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Abstract

Indentation of a thin elastic film attached through an interlayer to a rigid support is studied.
Because the common interpretations of depth-sensing indentation tests are not applicable to such
structured coatings, usually various approximating functions are employed to take into account
influence of the interlayer. Contrary to the common approaches, a strict mathematical approach
is applied here to study the problems under consideration assuming that the thickness of the
two-layer structure is much less than characteristic dimension of the region of contact between
the indenter and the coating. A simple derivation of asymptotic relations for displacements and
stresses is presented. It is shown that often the leading term approximation to the non-adhesive
contact problems is equivalent to contact problem for a Winkler-Fuss elastic foundation with an
effective elastic constant. Because the contact between the indenter and the film at nanoscale
may be greatly affected by adhesion, the adhesive problem for these bilayer coatings is studied
in the framework of the JKR (Johnson, Kendall, and Roberts) theory of adhesion. Assuming the
indenter shape near the tip has some deviation from its nominal shape and using the leading term
approximation of the layered coatings, the explicit expressions are derived for the values of the
pull-off force and for the corresponding critical contact radius of adhesive contact region.

Keywords: thin elastic bilayer, asymptotics, JKR theory, adhesive contact

1. Introduction

Thin solid films having layered structures have enormous areas of applications, in particular
in tribological applications. Indeed, recent innovations in coating technology, materials science
and surface science has led to the introduction of hard, nanostructured carbon-based coatings,
such as amorphous carbon (a-C), diamond-like carbon (DLC), carbon nitride (CNx), amorphous
carbon/tungsten carbide (a-C/WC) nanocomposites, and boron carbide (nominally B4C), that
are often used as solid, low friction lubricating films. However, to use these films as tribological
coatings, they must adhere well to the substrate material, otherwise, the high internal stresses
would cause film delamination. A comprehensive review of DLC coatings is given by [1]. It was
noted that the use of silicon [2] and metallic interlayers such as titanium or chromium [3, 4], may
provide good adhesion of carbon-based coatings to many steels.

Another area where layered structures are used is nanoindentation testing of materials. Depth-
sensing indentation (DSI) proposed by Kalei [5] is currently a very popular technique for evaluation
of mechanical properties of materials of very small volumes. DSI is the continuously monitoring of
the P−δ diagram where P is the applied load and δ is the displacement (the approach of the distant
points of the indenter and the sample. DSI can be applied to homogeneous and inhomogeneous
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solids (see, e.g. [6],[7], [8]), soft and hard thin films [9],[10]) and homogeneous and inhomogeneous
thin films (see, e.g. [11],[12]). For example, it has been proposed recently to combine the DSI
techniques and transmitted light microscopy, and apply the techniques to very thin and very
smooth polished sections (thin films) of the spatially inhomogeneous materials like coals [13]. The
material samples prepared as very thin films are often glued to hard substrate. For such very thin
films, it is usually possible to apply transmitted light microscopy provided the combination of a
material film and a glue layer has thickness of about 10-30µm and the substrate is transparent.
The use of thin material samples may vanish the influence of pores and cracks and to visualize
the regions of tested components of the inhomogeneous films [14]. However, the application of the
traditional methods of interpretation of indentation tests will not allow the researchers to extract
the reduced contact modulus of material directly due to the influence of the glue layer and the
substrate. In fact, the direct application of the DSI methods could provide only effective (equivalent
or composite) elastic modulus of film/glue system. Indeed, the elastic characteristics are estimated
usually using methods based on the approach introduced originally by Bulychev et al. [15], that
in turn is based on the classic Hertz contact theory, i.e. assuming that contacting solids may be
treated as elastic half-spaces, while we study thin solid films connected to the substrate through a
thin interlayer or glue. Therefore, the common interpretations of DSI tests are not applicable to
structured coatings under investigation. This is the reason that various approximating functions
have to be used to estimate the real elastic modulus of the tested component, see [16, 17].

Because the contact problems for layered or coated solids are very important for many practical
applications, these problems were studied using various approaches including asymptotic methods.
Comprehensive review of approximate and asymptotic approaches to contact problems for an
elastic layer may be found in [18, 19, 20]. Formally, the contact problem for an elastic layer may
be formulated as an integral equation that was studied mainly by the asymptotic approaches (see,
e.g. [19, 21, 22, 23]). However, some of these asymptotic approaches are rather sophisticated even
though they are mathematically correct [18, 21]. As Johnson wrote in his famous book (see page
138 in [24]) about the integral equation, the integrand in the formulation has the awkward form
and this has led to serious difficulties in the analysis of contact stresses in strips and layers. On
the other hand, there are two effective asymptotic methods that can be employed for studying the
problems under consideration without employment of the integral formulation: (i) the Argatov-
Mishuris (AM) method [19] and (ii) Goldenveizer-Kaplunov-Nolde (GKN) one [25, 26].

