








The right hemisphere was not available for immunohistochemistry, as it was snap-frozen for
molecular analysis.

Genomic Analysis
Genetic screening excluded mutations in GRN and MAPT (exons 1 and 9–13).
Hexanucleotide repeat expansions in the C9orf72 gene, a cause of familial FTD and/or
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Figure 3. (A) A coronal slice from the left cerebral hemisphere demonstrates ventricular dilatation with atrophy
of the frontal lobe, caudate nucleus, and amygdala. In the midbrain, there is severe pallor of the substantia
nigra (arrows). (B) Histological examination of the frontal lobe by hematoxylin and eosin staining shows thin-
ning and spongiosis of the cortex. (C ) Severe loss of pigmented neurons in the substantia nigra is confirmed
with residual free neuromelanin in the neuropil (arrow and inset). (D) TDP-43 immunohistochemistry in the fron-
tal lobe shows neurons with loss of the normal nuclear staining pattern and containing cytoplasmic inclusions
(arrows and inset), in addition to scattered short neurites (arrowheads). (E,F) Argyrophilic grains in the subicu-
lum are highlighted by immunohistochemistry for p62 (E) and four-repeat tau isoforms (F ). Scale bar, 300 µm
(B), 120 µm (C ), 30 µm (C inset, D,E,F ), and 20 µm (D inset).
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ALS (DeJesus-Hernandez et al. 2011; Renton et al. 2011), were also excluded. Exome se-
quencing was undertaken to identify potential pathogenic variants. The patient was found
to harbor a novel c.2107G>T (p.E703X: NM_013254.4) variant in exon 20 of the TBK1
gene (Table 1; Supplemental Table S1). Sanger sequencing of exon 20 confirmed the pres-
ence of a heterozygous G>T substitution at nucleotide 2107 (Fig. 2B). This variant was not
seen in more than 138,000 unrelated exome and genome sequences from the gnomAD da-
tabase (0/138,632; http://gnomad.broadinstititue.org/). This nonsense variant was located in
the carboxy-terminal coiled-coil domain 2 (CC2) and results in a premature stop codon, lead-
ing to a predicted truncated protein product. Segregation of the variant could not be verified
because of the unavailability of blood samples from additional family members.

DISCUSSION

Here, we describe the presence of a novel TBK1 mutation in a patient who presented clin-
ically with a CBS–PNFA overlap syndrome, radiologically with asymmetric frontal lobe atro-
phy, and with FTLD–TDP type A pathology at postmortem examination of brain tissue.

Although we did not have access to blood samples to test segregation of the mutation
within the family, this variant is highly likely to be pathogenic, as it results in a premature
stop codon, and hence a truncated protein product. Heterozygous loss of function variants
have been shown to be enriched in familial FTD–ALS pedigrees and are likely to be patho-
genic through nonsense-mediated mRNA decay (NMD) and global reduction of protein lev-
els (Cirulli et al. 2015; Freischmidt et al. 2015; Pottier et al. 2015). However, NMD associated
with the heterozygous p.E703X mutation described here is unlikely, because of the position
of the premature stop codon in the gene (Hug et al. 2016). Instead, loss of the crucial highly
conserved CC2 protein domain is likely to result in the abrogation of the interaction and
complex formation with TBK1-associated adaptors that are essential in regulating TBK1 ac-
tivation and its subcellular localization (Gonçalves et al. 2011). Mutations within this domain
have been shown to disrupt the TBK1/OPTN (optineurin) interaction (Freischmidt et al.
2015). OPTN is an important autophagy receptor critical for the degradation and clearance
of intracellular pathogens, protein aggregates, and damaged organelles. The carboxy-ter-
minal domain of TBK1 binds to the amino-terminal region of OPTN to form the TBK1/
OPTN complex (Li et al. 2016). TBK1 is also thought to directly phosphorylate OPTN to pro-
mote autophagy.Mutations in both the carboxy-terminal domain of TBK1 and the amino-ter-
minal domain of OPTN have been implicated in ALS and other neurodegenerative diseases
(Maruyama et al. 2010; Pottier et al. 2015), and it is likely that disruption of the formation of
the TBK1/OPTN complex impairs critical autophagy processes that are vital to maintaining
cellular homeostasis (Li et al. 2016). Interestingly, TBK1 has also been shown to act on a com-
mon pathway with C9orf72 complexes to regulate autophagy in neuronal cells (Sellier et al.
2016). It was found that by promoting the phosphorylation of one of the proteins in this com-
plex (SMCR8), TBK1 is important for C9orf72-mediated autophagy, thus providing another
mechanism by which TBK1 mutations could lead to neurodegeneration. Disruption in
autophagy processes has been implicated in other neurodegenerative conditions such as

Table 1. Details of variant

Gene Chromosome
HGVS DNA
reference

HGVS protein
reference

Variant
type

Predicted
effect

dbSNP/
dbVar ID ClinVar ID Genotype

TBK1 12q14.2 NM_013254.4:
c.2107G>T

NP_037386.1:
p.E703X

Nonsense
variant

Premature
STOP codon

Not available SCV000886403 Heterozygous
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Parkinson’s disease, in which mutations in PINK1 and Parkin are believed to function in a
common pathway to promote defective mitochondrial clearance via autophagy (Barodia
et al. 2017).

