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Abstract

Erosional and sediment fluxes from Arctic mountains are lower than for temperate

mountain ranges due to the influence of permafrost on geomorphic processes. As

permafrost extent declines in Arctic mountains, the spatial distribution of geomor-

phic processes and rates will change. Improved access to high‐quality remotely

sensed topographic data in the Arctic provides an opportunity to develop our

understanding of the spatial distribution of Arctic geomorphological processes and

landforms. Utilizing newly available Arctic digital topography data, we have devel-

oped a method for geomorphic mapping using a pixel‐based linear discriminant

analysis method that could be applied across Arctic mountains. We trained our

classifier using landforms within the Adventdalen catchment in Svalbard and

applied it to two adjacent catchments and one in Alaska. Slope gradient,

elevation–relief ratio and landscape roughness distinguish landforms to a first order

with >80% accuracy. Our simple classification system has a similar overall accuracy

when compared across our field sites. The simplicity and robustness of our classifi-

cation suggest that it is possible to use it to understand the distribution of Arctic

mountain landforms using extant digital topography data and without specialized

classifications. Our preliminary assessments of the distribution of geomorphic pro-

cesses within these catchments demonstrate the importance of post‐glacial hillslope

processes in governing sediment movement in Arctic mountains.
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1 | INTRODUCTION

Sediment fluxes from Arctic mountains are amongst the lowest on the

planet,1 despite having large stores of sediment2 and enough topogra-

phy to drive sediment transport. This anomalous observation has been

ascribed to the role of permafrost in reducing erosion and sediment

transport rates.1 Permafrost distributions in Arctic mountains are par-

ticularly sensitive to changes in Earth's climate, as higher
- - - - - - - - - - - - - - - - - - - - - - - - - -
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temperatures, changing precipitation patterns, and more frequent

extremes of precipitation and temperature3 can induce permafrost

thaw and increase rates of surface processes.3-5 As the climate warms,

we would expect the spatial and temporal patterns of erosion and sed-

iment transport from Arctic catchments to change. For example,

weather extremes appear to drive more frequent active layer detach-

ment slides that affect key areas of linear infrastructure in Arctic

regions.6 As climate drives differences in the distribution of Arctic
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2 MITHAN ET AL.
permafrost, it is important to understand how the spatial distribution

of potentially hazardous surface processes (and their rates) may

change.

Mapping of the distribution of geomorphic processes and land-

forms is not new in Arctic mountains. Since Rapp (1960)7 first

mapped Kärkevagge, there has been considerable effort to constrain

the distribution of Arctic geomorphic processes and rates. At a land-

form scale, systematic mapping and measurement of process rates

has occurred in blockfields,8 solifluction,9,10 and scree (talus)

slopes.11,12 Much of this effort has involved manual mapping, which

remains the method that produces the most accurate maps, although

the time‐consuming nature of this method restricts its utility to

local‐ and regional‐scale maps. The reliance on expert interpretation

subjects this method to varying degrees of accuracy.13 Remotely

sensed methods provide an alternative and there is a significant

body of work dedicated to the study of geomorphometry as

reviewed by Romstad and Etzelmüller (2012).14 This work is sup-

ported by improvements in the quality of remotely sensed data that

have allowed more detailed analysis into remote areas and at

regional scales.13,15-17 These automated classification methods allow

for larger areas to be mapped more quickly while reducing human

error (although introducing machine error), and facilitating
comparable results and model transferability.13,18 At regional scales,

topographic parameters derived from digital elevation models

(DEMs) are shown to be one of the primary predictors of landforms

in periglacial environments,13,19,20 particularly in high‐Arctic environ-

ments because of the low abundance of vegetation.19 Statistical

analyses of remotely sensed topographic, optical and/or climate data

landform classifications21 use a range of multivariate and simple sta-

tistical techniques including generalized linear methods such as linear

discriminant analysis (LDA),13,22 logistic regression,17 and artificial

neural networks.13,23 Reported comparisons of different suites of

statistical modeling suggest that simple models such as LDA and

logistic regression perform equally when compared to more complex

machine‐learning techniques.24,25 The inclusion of optical remotely

sensed data or climate data can improve fine‐scale differentiation

of geomorphic features with similar topography but different levels

of activity (such as differentiating active and less active talus sheets).