The GKN method is based on direct asymptotic integration of the main equation. The method
was originally developed for applications in theory of plates and shells [25, 26]. Later, it was
shown that the GKN method may be applied to two-dimensional contact problems [27] and to
three-dimensional contact problem for a single elastic layer [20]. It has been recently shown within
the AM approach that the contact problem for a thin isotropic or transversely isotropic layer
in leading order asymptotic approximation is reduced to the problem for a Winkler-Fuss layer
(see page 14 in [19], also [28]). The same result was obtained for a single elastic layer using the
GKN approach [20] and here these results are developed further in application to the problem
of indentation of a bi-layer coating (an elastic layer glued to a rigid substrate). The term ’glue’
is used here for any material layer that connects the thin solid coating and a rigid substrate, in
particular it may be silicon, chromium or epoxy polymer layer. The interlayer (the glue layer) is
also modelled as an elastic thin film. Using the GKN method, a clear asymptotic solution to the
problem is derived in the case when the size of contact region is much greater than the thickness
of the elastic compressible film. It has been shown that indentation of the two-layer system under
investigation in leading order of the asymptotic approximation may represent the Winkler-Fuss
elastic foundation with an effective elastic spring constant. This allows us to obtain the expressions
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for displacements and stresses acting in both the elastic film and the glue layer.
Because the DSI techniques are especially important when mechanical properties of materi-

als are studied using very small volumes of materials such as thin films, the present asymptotic
approach may be used in material testing. Usually problems of DSi are studied without taking
into account adhesive interactions. However, as it was noted by Kendall, the nano-world is the
Sticky Universe [29]. Thus, to study nanoindentation, the adhesive interactions should be taken
into account. The adhesive indentation is studied in the framework of a modified JKR (Johnson,
Kendall and Roberts) theory [30]. It has been shown that the current approach to the problem of
adhesive indentation is equivalent mathematically to the approach presented in [20].

It is usually assumed that the indenter is a sharp pyramid or a cone. However, the indenter
shape near the tip has some deviation from its nominal shape. The shapes of these non-ideal
shaped indenters may be well approximated as monomial functions of radius

f(r) = Bdr
d, d ≥ 1 (1)

where Bd is the constant of the shape of the monomial function of degree d (see, [31, 32, 33]
for details). For indenters having deviation from their nominal shapes, we examine the case of
power-law shaped probes (1) in detail. We also present some illustrative examples of adhesive
indentation into a diamond-like carbon film and into a ultra-thin ceramic film. The obtained
results are compared with non-adhesive solutions.

2. Formulation of non-adhesive contact problem

The classic formulation of the Hertz-type contact problems (see references in [34]) assumes
that the shape of the bodies and the compressing force P are given and molecular adhesion can
be ignored. Hence, the fields of displacements and stresses appear in the solids only after the
external load is applied. In addition, it is assumed that the contact region is small in comparison
with the main radii of curvature of contacting solids and, therefore the boundary value problem
for contacting solids may be formulated as a boundary value problem for an isotropic elastic half-
space. Because we do not consider here a contact problem for an elastic half-space but rather
action of a smooth, convex rigid indenter on an elastic bilayered coatings, the classic theory is not
applicable.

Let us use both the Cartesian and cylindrical coordinate frames, namely x1 = x, x2 = y, x3 = z
and r, θ, z, where r =

√
x2 + y2 and x = r cos θ, y = r sin θ. Let us place the origin (O) of Cartesian

coordinates at the point of initial contact between the indenter and the layer. Let us direct the
axis of x3 along the normal to the layer towards the inside of the layer (see Fig. 1).

Let us consider a rigid indenter whose surface is described by a function f , i.e., x3 = −f(x1, x2),
f > 0. This indenter is pressed by the force P to a boundary of the contacting solid. After the
indenter contacts with the layer, the displacements ui and stresses σij are generated.

Equations of equilibrium may then be written as

(σα)i1,1 + (σα)i2,2 + (σα)i3,3 = 0, α = l, g. (2)

Here and henceforth α is a categorical variable that can take on one of the two following values: l
and g that denote the thin layer (the film) and the glue (the interlayer), respectively.

The constitutive relations for the linear elastic materials are represented by

(σα)ij = λα δij(uα)k,k + µα ((uα)i,j + (uα)j,i) , (3)
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Figure 1: Problem formulation for a thin elastic film attached through an interlayer to a rigid support. O is the
coordinate origin; hl and hg are the thickness of the layer and interlayer (glue) respectively; a is the contact radius.
The dashed line is the indenter profile at the beginning of indentation.

where (uα)i are components of the displacement vector, δij is the Kronecker delta, and Eα, να, are
the elastic modulus and the Poisson’s ratio respectively, and λα, and µα are the Lamé constants

λα =
Eανα

(1 + να)(1− 2να)
, µα =

Eα
2(1 + να)

. (4)

The boundary conditions should describe the problem out of the contact region G, within the
region and conditions describing interactions between the layer and the support. Because the
problem is frictionless, we have

(σl)3j(x1, x2, 0) = 0, (x1, x2) ∈ R2 j = 1, 2. (5)

The contact region G is defined as an open region such that if (x1, x2) ∈ G then the gap (u3 − g)
between the punch and the half-space is equal to zero and surface stresses are non-positive, while
outside the contact region, i.e. for (x1, x2) ∈ R2 \G, the gap is positive and the stresses are equal
to zero. Hence, the additional to (5) boundary conditions within the contact region G describe
the action of an indenter on the layer can be written as

