of symptoms, 

including mood and motivational dysfunctions (for example, anhedonia), cognitive rumination, 

anxiety, and abnormal sleep patterns15. Importantly, each of these classes of symptoms is associated 

with a distinct mental process and its associated neural mechanism16.By targeting an impaired mental 

process, such as deficient approach motivation (which is thought to underlie anhedonia), rather than 

overall depression severity, it is possible to match the intervention’s neural target for modulation—

for example, certain features of the extensively investigated mesolimbic reward system11,17,18— 

with specific hedonic outcome measures. For the latter, one could apply a subjective report 

questionnaire of hedonic experience (for example, the Snaith–Hamilton Pleasure Scale19) and 

objective measures of responsivity to reward (for example, the monetary incentive delay task20), both 

known to be specifically mediated by the targeted mesolimbic circuit21,22. Furthermore, for the sake 

of clinical precision, a process-based approach also calls for a shift in the current focus from 

supposedly pure diagnostic Diagnostic and Statistical Manual15 or International Classification of 

Diseases23 grouping criteria. For instance, when targeting deficient approach motivation, a clinical 

study could include MDD patients that specifically suffer from anhedonia, as well as individuals 

without a formal diagnosis of MDD who nevertheless exhibit substantial hedonic deficits, such as 

patients with Parkinson disease, substance use disorders, or schizophrenia24–26.  

 

In this Perspective, we attempt to delineate the process-based approach for NF by associating it with 

various central aspects of the intervention. We begin by addressing the manner in which psychological 

processes and their underlying neural mechanisms may be ideally targeted and modulated. Following 

this, we discuss possible ways to optimize process targeting via feedback interface adjustments. 

Finally, we discuss the NF general processes and offer possible designs and a new control condition 

for dissociating between NF-general task effects and those specific to the targeted process 

modulations. We assert that by applying such process specific modifications, the NF field could offer 

a brain-guided psychiatric intervention with greater scientific validity and enhanced efficacy. 

 



 

 

 
Fig. 1 | Process-based NF framework. Three principal elements of process-based NF interventions: 

functional process and neural target selection; feedback interface; and outcome measures. a, Three 

functional processes, associated with three distinct neural targets (represented schematically): 

cognitive control (blue), approach motivation (green), and potential threat (brown). Varying greyscale 

intensities indicate differential involvement of each process in three Diagnostic and Statistical Manual 

categorical disorders: substance use disorder (SUD), MDD, and specific phobia. b, Feedback interfaces 

adapted to correspond with the targeted process, via process-specific multimodal stimuli. In the 

illustrated example, a participant is navigating a supermarket scenario in VR. For cognitive control 

deficit in the context of SUD, feedback is displayed through addiction-related appetitive cues that 

change in size in proportion to modulation of cognitive control network activity. For deficient 



approach motivation in MDD, a rewarding smiling face of a sales assistant alters in proportion to 

modulation of the reward mesolimbic circuit neural activity. For potential threat dysfunction in 

specific phobia, a phobia-related cue changes in size in proportion to modulation of the threat neural 

circuit activity. c, Subjective and objective outcome measures that correspond with the targeted 

process. For cognitive control deficit, the Conners impulsivity scale and a go/no-go task. For deficient 

approach motivation, the Snaith–Hamilton 

Scale (SHAPS) is used to measure hedonic experience and reward responsivity is measured by the 

monetary incentive delay task. For potential threat, the subjective unit for distress scale and the no 

shock–predictable shock–unpredictable shock (NPU) task are used. 

 

In this Perspective, we attempt to delineate the process-based approach for NF by associating it with 

various central aspects of the intervention. We begin by addressing the manner in which psychological 

processes and their underlying neural mechanisms may be ideally targeted and modulated. Following 

this, we discuss possible ways to optimize process targeting via feedback interface adjustments. 

Finally, we discuss the NF general processes and offer possible designs and a new control condition 

for dissociating between NF-general task effects and those specific to the targeted process 

modulations. We assert that by applying such process specific modifications, the NF field could offer 

a brain-guided psychiatric intervention with greater scientific validity and enhanced efficacy. 