However, due to the strongly variable nature of Arctic vegetation,

optical solutions are difficult to translate across landscapes. Optical

remote sensing may have more traction in vegetation‐free areas,

such as hyperspectral,26 thermal inertia mapping27 or texture filters

applied to high‐resolution optical imagery.28 In addition, high‐

resolution cloud‐free optical imagery and climatic data for remote
FIGURE 1 (a) Map of Svalbard with two of
the three study sites: Endalen and Ringdalen.
(b) Map of Alaska with the third study site:
Saviukviayak. (c) View looking north‐east
down the Endalen valley (image taken by Huw
Mithan) [Colour figure can be viewed at
wileyonlinelibrary.com]
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TABLE 1 Geometry of landforms used to train the classifier

Adventdalen landforms Number of polygons Total area (km2)

Blockfield 5 4.46

Bedrock 23 0.01

Colluvium 26 1.75

Solifluction 4 0.53

Fluvium 13 19.02
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areas of the Arctic are difficult to obtain29 whereas topographic data

for the entire Arctic are readily accessible.30 We develop a techni-

cally simple classification of geomorphic features that can be applied

across the Arctic. The purpose of geomorphic classification is to

improve our ability to understand, to a first order, the spatial distri-

bution of important sources and sinks of sediment within mountain-

ous Arctic catchments. To achieve this goal, our classification must

pass two key tests: (a) that it can be implemented using regionally

available digital terrain data, and (b) it must classify landforms that

clearly relate to processes of either erosion or deposition in the cur-

rent climate. For example, erosion of till or moraine by solifluction

processes would be defined as a solifluction sheet. To achieve the

balance of technical simplicity and geomorphic process focus, we

settled on a pixel‐based statistical landform classifier that uses

LDA. We demonstrate the potential utility of this model for cross‐

Arctic mapping of landforms by comparing classifications in Svalbard

and Alaska.
2 | STUDY AREAS

2.1 | Western Svalbard

We investigated two catchments in western Svalbard, Endalen and

Ringdalen (Figure 1a). The study area is a high‐Arctic semi‐arid desert,

with a mean annual temperature of −6.8°C and a mean annual precip-

itation of 190 mm (1961 to 1990, Svalbard Airport).9 Permafrost is

continuous outside of the glacier‐covered areas and is typically

100 m thick in valley bottoms and 400–500 m thick at higher eleva-

tions.31 The dominant geology is early Cretaceous to Eocene near‐

horizontally bedded sandstones, siltstones, shales and coal.32 The

landscape is mountainous with 400 m of relief. Summit areas are typ-

ically flat plateaus composed of blockfields and patterned ground.

Frost‐weathered sedimentary bedrock at plateau edges33 leads down-

slope to steep planar (30°–40°) deposits of scree and debris fans.

Shallow (5°‐25°) concave slopes of solifluction sheets are found at

the base of many hillslopes (Figure 1c). Valley floors contain braided

river systems that deposit sediment at valley mouths to form alluvial

fans. The areas around Endalen and Ringdalen have both seen exten-

sive field investigations across a range of different geomorphic fea-

tures, including studies of rockfall retreat,12,34 debris flows/active

layer detachment slides,35 solifluction sheets/lobes,9,36 and alluvial

and colluvial deposits.37
FIGURE 2 Topographic parameters for each landform used to train
the classifier. (a) Elevation–relief ratio. (b) Landscape roughness. (c)
Slope gradient [Colour figure can be viewed at wileyonlinelibrary.com]
2.2 | Brooks Range, Alaska

The Saviukviayak catchment forms in the eastern half of the Brooks

Range (68.77°N, 147.48°W) of Alaska (Figure 1b). According to the

nearest weather station, 190 km to the southeast at the Anaktuvuk

Pass (68.14°N, 151.74°W), the annual mean temperatures are

−8.3°C with a mean annual precipitation of 280 mm.38 Bedrock is

mainly chert and limestone that was uplifted, folded and faulted dur-

ing the Cretaceous. The landscape is mountainous, with 600 m of
relief and a wide range of mountain landforms, and as such it is qual-

itatively similar to Endalen and Ringdalen, Svalbard. A braided river

system, called Saviukviayak, traverses the valley with steep slopes ris-

ing from 845 to 1445 m where there are ridge summits. The Brooks

http://wileyonlinelibrary.com
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Range was glaciated during the Pleistocene and since deglaciation

most of it has been underlain by continuous permafrost. On the valley

floor and on hillslopes, superficial deposits are either glacial drift

and/or colluvium.39
3 | METHODS

3.1 | Geomorphology mapping

We created a geomorphological map using 5‐m resolution satellite

imagery of Endalen,40 Ringdalen40 and Saviukviayak.41 Following

the nomenclature of Tolgensbakk et al. (2000),42 we mapped all

non‐glacial landforms as one of the following: blockfields, bedrock

outcrop, colluvium (allochthonous material and scree slopes), solifluc-

tion sheets and fluvium (floodplain and alluvial fan material).

