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Abstract: A considerable market share of electric vehicles (EVs) is expected in the near future,

which leads to a transformation from gas stations to EV charging infrastructure for automobiles.

EV charging stations will be integrated with the power grid to replace the fuel consumption at the

gas stations for the same mobile needs. In order to evaluate the impact on distribution networks and

the controllability of the charging load, the temporal and spatial distribution of the charging power is

calculated by establishing mapping the relation between gas stations and charging facilities. Firstly,

the arrival and parking period is quantified by applying queuing theory and defining membership

function between EVs to parking lots. Secondly, the operational model of charging stations connected

to the power distribution network is formulated, and the control variables and their boundaries are

identified. Thirdly, an optimal control algorithm is proposed, which combines the configuration of

charging stations and charging power regulation during the parking period of each individual EV.

A two-stage hybrid optimization algorithm is developed to solve the reliability constrained optimal

dispatch problem for EVs, with an EV aggregator installed at each charging station. Simulation

results validate the proposed method in evaluating the controllability of EV charging infrastructure

and the synergy effects between EV and renewable integration.

Keywords: vehicle-to-grid; EV charging infrastructure; optimal dispatch; oil-to-electricity

transformation for automobiles

1. Introduction

The high penetration of electric vehicles and renewable energy sources in the electric power

networks provides a promising solution to the energy crisis and environmental stress. If properly

controlled, EVs can act as mobile energy storage to facilitate the integration of intermittent renewable

power generation, further alleviating the dependency on fossil fuels [1]. The feasibility of an electrified

transportation system for zero or low carbon emission in the near future has been studied [2,3]. China

Energy Administration announced the goal to have 120 thousand EV charging stations and 4.8 million

charging piles in the power network by 2020. With increasing market share of electric vehicles (EVs),

the gas stations are expected to be replaced with EV charging facilities supplied by electric power

systems. However, as the EV charging introduces additional load demand, new challenges will be

placed on the power system, consisting of reliability and power quality issues [4]. The charging load

distribution transformed from the fuel consumption at the gas stations needs to be precisely quantified

to evaluate the impact on the power system. Then the possible solutions can be suggested, such as

upgrading the existing power system or applying appropriate control techniques in order to maintain

the reliable and economic operation of the power system.
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As the fuel consumption at the gas stations is transformed to electric energy consumption at

various charging facilities, the temporal and spatial distribution of energy demand in the electric power

network needs to be quantified. The economic benefits have been studied by using a lifetime cycle

model for oil-to-electricity transformation in the transportation sector across the city [5,6]. However,

the mapping relation between gas station and charging station for computing the distribution of

charging load in the power network, based on the accessible service data of the facilities, has not

been studied so for in the literature. Unlike gas stations, where the service time is usually within

several minutes, the charging period of EV takes several hours, which means that the charging usually

occurs at the parking lots. The real-time information of parking lots and gas stations are accessible

from the internet in the E-map (e.g., google map) or the online service website of the refueling and

parking facilities. Taking the advantage of real-time data from the internet, a practical computation of

energy distribution of EV charging load is developed and; therefore, the impact on the power network

and the controllability of this additional charging load can be estimated. Load computation of EV

charging stations has been reported extensively in the literature. Monte Carlo simulation is used to

model the stochastic process of EV charging considering the driving habits and trip distances, etc.,

and hence to formulate the daily charging power profile of a charging station by summing up the

energy consumption of EVs [7,8]. Queuing theory has also been adopted to model the operation of

parking lots [9,10] and EV charging demand in [11,12], where the charging processes are represented

by an M/M/∞ queuing system and the arrival rates of EVs are generated as a Poisson process. Vehicle

mobility statistics extracted from the 2009 (US) National Highway Travel Survey (NHTS) data is used

in [11,12] to define the parameters of the queuing model for the output profiles, for the number of EVs

charged and the times EVs arrive and depart from the charging station. However, the stochastic process

of EV travel patterns in various countries receives the same input from fixed statistics of a certain area,

such as the NHTS dataset. Moreover, the Poisson process in the queuing model assumes EVs have

several constant arrival rates and the charging time is typically modeled by Gaussian distribution

with given upper and lower limits, which are randomly assigned to each EV. In the proposed queuing

theory-based modeling of EV charging stations, the stochastic process of EV arrival and parking can be

expressed as a probability function and the parameters can be calculated according to the statistical

data accessible from E-map and the service website of facilities.

The modeling and management of EV charging stations are integrated in to the power system

analysis and optimal dispatch problem. In the state of art control framework for high-penetration

EVs in the power system (i.e., vehicle-to-grid (V2G) technology), the EV aggregator (EVA) is usually

introduced as the intermediate control entity between EVs and the distribution system operator

(DSO) [13,14]. Since a group of EVs are aggregated at the charging stations, an aggregator is assigned to

monitor and control the chargers. The interactive control among EV aggregators and the autonomous

control within each aggregator are performed in the typical V2G control framework to relieve the

computation load of DSO for the regional distribution network. If properly controlled, the negative

impact of the additional charging load can be mitigated and ancillary services can be provided, such

as cost minimization, peak shaving, and power quality improvement [12,15]. However, EV parking

behavior and energy demand are usually modeled by typical distribution function with the fixed

parameters or historical statistics. But the random distribution function and historical statistics of a

certain region cannot reflect the diverse characteristics of service facilities for automobiles in other

places and; therefore, the results may be very different from the actual condition of the power network

with massive EVs.

The control method is the key technique to explore the controllability of charging load for

functioning as a virtual energy storage and coordinating with renewable energy sources. There

has been a lot of existing research on the optimal dispatching of EV charging power in the power

system [16]. From the perspective of an EV aggregator, the location and size of charging aggregations

need to be found, the differential evolution and particle swarm optimization (PSO) algorithms are used

to solve the optimization problem with the objective of total cost minimization [17]. The location of the
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charging stations and the optimal number of charging spots were given in the optimal solution [18].