 

Process-based neural targeting 

Accumulating evidence from human neuroimaging studies suggests that psychiatric disorders share 

common trans-diagnostic structural and functional impairments in neural networks9,27–29. In 

accordance with this notion, a substantial body of work has demonstrated that network-level 

patterns, rather than focal neural patterns, encode core mental processes. For instance, emotion 

regulation is thought to be characterized by interplay between core limbic or salience circuits and 

regulatory prefrontal sets of regions30, rather than by isolated amygdala or prefrontal cortex (PFC) 

activity. Likewise, inhibitory control, a dysfunctional process in attention deficit hyperactivity 

disorder31 and substance use disorder32, was suggested to be linked with a set of frontoparietal 

networks rather than with a specific brain area such as the inferior frontal gyrus33. Moreover, recent 

works using multivariate analyses have shown that subjective experiences and mental states that 

relate to various pathological conditions are associated with distributed neural activations. This was 

recently demonstrated in pain34,35, sustained attention36, and negative affect37. It follows that the 

dysfunctions of neuropsychological processes in psychiatric syndromes are mediated by distributed, 

network-level abnormalities, rather than focal impairments9. 

 

Interestingly, network-level functional changes were shown to occur following single-region fMRI-NF. 

For example, several studies have demonstrated that PFC and amygdala connectivity was altered 

following amygdala downregulation NF38–40. Likewise, Cohen- Kadosh et al.41 found that insula 

fMRI-NF subsequently resulted in functional connectivity changes in an emotion-regulation network. 

These results indicate that regulation of a single region, based on the classic univariate analysis of 

blood-oxygen level dependent (BOLD) activity, may conjointly lead to a distributed neural change. 

Hence the clinical efficacy of fMRI-NF interventions targeting single regions may result from 

widespread network-level changes (for example, connectivity of the regulated region with other 

regions or networks), rather than from restricted alterations in the targeted region of interest. 

Considering these points, we posit that NF interventions should target brain networks (i.e., activity or 

connectivity indices) or distributed patterns that specifically mediate dysfunctional processes, as 

outlined below. 

 

Brain network matrices. Various NF targets have been previously applied to modulate network-level 

functionality, such as functional connectivity between two or more brain regions42–45, as well as 

more complex network dynamics indices (for example, dynamic causal modelling NF46,47). For 



instance, Yamada et al. attempted to alter dysfunctional hyper-connected patterns of the default-

mode and frontoparietal networks by training participants to decrease functional connectivity 

between the posterior cingulate cortex and dorsolateral PFC, two respective key hubs of these 

networks44. Such practice resulted in a decrease in depressive symptoms, as measured with the 

Hamilton Depression Rating Scale, which was correlated with NF success. A different network-NF 

approach was recently developed by Jacob et al.48, which trained participants to modify a central 

region’s influence on an entire functional network. Results demonstrated the feasibility of facilitating 

changes in network functional hierarchy via NF training. 

 

Another method that efficiently measures the neural substrates of mental processes is multivariate 

or multivoxel pattern analysis (MVPA). MVPA captures neural information that is distributed over 

many voxels or regions in the brain. It has been used extensively in the attempt to decode mental 

states from brain activation49,50, and more recently it has been implemented in real-time imaging51 

and specifically in NF (in decoded neurofeedback, DecNef)52,53. Key assumptions of DecNef are that 

neural patterns that are congruent with a mental state can be manipulated and that the endogenous 

modulation of a mental state should lead to corresponding mental and behavioural changes. Hence 

this method may serve as a good surrogate for process-based NF (for a detailed review on DecNef 

applications see refs. 44,54). So far, DecNef has been applied to induce perceptual53, cognitive55, and 

affective modifications56 in healthy individuals. More recently, this concept was clinically applied to 

individuals suffering from specific phobia57. In this study, a neurotypical activity pattern in the ventral 

temporal area was first calculated based on data from healthy individuals that were exposed to 

aversive stimuli, representing adaptive emotional processing. Subsequently, participants diagnosed 

with specific phobia, exhibiting atypical responses to aversive stimuli, were trained to modulate their 

ventral temporal activity to resemble the predefined neurotypical voxel-wise pattern. Notably, this 

was achieved via an implicit learning procedure, associating desired changes in activity with positive 

reward cues, without exposing the patients to the object of their phobia.  

