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This paper critically examines the main trends in attempting the integration of building 

thermal simulation tools throughout the whole building design process, focusing on 

studies related to building design only, not addressing studies related to HVAC and 

servicing engineering design. It presents a review of the research literature on the issue 

showing that, so far, attempts have been concentrated in propositions to improve thermal 

simulation tools data interpretation as well as propositions to improve the role of tools in 

building design practice. Examples of the literature related to the two topics are critically 

examined by considering their effectiveness in addressing the interdisciplinary problem 

of integration. This critical examination leads to a thorough mapping of specific reasons 

about why integration is not happening, complementing the current information provided 

from empirical studies on the matter. Even though the author recognises integrated 

design should account for HVAC and servicing, it is necessary to first have a discussion 

that addresses assimilating simulation tools into the design process if proper integrated 

design is to happen. 

Keywords: thermal simulation; data interpretation; role of simulation in design; integration of 

simulation in design; criticising integrated simulation 

As part of control and regulation in energy use, building energy performance targets 

are being set and explicitly measured. Legislation, initially prescriptive with regards 

to energy efficient parameters, has evolved to what is called ‘performance-based’ in 

which compliance targets are clearly defined for new buildings. Targets are consonant 

with the industrial and technological development, they not only require professionals 

to be compliant with regulations but also direct designers to use ‘environmentally 

friendly’ building components as well as available technologies in order to meet them.  
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These currently ‘new’ requirements to predict energy uses and demands on a 

quantitative basis can be translated in practical terms into a widespread need to use 

computer simulation tools to predict and evaluate the energy performance of buildings 

being designed. However, much is still to be done with regards to how these tools can 

be better integrated throughout the whole building design process.  

An overview of evidence from empirical studies (Morbitzer 2003, de Wilde 

and van der Voorden 2003, Soebarto 2005, Donn 2004, Donn 1999, Clarke 2001, 

Radford and Gero 1980, Hand 1998 and MacDonalds et al 2005) will show that as a 

whole there is a lack of knowledge from building designers about the fundamentals of 

thermal building physics as well as issues related to modelling. Additionally, there is 

a lack of knowledge from building physicists about the building designer’s way of 

working and thinking, which clearly illustrates a problem of communication between 

these two design professions. 

The author proposes that further investigations based on theoretical reflections 

that critically evaluate the state of the art in integrating simulation tools throughout 

the whole building design process are necessary to thoroughly map specific reasons 

for why integration may not be happening fully.  

The present paper critically examines the main trends in attempting to 

integrate building thermal simulation tools throughout the whole building design 

process. A review of the research literature on the issue is presented (following a 

similar approach to the one proposed in Bleil de Souza and Knight 2007) to illustrate 

the main trends and to identify reasons for the struggle to fully integrate simulation 

tools throughout the whole building design process, in addition to what has been 

noted by empirical studies. This review is divided in two parts, the first one discusses 

methods of improving simulation tools output data interpretation while the second 
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part discusses the tools and their role in building design practice. A discussion and 

criticism is finally presented mapping specific reasons for why integration may not be 

happening fully.      

1. Propositions to improve thermal simulation tools data interpretation 

As the output results of thermal simulation tools are mainly alpha-numeric files 

generally composed of enormous quantities of data which are difficult to use and 

interpret, post-processing is crucial. Using this approach, developers as well as 

researchers have attempted to transform raw simulation results into something more 

useful for designers.  

A review of the literature about thermal simulation tools shows that the two 

main approaches that have been used in order for raw results to make sense for 

designers are the following:   

• Improving output interface data display systems and 

• Setting up design advice systems in output interfaces. 

A description of each of these two approaches is provided in the next two sub-

sections together with examples from the literature that refer to them. These examples 

are far from being exhaustive and are used to illustrate the main ideas behind each of 

the two approaches.  

1.1 Output interface data display systems 

Improvements in output interface data display systems generally consist of 

transforming alpha-numeric results into tables and graphs that display either raw or 

post-processed data.  

Tables are useful to provide summaries or detailed quantitative information 

about specific aspects of the simulation. For instance, information regarding what 
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happens in a specific part of a day, year and so on. Graphs, on the other hand, are 

powerful visual display systems that present the substance of the data, showing many 

numbers in a small space, making large data sets coherent, comparing different pieces 

of data and revealing different levels of detail (Tufte 1991b).  

Graphs reveal patterns and trends and for that reason they tend to be the 

preferred type of information display to be explored by software developers and 

researchers when attempting to improve output interface data display systems 

(examples can be found in Square One Research 2008, Design Builder Software 2008, 

Energy System Research Unit 2008 through IPV interface, Prazeres and Clarke 2003, 

Prazeres and Clarke 2005, Morbizer 2003, MacDonalds et al 2005, to cite a few).    