Blockfields were flat areas found on summit plateaus with individual

angular blocks observed in the satellite imagery. Bedrock outcrops

tend to be found at the margins of summit plateaus bounded by

scree slopes. In imagery, bedrock is darker in color and often con-

tains significant shadow due to the steep nature of outcrops and

low sun angle. Allochthonous material is defined simply as material

that has moved downslope from its point of origin (such areas are

generally termed as debris‐mantled slopes), and we identified these

regions to be in the transition zone from active (gray in imagery)

to less active material (yellow‐green in imagery). Tolgensbakk et al.

(2000)42 used this term to indicate material that was found on side

slopes that could not obviously be tied to a specific landform or
FIGURE 3 Pearson correlation between three topographic parameters
elevation–relief ratio (ERR). (a) Blockfield, (b) bedrock, (c) colluvium, (d) sol
wileyonlinelibrary.com]
process.42 We have continued to use this definition. Scree (talus)

slopes are planar or slightly fan‐shaped, are non‐vegetated, contain

blocky material and are typically located mid‐slope below exposures

of bedrock. Solifluction sheets are found at the base of hillslopes,

are vegetated and contain lobate deposits.10 We identified flood-

plains based on their multiple weaving channels caused by braided

rivers. The floodplain boundary sometimes included a steep ridge

or bank. Alluvial fans are located at the exit of valleys and contain

braided rivers and a distributary channel system. The lateral margins

are defined by a change in color of the landform material and incised

fluvial channels.
3.2 | Classifier development, training and testing

We trained an LDA classifier43 using mapped landforms from

Adventdalen (Table 1). LDA finds the best linear combination of

topographic parameters that (a) maximize the distance between the

means of two or more classes, while (b) minimizing the scatter

around the mean within each class. LDA projects this information

onto a new axis called linear discriminant 1 (LD1), linear discriminant

2 (LD2), etc., with LD1 representing the best linear combination of

variables that fulfil (a) and (b). LDA has been widely and successfully

applied to classify landforms, including periglacial applications.22,24

We chose LDA because it is a simple tool for multi‐class classifica-

tion. It is possible to compare the linear relationship with expecta-

tions based on physical understanding of the processes governing

each landform. For example, blockfields are known to form on sum-

mit plateaus with shallow slopes.
for each landform. Landscape roughness (LR), slope gradient (SG),
ifluction sheet and (e) fluvium [Colour figure can be viewed at

http://wileyonlinelibrary.com


MITHAN ET AL. 5
During training of the model, we extracted the range of pixel

values obtained from a 5‐m photogrammetry‐derived DEM for each

mapped landform. We calculated ArcGIS‐derived44 slope aspect, slope

gradient, planform curvature, profile curvature, total curvature, topo-

graphic wetness index,45 topographic openness46 and landscape

roughness using a 3 × 3 pixel square window and the SR1 eigenvalue

ratio.47 We call SR1 the ratio of ln(S1/S2) where S1 is from McKean

and Roering (2004).47 Their study noted that the SR1 ratio can pick

out other rough elements of the landscape such as roads, channels

and bedrock outcrops. SR1 describes the tendency for vector data to

be clustered such that braided rivers and alluvial fans have a greater

landscape roughness or lower SR1 values because they are highly dis-

sected with channels, and have high sediment loads of gravels, cob-

bles, boulders and sand banks. We used an elevation–relief ratio

(ERR),48 where ERR = (x – xmin)/(xmax – xmin) for a 5‐km‐diameter mov-

ing window. The size of the window was consistent with other
FIGURE 4 Elevation–relief ratio, landscape roughness and slope grad
Saviukviayak. White areas represent regions with no data. Contours are in
measures of local relief49 consistent with the typical width of a glacial

valley.

We performed a recursive feature elimination analysis on our

mapped landform dataset from Adventdalen to determine which topo-

graphic parameters contribute the most to the predictive power of the

classifier. We found that the combination of ERR, landscape rough-

ness and slope gradient returned the highest accuracy score during

the recursive feature elimination analysis.

