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Summary  

Chronic lymphocytic leukaemia (CLL) has long been thought to be an immunosuppressive 

disease and abnormalities in T cell subset distribution and function have been observed in 

many studies. However, the role of T cells (if any) in disease progression remains unclear 

and has not been directly studied. This has changed with the advent of new therapies such 

as CAR-T cells which actively use retargeted patient derived T cells as "living drugs" for 

CLL. However complete responses are relatively low (~26%) and recent studies have 

suggested the differentiation status of patient T cells before therapy may influence efficacy. 

Non-chemotherapeutic drugs such as Idelalisib and Ibrutinib also have an impact on T cell 

populations in CLL patients. This review will highlight what is known about T cells in CLL 

during disease progression and after treatment and discuss the prospects of using T cells as 

predictive biomarkers for immune status and response to therapy. 
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Introduction 

The focus for research in CLL has always been to understand the mechanisms that 

contribute to the expansion and persistence of malignant B cells. Under normal 

circumstances, B cells play a vital role in adaptive immunity and the transformation of these 

cells in CLL has a major impact upon susceptibility to infection and response to vaccines 

(Sinisalo et al, 2001). But it is often overlooked that CLL also has profound effects on the 

other arm of the adaptive immune system, T cells. The massive expansion of malignant B 

cells is accompanied by expansions of T cells (Catovsky et al, 1974; Kay et al, 1979; 

Catovsky et al, 1981); counts for both CD4 and CD8 T cells are increased in CLL patients 

(Mills & Cawley, 1982; Herrmann et al, 1982) relative to healthy controls. 

These observations were made several decades ago but despite many follow-up studies, 

the causes of the T cell expansion remain unknown. The link between T cell expansion and 

progressive disease has led to suggestions that the T cells are tumour specific (Totterman et 

al, 1989). However, despite many putative tumour antigens being proposed (Ramsay & 

Gribben, 2008; Nunes et al, 2011; Cobbold et al, 2013), there are no strong antigens that 

are shared between all CLL patients, yet also absent from normal tissue (Ramsay & 

Gribben, 2008). Relative to other cancers, CLL has a low mutation rate (Alexandrov et al, 

2013), so it is unlikely that strong T cell responses are being generated against mutational 

neo-antigens, as reported for melanoma (Ott et al, 2017). 

B cells are considered as professional antigen presenting cells, but CLL cells have poor 

antigen presentation function. This appears to be due to an inability to form activating 

immune synapses with T cells (Ramsay et al, 2008) and this, together with the presence of 

immunosuppressive molecules (Pallasch et al, 2009; Kretz-Rommel et al, 2007), results in 

impaired function of T cells (Görgün et al, 2005). Patient T cells do have the capacity to be 

activated ex vivo and defects in immune synapses can be overcome by treatment with 

lenalidomide (Ramsay et al, 2008) or use of bi-specific anti-CD3xCD19 antibodies (Wong et 

al, 2013). Furthermore T cells derived from patients can support the growth of CLL cells in 

vitro (Os et al, 2013; Catakovic et al, 2017) and in vivo when co-transferred into 

immunodeficient mice (Bagnara et al, 2011). However, it remains unclear whether the T cell 

expansion observed during disease is a reactive process driven by tumour cells and whether 

these T cells can promote disease. 

Since the original observations about T cells in CLL, there has been an explosion of 

knowledge about T cells. This has been driven by an increasing appreciation of the role they 

play in maintaining health and by advances in technology that allow analysis at the single 
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cell level. For example multi-parameter flow cytometry has allowed definition of discrete T 

cell subsets with different functions and stages of differentiation (Appay et al, 2008) (Fig 1). 

There is an also an expanding universe of T cells that are classified as "unconventional", 

such as gd T cells, that have been little studied in CLL (Coscia et al, 2012). 

This review will bring together current concepts in T cell immunology and many clinical 

studies of conventional CD4 and CD8 T cells in CLL (summarised in Table 1 and Table 2) to 

discuss whether additional knowledge about T cells (phenotype, function, differentiation 

status) can be useful to Haematologists.  