However, the power network has not been taken into account in the model [19]. Other objective

functions were investigated for the optimal placement and sizing of an EV aggregator, particularly

the profit maximization of an EV aggregator, but some practical issues from the side of users were

not described, such as the satisfaction of mobile needs and power quality deterioration caused by

recharging massive EVs at peak hours [20]. The optimal dispatch by using EVs as mobile energy

storage in the power grid is also studied in the recent literature [21]. In the optimal control problem of

EV charging stations modeled in this paper, both EV aggregator configuration at available parking

lots and EV charging power regulation should be solved. Therefore, a combined optimization of EV

aggregation configuration and operation should be derived based on the modeling of EV charging

stations in the optimal dispatch problem.

The main objectives of this paper are to propose a quantitative evaluation of EV charging load and

the controllability in the power network, based on the assumption that the fuel consumption at the gas

stations is transformed to EV charging facilities covering the same region. The main contributions of

the work presented in this paper are as follows:

• The mapping relation between gas stations and EV charging stations is proposed to estimate

the distribution of EV charging load in the power network, by using the online accessible data

from E-map and service website of the facilities. These features render the proposed charging

station model more realistic and accurate than the existing models, in which mobility statistics for

vehicles in a certain area is adopted in the charging load computation.

• A novel operational model of EV charging stations is formulated by using membership function

between EVs and parking places and queuing theory. The arrival and parking behavior of EVs

are captured from the online data and used for estimating the 24-hour electric power demand.

So far, there is no reported work that examines how the operation of an EV charging station can

be modeled as a function of input parameters and control variables integrated into the optimal

dispatch of the power system. In the proposed modeling of EV charging stations, the parameters

and boundaries of control variables are calculated for the reliability constrained optimal dispatch

of the distribution network.

• The optimal control of EV charging stations is devised under the typical V2G control framework,

where the EV aggregator performs as the intermediate controller for EVs at each charging station.

The optimal dispatch problem is composed of both EV charging station configuration and EV

charging power regulation. The optimal setting of the EV charging station and the optimal charging

plan of each individual EV are given by the optimal dispatch. A two-stage hybrid algorithm is

developed to reduce the complexity of the optimization that evaluates the controllability of the

charging stations in the oil-to-electricity transformation.

The operational model of EV charging stations changed from gas stations is presented in Section 2.

The optimal configuration and control of charging stations integrated into the optimal dispatch of the

power system are explained in detail in Section 3. Section 4 describes the two-stage hybrid optimization

algorithm devised for the optimal charging strategy in Section 3. Section 5 presents the analysis and

discussion of controllability evaluation for charging facilities in the test 123-bus test network. Section 6

outlines the conclusion drawn based on the numerical results.

2. Modeling of EV Charging Stations Transformed from Gas Stations

As vehicles served by the gas stations will be replaced by EVs in the future, EV charging facilities

will be built to meet this energy demand. The EV charging stations are established with both fast

charging and slow charging devices installed at the parking lots. EV charging load changed from gas

stations was calculated based on the data extracted from accessible E-map or the online service website

of the facilities. For instance, the location and real-time occupancy rate of gas stations and parking

lots across the certain area of the town, as shown in Figure 1. The key parameters of the modeling
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were extracted from the online graphic data to characterize the parking of EVs at different places.

The mathematical model of the charging process was formulated considering the energy consumption

at gas stations and the EV parking period at parking lots. The weekly occupancy rate of the parking

lot, as laid out on the map of Figure 1, shows that each day of the week had a different service pattern.

Therefore, a daily occupancy rate was extracted for modeling the operation of EV charging stations,

as shown in the right side of the figure. The EV-to-carpark membership function and the queuing

theory were also adopted to calculate the parking time and charging service pattern. The temporal and

spatial distribution of the EV charging can be calculated according to the online data and the control

strategies can be developed based on the adjustable variables, with boundaries defined by modeling

the operation of EV charging stations. The workflow of the proposed modeling of the EV charging

station and the integrated optimal charging algorithm in the power network is illustrated in Figure 2.

1 1 1 1
 

1


1 
 
  

Figure 1. Modeling of the electric vehicle (EV) charging facilities changed from gas stations based on

online data analysis.

1
( ) / 1

 

Figure 2. Flowchart of the proposed optimal control algorithm for EV charging facilities.
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2.1. Oil-To-Electricity Transformation with Membership Function between EVs and Parking Lots

It was assumed that the fuel consumption at the gas station was transformed to the electricity

supplied by EV charging stations during the electrification of transportation system. The energy

consumption taken over by the regional EV charging stations can be expressed by:

Fe =
T
∑

t=1

G
∑

j=1

C
j

f
(t) =

T
∑

t=1

M
∑

k=1

Ck
e(t) (1)

Ck
e(t) =

Nk(t)
∑

i=1

Pk
i (t)·∆t (2)

where M is the number of parking lots, G is the number gas of stations covering the same region,

t denotes tth hour, and T represents the planned time period, which is a typical day in the simulation,

as shown in Figure 1. j denotes jth gas station, k denotes the kth parking lot, and i is the ith EV.