To assess the classifier's performance, we split the landform dataset

into a 70% training set and a 30% testing set, and evaluated the classifi-

cation using model accuracy metrics defined below. We repeated this

train/test split procedure ten times on different segments of the land-

form dataset and took the average accuracy score. We used this test

to ensure that the classifier did not perform differently after being

trained on different segments of the landform dataset. Our classifier is

trained using only 70% of the Adventdalen dataset, namely the 70%
ient map for each study site. (a–c) Endalen, (d–f) Ringdalen, (g–l)
meters [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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training set. From this point onward, we will call this our “trained classi-

fier.”Despite choosing a relatively small, but representative area (n < 10

for some features), the training and testing datasets were accurate at

>80%, suggesting that these metrics capture these features well.
3.3 | Classifier application

We applied the trained classifier to the Endalen, Ringdalen and

Saviukviayak catchments. We used DEMs of different sources to

classify the remaining locations: a 5‐m‐resolution photogrammetry‐

derived DEM (Endalen and Ringdalen) and a 5‐m synthetic aperture

radar‐derived (Saviukviayak) DEM.50,51 Removal of anthropogenic

infrastructure, water bodies, artefacts, pixels that were within the

shadow shown in the satellite image, pixels that correspond to

snow cover in the satellite image, glaciers and their features,

and filled sinks in the raster surface fulfilled our final quality control

step.

Assessment of classification quality was provided by three metrics:

accuracy, recall and precision. Accuracy is the proportion of correct

classifications (true positives [Tp] and true negatives [Tn]) from the

overall number of cases (Tp, Tn, false positives [Fp] and false negatives

[Fn], that is (Tp + Tn)/(Tp + Tn + Fp + Fn), thus giving an overall

assessment of the classifier's performance. Recall is the proportion

of correct positive classifications from the cases that are actually pos-

itive [Tp/(Tp + Fn)]. Precision is the proportion of correct positive clas-

sifications (true positives) from cases that are predicted as positive

[Tp/(Tp + Fp)].
4 | RESULTS

4.1 | LDA classifier results

The LDA results show that more than 95% of the separation (the

between‐group variance divided by the within‐group variance)

between landforms is caused by a combination of the LD1 (64.94%)

and LD2 (34.77%) axes. ERR controls 98.87% of the separation

between landforms along the LD1 axis. Along the LD2 axis, slope gra-

dient (11.47%) and landscape roughness (6.24%) have a greater influ-

ence but ERR remains dominant (82.29%). These results demonstrate

that a considerable amount of the predictive power of the model lies

with a small number of variables, ERR, slope gradient and landscape

roughness. ERR and slope gradient are the strongest landform separa-

tors when used together.
FIGURE 5 Area under the receiver operating characteristics curve
(AUROC) when using a combination of topographic parameters to
train the classifier. The plots on the right‐hand side are confusion
matrices. (a,b) Elevation–relief ratio and landscape roughness. (c,d)
Elevation–relief ratio and slope gradient. (e,f) Landscape roughness
and slope gradient. (g,h) Elevation–relief ratio, landscape roughness
and slope gradient. Blockfield (Blo), bedrock (Bed), colluvium (Col),
solifluction (Sol), fluvium (Flu). [Colour figure can be viewed at
wileyonlinelibrary.com]
4.2 | Landform topography and topographic metrics

Summit plateau blockfields were distinguishable as features of low

slope gradient (average value of 3.8°) located in the higher parts of

the landscape (average ERR of 0.80), with an average landscape

roughness of 1.45. Bedrock is also found at higher elevations (aver-

age ERR of 0.59) on very steep slopes (average value of 56.8°) with

average landscape roughness values of hillslopes (average ERR of
0.12) with low slopes (average value of 6.43°) and a landscape

roughness of 1.58. Colluvium is modeled to be lower on the hillslope

(average ERR of 0.3); however, with a standard deviation of 0.12 it

does overlap with the ERR of bedrock. The average slope gradient

for colluvium is 25.8° but these slopes are the smoothest of all land-

forms with an average landscape roughness value of 2.25. On the

valley floor are the fluvial deposits with an average ERR of 0.04,

the lowest average slope gradient of 1.7° and it is the roughest part

of the landscape at 0.53 (Figure 2).