(ul)3(x1, x2, 0) = g(x1, x2), x3 = 0, (x1, x2) ∈ G,
(σl)3j = 0, x3 = 0, (x1, x2) ∈ R2 \G (6)

The continuity of stresses and displacements along the interface are given by

(σl)i3 = (σg)i3 and (ul)i = (ug)i, i = 1, 2, 3, for x3 = hl. (7)

Because the glue is bounded to the support, one can write the interaction between the glue and
the rigid support as

(ug)i = 0, i = 1, 2, 3, for x3 = hl + hg. (8)

For the general case of the problem of vertical frictionless pressing, we have

g(x) = δ − f(x1, x2) = δ − ϕ
(x1

a
,
x2

a

)
, f(x1, x2) ≡ ϕ

(x1

a
,
x2

a

)
. (9)

In addition, there is the integral condition∫
R2

(σl)33(x1, x2, 0)dx1dx2 = −P. (10)

4



3. The GKN asymptotic approaches to contact problem for an elastic layers

According to the ideas of the GKN asymptotic integration procedure, first we dilate the scale
of the independent variables for both layers and assume that differentiation with respect to the
scaled variables does not change the asymptotic order of the quantities to be found. Thus, we
introduce the following dimensionless variables

ξ1 =
x1

a
, ξ2 =

x2

a
, ξ3 =

x3

hl
. (11)

We assume also that the thickness of the film is small compared to the radius of contact, i.e.
the parameter

ε = hl/a (12)

is small. Following the GKN asymptotic procedure, the displacement and stress components may
be expressed through the asymptotic orders

(uα)j (x1, x2, x3) = hlε(u
∗
α)j (ξ1, ξ2, ξ3) , j = 1, 2,

(uα)3 (x1, x2, x3) = hl(u
∗
α)3 (ξ1, ξ2, ξ3) ,

(σα)ii (x1, x2, x3) = µl (σ
∗
α)ii (ξ1, ξ2, ξ3) ,

(σα)j3 (x1, x2, x3) = (σα)3j (ξ1, ξ2, ξ3) = µl ε(σ
∗
α)j3 (ξ1, ξ2, ξ3) ,

(σα)12 (x1, x2, x3) = (σα)21 (ξ1, ξ2, ξ3) = µl ε
2(σ∗

α)12 (ξ1, ξ2, ξ3) ,

(13)

where quantities with asterisks are assumed to be dimensionless functions of the same asymptotic
order.

Substituting (11) into (13), the governing equations may be rewritten in the dimensionless
quantities as

(σ∗
α)11,1 + ε2(σ∗

α)12,2 + (σ∗
α)13,3 = 0,

ε2(σ∗
α)12,1 + (σ∗

α)22,2 + (σ∗
α)23,3 = 0,

ε2 ((σ∗
α)13,1 + (σ∗

α)23,2) + (σ∗
α)33,3 = 0,

(σ∗
α)11 = (µα/µl) (ε

2 (k2
α(u

∗
α)1,1 + (k2

α − 2) (u∗α)2,2) + (k2
α − 2) (u∗α)3,3) ,

(σ∗
α)22 = (µα/µl) (ε

2 ((k2
α − 2) (u∗α)1,1 + k2

α(u
∗
α)2,2) + (k2

α − 2) (u∗α)3,3) ,
(σ∗

α)33 = (µα/µl) (ε
2 (k2

α − 2) ((u∗α)1,1 + (u∗α)2,2) + k2
α(u

∗
α)3,3) ,

(σ∗
α)12 = (µα/µl) ((u

∗
α)1,2 + (u∗α)2,1) , (σ∗

α)13 = (µα/µl) ((u
∗
α)1,3 + (u∗α)3,1) ,

(σ∗
α)23 = (µα/µl) ((u

∗
α)2,3 + (u∗α)3,2) ,

(14)

with comma in the subscript denoting differentiation with respect to the corresponding dimension-
less variable ξj and

k2
α =

2− 2να
1− 2να

. (15)

We consider only compressible materials, i.e. να 6= 0.5 and therefore, 1− 2να 6= 0.
The boundary conditions (6) and (8) can respectively be represented as

(u∗l )3 (ξ1, ξ2, 0) =
1

hl
(δ − ϕ (ξ1, ξ2)) , (ξ1, ξ2) ∈ G∗,

(σ∗
l )13 (ξ1, ξ2, 0) =(σ∗

l )23 (ξ1, ξ2, 0) = 0, (16)

while (8) is transformed to the following

(u∗g)1 (ξ1, ξ2, 1 + hr) = (u∗g)2 (ξ1, ξ2, 1 + hr) = (u∗g)3 (ξ1, ξ2, 1 + hr) = 0
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where G∗ is the region of contact in the (ξ1, ξ2)-plane and hr defined as the ratio of the interlayer
(glue) and the thin film thicknesses, i.e., hr = hg/hl. The continuity conditions (7), in this case,
become

µl(σ
∗
l )i3 = µg(σ

∗
g)i3 and (u∗l )i = (u∗g)i, for ξ3 = 1. (17)

To reduce the number of unknowns, we transform (14) into the form of Lamé equations, keeping
only unknown displacements(

k2
α − 1

)
(u∗α)3,13 + (u∗α)1,33 + ε2

(
k2
α(u

∗
α)1,11 + (u∗α)1,22 +

(
k2
α − 1

)
(u∗α)2,12

)
= 0(

k2
α − 1

)
(u∗α)3,23 + (u∗α)2,33 + ε2

(
(u∗α)2,11 + k2

α(u
∗
α)2,22 +

(
k2
α − 1

)
(u∗α)1,12

)
= 0 (18)

k2
α(u

∗
α)3,33 + ε2

(
(u∗α)3,11 + (u∗α)3,22 +

(
k2
α − 1

)
((u∗α)1,13 + (u∗α)2,23)

)
= 0.