 

Notwithstanding the above, process-based neural targeting may present several challenges. First, it is 

noteworthy that regulating complex distributed indices requires high signal reliability. To this end, 

using functional localizer tasks to better target individual network nodes (possibly in combination with 

predefined anatomical or meta-analytic derived masks) could improve precision of network indices 

and consequently enhance signal reliability. In the case of dynamic causal modelling-based NF, 

sufficiently long time windows should be used for the assessments of the different models, to enable 

precise feedback regarding network causal relationships. Such requirement might be met via 

intermittent feedback protocols. Another issue revolves around the scalability of the process-based 

intervention. fMRI holds a critical advantage over other recoding techniques for targeting defined 

neural mechanisms: its superior spatial resolution. Yet its limited accessibility might hamper fMRINF 

clinical translation. Electroencephalograms (EEG), on the other hand, are cost-effective and mobile. 

However, due to poor spatial resolution, EEG’s ability to target functional processes associated with 

distributed cortical as well as subcortical areas is severely limited. Hence a measuring tool that offers 

both precise localization and high accessibility is greatly needed for the applicability of process-based 

NF (Box 1). Another issue that arises when targeting processes for modulation is the consideration of 

subjects’ developmental stage58,59, i.e., whether one should attempt to modulate brain regions 

associated with a cognitive process at the specific developmental stage or simply target the brain 

networks associated with a given process in healthy mature adults. This is especially important if one 

considers the developing brain as an adaptive system, in which brain networks that support cognitive 

abilities change interactively as a result of ongoing brain maturation and cognitive development60,61. 

Finally, although theoretical considerations suggest the superiority of network-based or distributed-

pattern-based NF over single-region NF interventions, it is yet to be established that such indices may 

indeed lead to improved NF modulations and enhanced clinical outcomes. Future studies should thus 



compare between network NF and single-region NF in terms of modulation success and clinical 

benefits. 

 

 



 
 

Process-based feedback interfaces 

The feedback interface forms the environmental setting of the intervention. To date, the majority of 

NF studies have used simple forms of interfaces solely to indicate the level of neural activity change 



(for example, thermometer62,63, a visual analogue scale64,65, or sound66,67). These interfaces are 

usually one-dimensional (size or height; volume or pitch), unimodal (visual or auditory), and affectively 

neutral. Therefore, they hardly evoke a specific process by themselves. In contrast, process-specific 

adjustment of the feedback interface can considerably contribute to the targeting of dysfunctional 

processes in two ways: (i) by inducing an environmental context in which deficits are typically 

expressed, individuals may be guided to practice process-relevant strategies in situations similar to 

those they naturally struggle with, but in a safe and controlled clinical setting; and (ii) as the underlying 

neural mechanisms one is trying to alter are dysfunctional, provoking them in a process-specific 

manner might assist in recruiting them and thus promote the desired neurobehavioral changes. 

Consequently, process targeting may become more precise, ecological, and clinically effective. In an 

attempt to promote such an approach, we discuss possible modes of context induction: the 

incorporation of multimodal contextual cues into the interface and the utilization of immersive 

feedback interfaces (Fig. 1b). 

 

Contextual interfaces. Several NF studies have incorporated process-specific contextual cues into a 

neutral feedback interface, creating an emotional context for affective processes38,68–70. Paret et 

al.69 trained healthy participants to downregulate their amygdala, a region involved in emotion 

processing and regulation, while viewing aversive photos with a thermometer indicating the level of 

neural activity from both sides of the image. Participants successfully regulated amygdala activity, and 

furthermore, NF success was correlated with post-practice amygdala regulation with no feedback (i.e., 

transfer effects, which indicate the generalization of acquired regulation skills). In two clinical studies, 

patients with borderline personality disorder and post-traumatic stress disorder (PTSD)39,40 

practiced amygdala downregulation while watching affective stimuli (pictures with affectively 

disturbing content or trauma-related words, respectively). Both groups exhibited widely distributed 

neural 

changes along with reduced dissociative symptoms. 