For each landform we used a Pearson correlation test to determine

the correlation between topographic parameters (Figure 3). The

strength of correlations between topographic parameters depends

on landform type. Strong positive correlations occur between slope

gradient/landscape roughness and ERR/slope gradient. The weakest

correlations occur between ERR and landscape roughness. An excep-

tion is with bedrock where there are negative correlations between

topographic parameters (Figure 3). A series of topographic maps for

each study area (Endalen, Ringdalen and Saviukviayak) demonstrate

http://wileyonlinelibrary.com
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that topography is rougher (low value) on the summits and valley bot-

toms while slope gradients are steepest on the valley sides (Figure 4).
4.3 | Classifier internal testing

Initial internal testing of the model, with a 70% training and 30%

test dataset split, produced a mean accuracy score of 99.51%. In

general, recall and precision data demonstrate that reductions in

accuracy are related to the misclassification of geomorphological

units with similar surface topographies (e.g., solifluction sheets and

fluvium). The model performs best when predicting blockfields

(100% recall and 100% precision) and colluvium (100% recall and

precision 99%). Solifluction sheets were also accurately identified

(recall of 98%, precision of 81%). The most common misidentifica-

tion was bedrock with a recall of 47%, where the other 53% is

misclassified as colluvium. However, bedrock's precision is 100%,

suggesting that of all the pixels it classified as bedrock 100% were

classified correctly.
FIGURE 6 Endalen. (a) Confusion matrix comparing our geomorpholog
Satellite image of Endalen. (c) Our geomorphology map. (d) The classifier's
may cause shading of the color schemes. Gray areas are regions of no data
figure can be viewed at wileyonlinelibrary.com]
Our receiver operating characteristic (ROC) analysis on the training

dataset shows that a combination of ERR, slope gradient and land-

scape roughness produces the highest area under the curve

(Figure 5).
4.4 | Classifier implementation: Endalen

The classified map for a 10‐km2 area of Endalen (Figure 6d) has an

overall accuracy of 88.91%. The confusion matrix (Figure 6a,d) demon-

strates the success of the classification scheme in identifying the spa-

tial distribution of landforms within these areas (Figure 6a). Occupying

the flat plateaus of Endalen are blockfields, and this is the most exten-

sive landform covering 38.86% of Endalen (Figure 7). Bedrock is

modeled at the plateau edge, contouring the top of the hillslopes but

also 100 m downslope from the plateau edge (Figure 6d). Bedrock

covers the smallest area of 1.57% (Figure 7b). The mid‐slopes are

dominated by colluvium, which comprises the second largest landform

(29.66%) of the study area. Its upslope boundary is defined by the pla-

teau edge, bounding solifluction sheets at its downslope margin
y map (true values) to the classifier's map (predicted values) (%). (b)
geomorphology map. All images are underlain with a hillshade which
, which show the underlying hillshade. Contours are in meters [Colour

http://wileyonlinelibrary.com


FIGURE 7 Bar chart showing the area
occupied by each landform within all three
study sites (excluding regions of no data). (a)
Area of landforms in our map. (b) Area of

landforms in the classifier's map [Colour figure
can be viewed at wileyonlinelibrary.com]
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(Figure 8). Solifluction sheets occupy 16.69% of the area, and repre-

sent the third most extensive landform. The downslope boundary of

solifluction sheets borders the braided river and alluvial fan.

Solifluction sheets are most extensive at the mouth of the valley

(Figure 6d). Areas of solifluction sheets adjacent to the center of the

valley contain pixels classified as alluvial fan. The extent of this

increases toward the north‐east. In the center, running from the

south‐west to north‐east, is a mixture of pixels classified primarily as

braided river, but some are incoherent clusters of alluvial fan material

(Figure 3d).
4.5 | Classifier implementation: Ringdalen

The classified map for Ringdalen had an overall accuracy of 80.15%

(Figure 9). Blockfields and flat plateaus are less dominant compared

to Endalen, occupying 3.74% of Ringdalen (Figure 7b). The occurrence

of bedrock is restricted to the top of cirques in the north‐east and

small ridges 500 m to the west. Colluvium dominates the landscape,

occupying 53.62% of Ringdalen, and is extensive on north‐ and

south‐facing slope. Unlike in Endalen, colluvium in Ringdalen does

not reach the valley floor. Solifluction sheets are the most extensive
landform (34.64%), in constrast to the other study sites. The classifier

predicts solifluction sheets will occupy the lower half of the hillslopes

in the center of Ringdalen and less in the south. Clusters of fluvium‐

classified pixels are found on the mid‐ to lower reaches of the

soliflucting material. These clusters become denser at the mouth of

Ringdalen. Patches of solifluction sheet occupy relatively flat sections

of hillslope in the center north.
4.6 | Classifier implementation: Saviukviayak

The accuracy of the LDA model trained in Svalbard and applied to the

Brooks Range is 81.54% (Figure 10). An interesting result of the clas-

sifier was the identification of blockfields (1.08% of the area), which

we did not observe from our geomorphological mapping using satellite

imagery. Upon re‐analysis of the imagery it is evident that a flat pla-

teau exists at the top of the narrow ridgeline. Colluvium occupies

73.02% (Figure 7b) of the study area, the largest proportion when

compared to our sites on Svalbard. Bedrock is confined to the mid‐

and upper slopes, primarily north‐facing slopes, and covering a

relatively large area of 6.34% compared to our sites on Svalbard.