Equations (18) contain only terms of order ε2, therefore the following asymptotic expansion may
be employed

(u∗α)i = (u0
α)i + ε2(u1

α)i + ε4(u2
α)i + ... i = 1, 2, 3 (19)

Note that (ukα)i are dimensionless asymptotic approximations of k-th order for i-th component of
displacement within both the material layer (α = l) and the glue (α = g).

Thus, the leading order approximation to the non-adhesive contact problems is reduced to the
following boundary value problems for the inner (the film of the tested material, i.e. α = l) and
outer (the glue, i.e. α = g) layers, respectively,(

k2
α − 1

)
(u0

α)3,13 + (u0
α)1,33 = 0,

(
k2
α − 1

)
(u0

α)3,23 + (u0
α)2,33 = 0, k2

α(u
0
α)3,33 = 0.

In this case, the boundary conditions at ξ3 = 0 become

(u0
l )3 =

1

hl
(δ − ϕ (ξ1, ξ2)) , (u0

1)1,3 + (u0
l )3,1 = 0, (u0

l )2,3 + (u0
l )3,2 = 0,

together with the continuity of the displacements and stresses at the interface of the film and the
interlayer, i.e. at ξ3 = 1 given by

(u0
l )i = (u0

g)i, µl((u
0
l )1,3 + (u0

l )3,1) = µg((u
0
2)1,3 + (u0

2)3,1),

µl((u
0
l )2,3 + (u0

l )3,2) = µg((u
0
2)2,3 + (u0

2)3,2), µlk
2
l (u

0
l )3,3 = µgk

2
g(u

0
g)3,3, (20)

and, becuse the interlayer is firmly connected to the rigid substrate, we have also the conditions

(u0
g)1 = (u0

g)2 = (u0
g)3 = 0, ξ3 = 1 + hr. (21)

Further, we consider only the above leading-order approximation of the problem.

3.1. Solution for displacements for the leading-order problem
From the third equation in (20), it follows that

(u0
l )3 = ξ3Fl (ξ1, ξ2) + Fg (ξ1, ξ2) , (u0

g)3 = ξ3Gl (ξ1, ξ2) +Gg (ξ1, ξ2) , (22)

while from the first and last equations in (20) and the boundary conditions, it follows that
Fg = (δ − ϕ)/hr and Gg = −(1 + hr)Gl.
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Next, by using the continuity condition for the third component of displacement and σ33 from
the equation (20), we obtain

Fl = −
1

hl(1 + hrµrκ2
r)
(δ − ϕ), Gl = µrκ

2
rFl (23)

where the dimensionless quantities µr and κr are defined as the following ratios

µr =
µl
µg
, κr =

kl
kg
. (24)

Then it follows from (22) - (24)

(u0
l )3 (ξ1, ξ2, ξ3) =

1

hl
(δ − ϕ (ξ1, ξ2))

(
1− ξ3

(1 + hrµrκ2
r)

)
, (25)

(u0
g)3 (ξ1, ξ2, ξ3) =− (ξ3 − (1 + hr)) (δ − ϕ (ξ1, ξ2))

µrκ
2
r

hl(1 + hrµrκ2
r)
. (26)

Below, we present the derivation of the normal stresses, tangential displacements and, also, the
shear stresses omitting the details of the derivation.

3.2. Normal stresses in the thin layer
Considering just the leading term of the asymptotic approximation of the displacements, i.e.

(u∗α)i ≈ (u0
α)i, i = 1, 2, 3, we obtain from (14) that

(σ∗
α)11 ≈

µα
µl

(
k2
α − 2

)
(u∗α)3,3, (σ∗

α)12 =
µα
µl

((u∗α)1,2 + (u∗α)2,1) ,

(σ∗
α)22 ≈

µα
µl

(
k2
α − 2

)
(u∗α)3,3, (σ∗

α)13 =
µα
µl

((u∗α)1,3 + (u∗α)3,1) ,

(σ∗
α)33 ≈

µα
µl
k2
α(u

∗
α)3,3, (σ∗

α)23 =
µα
µl

((u∗α)2,3 + (u∗α)3,2) .

Therefore, the normalized stresses of the leading order approximation are

(σ∗
α)ii ≈ −(k2

α − 2)
k2
β

hα(k2
β + hrk2

α)
(δ − ϕ) , α 6= β, α, β = l, g, i = 1, 2.