Cf represents the fuel consumption at the gas station, which is measured by heat based on the quantity

(mL) and density (kg/mL) of oil traded at the gas station and fuel heating value (42 MJ/kg), and then

converted into the unit of kWh. Ce is the equivalent electricity consumption in the unit of kWh. P(t) is

the charging power at each time step, and Nk(t) is the number of EVs at kth parking lot. Because, at each

time step, EVs can be at any parking lots in the region, the membership function is defined to represent

the possibility and the duration of each EV at the kth parking lot. The membership function between

EVs to parking lots can be expressed by:

αm =
[

⇀
α

1
· · ·⇀α

k
· · ·⇀α

M
]

(3)

⇀
α

k
=
[

αk
1 · · ·α

k
i · · ·α

k
N

]T
(4)

where Np is the number of all parked vehicles, αm is the matrix of membership degree, and αk
i

is the

membership degree of ith EV at kth parking lot. αm subjects to the following conditions:

M
∑

k=1

αk
i = 1 ∀i ∈ N (5)

M
∑

k=1

Nk(t) = N ∀t ∈ T (6)

N
∑

k=1

αk
i ·T =

T
∑

t=1

Nk(t) (7)

These conditions included that the summation of membership degrees for each EV to all the

parking lots should be 1. Based on the same assumption that all the vehicles served by the gas stations

were changed to parking lots in the same region, the summation of EVs at the M parking lots should

be equal to the total number of EVs. Furthermore, the total service time of the parking lots can be

calculated by the summation of membership degree. It can also be derived from occupancy and

capacity of parking lots which can be read from online graphic data as shown in Figure 1. The temporal

and spatial distribution of energy consumed at gas stations to the parking lots was calculated by the

membership functions in the following section.
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2.2. Operation of EV Charging Stations Based on Queuing Theory and Accessible E-Map Database

The arrival and departure times of EVs at parking lots, which are essential for daily profile of EV

load, were derived by the parking data analysis, whereby queuing theory applies. The condition of a

typical queuing theory model is that the arrival intensity is constant over the time. But the arrival

of EVs for commuting can be concentrated on several hours. Moreover, the service time of parking,

which usually takes several hours, is much longer than that of gas station on the time scale of minutes.

The steady state of a queuing system cannot be reached in a short time, which is consistent with

the real data shown in Figure 1. Thus, in the proposed model, the number of EV was composed of

two portions, the steady state and the dynamic state. The steady state was defined as basic EV flow,

where the arrival intensity was constant over the time. The dynamic state was defined as categorized

EV flow, where EVs were used for a certain purpose and show a fixed pattern, such as household

charging for EVs that started charging once coming back from work.

The operation of parking lots was modeled based on queuing theory and the online data.

The variation of the parked vehicles can be expressed by:

Nk(t) = Lk
s(t) = Lk

b
+ Nk

c(t) ∀k ∈M (8)

Nc(t) = Ls(t) − Lb (9)

where Lk
b

is the expected number of basic EV fleet, which is also the queuing length in the steady

state; and Nk
c is the number of categorized EV fleet, which is varying over the time according to the

arrival intensity. These numbers can be read from online service data for each parking lots, as shown in

Figure 1. The accessible data is described as Nc(t), Ls(t), and Lb in Equation (9) for the varying number

of EVs parked at each time slot.

According to queuing theory, the arrival of EVs at parking lots is Poisson distribution, denoted by

λb and λc for steady and categorized EV fleets, respectively. The queuing length (Lb) in the steady state

can be calculated by applying the result of queuing theory, where the parking lots can be modeled as a

M/M/Z/Z queuing system [7,8].

λz = λb, z = 1, 2, · · · , Zk (10)

µz = zµ, z = 1, 2, · · · , Zk (11)

where Zk is the capacity of kth parking lot, and z is the number of EVs at a parking lot. The service

time in this case is the parking period, which complies with negative exponent distribution 1/µ in

the queuing model. The service intensity of the parking lot is defined by the queuing theory, and the

number of EVs at the parking lot can be written as a function of ρ:

ρ =
λb

Zkµ
(12)

Lk
b
=

zk
∑

z=0

zPz = zkρ(1− Pz) (13)

The complete modeling of parking lots is described in Appendix A. The arrival rate of a basic EV

fleet can be derived if the queuing length is given:

λb = Zkµρ(Lk
b
) (14)

where Lk
b

is the average number of basic EVs at a parking that can be collected from online data.

Similarly, the categorized EV fleet in the queuing model can be quantified by assuming that the

arrival rate at each time step is Poisson distribution. The arrival of categorized EVs is concentrated

on several hours, which can be easily identified from the occupancy variation of the parking lots.
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As shown in Figure 1, the rising zone is assumed to be arrival period of categorized EVs as explained

in Appendix A. Therefore, the number of arrival EVs Nck
in

can be calculated from Nk
c(0) and Nk

c(t),

as shown in Appendix A, and can also be calculated by:

E
(

Nck
in(t)
)

=
∞
∑

y=0

y
(λt)k

k!
e−λt = λk

c(t)·∆t (15)

λk
c(t) =

Nck
in
(t)

∆t
=

∆Nk
c(t)

∆t
(16)

where ∆Nk
c(t) is the difference of categorized EV number at tth hour, which can be read from the online

data shown in Figure 1. The arrival rate at each time slot can be calculated by Equations (14) and (16),

and used to determine the parking time period of EVs at parking lots.

The membership degree of each individual EV to parking lot is correlated with the parking period

in the queuing theory:

αk
i ·T = τi ∼

1

µ
,

1

µ
= τi (17)

where τi is the parking period of tth EV at one parking lot. The service time complies with negative

exponential distribution [7,8]. τi is the average EV parking period that can be collected from online

data. As all the other parameters are calculated, the arrival and the time duration of EVs at the parking

lot can be completely quantified.