When displaying raw data directly, graphs tend to be: 

• Time-series of loads and temperatures (for the whole building, specific zones, 

specific building elements, etc); 

• Frequency distribution of loads and temperatures and 

• Grids that display loads in time or space (Figure 1) and grids that display 

temperatures in space. 

Figure 1 – Grids that display loads in space (a) and loads in time (b) (Square One Research 2008) 

When displaying interpreted information, graphs tend to be: 

• Bar charts of indexes that have some meaning for designers (discomfort degree 

days, monthly degree days, fuel type, CO2, costs, etc.); 
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• Linear graphs of comparative data as in Figure 2 (indoor vs. outdoor temperatures, 

gains and losses vs. outdoor temperatures, space loads vs. degree days, etc.);  

• Grids that display indexes that have some meaning for designers in space as in 

Figure 3 (spatial comfort, percentages of insolation levels, etc).  

Figure 2 – Linear graphs of comparative data (Square One Research 2008) 

Figure 3 – Grids that display indexes that have some meaning to designers (Square One Research 

2008) 

  Graphs that have time as one or two of the displayed variables provide 

shapes to quantities of phenomena that develop over time, but do not provide an 

explanation for the causal relationships that are happening (Tufte 1991b).  

Frequency distributions are useful to display behavioural trends either of the 

building (through loads and temperatures) or of the impact of the building on its users. 

They provide quantities for qualitative analysis to be undertaken but without again 

providing an explanation for the causal relationships that are happening.  

Graphs that have two resultant variables and/or two indices displayed are 

useful to show how one variable affects the other (Tufte 1991b). There is an account 
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for causal relationships that are happening but these relationships are disconnected 

from time or space (Figure 2). 

Graphs that have space as two of the display variables provide information 

about a specific behaviour, either of the building (through loads and temperatures) or 

of the impact of the building on its users (through comfort indexes, etc), at a specific 

instant in time. Quantities for a qualitative analysis to be undertaken are provided for 

a specific instant in time illustrating some causal relationships between spatial 

configuration and resultant behaviour, but only for this specific instant (Figure 3). 

As a whole, even when made visual, the information displayed tends to be 

more useful for analytical purposes rather than for design advice because of the 

following reasons: 

• It is difficult to provide a non-abstract illustration for causal relationships that are 

happening; 

• When causal relationships are illustrated, they are represented in disconnection 

from their development over time. 

It is usually difficult for designers to make sense out of the data that is 

presented. It is difficult for designers to understand the consequences of their design 

actions, as they mainly work with phenomena that develop in space, while simulation 

results are usually illustrated developing over time. As a result, in aiming to provide 

useful information for designers, most of the research in improving thermal 

simulation tool data interpretation concentrates on output interface design advice 

systems rather than on improving output interface data display systems.  

1.2 Output interface design advice systems 

Output interface design advice systems generally consist of environments in which 

designers can compare the results of different design alternatives. Comparisons either 
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happen in absolute or relative terms, basically providing designers with feedback 

about the overall result of their design actions.   

1.2.1 Performance indicators and notional building   

The first step to make information useful for designers is to provide an artifice for 

numbers to somehow qualitatively express building behaviour or the impact of the 

building on its users. The most common strategy proposed in these cases is the 

creation of performance indicators – indices which quantify how far the simulated 

building performance is from a specific performance benchmark. Specific 

performance benchmarks can be either performance targets or notional buildings. 

Targets are generally provided by legislation (e.g. Approved Document L2 2002) 

whereas notional buildings can be found in different sources (e.g. SERI 1985, BRE 

2008, ASHRAE 2004).  

Different ways of communicating performance indicators are sometimes 

mentioned in the literature suggesting software output interfaces that mimic traffic 

lights (Prazeres and Clarke 2005) or more elaborate comparisons (ASHRAE 2004) 

rather than simple numeric displays and pass/fail systems (as in BRE 2008 for 

example). 

1.2.2 Decision support systems  

Comparing alternatives is seen as an important resource in performance assessment 

and more elaborate propositions that allow different design options to be displayed 

and compared comprise decision support systems – systems that transform simulation 

tools results into a knowledge base display that supports decision making activities. 

This method is one of the most common ways of combining and processing results 

from simulation tools and has been developed since the late 90s. It might provide a 
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simple and efficient display system in which designers could easily compare and 

evaluate alternatives or it can be equipped with specific resources to explore the 

impacts of design changes in more detail.  

Display systems in which designers could easily compare and evaluate 

alternatives are proposed in Papamichael, La Porta and Chauvet 1997, Papamichael 

1999a and Papamichael 1999b. In this case, outcomes from different design 

alternatives are simply displayed side-by-side for designers to visually compare 

results (Figure 4b). More elaborate display systems, with the addition of multi-criteria 

evaluation strategies to explore changes, are proposed in Soebarto and Williamson 

1999 as well as in Prazeres and Clarke 2005 (Figure 4b). 