 

Other than using process-specific contextual cues along with a neutral feedback display (for example, 

a thermometer), the feedback itself could represent the neural changes in a processspecific manner. 

For example, Sokunbi et al.71 and Ihssen et al.72 employed ‘motivational feedback’ interfaces, in 

which participants are presented with reward-related stimuli (for example, appetizing food) that 

change in size in proportion to BOLD fluctuations in regions involved in motivational aspects of craving. 

Hence the attempt to up- or downregulate neural activity in itself facilitates process-specific 

motivational consequences. A similar approach might be taken with an ‘emotional feedback’ 

interface. 

Even though evidence of efficacy is still scarce, we can cautiously assume that if the undesired patterns 

of an affective neural target were represented by an aversive emotional feedback, participants may 

be specifically motivated to downregulate it. This might be true not only due to contextual affective 

induction, but also as successful regulation results in attenuation of the aversive feedback. 

Furthermore, since affective interfaces may facilitate a stressful or 

unpleasant context that resembles process-relevant real-life situations, the acquired neural regulation 

skills may therefore be better generalized. Conversely, one could argue that such approach might 

encourage maladaptive avoidance tendencies that are inherent to 

the psychopathology, as is the case in obsessive–compulsive disorder and PTSD. A possible solution 

for this issue could be altering the content of the stimuli rather than its size or simulated distance from 

the trainee. For instance, in the case of motivational feedback 

for substance use disorder, alcoholic beverages could be gradually replaced with soft drinks. 

 

Importantly, both modes of context induction are particularly relevant for the modulation of neural 

‘hubs’ that underlie several processes (for example, insula, amygdala, etc.). For instance, Young et 

al.73 employed a hedonic-related context (via instructions: retrieving positive memories) to guide 



amygdala upregulation for MDD patients with hedonic deficits. Alternatively, by incorporating 

negative affective stimuli cues into the interface, the amygdala was targeted for downregulation both 

for PTSD40 and borderline personality disorder39 

patients. Further research should try to reveal in which cases could neural hubs that are involved in 

several processes be provoked in a process-specific manner via different types of context induction. 

Aside from contextualizing the feedback interface, other feedback interface factors may be harnessed 

for process induction. These include the utilization of different feedback protocols for process 

targeting (Box 2) as well as NF task instructions (i.e., providing participants with suggestions for specific 

process-related imageries)74,75. 

 

Immersive interfaces. Recent applications in the rapidly evolving fields of VR and augmented reality 

(AR) may be used to simulate highly naturalistic environments enriched with process-relevant cues. 

Unlike the common one-dimensional and unimodal feedback, three-dimensional game-like interfaces 

enable presentations of multimodal dynamic stimuli76 that may improve learning and user 

experience77. Cohen et al. directly compared a unimodal thermometer with a multimodal game-like 

NF interface and showed that the latter indeed resulted in improved learning, generalizability, and 

user experience78. Mathiak et al. compared simple visual feedback (a bar) with VR-based social 

reward feedback (a smile on an avatar face that is altered as a function of dorsal anterior cingulate 

cortex BOLD activity); results demonstrated that the VR interface induced increased target 

engagement and promoted learning79. Notably, immersive VR and AR environments allow substantial 

flexibility in context representation80, which may be highly beneficial in certain cases. For instance, 

people suffering from dysfunctions in threat processing (for example, social anxiety disorders, PTSD, 

etc.) could be trained by associating their experienced virtual environment with their neural state, 

such that gaining control over threat-related neural targets would result in a more tranquil simulated 

environment that corresponds with their specific phobia (social- or trauma-related, etc.). This could 

further strengthen adaptive behaviours, for example, approach towards phobia-related cues (Fig. 1b). 

Such applications correspond with the growing practice in psychiatry of applying VR environments in 

exposure procedures, mainly for the treatment of PTSD and phobias81–83. Several studies have used 

VR or AR to create process-specific contexts in the treatment of psychiatric and neurologic 

disorders84–86, demonstrating the feasibility of applying such therapeutic interventions. Yet these 

studies serve as small-scale proofs-of-concept that rely on EEG frequency bands with poor localization. 