(σ∗
α)33 ≈ −

k2
l

hl(1 + hrκ2
r)

(δ − ϕ) . (27)

Let us write the above solution for the leading order approximation in dimensional variables. Using
the scaling expressions (13), we obtain for the displacements

(ul)3 = hl(u
∗
l )3 ≈ (δ − ϕ (ξ1, ξ2))

(
1− ξ3

(1 + hrµrκ2
r)

)
, (28)

(ug)3 = hl(u
∗
g)3 ≈ −hl(ξ3 − (1 + hr)) (δ − ϕ (ξ1, ξ2))

κ2

hl(1 + hrµrκ2
r)
. (29)

It is not difficult to see that the leading order normal stress (σ∗
l )33 may be presented, on using the

third equation of (13) and (27), in the dimensional form

(σl)33 ≈−
µlk

2
l

hl(1 + hrµrκ2
r)

(δ − ϕ) = −
(

hl
µlk2

l

+
hg
µgk2

g

)−1

(δ − ϕ)

7



and inserting kα and µα in terms of να and Eα into the latter equation we arrive at, employing (4)
and (15),

(σl)33 ≈
(
hl(1 + νl)(1− 2νl)

El(1− νl)
+
hg(1 + νg)(1− 2νg)

Eg(1− νg)

)−1

(δ − ϕ).

The coefficient of the last equation may be rewritten in the form

KΣ =

(
1

Kl

+
1

Kg

)−1

with Kα =
Eα(1− να)

hα(1 + να)(1− 2να)
. (30)

It is not difficult to recognize that the physical dimension of this coefficient equals to that of Kl

or Kg, namely FL−3. It is also worth mentioning that the physical dimension of the coefficient in
question differs from that of the spring constant of Hooke’s law which is FL−1.

It follows from (13) and (27), that the leading term approximation to the non-adhesive con-
tact problems for a thin elastic layer connected through an elastic interlayer to a rigid substrate
is equivalent to contact problem for a Winkler-Fuss elastic foundation with an effective elastic
constant KΣ

(σl)33 ≈ −KΣ (δ − ϕ) (31)
where KΣ is the effective elastic spring constant of the foundation (the effective foundation mod-
ulus). The contact pressure p = − (σl)33|ξ3=0 in the leading-order approximation is

p = KΣ (δ − ϕ) . (32)

3.3. Tangential displacements and shear stresses in the thin layer
We have derived above the expressions for the vertical components of displacements (ul) and

(ug) together with normal components of stresses (σl) and (σg) for the thin film and the interlayer,
respectively. Now we present the expressions of the tangential displacements together with the
shear stresses omitting the details of derivations. We remind that the subindex r has the same
meaning as above, i.e. r means that the variable is a ratio of two variables having the same physical
dimension.

Equations for (u0
l )j and (u0

g)j, j = 1, 2, are given by

(u0
l )j =

1

2hl(1 + hrµrκ2
r)

[
−ξ2

3(k
2
l − 1) + 2(ξ3 − 1)(1 + hrµrκ

2
r) + (k2

l − 1)− µrκ2
r(k

2
g − 1)

(
1− (1 + hr)

2
)

−2hrµr
(
(2− k2

l )− κ2
r(1− k2

g − hr)
)]
ϕ,j, (33)

(u0
g)j =

µr
2hl(1 + hrµrκ2

r)

[
((1 + hr)

2 − ξ2
3)(k

2
g − 1)κ2

r + 2(ξ3 − (1 + hr))(2− k2
l − κ2

r(1− hr − k2
g))
]
ϕ,j.

The normalized tangential stresses of the leading order approximation for the thin film are

(σ∗
l )12 ≈ −

1

hl(1 + hrµrκ2
r)

[
−ξ2

3(k
2
l − 1) + 2ξ3(1 + hrµrκ

2
r) + (k2

l − 1)− µrκ2
r(k

2
g − 1)

(
1− (1 + hr)

2
)

−2hrµr
(
(2− k2

l )− κ2
r(1− k2

g − hr)
)]
ϕ,12, (34)

(σ∗
l )j3 ≈ ξ3

(2− k2
l )

hl(1 + hrµrκ2
r)
ϕ,j.

whereas for the interlayer, they are given by

(σ∗
g)12 ≈

1

µrhl(1 + hrµrκ2
r)

[
((1 + hr)

2 − ξ2
3)(k

2
g − 1)κ2

r + 2(ξ3 − (1 + hr))(2− k2
l − κ2

r(1− hr − k2
g))
]
ϕ,21,

(σ∗
g)j3 ≈

1

hl(1 + hrµrκ2
r)

[
(1− ξ3)(k

2
g − 2)κ2

r + 2− k2
l )
]
ϕ,j. (35)

8



Using (13), we may write displacement components for the thin elastic film as

(ul)j = εhl(u
∗
l )j ≈

hl
2a(1 + hrµrκ2

r)

[
−ξ2

3(k
2
l − 1) + 2(ξ3 − 1)(1 + hrµrκ

2
r) + (k2

l − 1)−

µrκ
2
r(k

2
g − 1)

(
1− (1 + hr)

2
)
−2hrµr

(
(2− k2

l )− κ2
r(1− k2

g − hr)
)]
ϕ,j, (36)

and, finally, for the inter layer, the corresponding displacements take the form

(ug)j = εhl(u
∗
g)j ≈

µrhl
2a(1 + hrµrκ2

r)