T cell abnormalities in CLL 

Expansion of CD8 T cells and inverted CD4:CD8 ratios 

T cell abnormalities in CLL were first documented over 40 years ago (Catovsky et al, 1974; 

Kay et al, 1979) but follow up studies gained more precision with the advent of monoclonal 

antibodies against CD4 and CD8 (Matutes et al, 1981; Platsoucas et al, 1982; Herrmann et 

al, 1982; Mills & Cawley, 1982). These early studies described increased proportions of CD8 

T cells relative to CD4 T cells, resulting in an inversion of the normal CD4:CD8 ratio 

(Platsoucas et al, 1982; Herrmann et al, 1982; Mills & Cawley, 1982). There appears to be 

an expansion of the entire T cell compartment in CLL (Catovsky et al, 1974; Platsoucas et 

al, 1982; Roth et al, 2008), but with preferential expansion of CD8 T cells relative to CD4 T 

cells (Platsoucas et al, 1982; Herrmann et al, 1982; Mills & Cawley, 1982). 

The inverted CD4:CD8 ratio appears to have clinical significance. In early studies it was 

shown to be associated with increasing disease stage ((Mills & Cawley, 1982; Herrmann et 

al, 1982)) and development of hypogammaglobulinemia ((Platsoucas et al, 1982)). The first 

indication that it might have prognostic value was from an Italian study of 20 untreated 

patients with stable indolent disease, where "normal" CD4:CD8 ratios (>1) were one of the 

factors associated with disease stability (Guarini et al, 2003). This has since been supported 

by British (n=110) and Chinese (n=234) studies of untreated early stage patients that found 

inverted CD4:CD8 ratios were associated with shorter time to first treatment (TTFT) (Nunes 

et al, 2012) and TTFT and OS (Wu et al, 2016) respectively. This was independent of 

tumour-associated markers such as Zap70 or unmutated IgHV. By contrast a study of 256 

Spanish patients demonstrated the opposite; increased CD8 T cell number (i.e. inverted 

ratio) appeared to associate with improved survival (Gonzalez-Rodriguez et al, 2010). 

However, this study included patients with early and late stage disease and did not directly 

test CD4:CD8 ratio as a prognostic variable. 
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Tregs and other CD4 subsets 

The increasing availability of phenotypic markers and improvements in flow cytometry has 

permitted investigation into the activation and differentiation status of T cells, as well as 

allowing more precise definition of functional subsets (Fig 1). One of the more intensely 

studied subsets has been regulatory T cells (Tregs), which were originally defined as 

phenotypically distinct CD4 T cells capable of regulating or suppressing autoimmunity in 

mice (Sakaguchi et al, 2008). These cells became interesting to cancer researchers when 

they were found to be enriched within solid tumours and to influence anti-tumour responses 

(Curiel et al, 2004).  

Several studies have demonstrated increased frequencies of Tregs in CLL patients relative 

to healthy controls (Motta et al, 2005; Piper et al, 2011; Biancotto et al, 2012; D'Arena et al, 

2011; Lad et al, 2013; Mpakou et al, 2017; Rissiek et al, 2014; De Matteis et al, 2018; Beyer 

et al, 2005; Nunes et al, 2012). These studies demonstrated a correlation between 

increasing frequency and increasing disease stage, however no definitive role for Tregs in 

disease or response to treatment has been shown to date. The low frequency of Tregs in 

blood and their phenotypic complexity (Biancotto et al, 2012), suggest that differences in 

laboratory protocols may be important. For example it has been suggested that the 

increased proportions (%) of Tregs are not a consequence of increased numbers of Tregs 

but simply reflect the loss of other major CD4 populations (Christopoulos et al, 2011).  

In common with other cancers, it might be expected that Tregs play their biggest role at sites 

of disease, however the limited studies on lymph nodes in CLL have provided contradictory 

findings; no evidence for presence of Tregs (Patten et al, 2008) but increased frequency of 

Tregs in lymph nodes relative to peripheral blood in other studies (Hartmann et al, 2015; de 

Weerdt et al, 2018). While it is difficult to assign any direct role of Tregs in CLL disease, it is 

possible that their biggest impact might be indirect. Loss or inhibition of Tregs resulting from 

drug treatment may contribute to severe adverse autoimmune side-effects (Lampson et al, 

2016). 