Hence further research is needed to realize the full clinical potential and efficacy of VR and AR 

technologies for NF training in general and within the process-based framework specifically.  

 

Process-based NF specificity  

To determine NF treatment specificity, the effects resulting from modulation of a specific target 

process must be differentiated from those of mere NF practice. To this end, five types of control 

conditions have been applied thus far: (i) alternative NF, providing feedback from an alternative 

region; (ii) inverse NF, modulation of the experimental neural target in the opposite direction; (iii) 

yoked sham NF, presenting participants with sham feedback recorded from a matched subject from 

the experimental group; (iv) mental rehearsal, applying mental strategies with no feedback 

presentation; and (v) no treatment, a natural history control condition4. We note that there is a 

tendency to evaluate novel interventions such as NF according to the experimental standards of 

pharmacological randomized controlled trials. However, this is misleading, as pharmacotherapeutic 

placebo interventions affect only the underlying mechanisms of non-specific affective processes, 

generally in the same manner as the real drug87. Active NF control conditions, on the other hand, 

manipulate sensory, cognitive, and affective aspects that may introduce two main classes of 

confounds: (i) modulations of additional processes that are not engaged in the experimental 

intervention and (ii) modulations of NF-general processes that substantially vary from the 

experimental intervention. To eliminate these confounds, NF control conditions must involve the 



same general processes modulations as those of the experimental condition, without any additional 

processes engagements (Fig. 2). 

 

 
 

Converging evidence from various animal and human studies46,82,83,88 indicate that fMRI-NF 

involves three general processes1: (i) control: applying different mental strategies in the 

attempt to modulate the presented feedback, associated with the lateral occipital cortex, posterior 

cingulate cortex, and dorsolateral PFC; (ii) reward: valuation of positive or negative outcomes of 

applied strategies, associated with anterior cingulate cortex, anterior insula, and ventral striatum; and 

(iii) learning: the consolidation of associations between rewarding feedback cues and a desired neural 

activity pattern (or specific mental imageries), which may occur through operant learning mechanisms 

that involve the dorsal striatum. A recent meta-analysis by Emmert et al.89 revealed a network of 

regions activated during NF practice regardless of a specific neural target, composed mainly of 

prefrontal, mesolimbic, and striatal regions. This network corresponds with the underlying 

mechanisms of NF-general processes mentioned above and may be considered a general network of 

fMRI-NF. However, studies investigating NF general processes are still scarce and have yet to resolve 



disagreements between different NF learning models (for example, skill learning versus operant 

learning; see ref. 1). Notably, Paret et al.90 employed amygdala fMRI-NF and succeeded in dissociating 

feedback congruency monitoring (i.e., tracking feedback correspondence with task instructions; 

associated with the ventral striatum), feedback context monitoring (i.e., responses to differing task 

instructions; associated with rostral PFC), feedback activity monitoring (i.e., general feedback 

fluctuations; associated with thalamus and ventromedial PFC), and other task-related activations 

(including insula, anterior cingulate, and lateral PFC), thus providing a more intricate map of NF 

underlying mechanisms. Importantly, different NF protocols (Box 2) vary in their manipulations of the 

general task processes. These differences could be capitalized to investigate the NF underlying 

mechanisms and to advance a more precise understanding as to which of the NF general processes 

hold unique contribution in terms of modulation success and clinical benefits. Figure 3a presents two 

protocols that may be used to isolate reward and control processes. NF learning, however, presents a 

more complex challenge, as multiple learning processes may co-occur during NF1. One design that 

may unravel the involvement of stimulus–response contingencies in NF learning (the stimulus being 

the contingent feedback and the response being the neural target activations) could be an implicit NF 

design that excludes the voluntary use of regulation strategies, in which stimulus–response 

contingencies are varied between conditions via differential feedback timing protocols: a continuous 

condition, an intermediate intermittent condition (in which feedback is presented once every few 

functional time points), and a fully intermittent condition. 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