[
((1 + hr)

2 − ξ2
3)(k

2
g − 1)κ2

r + 2(ξ3 − (1 + hr))×

(2− k2
l − κ2

r(1− hr − k2
g))
]
ϕ,j. (37)

4. Adhesive contact problems for a glued coating

Mechanics of adhesive contact is an active field of research (see, e.g. a review in [34]). Here
we study the problem of adhesive indentation into a glued coating within the framework of the
JKR theory. Originally the theory was developed for contact of isotropic elastic spheres [35, 29].
The theory was based on the combination of the Derjaguin idea of calculation of the total energy
of adhesive contact, the so-called Derjaguin approximation [36], and the brilliant idea of splitting
the calculations of the energy into two simple steps: the energy of non-adhesive contact between
two elastc spheres and the contact energy for a flat ended cylinder [35]. Borodich noted that if one
derives an expression for the slope of the force-displacement curve of an appropriate problem of
non-adhesive contact then the JKR theory may be extended to the problem of adhesive contact for
an axisymmetric convex indenter of arbitrary profile. These problems were solved for transversely
isotropic elastic materials [37], prestressed materials [34], a two-dimensional stretched membrane
[38], isotropic frictional indenter [33], and a single thin isotropic layer [20]. Here, we extend the
above ideas to problem of adhesive indentation into a bilayer elastic coating.

If an axisymmetric convex, smooth indenter of arbitrary profile is in contact a simple Winkler-
Fuss elastic foundation whose elastic properties are characterized by the foundation modulus KΣ

then the slope of the δ − P curve at any point is

S =
dP

dδ
= πa2KΣ. (38)

Using (38) it is possible to show that for an arbitrary convex body of revolution f(r), f(0) = 0,
the JKR theory leads to the following expressions

P = PNA(a)−
√
2wKΣπa

2, δ = δNA −
√

2w

KΣ

. (39)

The latter of the above expressions can be written as

δ = f(a)−
(
2w

KΣ

)1/2

. (40)

Here, PNA(a) is the load that correspond to the contact radius a in a non-adhesive contact between
the glued coating and the indenter, δNA(a) is the displacement of the indenter that has the contact
region of radius a in the non-adhesive contact problem, w is the specific work of adhesion of the
contacted materials.
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For indenters, whose shape is described by (1), the general expressions (39) and (40) have the
following form

P = πKΣ

(
d

d+ 2
Bda

d+2 −
√

2w

KΣ

a2

)
(41)

and

δ = Bda
d −

√
2w

KΣ

. (42)

It follows from (41) that at P = 0 the radius a of the contact region and the corresponding
shift of the origin of the displacement axis δs = δ[a(0)] are

a(0) =

(
d+ 2

dBd

√
2w

KΣ

)1/d

, δs = δ[a(0)] =
2

d

√
2w

KΣ

. (43)

The maximum absolute value of the adherence force Pc = −P (ac) is achieved at

ac =

(
2

dBd

√
2w

KΣ

)1/d

. (44)

Substituting (44) into (41), we obtain

Pc = −P (ac) = πKΣ
d

d+ 2

(
2

dBd

)2/d(
2w

KΣ

)(2+d)/2d

. (45)

Let us take a(0) as the characteristic parameter. Then the characteristic parameters of the
adhesive contact problems that can be used to write dimensionless variables of adhesive contact
problem can be chosen as

a∗ = a(0), P ∗ = πKΣ

(
d+ 2

dBd

) 2
d
(
2w

KΣ

) 2+d
2d

, δ∗ =

√
2w

KΣ

. (46)

Then (41) and (42) have the following dimensionless form

P/P ∗ = (a/a∗)d+2 − (a/a∗)2 (47)
and

δ

δ∗
=
d+ 2

d

( a
a∗

)d
− 1. (48)

The graph of dimensionless dependency (47) for several values of degree d is represented on
Fig. 2

It follows from (41) and (42) that the relation P (δ) can be expressed not only in a parametric
form but also as an explicit relation

P =
πKΣ

d+ 2

[
1

Bd

(
δ +

√
2w

KΣ

)]2/d(
δd− 2

√
2w

KΣ

)
. (49)

or in the dimensionless form

P

P ∗ =

[
d

d+ 2

(
δ

δ∗
+ 1

)](d+2)/d

−
[

d

d+ 2

(
δ

δ∗
+ 1

)]2/d

. (50)

The graphs of the dimensionless explicit relation (50) is represented on Fig. 3
The graphs above can be used to obtain the 0-th asymptotic approximation of the problem of

adhesive contact between an axisymmetric indenter and a thin isotropic or transversely isotropic
elastic layer.
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Figure 2: The dimensionless graphs of the force-radius curves (47) for blunt indenters when the power-law exponent
d varies from d = 1 (cone) to d = 2 (sphere).

5. Particular cases of indenters and examples

We will consider, here, the cases of spherical and conical indenters along with some examples
of specific materials.

5.1. Spherical indenters
For a spherical indenter of radius R, we can represent the indenter shape as a paraboloid of

revolution (d = 2 and B2 = (2R)−1), then it follows from (41) and (42) that

P = πKΣ

(
1

4R
a4 −

√
2w

KΣ

a2

)
δ = a2/(2R)−

√
2w

KΣ

.