There have also been occasional reports of increased systemic frequencies of other CD4 T 

cell subsets in CLL, including IL-17 secreting T cells (Th17)(Hus et al, 2013; De Matteis et 

al, 2018). Increased frequencies of follicular T helper (Tfh) cells, which provide support for B 

cell development and antibody secretion within germinal centres, have also been reported 

(Qiu et al, 2018; Ahearne et al, 2013). Another unusual CD4 T cell subset that occurs at 

increased frequency in CLL is one that expresses cytotoxic molecules such as granzyme B 

and perforin (Porakishvili et al, 2001). Such cytotoxic CD4 T cells are rare under normal 
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circumstances but can be grown in vitro (Man et al, 1990; Appay, 2004) and detected in 

chronic viral infections and autoimmune diseases (Appay, 2004). Overall, the precise role of 

these different CD4 T cell subsets in CLL is unclear and remains to be verified with further 

larger scale studies. However, in non-malignant diseases these CD4 T cell subsets appear 

to be biomarkers for chronic immune activation, which tempers the view of CLL as an 

immunosuppressive disease. 

Exhausted T cells 

T cells that lose their effector functions due to chronic antigen stimulation are defined as 

“exhausted”. This functional state is most commonly associated with expression of PD-1 

(Barber et al, 2006; Day et al, 2006).  T cells expressing PD-1 can be found in solid cancers 

(Ahmadzadeh et al, 2009) and the ligand for PD-1, PD-L1, can be highly expressed in 

cancer tissue, leading to the idea that blockade of PD-1 could be used as a cancer therapy 

(Pardoll, 2012). Promising initial results (Brahmer et al, 2010) lead to eventual FDA approval 

of anti-PD1 therapy in melanoma, then subsequently non-small cell lung cancer, head and 

neck squamous cell carcinoma and classical Hodgkin Lymphoma. 

Several studies have shown that an increase in PD-1+ T cell frequency in CLL patients 

(Nunes et al, 2012; Riches et al, 2013; Palma et al, 2017; Brusa et al, 2013), although one 

study demonstrated the reverse (Tonino et al, 2012). Despite the increase in PD-1+ T cells, 

there is no global suppression of T cell responses; CMV specific T cells appear to be 

perfectly functional (Raa et al, 2014). The PD-1+ T cells in CLL do not appear to have the 

classical exhaustion phenotype of anti-viral T cells (Riches et al, 2013) and have been 

referred to as being “pseudo-exhausted”. This demonstrates the greater complexity of 

phenotypes and functions in human T cell populations compared to those found in murine 

models. Indeed, in healthy individuals PD-1 is expressed on activated T cells which have 

normal function and do not have an “exhaustion” gene expression signature (Duraiswamy et 

al, 2011). In CLL, there are increased frequencies of activated T cells (Totterman et al, 

1989) and it is possible that PD-1 expression may be a marker for differentiation state rather 

than exhaustion (Legat et al, 2013).  

Studies of exhausted T cells in an animal model of CLL have suggested that anti-PD-1 

therapy can restore the function and anti-tumour activity of exhausted T cells (McClanahan 

et al, 2015). However, anti-PD-1 therapy may not succeed in CLL for several reasons. 

Firstly, it is only effective in certain human cancers. Generally these are characterized by 

pre-existing immunity to tumour antigens (high frequencies of anti-tumour T cells in the 

blood or T cell infiltration into the tumour) and high mutation rates to create immunogenic 
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neoantigens (Seidel et al, 2018). As discussed earlier, there is little evidence for strong T cell 

immunity against CLL. Secondly, truly “exhausted” T cells akin to those found in chronic viral 

infections have been difficult to find in CLL using only PD-1 as a marker (Riches et al, 2013). 

It is possible that these “exhausted” T cells, if they exist, may express alternative markers or 

combinations of markers. Thirdly, the rescue of exhausted T cells relies on CD28 

expression. As shown by several studies , there is a skewing of CD8 T cell populations in 

CLL, with high frequencies of differentiated memory cells which often lack CD28, as well as 

CD27 (Nunes et al, 2012; Palma et al, 2017; Göthert et al, 2013; Tonino et al, 2012). Such T 

cells may be difficult to rescue with antibody therapy even if they express PD-1.  

So far there has been very limited testing of anti-PD-1 or PD-L1 therapy in CLL. Interim 

results presented at conferences have not provided any firm conclusions for efficacy to date 

(Xu-Monette et al, 2018). A trial of anti-PD-1 (Pembrolizumab) therapy in relapsed and 

Richter transformed (RT) patients demonstrated objective clinical responses in RT patients 

(4/9) but none in the relapsed CLL patients (n=16) (Table 2, (Ding et al, 2017)). It is not clear 

why there is such a pronounced difference in response in this trial but the authors speculate 

that genetic events driving the Richter transformation may have created novel antigens 

recognized by PD-1 expressing T cells.  