Solifluction sheets (11.87% of area) dominate the lower slopes,

http://wileyonlinelibrary.com


FIGURE 8 Topographic parameters of each landform from the
classifier's map. (a) Elevation–relief ratio. (b) Landscape roughness. (c)
Slope gradient [Colour figure can be viewed at wileyonlinelibrary.com]
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particularly on south‐west and north‐east sides of the valley. Some

solifluction sheets occur on south‐facing slopes in a small valley in

the south‐east. Alluvium occupies the valley floor and on soliflucting

slopes to the west. Interestingly, to the south‐east the classifier iden-

tifies a region of alluvium on the floor of a small valley which we did

not observe during mapping.
5 | DISCUSSION

We have developed a technically simple classification of geomorphic

features that relate to processes of either erosion or deposition in

the current climate and can be applied across Arctic permafrost.
Technically simple methods for classifying landscapes were origi-

nally developed for implementation using contour maps of topogra-

phy.49,52,53 Our model uses a three‐parameter LDA chosen on the

basis of a recursive elimination. Although we have achieved technical

simplicity with our classification, there are questions as to whether our

classification is too simplistic, particularly as there are alternative

methods that include object‐oriented18 (rather than pixel‐based) clas-

sification and those that incorporate readily available optical remote

sensing data.28

Our pixel‐based classification is strongest where the landform

shape is simple and separated by clear breaks in slope gradient,

ERR or landscape roughness (Figure 8). Hence, the classifier does

best at determining blockfields, solifluction sheets and bedrock out-

crops. Where topography is complex, the classifier does not perform

well, such as the separation of alluvial fan and braided river flood-

plains or when a landform contains pixels that are close to a bound-

ary (Figure 8). Falsely positive classified pixels arise because pixels

inside a soliflucting landform are classified as floodplain. This occurs

because pixel‐based classifications form clusters of pixels with simi-

lar topographic parameters, resulting in dispersed classifications

called the “salt and pepper effect.”54 If we restrict ourselves to topo-

graphic data, it might be possible to improve our topographic analy-

sis by including a combination of topographically derived hydrology

and pixel‐based morphology. Recently, these methods have been

useful in determining the upper limit of the channel network,55,56

delineating floodplains,57 or zero‐order drainage basins.58 By limiting

ourselves to available >20‐m‐resolution topography, we are working

at the limit of most process‐based methods for topographic analy-

sis.59 We experimented with the inclusion of hydrologic parameters

within our classifications, and found the extensive summit plateaus

and planar side slopes in our field area led to anomalous positioning

of channels relative to mapped channels. Alternatively, simple land-

form classifications using a small number of parameters have been

used generically to distinguish areas by shape (rather than pro-

cess).60 These methods have proven extremely useful for landscape

ecology and for regional‐ or continental‐scale mapping. Yet, their

deliberately generic nature does not allow for a simple relationship

to geomorphic process.

Object‐oriented landform classifiers have shown considerable

promise as potential methods for identifying landforms.18 Object‐

oriented analysis segments landscapes by grouping pixels into areas

of consistent morphology that are separated by boundaries.18 The

essential difference between this and pixel‐based methods is that

context, landform shape and geometric signature can be accounted

for in defining a landform.61 Currently, object‐oriented landform seg-

mentation methods, for example geomorphon analysis62 or elemen-

tary forms,61 have been applied relatively locally at a catchment or

smaller scale, or applied generically (i.e., identifying form only rather

than form and process) across large areas. There is considerable dis-

cussion within the literature about the role of spatial scale, particu-

larly the potential desire to create multi‐scale object‐oriented

landform analysis,63 and this has been resolved through, for example,

hierarchical algorithms.54 The issue of scale in this context reflects a

http://wileyonlinelibrary.com


FIGURE 9 Ringdalen. (a) Confusion matrix comparing our geomorphology map (true values) to the classifier's map (predicted values) (%). (b)
Satellite image of Ringdalen. (c) Our geomorphology map. (d) The classifier's geomorphology map. All images are underlain with a hillshade
which may cause shading of the color schemes. Gray areas are regions of no data, which show the underlying hillshade. Contours are in meters
[Colour figure can be viewed at wileyonlinelibrary.com]
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debate on the scale at which different geomorphic processes act.