(51)

and from (49) the explicit force-displacement relation follows as

P = πKΣR

[(
δ +

√
2w

KΣ

)(
δ −

√
2w

KΣ

)]
= πRKΣ

(
δ2 − 2w

KΣ

)
. (52)

Using (41), (44) and (45), we obtain

ac =

(
8R2w

KΣ

)1/4

, a(0) =

(
32R2w

KΣ

)1/4

, (53)

Pc = −P (ac) = 2πRw and δs = δ[a(0)] =

√
2w

KΣ

. (54)

The force-displacement relation in the contact problem without adhesion is a parabola given
by

P0 = πRKΣδ
2 (55)
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Figure 3: The dimensionless graphs of the force-displacement curves (47) for blunt indenters when the power-law
exponent d varies from d = 1 (cone) to d = 2 (sphere).

corresponding to the case of Winkler foundation, while in the adhesive contact problem, the relation
is described by (52), i.e. it is the same parabola shifted by the value Pc in the negative direction
of P -axis. Let us present, here, also the P − δ relation for Hertzian contact given by the formula

P =
23/2E1

3
√
B2

δ3/2. (56)

The contact pressure can be represented as

p (r) = KΣ

(
δ − r2

2R

)
=
KΣ

2R

(
a2 − r2

)
−
√

2KΣw. (57)

Zero contact pressure is achieved at the radius r0

r0 =

√
a2 − 2R

√
2w

KΣ

. (58)

Maximum contact pressure is at r = 0

pmax =
KΣa

2

2R
−
√

2KΣw. (59)

Substituting d = 2 into (47), we obtain the following dimensionless equation

P

Pc
=

(
a

ac

)4

− 2

(
a

ac

)2

, (60)

In the same way equations (47) and (48) can be transformed in the following dimensionless
equations

δ

δs
=

(
a

ac

)2

− 1. (61)

and
P

Pc
=

(
δ

δs

)2

− 1. (62)
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5.2. Conical indenters
For a conical indenter of semi-vertical angle π/2− α, d = 1, f(r) = B1r, and B1 = tanα. For

a linearized treatment to be possible, α must be small compared with 1 and tanα = B1 ≈ α.
It follows from (41) and (42) that

P = πKΣ

(
1

3
B1a

3 −
√

2w

KΣ

a2

)
δ = B1a−

√
2w

KΣ

.

(63)

and from (49) one can get the explicit force-displacement relation

P =
πKΣ

3

[
1

B1

(
δ +

√
2w

KΣ

)]2(
δ − 2

√
2w

KΣ

)
. (64)

Similar to the case of a spherical indenter, in the case of non-adhesive contact corresponding to a
Winkler foundation, equation (64) takes the simple form

P =
πKΣδ

3

3B2
1

. (65)

The Hertz solution (56) in the case of a conical indenter takes the form

P =
2E1

πB1(1− ν2
1)
δ2. (66)

The contact radius at P = 0 and the shift of the origin of the displacement axis δs are, respectively,

a(0) =
3

B1

√
2w

KΣ

, δs = 2

√
2w

KΣ

. (67)

It is known that both the Vickers and Berkovich indenters have the same projected area (A) to
depth (δ) A ≈ 24.5δ2, see, for example, [34]. Hence, one can consider an equivalent cone δ = B1a
such that

A(δ) = 24.5δ2 = π(δ/B1)
2.

Hence, the shape constant of the equivalent cone is B1 =
√
π/24.5 = 0.358. The apex semi-angle

γ of the equivalent cone is γ ∼= 70.3o. If this cone indents a Winkler-Fuss layer then the asymptotic
parameter

ε = cot γ = B1 = 0.358 < 1,

This means that we can apply our asymptotic approach.

5.3. Examples of specific materials
Let us consider, as a first example, the diamond-like carbon (DLC) films prepared by the

Plasma Enhanced Chemical Vapour Deposition (PECVD). Park and Kwon, [39], measured that
w = 17.85± 0.06 N/m for such films.

Let us assume that the films are connected to rigid substrate through an interlayer of plasma
sprayed tungsten-carbide (WC). The elastic moduli and Poisson’s ratios of DLC and WC are
respectively

E
DLC

= 100 GPa, νDLC = 0.2, EWC = 600 GPa, νWC = 0.31. (68)
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Figure 4: The dimensional P − δ curve for Example 1 in case of spherical indenters with the physical parameters
given by equation (68). The solid line is the P − δ curve for adhesive bilayer solution (52); the dashed line is the
same curve for non-adhesive solution (55); and the dotted line is the same line in the Hertz solution (56) for an
elastic half-space made of the material of the layer.

Hence, it follows from (30) that KΣ = 4.9 × 10−9 N/m3. For our numerical simulations, we
will accept that the work of adhesion between the indenter and the DLC layer is w = 20 N/m,
hl = hg = 20 nm. According to [40], [41] radii of Berkovich indenters may vary from 40 nm for
super sharp indenters to 250 nm for indenters after several months of continuous use. A blunt tip
after a year may have 400 nm radius [11]. Let us assume that R = 200 nm. Then at penetration of
10 nm, the contact radius of non-adhesive contact with a Winkler-Fuss foundation would be about
63 nm.