T cell Differentiation and Ageing 

Although it has been difficult to assign a role for any particular T cell subset in CLL, there is 

no doubt that the disease affects the differentiation of T cells, with a reduction in naive T 

cells and an increase in highly differentiated memory T cells (Nunes et al, 2012; Palma et al, 

2017; Göthert et al, 2013; Tonino et al, 2012; Tinhofer et al, 2009; Brusa et al, 2013; Peller & 

Kaufman, 1991; Monserrat et al, 2013; Serrano et al, 1997). This skewing of T cell 

populations is also a hallmark of ageing (Wikby et al, 2008), and while CLL patients are 

typically elderly, it is clear that the increase in memory T cells in CLL is not just due to age 

(Nunes et al, 2012).  

Population studies in Scandinavia show that the inverted CD4:CD8 ratio is present in only 

16% of healthy individuals aged 60-94 (Wikby et al, 2008), whereas in CLL this can be 

observed in up to 40% of untreated CLL patients (Nunes et al, 2012; Gonzalez-Rodriguez et 

al, 2010). What causes this T cell expansion and differentiation is not known. Some of it can 

be attributed to CMV infection (Mackus et al, 2003; Pourgheysari et al, 2010) as in the 

healthy population (Wikby et al, 2002), but T cell expansions can also be seen in CMV 

seronegative CLL patients (Hanna et al, 2018; Nunes et al, 2012; Pourgheysari et al, 2010; 

Riches et al, 2013). Furthermore the association between inverted ratio and poorer 



 8 

prognosis is independent of CMV (Nunes et al, 2012; Parry et al, 2016). This suggests that 

CLL cells, or factors associated with CLL, create an inflammatory environment that drives T 

cell differentiation. This appears to be set early in disease (Nunes et al, 2012) and it could 

be argued that the premature ageing of the immune system in CLL contributes to poorer 

health (Wikby et al, 2008). 

The accumulation of memory T cells at the expense of naïve T cells may decrease the 

capacity of CLL patients to respond to new pathogens, although this is difficult to prove. High 

frequencies of highly differentiated memory T cells may impact upon treatments that involve 

activation of the immune system e.g. therapeutic cancer vaccines, checkpoint inhibitors and 

CAR-T cells. The loss of co-stimulatory molecules such as CD27 and CD28 in highly 

differentiated memory cells is accompanied by decreased proliferative potential and 

increased susceptibility to apoptosis. This could compromise adoptive T cell therapies such 

as CAR-T, which rely on ex vivo expansion and then in vivo persistence of autologous T 

cells  (Fraietta et al, 2018; Rosenberg et al, 2011). The development of protocols to optimise 

CAR-T cell manufacture and efficacy is an area of intense research activity (Orlowski et al, 

2017), but beyond the scope of this review.  

Interpretation of findings in untreated patients 

The studies reviewed above on treatment naive CLL patients illustrate the profound effect of 

CLL on the T cell compartment and the contrary nature of the disease (summarised in Fig 

2). While CLL has historically been defined as an immunosuppressive disease, and the 

tumour cells themselves are poor antigen presenting cells, there is a paradoxical expansion 

of the T cell compartment. It is still not clear whether this is driven by CLL antigens, but there 

are increased frequencies of T cell subsets that normally occur in inflammatory 

environments. However, it is difficult to associate these discrete functional T cell subsets 

(Tregs, Th17 and “exhausted” T cells) with poorer prognosis, because the studies are as 

heterogeneous as the disease itself and produce conflicting results.  

The discrepancies between studies may result from a combination of factors including: 

differences in study cohorts (disease stage, treated or untreated and size of cohort), 

inclusion of appropriately age-matched controls, lack of consistency in laboratory protocols 

(particularly for flow cytometry) and the use of freshly isolated versus frozen samples. The 

majority of the studies have also tested immune parameters as tumour independent 

markers; small cohort sizes make it difficult to perform subgroup analysis with markers such 

as Zap70, unmutated IgVH, p53 mutations or 17p deletions. An important consideration of 

all studies is that findings with systemic T cells may not be indicative of disease related 
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events occurring in the lymphoid organs. Nevertheless, the expansion of highly differentiated 

memory T cells and the development of an inverted CD4:CD8 ratio appear to be two 

biomarkers in untreated patients (Fig 1) that associate with more aggressive disease.  