This debate is well exemplified by the curvature scaling in soil‐

mantled landscapes that reflects the transition from pit and mound

topography to hillslope diffusion.64 Given the challenges with the

implementation of these methods across wide spatial scales, we

adopted the simpler, more parsimonious pixel‐based characterization

of landscape form.

Arctic landform classification has often included a combination of

digital topography and optical remote sensing analysis. Spectral

ratios that identify vegetation have been included in classifications

of differential landforms with similar topographies.28,54 The strength

of this process is that it strongly differentiates landform disturbance

rate, such that more active landforms cannot grow significant vege-

tation. In our field area, areas mapped as allochthonous slopes can-

not be differentiated from scree slopes using topographic data

alone. Instead, during the manual mapping of these landforms, they

are differentiated using the total amount of vegetation. As a signifi-

cant vegetation cover suggests inactivity at a decadal to centennial

timescale for rockfall, a process with a strong stochastic component,
the presence or absence of vegetation does not necessarily improve

our understanding of the underlying geomorphic process. As such,

we do not view the inclusion of remotely sensed optical data as

improving the effectiveness of our classification. Alternative

remotely sensed analyses, such as hyperspectral analysis and thermal

imagery,32 had similar issues. In summary, our classification manages

to maintain technical simplicity, while moving from a focus on

generic landforms to a more process‐oriented geomorphic classifica-

tion of Arctic landforms.

Finally, we examined the uncertainty in our analysis formally using

accuracy, recall and precision metrics. We trained the classifier on

landforms in a single catchment, then applied the trained classifier,

without recalibration onto the other locations. The overall accuracy

score for the Ringdalen (80.91%) and Brook's Range (81.54%) is

slightly lower than for the training site in Endalen (88.91%), but it

remains high, suggesting that the uncertainty in parameter values

between locations is relatively small. Internally, the major loss in preci-

sion and recall is where we have two landforms of similar origin, such

as scree slopes and allochthonous slopes. As a first‐order

http://wileyonlinelibrary.com


FIGURE 10 Saviukviayak. (a) Confusion matrix comparing our geomorphology map (true values) to the classifier's map (predicted values) (%).
“nan” represents no data meaning that these landforms were not mapped by us. (b) Satellite image of Saviukviayak. (c) Our geomorphology
map. (d) The classifier's geomorphology map. All images are underlain with a hillshade which may cause shading of the color schemes. Gray areas
are regions of no data, which show the underlying hillshade. Contours are in meters [Colour figure can be viewed at wileyonlinelibrary.com]
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methodology, these differences in classification suggest that method-

ological uncertainty outweighs the spatial uncertainties associated

with applying the same classification to different geographical loca-

tions. Hence, we show that our simple classification provides a tool

for the rapid mapping of landforms in Arctic mountains.
5.1 | Relationship between form and process

We sought to create a classification that reflected the underlying

geomorphic processes governing the spatial distribution of landforms

across Arctic Mountains. The three‐parameter model does appear to

separate major process transitions well. The slope gradient parame-

ter separates steep bedrock from slopes that accumulate sediment

close to their angle of repose (scree‐like landforms), creep‐

dominated landforms (e.g., solifluction sheets) and fluvial landforms.

Landscape roughness is useful for classifying bedrock, particularly

within the smooth sedimentary landforms that surround it.65 ERR

is effective at identifying blockfields and fluvial systems that occur
at the highest and lowest parts of the topography, respectively.

Supporting the utility of this application are our estimates of accu-

racy, precision and recall that generally show a high degree of statis-

tical correlation. With the caveat that we classified only three Arctic

catchments, our classifier can provide some insight into the spatial

extent of landforms in mountainous permafrost environments.

Blockfields are extensive on the plateaus above Endalen and repre-

sent either the upper altitudinal limit of glacially eroded terrain or

their preservation under cold‐based ice during the Last Glacial

Maximum. The lack of extensive blockfields in Ringdalen and

Saviukviayak may be a product of the bedrock structural geology

and/or erosional history. There is considerably more bedrock found

in our Alaska site than in Svalbard. The presence of bedrock out-

crops reflects parts of the landscape where the weathering rate is

lower than the erosion rate.65,66 Hence, areas that have been

recently glaciated or are steeper (due to tectonic or lithologic con-

trols) are likely to be bedrock‐dominated. Both the Brooks Range

and Svalbard are tectonically inactive, suggesting a possible lithologic

control on bedrock outcrop distribution. However, this could be

http://wileyonlinelibrary.com
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because both regions have been recently glaciated.67 Vertical bed-