Multi-criteria evaluation strategies to explore design changes are proposed in 

Soebarto and Williamson 1999 by introducing incremental design improvements, 

properly standardized once compared to a reference building. Each improvement is 

measured according to one single criterion such as energy consumption or thermal 

comfort, and costs and benefits of the final decision result from a weighted linear 

combination of each individual cost/benefit solution proposed. This weight linear 

combination depends on the decisions previously taken by the designer and is a 

function of specific design targets.  

A similar proposition is explored in Prazeres and Clarke 2005 who developed 

a weighting system to calculate the overall benefits of the different design options 

explored, ranking these options according to their performance outcomes. Radford 

and Gero 1980 also explore the idea of analysis multi-criteria. They set up a strategy 

to work with different objectives simultaneously, through the use of Pareto 

optimisation techniques, in order for decision makers to be able to make trade-offs 

with knowledge of their impacts.  
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Figure 4 – Decision Support Systems: a – Different design alternatives (Papamicahel 1999a); b – 

More elaborated display systems (Prazeres and Clarke 2003)  

1.2.3 Databases 

In order to increase the number of design alternatives to be compared as well as to 

enhance capabilities to explore the impacts of design changes, database output display 

systems started being proposed in the 2000s. These systems enable designers to 

formulate performance queries on results, based on organized multiple-simulation 

runs.  

A framework to develop an information matrix of performance indicators 

considering magnitude, spatial and temporal extensions of these indicators is 

proposed in Mahdavi et al 2005 (Figure 5). The use of scripts to generate and store 

large amounts of output data in an online database that can be easily accessed is 

proposed in Stravoravdis and Marsh 2005 (Figure 6). These authors presented a case 

study with 280 models in which all the data analysis can be undertaken within a 

MySQL database and results of the analysis can be exported to an Excel spreadsheet 

to generate reports. In Knight et al 2007, users can perform interactive queries to 

understand the nature of the cooling demands to be met, as well as to assess potential 
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ways of reducing these demands, in a database of more than 11000 simulations, the 

Customer Advising Tool (Knight, Marsh and Bleil de Souza 2006).  

Figure 5 – Information matrix of performance indicators (Mahdavi et al 2005) 

Figure 6 – The use of scripts to generate and store large amounts of output data in an online 

database (Stravoravdis and Marsh 2005). 

1.2.4 Investigations using statistics 

Although databases are a powerful artifice to manage large amounts of data, they are 

difficult systems in terms of retrieving useful pieces of information. A common 

approach to overcome this difficulty is to investigate cause/effect relationships using 

statistics which not only can be applied to database results but also directly in 

simulation result analysis.  



11

A simple example of applying statistics to investigate output thermal 

simulation results is proposed by Ghiaus and Allard 2003, who assess building 

adaptability through regression considering the free-run internal building temperature 

and the outside air temperature (Figure 7). A more elaborate example of statistics 

application to analyse thermal simulation results is provided by Morbitzer et al 2003, 

who considered the analysis of more than one parameter affecting performance 

through the use of data mining. 

Data mining is a combination of visual investigation, regression techniques 

and uncertainty analysis which basically consists of combining data sources, selecting 

the task relevant data and extracting patterns from this data through a user defined 

technique (Figure 8). It can be seen in a way as a mixture of performance query and 

decision support system, but it is a constant refining process of including and 

removing variables combined with filtering.  

Figure 7 – Example applying statistics (Ghiaus and Allard 2003) 
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Figure 8 – Investigation using Datamining (Morbitzer et al. 2003) 

1.2.5 Output interface design advice systems as a whole 

Output interface design advice systems are useful for designers to compare the results 

of different design alternatives. Comparisons can be simple; they can depict results of 

different design alternatives side-by-side and/or be based on single comparisons 

between each alternative and a benchmark. Comparisons can be complex; they can 

involve a large amount of design alternatives and/or compare these alternatives with 

each other as well as with benchmarks.     

In most cases, causal relationships that are happening within each design 

alternative are not addressed. Decision support systems provide methods to judge 

alternatives according to how acceptable their resultant behaviour is, whereas 

databases either follow this same proposition or simply indicate trends in behaviour 

based on an automatic generation of multiple design alternatives. Investigations using 

statistics are the only ones which explore comparisons between different design 

alternatives as well as causal relationships within each design alternative. However, as 

has already been noted in the previous section, it is difficult to illustrate such causal 

relationships let alone their development over time. 
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On the whole, propositions that address output design advice systems also tend 

to be more useful for analytical purposes rather than for design advice. This is the 

case because of the following reasons: 

• They do not address directly the issues of output interface data display systems 

with regards to illustrating causal relationships; 

• They provide designers with environments which enable them to compare the 

overall result of their design actions assuming causal relationships are going to be 

evaluated by trial-and-error. 