Clinically, this patient developed an overlap syndrome of primary progressive aphasia
(PNFA) followed by CBS. This is a well-described overlap of neurodegenerative syndromes,
but only one other case has been described in association with a TBK1 frameshift mutation
(Caroppo et al. 2015). Neuroanatomically, there are few reports of the imaging features of
TBK1-associated disease. Patterns of atrophy are variable and likely reflect the areas most
affected by neurodegeneration. In most cases, atrophy is asymmetric and predominantly in-
volves the temporal lobe (Caroppo et al. 2015; Koriath et al. 2016). However, atrophy that
predominantly affects the frontal cortex, mesencephalon, and cerebellum have all been de-
scribed, and it is plausible that atrophy patterns correlate with the main clinical phenotype
(Wilke et al. 2018). The neuropathological features associated with TBK1 mutations have
also been described infrequently. Most cases reported so far had TDP-43 type B pathology
(Freischmidt et al. 2015; Pottier et al. 2015; Van Mossevelde et al. 2016), but TDP-43 type A
pathology has also been described (Pottier et al. 2015; Koriath et al. 2017). Whether there is
a correlation between mutation type and/or location within the different TBK1 domains and
the pathological consequences remains to be elucidated. Of interest, this case also had tau-
positive argyrophilic grains, as previously reported, raising the possibility that this additional
pathology might be a feature of the disease (Koriath et al. 2017).

Mutations in TBK1 are the fourth most common cause of familial FTD, and the second
most common cause of a combined FTD–ALS syndrome (Dols-Icardo et al. 2018). More re-
cently, TBK1mutations have been found in patients with progressive supranuclear palsy and
progressive cerebellar ataxia syndromes, expanding the phenotypic spectrum of TBK1-
associated disease (Wilke et al. 2018). Only one other case of familial CBS–PNFA overlap
syndrome has been reported in the literature thus far, carrying a frameshift mutation (p.
Thr156ArgfsX6) affecting the kinase domain of TBK1 (Caroppo et al. 2015). The first de-
scribed cause of familial CBS was due to a mutation in the MAPT gene (Masellis et al.
2006), but this is relatively rare (van Swieten 2007) and tends to cause a syndromewith prom-
inent behavioral symptoms. A familial CBS overlap with primary progressive aphasia is more
commonly associated with GRN mutations (van Swieten and Heutink 2008), but is nonethe-
less a rare phenotype ofGRN. More recently, case reports of familial CBS caused byC9orf72
and CSF1R have been described, but this is also rare and an unusual phenotype for these
genes. It is increasingly recognized that neurodegenerative disorders are pathologically
and genetically heterogeneous. Similar clinical syndromes can have multiple underlying pa-
thologies and genetic cause, and mutations in a single gene can manifest with diverse clin-
ical phenotypes, often in the same kindred. In this context, clearly exemplified by this case
report, the exact definition of a clinicopathological entity is increasingly reliant on a genetic
diagnosis.

In summary, we describe a novel TBK1mutation in a patient who presented with a CBS–
PNFA overlap and who had a family history of dementia and ALS. The presence of a family
history in a patient with CBS should lead to testing for mutations in the known FTD genes.
However, if these are negative sequencing for mutations in TBK1 should be considered.
This case highlights the importance of genetic exome sequencing as a diagnostic tool in pa-
tients presenting with CBS and associated neurodegenerative disorders.

METHODS

Briefly, for whole-exome sequencing, the sample library was prepared using Illumina
Nextera Rapid Capture kits with paired-end sequencing performed using the Illumina
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HiSeq2000 (Illumina). The sample was sequenced to an average coverage of 39.42 reads
with a mean read length of 177.23 bp (Supplemental Table S2). All reads were subsequently
aligned using BWA (Li and Durbin 2009) against UCSC hg19 reference genome. Variant call-
ing and quality-based filtering for all samples were done using GATK (McKenna et al. 2010).
Variants were annotated with ANNOVAR (Wang et al. 2010) with allele frequency data from
the gnomAD browser, as well as with predicted impact of variants (Kircher et al. 2014).

For Sanger sequencing, exon 20 was amplified using specific primers (F 5′-CAG
CTTCCAGTGGAATCAAACA-3′ and R 5′-AGGCATCACAGATACACAATCA-3′). The ampli-
fied PCR product was enzymatically cleaned up and sequenced on both strands using a
BigDye Terminator v3.1 cycle sequencing kit (Applied Biosystems). Sequencing products
were run on a 3730 DNA Analyser (Applied Biosystems) and analyzed using Sequencher
DNA Sequence Analysis software (Gene Codes Corp.).

ADDITIONAL INFORMATION

Data Deposition and Access
Raw sequencing data were not deposited but are available from the authors. The variant de-
scribed in this study was submitted to ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) and can
be found under accession number SCV000886403.
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