rock outcrops were challenging to map from satellite imagery, and

the low recall and high precision of bedrock in our study sites sug-

gests that our topographic methodology may be better at identifying

bedrock outcrops than satellite mapping. Bedrock that is <10 m2 is

challenging to identify with relatively low‐resolution satellite imag-

ery, where shadows cast by mountain summits or steep bedrock

faces hide landform boundaries. The small bedrock source area to

large depositional landform area in Endalen and Ringdalen indicates

that current erosional activity is low.

Solifluction sheets are extensive at shallow slope gradi-

ents.13,17,68 We demonstrate that solifluction sheets are a common

occurrence at the base of hillslopes. First, solifluction sheets occurs

where soil is frost‐susceptible, enhancing the development of ice

lenses, which facilitates two fundamental processes: frost‐heaving

and gelifluction.69 In Endalen, for example, the weathering of bed-

rock on the valley slopes is thought to produce frost‐susceptible

soils.9 This material accumulates at the base of the hillslope by pro-

cesses such as rill erosion, avalanching or cornice collapses.70,71

Second, sufficient moisture is needed to feed the growth of ice

lenses during autumn freeze‐back, driving the frost‐heaving compo-

nent of solifluction. The base of these hillslopes has shallow slope

gradients, where water from hillslope runoff, melting snow or

thawing ice lenses accumulate. This excess saturates the soil, driving

the gelifluction component of solifluction during spring thaw.72 This

therefore reduces soil shear strength, allowing it to deform down-

slope under its own weight. Finally, slope gradient must be steep

enough to initiate downslope self‐weight shear stresses but not

too steep as this can cause failure along a shear plane or generate

a debris flow.73

Colluvium occupies the greatest areal extent for Ringdalen (53.8%)

and Saviukviayak (73.8%), while this landform is second only to

blockfields in Endalen (29.4%). The dominance of colluvium and a

low areal extent of bedrock outcrops (<5%) suggests that sediment

accumulates and remains on Arctic hillslopes. This indicates that the

degree of coupling from hillslope to channels, termed connectivity,74

is low in our study areas. This is also evident across the Arctic because

sediment yield from Arctic rivers is low when compared to their tem-

perate counterparts.1 Sediment production and transport are nega-

tively impacted by low temperatures in the Arctic,75 where freeze–

thaw cycles occur less frequently, the active layer is frozen for most

of the year, much of the annual precipitation falls as snow, and when

it does rain its intensity is low.1 However, studies show that the Arctic

is warming at twice the global average,76 causing ground to freeze

later and thaw earlier, the active layer to deepen,77 and more precipi-

tation to fall as rain.78 This is thought to increase the frequency and

rate of mass‐wasting processes that remobilize sediment on Arctic

hillslopes such as debris flows69 and solifluction.9 Hillslope–channel

connectivity related to solifluction is thought to be low because of

its slow movement rates (<1 mm year−1).10 However, solifluction mon-

itoring sites on Svalbard have shown an increase in movement rates

due to a deepening active layer caused by higher air temperatures.9,79

In addition, regions of solifluction experience active layer detachment
failures where shallow translational landslides move sedimentary

material from the hillslope to adjacent channels.80 Therefore, with soli-

fluction being one of the most extensive landforms in our study areas,

it has the potential to remobilize sediment (colluvium) locked on Arctic

hillslopes.
6 | CONCLUSION

We developed a landform classification model that can be applied

across Arctic mountain ranges using readily available topographic data.

The model estimates the distribution of geomorphologically significant

landforms using a combination of three topographic parameters: slope

gradient, ERR and landscape roughness. We trained our classifier in

the Endalen catchment of Svalbard, then applied the trained classifier

to another Svalbard catchment (Ringdalen) and one in Alaska

(Saviukviayak). The classifier is internally accurate (88.91%) when

applied to landforms with strong differences in topography, such as

scree slopes and solifluction sheets. Bedrock, blockfields and solifluc-

tion sheets were identifiedwith a high degree of accuracy, with bedrock

outcropsmodeled at a greater resolution thanwas possible tomapusing

satellite imagery. Classification accuracy did not change significantly

between sites, suggesting that this method can be readily transferred

between geographic locations. The process‐oriented nature of our clas-

sification method allows for an improved understanding of the spatial

distribution of key geomorphic processes in Arctic mountains.
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