As a result, aiming to provide useful information for designers, further 

research that proposes and prescribes how feedback from the tools can effectively 

inform the design process can also be found in the literature. This research is 

examined in detail in the next sub-section which deals with propositions to improve 

the role of thermal simulation tools in building design practice.  

2. Propositions to improve the role of thermal simulation tools in building design 

practice 

The fact that output interfaces are more suitable to be used for analysis rather than for 

informing the design process together with the fact that tools tend to be used mainly 

in later design stages, has led many researchers to focus on the development of 

methodologies to address how feedback from the tools can effectively inform the 

design process since its beginning. These methodologies are intended to widen the use 

of tools throughout the design process, a use which so far, according to de Wilde et al 

1999, de Wilde et al 2002, Soebarto and Williamson 1999, to cite a few, have mainly 

addressed the following issues: 

• Checking compliance with regulations; 
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• Meeting marketing targets in which the objective is to get an “environmentally 

friendly” label or  

• Optimizing a few parameters and to support some small decisions still to be 

considered.  

A review of the literature on the subject shows that two different approaches 

have been undertaken so far in order to integrate thermal simulation tools throughout 

the design process. These two approaches can be summarised as: 

• Propositions that address the building design process as a whole; 

• Propositions that explore the use of tools as design advisors in generating new 

design ideas;     

A description of each of these two approaches is provided in the next two sub-

sections together with examples from the literature that refer to them. Again, the 

examples are far from being exhaustive and are used simply to illustrate the main 

ideas behind each of the two approaches.  

2.1 Propositions that address the building design process as a whole 

There is a trend in propositions that address the building design process as a whole to 

assume that building design consists of a procedural sequence of stages with 

incremental levels of complexity (Morbitzer 2003, de Wilde et al 2001, de Wilde et al 

1999, de Wilde et al 2002, Hand 1998, Hand, Clarke et al 1995, Soebarto and 

Degelman 1995, to cite a few).       

Under this frame of mind, researchers believe building design is basically a 

sequence of decisive actions which might be specified according to different levels of 

detail depending on which design plan of work source was considered. Although 

some examples (de Wilde et al 2001) provide quite detailed sequences of actions 

(including: feasibility study, conceptual design, preliminary design, final design, 
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construction drawings and building specifications), others (Morbitzer 2003) will use 

simplified versions of it (outline stage, scheme stage, detailed stage). A commonality 

among the different propositions seems to be that independently of the design work 

plan used, the sequence of decisive actions would increase in terms of levels of 

complexity and therefore “simulation tools should adapt to the design process and not 

vice-versa” (Morbitzer 2003).    

Another commonality among researchers is the belief that architects should be 

running tools in the early design stages and engineers/building physicists should be 

running the tools in later design stages. That means architects should be running the 

tools while conceiving, creating and developing a design idea whereas 

engineers/building physicists should be running tools while refining this design idea. 

This proposition seems to widely accepted in the simulation community which 

believes that changes in the early design stages are non-incremental and as a 

consequence they have a large design impact and a large performance impact, 

whereas changes in the late design stages are incremental and as a consequence they 

have a limited design impact and a limited performance impact (SERI 1985). With 

this being the case, propositions that address the building design process as a whole 

will tend to concentrate on: 

• Developing simplified tools, to be used by architects in the early design stages, 

that connect with more advanced simulation tools, to be used later on by 

engineers/building physicists; 

• Developing different interfaces (input and output) to address the particularities of 

each design stage on its own but guarantee that all simulations are undertaken in 

the same tool; 

• Coordinating different designers as well as the different applications they use.   
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2.1.1 Simplified tools for architects 

Examples of simplified tools to be used by architects in the early design stages, that 

connect with more advanced simulation tools to be used later on by 

engineers/building physicists, can be found in Square One Research 2008.  

The intention behind Ecotect (Square One Research 2008 and Marsh 1996a 

and Marsh 1996b) is that designers are allowed to freely ‘play around’ with ideas and, 

at the same time, to evaluate their performance using an interactive interface which 

provides results to be used as feedback and encourages new experiments until a 

mature solution can be found. The most important quality of Ecotect is its user 

friendly input interface that intends to encourage basic ideas to be quickly modelled 

and evaluated by building designers while designing.  

However, issues with regards to output data display systems also appear in 

Ecotect. Although designers are allowed to freely ‘play around’ with the idea, they 

still have to use output interface data display systems that do not easily communicate 

causal relationships that are happening within the design alternatives being evaluated. 

Besides that, Ecotect is quite limited with regards to its calculation engine and the use 

of more advanced tools is necessary if deeper analysis is to be undertaken. Under this 

frame of mind, it is not uncommon to find propositions that simply include more user 

friendly interfaces to communicate directly with advanced simulation tools (Design 

Builderr Software 2008) or propositions that deal with different interfaces to address 

different design stages guaranteeing all simulations are undertaken in a single 

powerful and advanced tool. 