Impact of treatment on T cells in CLL 

The studies reviewed above were population studies with conclusions often based on cross-

sectional analysis of patients with different disease classifications or stages. The clearest 

way to determine the roles of particular T cell subsets is to perform longitudinal studies - 

these can be linked into clinical trials where serial samples are taken to monitor tumour cells 

and can also be used to study T cells.  One caveat of these studies is that they are seldom 

performed on untreated or early stage patients, as patients enrolled into trials will have 

advanced disease and may not be treatment naïve and as such the “baseline” T cell 

phenotypes will already be skewed. Nevertheless, studies of this sort provide a means to 

look at the impact of therapy on distinct T cell populations and the kinetics of recovery of T 

cells to “normal” levels. The studies reviewed here are summarised in Table 2.  

Chemotherapy 

There is no doubt that recently developed agents that target key pathogenic pathways in 

CLL will change the way that CLL is treated. However, while these targeted therapies are 

being implemented, chemotherapy alone, or more usually in combination, remains the 

standard upfront treatment for CLL worldwide. The cytotoxicity of chemotherapy drugs 

affects both tumour cells and T cells, with the dramatic loss of T cells an immediate effect of 

chemotherapy.  For example, in patients initially treated with fludarabine both CD4 and CD8 

T cells are lost, but there is proportionally a greater loss of CD4 T cells (Fenchel et al, 1995; 

Keating et al, 1998). Although there is a recovery in T cell numbers, the counts remain low 

(below normal levels for CD4) even 2 years after treatment (Keating et al, 1998). Despite 

this persistent T cell suppression, the overall risk of major infections in fludarabine-treated 

patients was low (<3%) and decreased with time after treatment (Keating et al, 1998). More 

detailed studies of T cell subsets in fludarabine-treated patients demonstrated a reduction in 

Treg frequency that was not seen with non-fludarabine treatment (Beyer et al, 2005). 

Laboratory studies using human and mouse T cells suggest that the T cells that survive 

fludarabine treatment are predominantly mature T cells with a Th1 phenotype (Gassner et al, 

2011). This supports the concept that memory T cells are preferentially retained after 

therapy, however more detailed phenotyping to assess differentiation status was not done.  



 10 

Fludarabine-cyclophosphamide-rituximab (FCR) combination is a commonly used 

chemoimmunotherapy regimen that has higher clinical response rates than fludarabine 

alone, but an increased rate of major infections (~10%) early in treatment (Tam et al, 2008). 

Not surprisingly this combination was found to result in T cell loss (both ab and  gd T cells) 

with a sustained drop in CD4 T cell counts in particular (Ysebaert et al, 2010). Lower median 

CD4 counts were associated with stable Minimal Residual Disease (MRD) levels of <1% 

over 24 months (defined by flow cytometric detection of CLL cells) (Ysebaert et al, 2010). By 

contrast higher median CD4 counts were associated with progressive MRD of >1%, 

suggesting a negative effect of CD4 T cell recovery on disease control (Ysebaert et al, 

2010).  

Bendamustine is used as a chemotherapy alternative for CLL patients unsuitable for 

fludarabine combinations and is often used in combination with rituximab. Patients treated 

with this regimen for more than 36 months demonstrated similar effects on T cell counts to 

fludarabine-based regimens, with CD4 T cells being disproportionately affected and slower 

to recover back to normal numbers (Martínez-Calle et al, 2018). In this study, there was a 

high rate of major infections requiring hospitalisation (49%), and this was associated with the 

delayed recovery of CD4 T cell counts (Martínez-Calle et al, 2018). Neither fludarabine or 

bendamustine appear to affect NK cell numbers (Ysebaert et al, 2010; Martínez-Calle et al, 

2018).  

Overall, studies on chemotherapy have shown profound T cell depletion and slow T cell 

recovery. However, the deeper phenotypic profiling of T cell populations, as done in 

untreated patients (Table 1), has not been carried out. This may in part be due to pragmatic 

reasons, as chemotherapy greatly reduces the number of T cells available to study. What is 

clear is that the disproportionate effect of chemotherapy on reduction and recovery of CD4 T 

cell numbers means that studies on the proportions of CD4 subsets or CD4:CD8 ratio in 

treated patients need careful interpretation.  