2.3. Parameter Configuration of EV Charging Facilities

In order to analyze the temporal and spatial distribution of EV charging energy at parking lots

covering the same region of gas stations, the number of EVs charged at the parking lot and the

energy consumption were calculated according to the fuel consumption at gas stations. Based on the

formulation of EV charging facilities installed at parking lots by using membership function, the total

number of served EVs can be calculated by:

M
∑

k=1

Nk
in
∑

i=1

αk
i ·T =

N
∑

i=1

M
∑

k=1

αk
i ·T =

N
∑

i=1

T = NT (18)

M
∑

k=1

αk
a·Nk

in = NP (19)

αk
i =

{

αk
a αk

i
, 0

0 αk
i
= 0

(20)

where NP is the number of served EVs at all parking lots during T hours. The membership degree of

EVs at the same parking lot was assumed to be the same in Equation (20), since the customers of a

parking lot usually had the same purpose for working in an office building or for staying at home in

the residential area. The number of EVs charged at the parking lot can be calculated according to the

energy consumption of gas stations:

Fe =
M
∑

k=1

T
∑

t=1

Nk(t)
∑

i=1
Pk

i
(t)·∆t =

M
∑

k=1

Nk(t)
∑

i=1

T
∑

t=1
Pk

i
(t)·∆t

=
M
∑

k=1

Nk
in
∑

i=1
ECi

(

SOCk
out − SOCk

in

)

(21)
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where ECi is the battery energy capacity of ith EV. SOCk
out is the SOC of EV battery at departure and

SOCk
in

is the SOC of EV battery at arrival, respectively. The initial SOC and the target SOC (defined as

above 90%) are also random variables that are defined as normal distribution:

SOCk
in, SOCk

out ∼ N
(

µ, σ2
)

(22)

The parameters of normal distribution are given for estimating the EV charging load, and the

variety of different types of EVs was taken into account:

ECi =
R
∑

r=1

ECr·ηr (23)

ECi is the average battery capacity. ECr is the battery capacity of r type EV, and ηr is the ratio of r type

EVs to all EVs served at the regional charging stations.

Fe =
M
∑

k=1

Nk
in
∑

i=1

ECi·
(

SOCk
out − SOCk

in

)

(24)

N =
Fe

ECi·
(

SOCk
out − SOCk

in

) (25)

ηEC =
N

NP
(26)

where N is the average number of charged EVs, and ηEC is the ratio of charged EVs to parked EVs.

2.4. Mathematical Formulation of EV Charging Load and Controllable EV Charging Variables

In order to analyze the impact of EV charging transferred from gas stations and to develop the

control strategy for the EV charging process, the calculation of EV charging load and the control

variables were derived from the operational model of aforementioned charging facilities incorporated

with parking lots.

Fun
e =

M
∑

k=1

T
∑

t=1

Ck
e(t) =

M
∑

k=1

N
∑

i=1

αm·
⇀
Pr·T (27)

⇀
Pr =

[

P1
r , · · · , Pk

r , · · · , PM
r

]T
(28)

Fun
e denotes the energy consumption calculated in an uncontrolled case, and Pk

r is the rated power

of EV charger at kth parking lot. The matrix of membership degree of EV to parking lots can also be

expressed as
⇀
αi =

[

α1
i
,α2

i
, · · · ,αk

i
, · · · ,αM

i

]T
.

αk
i ·P

k
r =



















αk
i
·Pk

r αk
i
≤ Tkr

i
T

Pk
r ·Tkr

r
T αk

i
>

Tkr
i
T

(29)

Tkr
i =

ECi·
(

sock
out − sock

in

)

Pk
r

(30)

Tkr
i

is the charging period of EV to reach target SOC at the departure time with rated power.

⇀

Pk
var(t) =

[

Pk
1(t), · · · , Pk

i (t), · · · , Pk
N(t)
]

(31)
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Fcon
e =

M
∑

k=1

T
∑

t=1

Ck
e(t) =

M
∑

k=1

N
∑

i=1

Tαi
∑

t=1

Pk
i (t)∆t =

M
∑

k=1

N
∑

i=1

Tαi
∑

t=1

⇀

Pk
var(t)∆t (32)

Tαi = α
k
i ·T (33)

Fcon
e denotes the energy consumption calculated in controlled case, and

⇀

Pk
var is the vector of variables

(charging power) in a controlled case.

Tαi
∑

t=1

Pk
i (t)·∆t = ECi·

(

SOCk
out − SOCk

in

)

(34)

Tαi is the time period of ith EV parked at kth parking lot.

3. Coordinated Integration of EV Charging Stations into the Electric Distribution Grid

As temporal and spatial distribution of EV charging demand and controllable variables are given

from the above quantitative analysis of oil-to-electricity transformation for regional automobiles,

the charging facilities can be integrated into the electric distribution network. The impact of EV

charging load on the power system operation is quantified and the control strategy is developed

by adjusting the control variables within the boundaries that are given in the above section. In the

vehicle-to-grid operation framework, an EV aggregator is usually defined as the control entity between

power grid and EVs, which offers services to aggregate EV charging power (or discharging defined as

V2G) from a group of EVs, and acts towards the grid to provide considerable power regulation capacity.

In this context, each parking lot is correlated with one EV aggregator, which can perform real-time

monitoring and regulation on the charging behavior of each individual EV as long as it is plugged

into the power grid. Since the power feedback from EV to grid results in serious battery degradation,

which may prevent EV owners from participating in the vehicle-to-grid interaction, only the charging

adjustment is taken into account in this paper to provide the optimal charging plan for EVs.

In the impact analysis of EV charging load, EVs were assumed to start charging as soon as they

are parked, which is the direct charging used as the uncontrolled case in the simulation. In this case,

EVs are charged at rated power of the charging facility or on-board battery charger. The daily charging

profile in the impact analysis was defined as the reference to be compared with the controlled case in

the simulation. A two-stage optimization was formulated for managing the charging load based on

the control variables and the boundaries defined in the above section.

3.1. Objective Function of the Optimal Control Strategy

The multi-period optimal dispatch with EV charging infrastructure, formulated in considering

network constraints, is a mixed integer nonlinear programming (MINLP) problem [20–22]. A two-stage

optimization algorithm was derived from the basic formulation of the MINLP optimal charging

problem. The optimal configuration of the EV aggregator and the operation of the EV charging

infrastructure for regulating the charging rate of individual EVs were modelled in the optimal dispatch

problem. The overall objective in this work is to minimize the operating cost. In the objective function,

the expenditure on supplying electricity to the load, including charging EVs and the total power loss,

were calculated in Equation (35):

min

T
∑

t=0

n
∑

i=1

ρ(t)(PLd(t) + PEVAi(t) + PLs(t))∆t (35)

where ρ(t) is the electricity price at time t; PLd(t) is the net power load of the original distribution

system; PEVAi(t) is the accumulated EV charging power at bus i; PLs(t) is the total power loss at time t;

and ∆t is the time interval, which was defined as one hour in the proposed day-ahead optimal dispatch
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of EV charging infrastructure, and it was also consistent with the above charging station model. The

load of the EV charging station was calculated by:

PEVAi(t) =
Mi
∑

m=1

Pm
EVAi(t) (36)

Pm
EVAi

(t) is the charging rate of individual EVs in the control realm of the EV aggregator installed at

bus i.