Figures 4 and 5 display the force-displacement curves for spherical (52) and equivalent conical
(64) indenters. These curves are compared with non-adhesive Hertz solution for an elastic half-
space having material properties of the film and with non-adhesive contact with a Winkler-Fuss
elastic foundation having KΣ = 4.9 × 10−9 N/m3 calculated for the coating and the interlayer.
The origin of coordinates for these non-adhesive solutions are shifted by the corresponding δs. One
can see that, the contact force required for the displacement of the indenter in the bilayer system
exceeds, both the Winkler foundation and the classical Hertz which is clearly due to the effect of
the work of adhesion. Thus, ignoring the effect of the adhesion will result in considerable errors.

As the second example, we consider hard ceramic α − Al2O3 (Aluminium Oxide) coating
bounded to the substrate through Ti − 6Al − 4V1 (Alpha Beta Titanium Alloy). The elastic
moduli and Poisson ratios of α− Al2O3 and Ti− 6Al− 4V1 are, respectively,

EAl2O3
= 300 GPa, νAl2O3

= 0.21, ETi−6Al−4V = 110 GPa, νTi−6Al−4V = 0.31. (69)

The value of KΣ follows, again, from (30) and is calculated as KΣ = 5.252 × 10−9 N/m3. The
illustration of numerical calculations are performed assuming that the work of adhesion between
the indenter and aluminium oxide is w = 20 N/m.

In Figures 6 and 7 the force-displacement curves for spherical (52) and equivalent conical (64)
indenters are illustrated. Once again, these curves are compared with non-adhesive Hertz solution
and with non-adhesive contact with a Winkler-Fuss elastic foundation which, now, has the stiffness
KΣ = 5.252× 10−9 N/m3 calculated for the coating and the interlayer. The origin of coordinates
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Figure 5: The dimensional P − δ curve for Example 1 in case of conical indenters with the physical parameters
given by equation (68). The solid line is the P − δ curve for adhesive bilayer solution (64); the dashed line is the
same curve for non-adhesive solution (65); and the dotted line is the same line in the Hertz solution (66) for an
elastic half-space made of the material of the layer.

for these non-adhesive solutions are shifted by the corresponding δs. As before, in both figures,
we clearly observe that for the same distance of approach, the bilayer system requires a greater
contact force than the Winkler-Fuss and Hertz model implying that, at the nanoscale, the effect
of adhesion should be taken into account to avoid significant errors.

Conclusions

Problems of contact between a rigid convex indenter and an elastic thin compressible layer
bonded to rigid substrate were studied in a number of publications. We have reviewed and exam-
ined various approaches to the problems. It has been shown that many approximate solutions are
in essence the solution to the problem of contact between the indenter and a Winkler-Fuss elastic
foundation. On the other hand, asymptotic approaches to the problems provide mathematical
justification to the use of the Winkler-Fuss elastic foundation. However, most of the asymptotic
approaches are rather sophisticated. Only relatively recently simple asymptotic approaches have
been developed and applied to the contact problems. Assuming that the thickness of the layer
is much less than characteristic dimension of the contact area, it has been shown that the GKN
(Goldenveizer-Kaplunov-Nolde) method [26] that was originally developed for applications in the
theory of plates and shells, may be applied directly to variables of the contact problem formula-
tion. It is easy to follow the method and naturally it has been shown that the 0-th asymptotic
approximation of the problem for a thin layer, isotropic or transversely isotropic, is actually the
problem for a layer of springs (the Winkler-Fuss elastic foundation). The GKN approach has
been compared with another simple asymptotic approach, the AM (Argatov-Mishuris) one [19].
We argue that although the GKN and AM approaches are mathematically equivalent, the GKN
approach has several advantages in producing series, formulating the boundary conditions and
writing expressions for displacements and stresses acting in the elastic layer.

The axisymmetric adhesive contact has been studied in the framework of the JKR theory for the
leading-order asymptotic approximation of the bi-layer system (the film and the glue layer). The
JKR approach has been generalized to the case of the punch shape being described by an arbitrary
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given by equation (69). The solid line is the P − δ curve for adhesive bilayer solution (52); the dashed line is the
same curve for non-adhesive solution (55); and the dotted line is the same line in the Hertz solution (56) for an
elastic half-space made of the material of the layer.
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Figure 7: The dimensional P − δ curve for Example 2 in case of conical indenters with the physical parameters
given by equation (69). The solid line is the P − δ curve for adhesive bilayer solution (64); the dashed line is the
same curve for non-adhesive solution (65); and the dotted line is the same line in the Hertz solution (66) for an
elastic half-space made of the material of the layer.
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blunt axisymmetric indenter. Connections of the results obtained to problems of nanoindentation in
the case of the indenter shape near the tip has some deviation from its nominal shape are discussed.
The solutions to particular cases of indentation by a spherical indenter and an equivalent conical
one have also been discussed in detail for two materials glued to a rigid substrate. It is argued
that solutions to the indentation problems should take into account not only the elastic properties
of the interlayer but also the effects of adhesion.
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