2.1.2 Different interfaces for different design stages 

Examples of propositions that deal with different interfaces (input and output) to 

address the particularities of each design stage on its own, guaranteeing that all 
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simulations are undertaken in the same tool can be found in Morbitzer 2003, Hand 

1998, and Clarke et al 1995, to cite a few. In the most recent example (Morbitzer 

2003), constrained ESP-r (Energy System Research Unit 2008) user interfaces are 

proposed, in terms of inputs and outputs, and users are expected to conceive and 

manipulate the object being designed through the use of wizards together with support 

databases with default values, after importing geometry data from CAD software. 

Although in these propositions the simulation engines are quite powerful, the 

idea of having different interfaces to different design stages ends up restricting not 

only design possibilities but also simulation possibilities due to the number of a priori 

assumptions that need to be undertaken in order for them to be conceived. As a result, 

single intelligent design environments to coordinate different professionals through 

software interoperability seem to be a logical step to overcome these problems. 

2.1.3 Coordinating different designers as well as the different applications they use 

Examples of propositions that focus on coordinating different designers as well as the 

different applications they use can be found in Clarke et al 1995, de Wilde and Van 

der Voorden 2003, Augenbroe et al 2003, de Wilde et al 1999, de Wilde et al 2002, to 

cite a few. All propositions in this approach consider that “integration of building 

simulation and building design process take place in the category of tools for design 

teams with experts” (de Wilde 2004).  

Propositions that include experts and their tools directly in a design team have 

been explored by the Scottish Energy System Research Group (MacDonalds et al 

2005) and basically consist of in-house performance-based assessments to provide 

design advice to generate better design solutions. These propositions tend to be quite 

successful as they are flexible enough to account for the idiosyncrasies of each 

different practice. Although consultants, when taking part in the design team since the 
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conceptual design stages, can deal with many questions that arise in dealing with the 

problem at hand, the tools they use are still not appropriate to cope with the 

particularities of all design stages. This is mainly due to their lack of sophisticated 

input methods and limited interpretation of architecture drawings. 

This probably explains why some studies concentrate on expanding tool 

capabilities with regards to information exchange (COMBINE project in de Wilde 

2004 and Clarke et al 1995). These propositions generally contain a central product 

model connected to several building performance evaluation tools managed by tool-

specific interfaces. Although these propositions are, to an extent, important to set up a 

practical basis for collaboration to happen, they make it difficult to handle major 

design changes. Interoperability separates models from analysis, making it even more 

difficult to assess cause/effect relationships. 

Propositions that attempt to better handle the problem of separation between 

models and analysis can be found in Mahdavi (1999) in which, through a shared 

model linked to various simulation tools, building design and building performance 

are interconnected. The effect of changing a design variable on the resulting building 

performance as well as an indication of which design variable need to be changed in 

order to achieve a specified change in performance can be displayed (de Wilde 2004).  

However, the interfaces are not easy to manipulate and can become quite restrictive in 

order for bi-directional feedback to happen.  

In order to simplify the manipulation of tools as well as the communication 

between participants, minimalist interfaces related to suitable simulation tools to be 

used in  each specific analysis task are proposed in Augenbroe et al 2003, de Wilde 

and van der Voorden 2003 as well as de Wilde 2004 through the Design Analysis 

Interface initiative. In this initiative, a tool kit is provided for a design team enabling 
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the team to customise its analysis scenarios from design questions by automating 

many of the steps to perform simulations and analyse results. In this type of 

environment, data transfer happens automatically and is minimised, consultants take 

care of integration, and tools are re-defined to cope with interoperability. Although 

many features can be customised in this proposition, components and options as well 

as relevant criteria for analysis and performance indicators need to be a priori 

specified. In order for that to happen de Wilde (2004) prescribes a clear and well-

staged procedure for designers to adopt when designing so that consultants, with their 

simulation tools, can be ‘plugged in’ along the way and performance requirements 

can play a role in the decision-making process. It is a rigorous top-down approach 

which relies on a highly stratified team work composed of a ‘collage’ of specialists.  

2.1.4 Summarising propositions that address the building design process as a whole 

Overall, although many methodologies to integrate tools throughout the whole design 

process have been discussed, a need to better investigate the cause/effect relationships 

between performance and design changes, particularly in the conceptual design 

stages, still exists even when input interfaces are user friendly and when consultants 

are part of design teams.  