PLS(t) =
∑

(i, j)∈B

Ri j

P2
i j
+ Q2

i j

|Vi|2
(37)

P
i j

and Q
i j

are the active and reactive power, respectively, transmitted on the branch between bus i and

j; |Vi| is the voltage magnitude at bus i, and Ri j is the resistance of branch ij.

3.2. Constraints of EV Charging Optimization

The mathematical model was subject to constraints from each participant in the EV charging

optimization, including limits on the reliable operation of power system, EV charging station, and the

requirements of EV users. The power flow balance was expressed by:

Ii j(t)
2 =
(

G2
i j + B2

i j

)[

U2
i (t) + U2

j (t) − 2Ui(t).U j(t) cosθi j(t)
]

≤ I2
i jmax (38)

Ii j(t) is the branch current; G
i j

and Bi j denote the admittance matrix of the power network; Ui and U j

are the bus voltage; and Ii jmax is the maximum current of the transmission line.

(

Vmin
i

)2
≤ Vr

i (t)
2 + Vim

i (t)2 ≤
(

Vmax
i

)2
(39)

Vmin
i

and Vmax
i

are the lower and upper limits of bus voltage, respectively; Vr
i
(t) and Vim

i
(t) are the

real and imaginary parts of the bus voltage, respectively.

The adjustable EV charging power was limited within the capacity of the charging facility:

PEVAi,min ≤ Pm
EVAi(t) ≤ min

{

Pm,max, PEVAi,max

}

(40)

PEVAi,min and PEVAi,max are the lower and upper power boundaries of charging facilities, respectively;

Pm,max is the rated power specified by the EV on-board charger.

The target SOC set by EV users must be achieved till the departure of the parking lots:

SOCm
tar ≤

T
∑

t=1

Pm
EVAi(t)ηchr/Cm

bat
+ SOCm

ini ≤ 1 (41)

where Cm
bat

is the battery capacity of the mth EV; SOCm
ini

and SOCm
tar are the initial and target SOC,

respectively; and ηchr denotes the efficiency of battery charging.

4. Two-Stage Hybrid Optimization Algorithm

In the proposed EV charging optimization model, the decision variables included the setting of a

charging station associated with its EV aggregator and the multi-period charging power control under

the given configuration parameters. For the time-series simulation, the increased number of variables

made it even harder to solve the MINLP problem. Thus, a two-stage algorithm was formulated

to separate the variables into two categories, which were EV aggregator configuration and optimal

charging plan for individual EVs. The original problem was converted to a master problem of optimal
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configuration and a sub-problem of optimal charging strategy, so as to reduce the complexity of the

nonlinear constrained optimization modelled in the above section.

4.1. Solution Procedure for Optimal Integration of EV Charging Stations into the Power Grid

A two-stage hybrid optimization algorithm based on PSO and sequential quadratic programming

(SQP) was derived to accelerate the calculation speed, as depicted in Figure 2. As shown in the

flowchart, the problem solution of the hybrid optimization algorithm required an iterative process

between the master problem of optimal configuration and the sub-problem of optimal charging strategy.

In the master problem, the optimal locations of EV charging stations with the power level limits were

found by applying PSO algorithm, and the charging plans for each individual EV were embedded

as a sub-problem solved in the lower stage. In this way, the aggregated power of EVs connected to

the bus of the distribution network was provided so that the PSO algorithm was implemented on

mid-voltage level with a limited number of variables. The optimal charging stations were chosen from

the candidate locations that were all the parking lots in the region of oil-to-electricity transformation.

The capacity of the charging station must be lower than the parking lots:

LCEVAi ∈
{

LPV1, . . . LPV j, . . . , LPVm

}

(42)

CPEVAi ≤ (Nck
in + Lk

b
)PEVri (43)

LCEVAi denotes the location of charging station at bus i, which is selected from the candidate locations

of all parking lots, and the bus number is denoted by LPV j. CP
EVAi

denotes the capacity of the charging

station at bus i, and PEVri is the rated charging power of charging facility at this charging station.

The capacity of the installed charging facilities was also subject to the operation limits of the

power grid considering each EV charging station connected to a bus of the network, as described in the

above constraints Equations (38) and (39). All served EVs calculated in Equation (25) were distributed

proportionally to each charging station based on its capacity, as expressed by:

NEVAi = N·CPEVAi/

n
∑

i=1

CPEVAi (44)

Pi,min ≤ PLDi(t) +

NEVAi
∑

m=1

Pm
EVAi(t) ≤ Pi,max (45)

NEVAi is the number of EVs distributed to a charging station according to the proportion of capacities of

all charging stations. P
LDi

(t) is the base load at bus i, Pi,min and Pi,max are the minimum and maximum

power allowed to be connected to bus i by the power system, respectively.

The optimal solution of the master problem was provided to the sub-problem as input parameters,

including the bus where the EV charging station connected to the network and the charging power

limits. The sub-problem without any integer variables can be solved by SQP within the feasible region

given in the master problem. The constraints from the power network operation and EV mobile needs

were also checked to ensure that the charging plan of each individual EV can fulfill the overall objective.

4.2. Two-Stage Hybrid Optimization Algorithm

The objective function of the master problem is described in Equation (35), with the location and

power capacity of EV charging station in the power network as decision variables and subject to:

0 ≤ PEVAi(t) ≤ Pmax
EVAi(t) (46)
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where Pmax
EVAi

(t) is the upper limit of the overall charging power, that is the power capacity of each

EV aggregator.