Dissociating NF-general from target processes. As Fig. 2 shows, confounds of both NF-general and 

additional processes are particularly relevant to inverse NF and alternative NF. First, these control 

conditions involve not only NF-general processes but also an additional target process that is not 

manipulated in the experimental condition. Second, some targets are inherently harder to modulate 

than others91, as has been shown to occur in many cases90,92–94. Differences in ‘modulability’ 

between experimental and control neural targets incur discrepancies in task difficulty and, as a result, 

in the level of reward participants receive. An indication of both confounds has been recently shown 

by Alegria et al94. This study controlled for right inferior frontal gyrus fMRI-NF intervention for 

attention deficit–hyperactivity disorder patients, with alternative NF to the left parahippocampal 

cortex. Specifically, this alternative NF group exhibited increased activations in bilateral 

parahippocampal cortex, right supplementary motor area, and additional frontotemporal regions 

involved in various motor and cognitive functions95–97, which were not activated in the right inferior 

frontal gyrus NF group. Moreover, substantial differences between conditions were exhibited both in 



the absolute value of NF success (the level of positive feedback differed between groups) and in 

transfer effects, possibly leading to confounds of reward processes. Consequently, treatment efficacy 

cannot be specifically attributed to the target process engagement with such control groups. 

 

In contrast, yoked sham NF only manipulates NF-general processes, but in a different manner than the 

experimental condition. First, the lack of contingency between feedback and neural patterns could 

lead to major differences in NF reward processes, as participants may deduce they are not receiving 

veritable feedback98 and thus may reduce their motivation, task engagement, and positive 

expectations in relation to a genuine feedback group. Second, even when matching feedback 

variability between groups by ‘yoking’ in a double-blinded manner, there would still exist differences 

in NF learning, as no learning based on contingencies between neural patterns and feedback would 

occur. Corresponding to this last confound are the models of NF learning that stress the importance 

of associative (i.e., Hebbian) learning mechanisms that rely on contingencies between stimulus and 

response. Thus, yoked-sham NF also cannot isolate the hypothesized factor. 

 

Finally, mental rehearsal control does not tease apart the specific effects of the neural target 

modulations, but rather the additive value of the interface and feedback presentation themselves. 

A no-treatment control may be useful for determining whether there are clinical effects that justify 

further investigations, but it does not isolate any non-specific effects. 

 

On top of these condition-specific confounds, two general confounds may occur that could possibly 

be dealt with. First, it is known that subjects vary in their ability to regulate brain activation. These 

individual differences in NF learning capabilities may be predicted via behavioural99, 

functional100,101, or anatomical102,103 indices and therefore should be taken into consideration 

when allocating participants to study groups. Second, a unique methodological issue arises when 

specifically targeting the NF-general processes for modulation (for example, reward93,104,105 and 

control94,106,107). Such targets are even more problematic to control for, as they are recruited by 

the mere performance of a NF task, with every possible matched control involving the target process 

(for a possible solution, see Fig. 3a). 

 

Hence it appears that each of the four common NF control conditions 

consist of process engagements that do not allow for the disentanglement of target from NF-general 

effects. An ideal control condition requires a genuine NF intervention that manipulates the same 

general processes, but without any specific modulations over and above the general NF processes (Fig. 

2). In line with the processbased framework, we suggest a control condition that should produce such 

a psychophysiological state, termed ‘randomized region of interest (ROI) NF’ (Fig. 3b). In a randomized 

ROI NF group, participants would be randomly allocated to one of several subgroups of different target 

processes. The resulting group, matched in numbers of participants to the experimental group, would 

have participants modulating the NF-general processes with authentic feedback, just as in the 

experimental group, but with the specific effects of the different neural targets averaged out across 

all subgroups, as each would receive a different neural target to regulate. 

 



 
 

 
 

This may lead to the cancelling-out of confounds related to additional processes modulations. 

Nonetheless, the same reward-related modulability confound that affects alternative NF and inverse 

NFshould apply here. However, in randomized ROI NF, this confound is moderated by the same 

concept of averaging out varying task effects between subgroups. While each subgroup may differ in 



its reward modulations, the overall group reward modulations should average to the mean level of all 

selected targets. It follows that differences in reward modulations between an experimental target 

NF and a randomized ROI NF group would be restricted to the difference from a mean reward 

modulation value, corresponding to the mean level of task difficulty. This contrasts with alternative 

and inverse NF that may coincidently produce large and unaccounted-for reward-related differences, 

as shown above. Hence given no prior knowledge on targets modulability, randomized ROI NF should 

yield a preferable psychophysiological state in terms of general NF processes modulations. 