When strategies move towards extreme specialisation, the problem of 

understanding the causal relationships that are happening seems to be even stronger as 

interoperability tends to separate model from analysis. Attempts to overcome that 

through shared models that enable bi-directional feedback make design possibilities 

quite restricted. Efforts to resolve this problem through a tool-kit with minimalist 

interfaces require the process to be clear and well-staged for consultants (and their 

tools) to be placed within it, and the acceptance of this approach from building 

designers as well as the quality of solutions that result from it are highly debatable.  
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As a result, propositions that address the design process as a whole either do 

not deal with the main problem of relating cause/effect between resultant building 

performance and design changes, or take it into consideration to the detriment of the 

designer’s freedom to approach problem-solving. Attempts that are less prescriptive 

with regards to the building design process and at the same time intend to make the 

use of tools more effective in building design practice, concentrate on exploring the 

use of simulation tools as design advisors in generating new design ideas. These 

approaches are discussed in detail in the next section.   

2.2 Propositions that explore the use of simulation tools as design advisors in 

generating new design ideas 

A review of the literature shows that there is a trend for addressing cause/effect 

relationships between design changes and resultant performance in the early design 

stages mainly by using the tools as design advisors to generate new design ideas. This 

trend is quite recent as it uses techniques that require intensive computer processing 

and the two most common approaches that deal with it are: 

• Simple generative forms and 

• Genetic algorithms. 

2.2.1 Simple generative forms 

Simple generative forms consist of scripts that generate rough shapes contained in 

grids, which respond to certain performance criteria (Marsh and Haghparast 2004). 

The shapes generated are actually optimised forms and provide insights to the 

designers about possible ideas to be developed.   

In simple generative forms, optimisation methods, generally used in late 

design stages are brought to the beginning of the process. It is the intention that 
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through generative forms, designers start with an optimum set of compromises from a 

predetermined range of possible options to develop design ideas further. Result 

analysis is translated directly into geometric decisions through a computer generated 

rough building form that meets a set of specified performance criteria. A script is used 

to generate the geometry (inside a predefined grid), calculate its performance and 

iteratively modify it until the criteria are met.  

Simple generative forms are already incorporated into Ecotect (Square One 

Research 2008) as software features in the ‘Shading design calculation wizard’ such 

as ‘extrude objects from solar envelope’, ‘generate optimised shading devices’ and 

‘project solar shading potential’ for instance. Further examples of this strategy can be 

found in Marsh and Haghparast 2004 when investigating the right-to-light as well as 

maximization of solar radiation falling on a stadium pitch. 

2.2.2 Genetic Algorithms 

More elaborate generative procedures can be found in Caldas and Norford 2002 and 

Caldas et al 2003 who explored the use of genetic algorithms in search procedures to 

look for optimized design solutions in sustainable design. These procedures, based in 

algorithms rather than simple scripts, undertake searches randomly sampling within a 

solution space.  

Genetic operators control the evolution of the generations of a problem / 

solution and the probabilities of a solution to be chosen will be proportional to the 

fitness of that solution in terms of the performance target. When genetic algorithms 

are used, the amount of possibilities in terms of solutions tends to be much wider and 

a higher level of complexity in terms of solutions can be achieved.  

Caldas and Norford 2002 show the use of genetic algorithms to optimize 

window sizes for lighting and heating whereas Caldas et al 2003 show the use of 
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genetic algorithms to optimize facades taking into account architecture compositional 

rules by minimizing the overall building energy consumption.  

2.2.3 Summarising propositions that explore the use of simulation tools as design 

advisors in generating new design ideas 

On the whole, propositions that explore the use of simulation tools as design advisors 

in generating new design ideas are actually automatic systems of comparing and 

evaluating design alternatives. Instead of asking the designer to undertake 

comparisons and equipping them with methods, as in design advice systems, these 

automatic systems require the designer to define the evaluation criteria for an 

automatic process of ‘generating – evaluating – generating’ to happen.  

In both cases, there is no need to evaluate causal relationships as the computer 

can generate a myriad of design alternatives in a short period of time. The designer’s 

task consists of defining design criteria together with one of the following activities:  

• Defining the proper evaluation criteria for a given solution that will be used to set 

up a framework to generate design possibilities, in the case of generative forms or 

• Defining the proper evaluation criteria for a given solution to be used to analyze 

the performance of a group of design alternatives to advise future design actions 

to be undertaken, in the case of genetic algorithms. 

Genetic algorithms and generative forms clearly shift the whole problem of 

investigating cause/effect relationships between design changes and resultant 

performance to a problem of defining design and evaluation criteria for automatic 

design alternatives generation and evaluation.  
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3. Conclusions and criticism 

The present paper illustrates that critical thinking and theoretical reflections can assist 

in integrating thermal simulation tools throughout the whole building design process. 

These approaches can assist in identifying specific reasons why current propositions 

to improve thermal simulation tool data interpretation and the role of thermal 

simulation tools in building design practice are not sufficient to solve the problem of 

integration. 

This work derives from the author’s background as an Architect, which 

includes practical experience as well as academic teaching in design studio, with an 

MSc in Civil Engineering and a PhD in using design problem-solving to discuss the 

integration of building thermal physics and architecture design (Bleil de Souza 2008). 