Pmax
EVAi(t) =

Mi
∑

m=1

PCm
EVAi(t) (47)

PCm
EVAi

(t) is the power capacity of individual EV at bus i.

LCEVAi ∈ {0, 1} (48)

LCEVAi is the location of EV aggregation in the charging station, and in this algorithm is defined as a

binary variable.

Nmin
A ≤

n
∑

i=1

LCEVAi ≤ Nmax
A (49)

Nmin
A

and Nmax
A

are the minimum and maximum number of EV aggregators planned to be installed in

the power system depending on the construction budget of the EV charging infrastructure.

The sub-problem implemented the optimal dispatch of EV charging power under the configuration

parameters of the EV aggregator given in the master problem. Accordingly, the sub-problem was

formulated as:

minSP
(

Pm
EVAi(t)

∣

∣

∣

Pmax
EVAi

(t),LCEVAi

)

=
T
∑

t=0

n
∑

i=1

P(t)
(

PLd(t) + Pm
EVAi(t) + PLs(t)

)

∆t (50)

where Pm
EVAi

(t)
∣

∣

∣

Pmax
EVAi

(t),LCEVAi
represents the charging rate of individual EV, which is the decision

variable of the sub-problem that is to be optimized under the parameters given in the master problem.

fm(L) =
1

√
2πσmL

exp













−(ln L− µm)
2

2σ2
m













(51)

fm(L) is the probability distribution function of the distance L travelled by each EV; σm and µm are the

parameters of exponential distribution that is used to simulate the stochastic travelled distance of EV.

In this paper, it can be set to ln L ∼ N(3.46, 0.952).

On the basis of travel distance, the required power recharged of each EV was calculated by:

SOCm
ini = SOCm

tar −
λL

Cm
bat

(52)

where λ is the energy consumption per unit of distance.

The other commonly used constraints that describe the limits on the charging rate and EV battery

SOC boundaries during the charging process under the control of EV aggregator can be found in

existing research work [20–23].

5. Simulation Results of the EV Charging Station in Oil-To-Electricity Transformation

The simulation model built for oil-to-electricity transformation for regional automobiles was

mainly composed of EV charging facilities changed from gas stations and the regional distribution

network across a small town, as shown in Figures 1 and 3.

5.1. Case Study

The IEEE 123-bus distribution network with three-phase unbalanced load was used for simulation

studies [24], as depicted in Figure 3. For time-series simulation, active and reactive loads were

calculated by multiplying the coefficient that reflected the daily load curve, as shown in Figure 4a.
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The net load profile of the power network was calculated based on the wind power and solar power

generation and average daily load of South Australia in [25]. The original load of the test power

network was equivalent to the load level indicated by coefficient 0.8. The two-tariff pricing was

adopted for daily electric energy price including two main periods. The electricity prices applied to

charging stations during the peak hours and the off-peak hours were set to 1.01 and 0.25 CNY/kWh,

according to the trial operation of EV charging stations in Shenzhen, Guangdong province of China.

It can be seen in Figure 4a that the integration of solar and wind power generation exacerbated the load

variation. EV charging load can be controlled for load leveling as shown in Figure 4b, thus ensuring

the reliability of the power network. The minimal number and the maximal number of EV charging

stations planned to be installed in the test network were set to 5 and 8, considering existing parking lots

in the region where automobiles were served by gas stations. The operating cost of the EV aggregator

was assumed to be zero in the objective function.

 

Figure 3. EV charging facilities integrated into the 123-bus distribution network.

 
(a) (b) 

 

  

  

 

Figure 4. Power load profiles in the distribution network with renewable energy sources: (a) Load

profiles of 123-bus power network; (b) EV charging load with and without control.

Charging stations transferred from two gas stations, as shown in Figure 1, were integrated into the

regional distribution network represented by the test 123-node systems shown in Figure 3. Two of the

charging stations were assumed to be the parking lots located in the residential area. The characteristics

of EV arrival and parking period were identified as the home charging scenario. Two of the charging

stations were assumed to be located among office buildings where most of the customers came to
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work. The last charging station was assumed to be in the commercial area, and composed of EVs

parked for shopping and EVs parked overnight. By integrating charging stations into the regional

distribution network, the two home charging stations were connected to bus 87 and bus 107 in the

123-node power system. The two office charging stations were connected to bus 31 and bus 39, and the

complex charging station was connected to bus 1. The capacity of charging stations, which also means

the charging load distribution among the five stations, will be calculated in the proposed EV charging

optimization algorithm. In this paper, the acceptable range of bus voltage was set from 0.95 to 1.05 p.u.

as the constraints of optimal configuration for EV charging stations. Four different types of EVs were

adopted in the case study. As shown in Table 1, the battery capacity and charging rate varied among

different EV models. The power electronic interfaced chargers were installed to meet the fast and

slow charging needs of EVs, which ranged from 2.2 to 44 kW, and the efficiency of energy conversion

process was set to 0.9 in the simulation. As type I and II were designed to be capable of fast charging,

these two types of EVs were assigned to office and commercial charging stations. Type III and IV were

designed for slow charging and can be connected to standard household outlets. Therefore, these

two types of EVs were assigned to home and also the complex charging station where both fast and

slow charging facilities were installed. The parameters of EV charging scenario for computing battery

energy and charging load are given in Tables 1 and 2.

Table 1. Simulation parameters for EV type and EV charging infrastructure.

EV Type
Charging

Power (kW)
Battery

Capacity (kWh)
Target Stage of

Charge (SOC) (%)
No. of

EVs
Distance per
Charge (km)

Fast
Charging

I: Tesla Model X 13 60 90–95 60 355
II: BMW i3 44 22 90–95 60 160

Slow
Charging

III: Chevrolet VOLT 2.2 13.2 90–95 150 80
IV: Changan EADO 3.75 30 90–95 150 200

Table 2. Optimal configuration of EV charging stations.