 

Moreover, future methodological studies could provide essential information on NF targets 

modulability in two ways: one, different neural targets may be directly compared to one another, as 

has been recently demonstrated for NF to visual areas91; second, modulability of different neural 

targets could be inspected in a meta-analysis or a critical review, by assessing NF success across all 

applied neural targets in fMRI-NF studies, thus composing a ‘modulability index’ for NF targets (Fig. 

3b). Such studies should enable informed target selection in the future, such that control targets could 

resemble the experimental target in their level of modulability, thereby further minimizing reward-

related confounds, for randomized ROI NF as well as for alternative NF control condition. 

 

Finally, it is advisable to avoid major differences in the complexity of the interfaces employed to 

accommodate each randomized ROI NF subgroup and the interface used by the experimental group. 

To achieve this without forfeiting process specificity, one could induce process-specific contexts via 

simple contextual interface, similarto the one employed by Paret et al.69. For example, subgroups for 

neural targets of emotion regulation, approach motivation, and potential threat could be 

contextualized via aversive, appetitive, and threatrelated stimuli, respectively, changing only the 

content of the pictures with all other interface features remaining constant. Alternatively, one could 

establish a modular immersive scenario (Fig. 1b) that can differentially accommodate several 

functional processes. 

 

Consequently, a randomized ROI NF control group should differ from an experimental NF group only 

in the lack of a specific target process. Therefore, it should enable dissociation between target process 

effects and NF general effects, supporting a more concise conclusion regarding treatment specificity 

of NF interventions, using only two study groups. 

 

Conclusions and future avenues of research 

In the current perspective, we presented a new framework for NF, termed process-based NF. This 

framework suggests that NF interventions should target dysfunctional processes with defined neural 

substrates rather than clusters of symptoms, thus adopting a dimensional approach toward mental 

disorders. Accordingly, the different aspects of the intervention (neural target selection, feedback 

interface, and clinical outcome measures) should correspond with the target process 

to optimally ameliorate dysfunctions. Specifically, we suggest that process targeting could be 

maximized by relying on current neuroscientific theoretical and practical knowledge regarding the 

neural substrates of functional processes, moving beyond single-region NF toward alterations in 

network activity and connectivity patterns. We further suggest the development of process-specific 

interfaces with contextual cues and the enhancement of process engagement via immersive VR 

and/or AR technologies. Additionally, we show that a process-based approach allows a more precise 

methodology for determining the specificity of NF effects. To that end, we propose several 

methodological designs and a new control condition that may enable the disentanglement of general 

from target-specific effects, an unresolved issue in current NF methodology. Some current 

developments that are discussed above, such as dynamic causal modelling NF, DecNef, and simple 

contextual feedback interfaces are initial instances that relate to the processbased NF approach, each 

dealing with separate aspects of NF. Our outlined framework integrates these developments into a 

unifying schema that provides a clear rationale for the construction of all critical stages of NF 



interventions. The framework further prescribes other suggestions, such as the utilization of 

immersive VR and AR technologies for process targeting and the process-based application of EFP 

models for improved accessibility, as well as the use of different feedback protocols and a new control 

condition for determining specificity. These new propositions, however, have yet 

to be fully developed and validated. Thus, future interventional NF studies that adopt the proposed 

framework may enhance our knowledge of the efficacy of NF across neuropsychological domains and 

diagnostic groups and may further refine the framework’s features. Importantly, the process-based 

framework calls for many modifications; however, it is not mandatory to bind them together. 

Researchers who wish to enhance NF efficacy or to better determine specificity may adopt some 

suggestions while passing over other advocated guidelines. Nonetheless, based on the considerations 

in this paper, we would argue that a process-based approach that harmonizes neural targets, feedback 

interfaces, and outcome measures is crucial for the further development of NF into a scientifically 

precise and clinically applicable neuromodulation tool. 
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