From this knowledge, together with the foregoing review of the literature, it is 

possible to conclude that, in addition to what has been noted by empirical studies, the 

integration of building thermal simulation tools throughout the whole building design 

process seems to be failing due to the specific following reasons: 

• Output interface data display systems are not succeeding in illustrating the causal 

relationships that are happening, especially when these relationships develop over 

time, making it difficult for designers to understand the consequences of their 

actions (Examples can be seen in Figure 1a and Figure 3). 

• Results are always presented disconnected from the models, i.e. designers have to 

model in ‘input interfaces’ and assess the resultant building behaviour in ‘output 

interfaces’, rather than having instantaneous feedback about the consequences of 

their design decisions (Figure 1b, Figure 2 and Figure 4 to Figure 8). 

• Design advice systems when equipping and enabling designers to compare 

different design alternatives, assume causal relationships are going to be evaluated 
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based on trial-and-error. Design advice systems having the capabilities to 

automatically generate and evaluate design alternatives, assume designers work 

with clearly defined criteria to propose and evaluate design alternatives (Figure 4 

to Figure 8).  

• Most propositions tend to be based on the generation of a large number of design 

alternatives which consequently slow down the whole design practice. 

• Most propositions tend to be restrictive with regards to investigating multiple 

parameters, mainly parameters related to geometry and topology, either because 

strategies do not handle them well or because results are difficult to assess. 

• Most studies that propose and prescribe how feedback from the tools can 

effectively inform the design process tend to be highly focused on reinforcing 

professional specialisation, for example as intelligent design advisors. They either 

prescribe which agent uses what type of interface, or prescribe clear and well-

staged processes for consultants to be placed within.  

• In all cases, assumptions about the building designers’ process, from the way they 

make decisions up to the variables they manipulate, are viewed as procedural. 

In addition to the above, the literature confirms that one of the main obstacles 

is a lack of understanding of the design process from the building simulation 

community side and that “tools are being developed following a false paradigm about 

how designers work” (Donn 2004). As a result, the following problems can be 

inferred: 

• Different ways of presenting results to building designers are explored without 

considering the meaning the information presented has for these professionals 

(Figure 4 to Figure 8); 
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• Design advice systems, as well as their data manipulation capabilities provided, 

are based on a series of unverified assumptions about the building design process; 

• Design methods that improve the use of tools in the process, as well as to 

determine clearly the role of specialists, are prescribed based on a small number of 

observations from designers in action and/or on design work plans from chartered 

professional institutions.   

4. Discussion  

The foregoing conclusions and criticism open a debate in which engineers and 

simulationists would suggest that causal relationships detection is a skill which can be 

learned and, although there is not much information about how causal relationships 

could be better investigated, it is important that practitioners and/or students need to 

be trained and have the time to practice these skills before they can learn how to drive 

the tools. In addition, engineers and simulationists believe that causal and temporal 

relations can be put together and that information displays are as useful for analysis as 

they are for design because students iteratively improve design by reviewing 

information displays, adjusting parameters and re-running a simulation. 

 Alternatively, building designers would suggest that design advice systems 

incorrectly assume designers work with clearly defined criteria, and as a consequence 

those who develop simulation tools have a false paradigm about the way designers 

work. Additionally, from a building designer’s viewpoint, if collaboration between 

architects and engineers in the early design stages is undertaken through software 

interoperability then this makes it more difficult to assess cause/effect relationships 

and test new design alternatives as models and analysis are separated from each other.  

Concluding these two viewpoints, it appears that an effective form of communication 

between the design and simulation community is still to be established.  
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  The author acknowledges that both professions have legitimate viewpoints 

and concludes that one of the main stumbling blocks towards better integration is that 

there is a general lack of knowledge from building designers and architects about the 

fundamentals of thermal building physics, and particularly about the issues related to 

building modelling. At the same time, there is also a lack of knowledge from building 

physicists about how building designers work and think.  

 This general lack of knowledge from one knowledge domain in relation to the 

other comes from the fact that although both professionals can be ultimately 

considered problem-solvers they subscribe to different paradigms when undertaking 

their everyday activities.
1

 The study of these paradigms, seen as pre-requisites for perception (Kuhn 

1996), as well as how they impact in different worldviews, representation systems, the 

use of computers as well as professional practices is complex and beyond the scope of 

this paper, though the author intends to pursue these issues in subsequent papers.  

 However, from Bleil de Souza 2008 it is possible to see that building 

physicists tend to approach problem-solving by mapping existing problems into 

known structures constructed based on the laws of natural sciences. They tend to 

solve problems using a scientific approach to investigate cause/effect relationships 

generally ‘shaped’ as prediction/evaluation cycles which imply the need to have a 

well-defined object to be simulated and a well-defined set of criteria for acting upon 

simulation results.  