Bus no./
Type of Parking

Phase
Power Level of

Charging Station
Ratio of Charging
Station Capacities

EV
Types

Ratio of EV
Types (%)

1/Complex A
Fast + Slow

charging
33% I/II/III/IV 14/14/36/36

31/Office C Fast charging 13% I/II 50/50
39/Office B Fast charging 38% I/II 50/50
87/Home B Slow charging 6% III/IV 50/50

107/Home B Slow charging 10% III/IV 50/50

5.2. Results and Discussion

In the formulation of EV charging stations in oil-to-electricity transformation, charging load

distributed at certain charging stations was equivalent to energy consumption for the automobiles

served at the gas stations. The optimal configuration of charging stations is given in Table 2.

The averages of normal distribution for initial SOC and target SOC at minimum were set to 0.5 and 0.9.

The total number of EVs served by the charging stations was calculated to be 420 vehicles, with the

assumption that the proportion of different types of EVs at each charging station was the same. For the

office charging station at bus 31, the total number of EVs for type I and II was 20. Similarly, 150 EVs of

type III and IV were served by the home charging station at bus 107. Four types of EV were served by

the complex charging station at bus 1: 40 EVs of type I and II and 100 EVs of type III and IV. The number

of EVs at each station were calculated according to the ratio of the capacities given by the proposed

optimization algorithm for all EV charging stations. As shown in Table 2 and Figure 3, five optimal

locations were selected from the parking lots in the regional power network and the capacities were set

to minimize the impact of the additional EV charging load.
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The load pattern and voltage deviation of the network with EVs in the uncontrolled condition and

charging optimization were compared to evaluate the efficiency of the proposed method, as shown

in Figures 4b and 5a. In both cases, the configuration of EV charging stations adopted the results of

the optimization algorithm, thus upgrading the performance of the uncontrolled case. Consequently,

the uncontrolled charging with the best configuration was picked up from other randomly configured

charging stations to analyze the advantage of optimally controlled EV charging load. The charging

behavior of EV aggregations was regulated to achieve the valley filling and peak shaving, as seen in

Figure 4b. The total power loss was reduced since the power losses at the peak hours were significantly

curtailed, as shown in Figure 5b, in which ten lines with largest power flow were selected. The median,

minimum, and maximum values of line losses can be seen in the box plot for the ten lines. The bus

voltage of the test three-phase unbalanced power network is given in Figure 6, showing the reduction in

voltage deviation. For the home charging stations at bus 87 and 107, most EVs were parked overnight

and charged for commuting. The comparison of load and voltage profiles indicated that EV charging

load is switched to the off-peak period during 24:00 to 6:00 the next day as shown in Figure 7a. Similar

results can be found in Figure 7b for the office charging stations at bus 31 and 39, where the two types

of EVs were charged to match the network load profile as long as the constraints on the target SOC and

the parking time can be satisfied. Noted that the two-tariff pricing directed the EV charging load to

off-peak hours with a lower electricity price to cut down the cost, and the reduced power loss further

minimized the objective function.

(a) (b) 

 

  

  

 

Figure 5. Power losses of distribution network with EV charging load: (a) Daily profile of total losses

with and without EV charging control; (b) line losses of 123-bus power network at the peak hour.

 

  

  

 

Figure 6. Bus voltage of the 123-bus test system with and without EV charging control.
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Figure 7. Load and voltage profiles at bus 31 phase-C and bus 107 phase-B: (a) Load profiles at different

buses; (b) voltage profiles at different buses with and without EV charging control.

To calculate the charging plan for each EV, the capacity of the charging station fixed by the optimal

configuration restricted the maximal charging power at each bus. The overall charging power during

the parking period was allocated to each individual EV by the EV aggregator at a charging station.

The charging plans for EV type I in uncontrolled and controlled cases are compared in Figure 8a,

and the corresponding SOC curves for all EVs of type I are depicted in Figure 8b. The charging plans of

EVs connected at different buses are shown in Figure 9, in which the charging profiles of two types of

EVs served at the charging station connected to node-31 phase-C and node-107 phase-B are illustrated.

The slow charging of type III and IV needed several hours to reach the target SOC, while the fast

charging for type I and II can be finished within an hour if the parking period of the vehicle was

limited. The charging rate of each individual EV at both fast charging and slow charging facilities was

coordinated to enhance the economic and reliable operation of power system, without breaking the

boundaries on service capacity of facilities and EV mobile needs described in Sections 2 and 3. It can

be seen that EVs of different types reached the desired SOC before departure even though the charging

power profile varied according to the solution given by optimal charging algorithm.

  
(a) (b) 

  

  

Figure 8. Charging rate and state of charge (SOC) profiles of EV type I at fast charging facilities with

and without control: (a) EV charging curves (Tesla Model X); (b) SOC curves during the parking period.

  
(a) (b) 

  

  

Figure 9. Charging profiles of EVs connected to facilities at different buses: (a) Charging profiles of EV

type-I and type-II parked at bus 31; (b) charging profiles of EV type-III and type-IV parked at bus 107.
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6. Conclusions

To evaluate the impact of charging stations changed from gas stations in the oil-to-electricity

transformation for automobiles, a mapping relation model between gas stations and charging stations

serving vehicles in the same region was established by using membership degree function of EV and

queuing model-based charging stations. A novel feature of the proposed EV charging stations was

that the real-time data of gas stations and parking lots serving the regional automobiles was used to

determine the stochastic EV charging time and charging demand distribution in the power network.

Therefore, the controllability of EV charging load can be quantified by integrating the EV charging

process with parameters and control variables in the optimal dispatch of the distribution network.