Non-chemotherapy treatments 

Lenalidomide 

Lenalidomide belongs to a class of immunomodulatory drugs related to thalidomide. It has 

been tested in CLL patients (Chanan-Khan et al, 2006) but is not currently approved for 

therapy. This is largely because of the severe side-effects associated with drug treatment, 

particularly haematological side effects and tumour lysis syndrome, although this appears to 

depend on dose and the type of patient treated (Chanan-Khan et al, 2006; Ferrajoli et al, 
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2008). Conceptually lenalidomide is an attractive drug for CLL, as laboratory studies have 

demonstrated that it can augment T cell immunity, overcoming CLL defects in immune 

synapse formation with T cells (Ramsay et al, 2008). Given this mode of action, it is not 

surprising that there have been several studies on the impact of lenalidomide treatment on T 

cells (summarised in Table 2). Surprisingly, lenalidomide can reduce T cell (as well as B and 

NK cell) numbers immediately after initiating treatment but these recover to pre-treatment 

levels by the end of 3 weeks (Aue et al, 2009). It also has an overall activating effect on T 

cells (Aue et al, 2009; Winqvist et al, 2017), resulting in increased frequencies of 

proliferating and effector memory T cells with an inflammatory cytokine profile (Winqvist et 

al, 2017; Aue et al, 2018). More dramatic effects might be predicted in the lymphoid organs, 

however the limited studies on T cell populations in lymph nodes of CLL patients have not 

demonstrated significant changes post treatment (Aue et al, 2018; 2009). Overall, these 

studies have not revealed a clear link between T cell activation and response to treatment.  

Effects on T cell populations have also been seen when lenalidomide has been used at 

lower doses as an adjunct therapy to ofatumumab (Vitale et al, 2016) or rituximab (Egle et 

al, 2018). Low doses of lenalidomide given after ofatumumab treatment of 

relapsed/refractory patients resulted in durable clinical responses and a decrease in overall 

T cell counts. High baseline CD4 T cell and NK cell counts were associated with complete 

response (Vitale et al, 2016). By contrast, a trial using escalating doses of lenalidomide 

added to fludarabine/rituximab treatment showed that patients who could tolerate >5mg/day 

lenalidomide had lower frequencies of “exhausted” PD-1+ CD4 memory T cells, although no 

association was found with response to treatment or PFS. In these contrasting studies, it 

was difficult to dissect out the impact of low dose lenalidomide on T cells and further 

laboratory investigations are needed.  

Venetoclax 

Venetoclax is small molecule inhibitor of BCL-2, which has demonstrated clinical efficacy in 

relapsed or refractory CLL (Roberts et al, 2016) and has the potential to be used as a 

frontline treatment. It has also been proposed as a potential salvage therapy for patients 

who relapse or discontinue treatment with idelalisib or ibrutinib (Eyre et al, 2019)(see below). 

Laboratory investigation of venetoclax demonstrated that it does not affect activated memory 

T cells, nor T cell function overall, but does reduce the absolute numbers of naïve T cells 

(Mathew et al, 2018). Ex vivo analysis of samples from patients treated with venetoclax 

demonstrated a maintenance of absolute T cell numbers, but a decrease in proportion and 

absolute number of Treg cells. There was also an effect on the CD8 compartment, with 

fewer CD8+PD-1+ T cells and lower proportions of CD8 T cells capable of secreting IFNg and 
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TNFa (de Weerdt et al, 2018). Although further studies are needed to validate these results, 

they suggest the targeting of CLL cells by venetoclax has a beneficial effect on the T cell 

compartment.   