 As a result, users need to be trained to map a design proposition into an 

existing model, predict its behaviour and judge its value by comparing it with a 

predefined reference and act towards an aim that improves the design proposal. Tools 

1
 Evidence of this can be found in design science literature referring to design problem-solving (Simon 

1999, Cross 2001, Kuhn 1996, Zimring and Craig 2001, Eastman 2001, Craig 2001, Simon 1973, Akin 

2001, Goel 2001, Goldschmiedt 2001, Harfield 2007, Rittel and Weber 1974 among others) 
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assume the whole design process is therefore procedural and actions taken to improve 

performance can easily become deterministic, bounded by the laws of natural science.        

 In this sense, simulation tools are strongly analytical in nature and design 

advice tools (optimisation algorithms, genetic algorithms, cellular automata, etc. i.e. 

search algorithms developed to operate together with these simulation tools) act like 

‘experiments’ by establishing iterative prediction/evaluation cycles.   

 In building physics because phenomena develop over time it is very difficult, 

if not impossible, to develop intuition about quantitative results. It is very difficult to 

visually represent interactions between the whole and the parts, as well as interactions 

among the parts over time, which justifies a procedural approach to design problem-

solving based on mapping problems into known structures together with the use of 

very clear search strategies.  

 The literature about design science (Schon 1991, Schon 1988, Cross 2001, 

Lawson 1997, Coyne and Snodgrass 1991, Zimring and Craig 2001, Coyne 2005, 

Buchanan 1995, etc.) shows that actually architects solve their design problems using 

a completely different approach. It is quite common for practitioners to recognise 

phenomena without providing an accurate or complete description of them; make 

judgements of quality without being able to adequately state criteria; display skills 

without stating rules and procedures (Schon 1991).  

 Although maps of the product of the design process used for management, 

control, budget and deliverable purposes do exist, the process itself is far from having 

achieved consensus. Different schools, different practices, different individuals will 

have different ways of acting upon a problem. Architecture practice tends to be 

constructed on a case-by-case basis. Practice ends up being summarised as a complex 

interrelation between product and process in which the main task is to solve the 
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problem of solving the problem at hand rather than setting clear aims and finding the 

best way to achieve them.  

 Besides that, as the ultimate product of architecture design is form, 

phenomena related to form in space are central in all types of design problem-solving 

exercises. As phenomena develop in space it is much easier to develop intuition about 

quantitative results. There is a place for a general approach to design problem-solving 

in which rigid structures are broken for creative ideas to arise. It is easy to visually 

represent interactions between the whole and the parts, as well as among the parts, 

which makes procedural approaches to problem-solving unjustifiable in terms of time 

and resources.     

 As a result, the problem of putting causal and temporal relations together is far 

from being simple and can be better expressed as a problem of putting together 

phenomena that develop in space with phenomena that develop over time. Once 

causal relations with the space domain can be established in simulation tools output 

interfaces, it is more likely that they are going to be useful to building designers. 

Whether this can be properly established with interoperability or we should be aiming 

towards more integrated and ‘unified’ software alternatives is still open to debate.   

 In addition, it is important to say that the complexities of interactions that 

happen in space, manifested through a myriad of different visual representation 

systems, together with a lack of standard procedures to be followed through the 

process of developing a design idea also do not establish the role of computers in 

architecture design as a consensus. Basically how far the computer will be able to 

assist in the design process will depend on the type and nature of information 

computers allow designers to manipulate. And the type and nature of information 
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designers manipulate are currently more comprehensive than is possible to be handled 

efficiently by computers, if at all.  

 In the end, the author believes there is no global solution currently available 

which is comprehensive enough to cope with the rich universe of possibilities 

involved in building design. Simulation tools need to be designed with configurable 

interfaces that can be tailored to address the idiosyncrasies of each practice together 

with the peculiarities involved in dealing with a specific problem at hand.  

 A decision about which parts should be rationalized and at which stage this 

should happen will have an impact on the design of the tool interfaces. If this decision 

is to be made every time a new problem arises or on the basis of the idiosyncrasies of 

each practice, interfaces would need to be somehow customizable to account for it. 

The level of customization could determine an important role for consultants.  

 The computer is a tool used for reasoning during the design process, therefore 

the distinction between ‘input’ and ‘output’ interfaces could well be replaced by 

interfaces in which a mixture of interactions between understanding the behaviour of 

the building while conceiving, creating, manipulating and developing it are the aim. 

The most important feature to enable this to happen is visual real time performance 

feedback relating behaviour over time with its causes in the space and form domain 

enabling heavily procedural prediction/evaluation cycles to be ‘diluted’ within ‘softer’ 

ways of exploring ideas. 

 In order for that to happen, empirical appreciations of the problem and 

practical attempts alone will not suffice. There is a need for theoretical understanding 

together with a great deal of critical reflection for building designers and building 

physicists to be able to properly communicate and effectively construct a joint 

practice; a need that should be addressed throughout both professional’s education.  
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