With the defined boundaries and power system constraints, a combined optimization of configuration

and operation of EV charging stations was developed for reducing the operating cost and risks of power

system. A two-stage hybrid optimization algorithm composed of master problem and sub-problem

was proposed to reduce the complexity of the combined optimization problem. The optimal setting of

charging stations and the optimal charging created for each EV can improve the economic and reliable

operation of the power system with flexible EV charging load. The proposed method can serve as an

effective tool for evaluating the increased EV charging load and the controllability of charging stations

in the oil-to-electricity transformation for automobiles across the town.
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Appendix A Detailed Modeling of Parking Lots Based on Queuing Theory

This section presents the modeling of parking lots as a M/M/Z/Z queuing system [7,8]. The variation

of the parked vehicles given the data accessible online can be expressed by:

Nk(t) = Lk
s(t) = Lk

b
+ Nk

c(t) ∀k ∈M (A1)

Nc(t) = Ls(t) − Lb (A2)

Nk
b
(t + 1) = Nk

b
(t) + ∆Nk

b
(t + 1), ∆Nb

(t + 1) = 0 ∀t ∈ T (A3)

Nk
c(t + 1) = Nk

c(t) + ∆Nk
c(t + 1), Nc(0) = 0 ∀t ∈ T (A4)

∆Nk
b
(t) = Nbk

in (t) −Nbk
out(t) (A5)

∆Nk
c(t) = Nck

in(t) −Nck
out(t) (A6)

where Lk
b

is the expected number of the basic EV fleet, which is also the queuing length in the steady

state, and Nk
c is the number of categorized EV fleet, which is varying over the time according to the

arrival intensity.

The total number of both EV fleet can be read from the online data, but the arrival number of EVs

at each time needs to be calculated. According to queuing theory, the arrival of EVs at parking lots is

Poisson distribution:

Nc
in(t) ∼ λc (A7)
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Nb
in(t) ∼ λb (A8)

where λ
b

and λc are the average arrival rate of the basic and categorized EVs respectively. The queuing

length L
b

in the steady state can be calculated by applying the result of queuing theory, the parameters

of a M/M/Z/Z queuing system are adopted for parking lots:

λz = λb, z = 1, 2, · · · , Zk (A9)

µz = zµ, z = 1, 2, · · · , Zk (A10)

where Zk is the capacity of kth parking lot, and z is the number of EVs at a parking lot. The service

time in this case is the parking period, which complies with negative exponent distribution 1
µ in the

queuing model.

P0 = (
zk
∑

i=0

(zke)
i

i!
)

−1

z = 1, 2, · · · , Zk (A11)

Pz =
(zkρ)

z

z!
P0 (A12)

ρ =
λb

Zkµ
(A13)

P0 denotes the probability of no EV at parking, and Pz denotes the probability of z EVs at parking. ρ is

the service intensity of the parking lot defined by the queuing theory. Consequently, the number of

EVs at the parking lot can be written as a function of ρ, and the arrival rate of basic EV fleet can be

derived if the queuing length is given.

Lk
b
=

zk
∑

z=0

zPz = zkρ(1− Pzk) (A14)

Lk
b
= Lk

b
(A15)

where Lk
b

is the average number of basic EVs at parking that can be collected from online data.

Similarly, the categorized EV fleet in the queuing model can be quantified by assuming that the

arrival rate at each time step is Poisson distribution. The arrival of categorized EVs is concentrated on

several hours which can b easily identified from the occupancy variation of the parking lots. As shown

in Figure 1, the rising zone is assumed to be arrival period of categorized EV. Therefore, the arrival EV

number Nck
in

can be calculated from Nk
c(0) and Nk

c(t) as shown in Equations (A2)–(A6), and can also be

calculated by:

Nck
in(t) = Nk(t) − Lk

b
(A16)

Nck
in =

Tc
∑

t=1

Nck
in(t), Nck

in(t) ∼ λ
k
c(t) (A17)

Nck
in
(t) = λk

c(t)·∆t t ∈ [0, Tc] (A18)

where Nck
in
(t) is the average number of categorized EVs arriving at tth hour, which can be collected

from online data as shown in Figure 1. λk
c(t) is the Poisson distribution of categorized EVs arriving at

tth hour. Tc is the time period of categorized EV arrival. Following the queuing model of each parking

lot, the arrival rate of categorized EV fleet at each time step can be derived by:

P(Nck
in(t)= y) =

(λt)

y!
e−λt λ = λk

c , y = 0, 1, 2, · · · (A19)
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Nk
in(t) = Nck

in(t) + Nbk
in (t) (A20)

Nk
in

is total number of EVs parked at kth parking lot within Tc hours, and Nk
in
(t) is the number of

EVs arriving at kth parking lot during each time interval. As described above, it is composed of two

portions. Nbk
in
(t) denotes the number of basic EVs arriving at kth parking lot at tth hour, and Nck

in
(t)

denotes the number of categorized EVs arriving at kth parking lot at tth hour. Based on the queuing

theory, the number of EVs arriving at each time step is given by:

E
(

Nck
in(t)
)

=
∞
∑

y=0

y
(λt)k

k!
e−λt = λk

c(t)·∆t (A21)

λk
c(t) =

Nck
in
(t)

∆t
=

∆Nk
c(t)

∆t
(A22)

where ∆Nk
c(t) is the difference of categorized EV number at tth hour that can be read from the online

data shown in Figure 1.

The membership degree of each individual EV to parking lot is correlated with the parking period

in the queuing theory:

αk
i ·T = τi, τi ∼

1

µ
(A23)

where τi is the parking period of ith EV at one parking lot. The service time complies with negative

exponential distribution:

P(τi ≤ t) =

{

1− e−µt t ≥ 0

0 t < 0
(A24)

E(τi) =

∫

+∞
0
µ+ e−µtdt =

1

µ
(A25)

1

µ
= αk

i
·T = τi (A26)

where τi is the average EV parking period that can be collected from online data. As all the

other parameters are calculated, the arrival and the duration of EVs at the parking lot can be

completely quantified.
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