Idelalisib 

Idelalisib is a small molecule inhibitor of PI3K-d that was developed to disrupt the pro-

survival pathways of B cells and, in combination with anti-CD20 monoclonal antibodies, has 

shown efficacy in relapsed refractory disease in CLL (Furman et al, 2014). However upfront 

use of idelalisib has resulted in a high incidence of adverse side effects, including 

enterocolitis and transaminitis (Furman et al, 2014). Although idelalisib is not directly 

cytotoxic to T cells, it might have other effects that could disrupt T cell regulation and 

promote activation of autoimmune T cells (Ali et al, 2014). In support of this hypothesis, in 

vitro testing of idelalisib with healthy donor (Herman et al, 2010) and CLL (Martinelli et al, 

2018) derived T cells has demonstrated an inhibitory effect on T cell secretion of 

inflammatory cytokines such as TNFa, IL6, IL10 (Herman et al, 2010) and IFNg (Martinelli et 

al, 2018). Furthermore decreased numbers of Treg cells were found in patients with 

idelalisib-induced hepatotoxicity (Lampson et al, 2016). Interestingly these patients were 

younger and had mutated IgHV, which would usually be considered as favourable 

prognostic markers for CLL. In a follow up study, higher resolution flow cytometry was used 

to define two CD4 populations that changed in frequency after treatment with idelalisib 

(Vartanov et al, 2018). One of these was a population of CD4+CD39+ Treg cells, which 

decreased in frequency in patients with hepatotoxicity (Vartanov et al, 2018). Larger 

numbers of patients need to be studied to validate these findings, however ex vivo 

monitoring of T cell subset frequency and function might be useful in elucidating 

mechanisms contributing to autoimmunity and susceptibility to infection in CLL.  

Ibrutinib 

Ibrutinib is a small molecule inhibitor of Bruton’s tyrosine kinase (BTK), that has 

demonstrated marked efficacy and was initially well tolerated in clinical testing (Brown, 

2018). Although ibrutinib is targeted towards signalling pathways in B cells, it may also have 

systemic effects on T cells through direct or indirect mechanisms. One of the key effects of 

treatment is transient lymphocytosis caused by efflux of CLL cells from the lymphoid tissues 

such as bone marrow, lymph nodes and spleen. This efflux of CLL cells is accompanied by a 

decrease in absolute numbers of peripheral T cells from pre-treatment levels (Burger et al, 

2018), including both CD4 and CD8 subsets (Yin et al, 2017; Niemann et al, 2016). This 

decrease returns absolute counts to the normal range, however it appears that the timing of 
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samples was important. The first sample time point for these studies was 12-24 weeks post 

treatment (Yin et al, 2017; Niemann et al, 2016; Burger et al, 2018), whereas a study using 

samples from 8 weeks post-treatment demonstrated a transient increase in T cell counts 

followed by a decrease at the next time point of 20 weeks post-treatment (Long et al, 2017). 

This expansion was predominantly in the more differentiated memory T cells (EM and 

EMRA)(Long et al, 2017).  

Sequencing of T cell receptor beta chain genes (TCRb) of systemic T cells collected pre- 

and post-therapy demonstrated that ibrutinib treatment could change the TCRb repertoire. 

By implication, ibrutinib had selected for the expansion of certain T cell clones that were 

present at low frequency prior to treatment (Yin et al, 2017).  

Besides the changes in numbers of T cells, ibrutinib also appears to have effects on T cell 

phenotype, with reduced expression of activation markers (Niemann et al, 2016) and check-

point inhibitors such as PD-1 and CTLA-4 (Niemann et al, 2016; Long et al, 2017). Further 

studies are needed to determine whether any of the changes in T cell populations post 

ibrutinib treatment can act as biomarkers to predict the longevity of clinical responses to 

ibrutinib or adverse side effects. Nevertheless, these changes have led to suggestions that, 

in addition to its direct action against CLL cells, ibrutinib could also be used to boost 

immunotherapeutic approaches such as CAR-T therapy (Fraietta et al, 2016).  

Conclusions and Future Prospects 

This review has highlighted how CLL disease and treatment can affect the composition and 

function of T cell populations. The plethora of T cell abnormalities observed in CLL appear to 

be unique among human cancers. More than 40 years after the first description of T cell 

abnormalities in CLL, it is still not clear whether T cells are observers or participants in 

disease development. This requires knowledge of function in the context of disease, 

however direct measurement of T cell function is hampered by the lack of robust tumour 

antigens, and often relies on rather contrived in vitro assays. Paradoxically it may be easier 

to show that T cells contribute to adverse autoimmune events in CLL.  

The advent of more powerful technology such as mass cytometry (CYTOF) and single cell 

RNA sequencing, and an increasing appreciation of T cell metabolism, will allow study of T 

cells with greater precision. But will this lead to more observational studies that fail to 

provide mechanistic insights? In the future, it is likely that the real breakthroughs in 

understanding the role of T cells in CLL will come from comparative studies of T cells in the 

blood and lymphoid organs and assessing T cell parameters in long-term longitudinal 
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studies. In the age of big data, it is likely that these future studies will combine 

immunological data with many other clinical and non-clinical parameters in a systems 

approach to CLL research. These studies are also likely to reveal whether non-conventional 

T cells or cells of the innate immune system play a role in disease development or response 

to therapy.  

In the meantime, how can information about T cells be useful in CLL? Knowledge about the 

differentiation status, function and frequency of particular T cell subsets in the blood can 

provide a snapshot of immune health. This approach might be useful in at least 3 different 

scenarios:  

1. In early stage patients who are not receiving treatment but are at risk of 

disease progression. The inverted CD4:CD8 ratio and the accompanying 

expansion of highly differentiated memory cells can define patients with more 

aggressive disease (Table 1). Therefore, a T cell signature based on threshold 

frequencies of certain T cell subsets may help to predict which patients will develop 

progressive disease. While early treatment of CLL with chemotherapy has not shown 

any clear benefit, the advent of more targeted, lower toxicity therapies could make 

earlier treatment more feasible.  

2. In patients undergoing treatment. Changes in the frequencies of certain T cell 

subsets before and during treatment may allow prediction of which patients will 

respond or develop adverse side effects/infections (Table 2). The increasing use of 

immunotherapies in CLL suggest that monitoring of T cell populations will continue. 

For CAR-T cells, this may also determine which patients get selected for expansion 

therapy, excluding those with an unfavourable T cell profile (high frequencies of late 

memory T cells). The detrimental changes in T cell profiles as disease progresses 

(Table 1) also suggests the possibility that patients diagnosed with early stage 

disease and a good immune profile, could store samples of their blood as an 

insurance policy for future use.  

3. In patients post-treatment. The efficacy of chemo-immunotherapy regimens and 

the less toxic new targeted therapies suggests the prospect of long-term control of 

CLL. The consequence of this is an increasing population of elderly CLL patients with 

stable disease, but with sub-optimal immune systems due to incomplete recovery of 

T cell populations (Table 2) or other changes in T cell subsets. These patients are at 

increased risk of infection and monitoring of T cell populations may identify the 

patients that are most susceptible. More precise measurement of pathogen-specific 

T cells e.g. influenza-specific, may also allow grouping of the patients most likely to 

respond to vaccinations (Wagar et al, 2011).  
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T cells remain one of the most intensely studied cells in the human body because of their 

important role in many human diseases (Su et al, 2013). For CLL, research on the behaviour 

and function of T cells will continue to be important, both for improving T cell-based 

therapies and as a means of monitoring immune health in patients before, during and after 

treatment.  
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Figure Legends 

 

Figure 1. The phenotypic and functional complexity of Human T cells.  

The phenotypic and functional complexity of human T cells. Conventional human T cells can 

be classified according to their HLA restriction (CD4 or CD8), their differentiation status, 

function and original location (blood or lymphoid tissue) (Farber et al, 2014). After antigen 

priming e.g. during viral infection,  naive T cells become activated and acquire effector 

function (cytokine secretion and/or cytotoxicity) The bulk of effectors die off, leaving behind a 

smaller pool of T cells that differentiate into distinct memory T cell subsets. Persistent 

chronic  antigen stimulation leads to accumulation of terminally differentiated effector 

memory T cells (EMRA), which have a limited potential for proliferation. T cells can also 

become “exhausted” and lose their function or become senescent and lose their capacity to 

proliferate.   

Figure 2. T cell abnormalities in CLL. 

A. Schematic summary of relative differences in the proportion of T cell subsets between 

healthy controls and CLL patients in blood. T cells in CLL have an inverted CD4:CD8 ratio 

and a skew towards highly differentiated memory T cells. Note that CLL cells typically 

outnumber T cells at far higher ratios than shown. B. Phenotypical and functional features of 

T cells in CLL. These generally have a more activated phenotype (CD69,HLA-DR 

expression) with frequent expression of checkpoint inhibitor molecules (PD-1, CTLA-4) and 

markers of differentiation (CD57). CLL cells express PD-L1 and CD86 and have disordered 

F actin microfilament structures that contribute to defects in immune synapse formation.  

 

 


