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The Simon two-stage optimal design is often used for phase II cancer clinical trials. A study
proceeds to the second stage unless the null hypothesis, that the true tumour response rate is
below some specified value, is already accepted at the end of stage one. The conventional
optimal design, for given type 1 and type 2 error rates, is the one whichminimises the expected
sample size under the null hypothesis. However, at least some new agents are active, and
designs that explicitly address this possibility should be considered. We therefore investigate
novel designs which are optimal under the alternative hypothesis, that the tumour response
rate is higher than the null hypothesis value, and also designs which allow early stopping for
efficacy. We make available, software for identifying the corresponding optimal and minimax
designs. Considerable savings in expected sample sizes can be achieved if the alternative
hypothesis is in fact true, without sample sizes suffering too much if the null hypothesis is true.
We present an example discussing the merits of different designs in a practical context. We
conclude that it is relevant to consider optimal designs under a range of hypotheses about the
true response rate, and that allowing early stopping for efficacy is always advantageous in
terms of expected sample size.

© 2010 Elsevier Inc. Open access under CC BY license.
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1. Introduction

Themain aim of phase II cancer clinical trials is to evaluate
the anti-tumour effect of a treatment, screening out agents
that are insufficiently active and selecting active agents for
future studies [1]. Efficacy is often determined by whether a
treatment causes a tumour response (or not) in a small single
arm trial [2] and interest is primarily in making the decision
to progress an agent to a randomised phase III comparative
study. The evidence to make this decision is evaluated by
testing the null hypothesis that the true response rate is less
than or equal to some pre-specified value. It is desirable to
achieve this goal whilst minimising the number of patients
exposed to a novel agent and this led to the development of
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single arm designs that allowed stopping for efficacy or
futility. The Fleming design [3] did this by calculating critical
values for accepting and rejecting the null hypothesis using
the O'Brien and Fleming multiple testing procedure [4]. This
design allowed early stopping but only controlled type 1 and
type 2 errors and there was no attempt to be “optimal” in
terms of minimising the expected sample size; this was
introduced by the Simon two-stage design [5].

The Simon two-stage design only considers stopping for
futility and the optimal design has the smallest expected sample
size when the null hypothesis is true. This paper investigates a
novel definition of optimality based on the expected sample size
when the alternative hypothesis, that the response rate is greater
than the pre-specified value, is true. The rationale for only
stopping for futility is that many novel agents do not work, and
we want to minimise the number of patients exposed to an
inactive drug, but in reality there are sufficient active agents to
consider also stopping for efficacy [2]. One of the justifications
given for only allowing stopping for futility in the Simon design
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was thatwhenanagenthas substantial activity there is interest in
studying additional patients in order to estimate the proportion,
extent and durability of response [5]. However, stopping for
efficacy may save drug development time, bring useful treat-
ments into clinical practice quicker, and should reduce costs [6].

In a recent review of study designs in cancer, over 20% of
all phase II studies with a reported statistical design were
Simon designs and 45% were two-stage designs [2]. The main
reasons for stopping trials early were futility (69%) and
efficacy (13%); other reasons were toxicity and poor accrual.
Many of the designs reviewed did not include stopping for
efficacy as a possibility and the studieswould have benefitted,
in terms of expected sample size, had they been optimal.

There have been several extensions to the Simon two-stage
design including the optimal three-stage design [7], optimal
three-stage design stopping for efficacy [6], admissible designs
that balance the optimisation criteria of expected sample size
and maximum sample size [8], using a predictive probability
design [9], balanced two-stage designs [10], and estimating
response rates after using the Simon two-stage design [11]. All
of these papers only consider the optimal design under the null
hypothesis. This paper exploresoptimal two-stagedesigns,with
stopping for futility and efficacy, under the alternative hypoth-
esis. These new designs retain the same hypotheses and initial
specification of the type 1 and type 2 errors as the Simon two-
stage design. We consider only single arm studies, not
randomised phase II trials.

2. Method

2.1. Simon two-stage design

The hypotheses about the true response rate (p) to be
tested by this single arm design are,

H0 : p≤ p0;

H1 : p = p1 N p0;

where p0 is the pre-specified fixed null response probability
and p1 is theminimumdesired response probability required to
progress the treatment to a later stage trial. Typical values for p0
are below 0.3 and for the target improvement rate (p1−p0) are
between 0.1 and 0.2 [2].

Each Simon two-stage design [5] is indexed by four
numbers, r1, r, n1 and n. The study is stopped early for futility
if there are ≤r1 responders out of n1 participants at stage 1,
and the null hypothesis is not rejected. Otherwise the study
proceeds to the second stage, with a total sample size n, and
the null hypothesis is not rejected if there ≤ r responders at
the end of the study. It is referred to as an “r1/n1 r /n” design.
Values for r1, r, n1 and n are found for fixed p0, p1, α (the type 1
error probability) and β (the type 2 error probability). A type
1 error occurs when there are Nr1 responders at the end of
stage 1 and N r responders at the end of the studywhen p=p0.
A type 2 error occurs if there are ≤ r1 responders in stage 1 or
≤ r responders at the end of the study when p=p1.

The probability of not rejecting the null hypothesis,
�
R pð Þ,

is a function of the true response rate p. The number of
responders X, based on a true response rate p and sample size
m, has a Binomial distribution, and we write the distribution
functions as P(X=x)=b(m,p,x) and P(X≤x)=B(m,p,x). It
follows that the probability

�
R pð Þ is as follows[5]:

�
R pð Þ = B n1;p; r1ð Þ + ∑

min n1 ;rð Þ

i= r1 + 1
b n1;p; ið ÞB n−n1;p; r−ið Þ: ð1Þ

An acceptable design is one that satisfies the error
probability constraints

�
R p0ð Þ≥1−α and

�
R p1ð Þ≤β and let Ω

be the set of all such designs. A grid search is used to go
through every combination of r1, r, n1 and n with an upper
limit for n, usually between 0.85 and 1.5 times the sample size
for a single stage design [12]. The probability of terminating
the study early, PET(p), is the first term in Eq. (1), B(n1,p,r1), and
the expected sample size for this design, E(N|p), is n1PET(p)+n
(1−PET(p)). TheoptimaldesignunderH0 is theone inΩ that has
the smallest expected sample size E(N|p0) and the minimax
design has the smallestE(N|p0) amongst those designs inΩwith
the smallest n. This paper will refer to the former as the H0-
optimal and the latter as the H0-minimax design; these are the
traditional Simon two-stage designs [5].

Before investigating stopping for efficacy, we consider the
optimal and minimax designs when minimising E(N|p1) but
keeping the same type 1 and type 2 errors. These designs will
be labelled the H1-optimal and H1-minimax designs, respec-
tively. The probability of not rejecting the null hypothesis is
the same as Eq. (1) but with the argument p=p1. When the
true response is p1 then the probability of early termination
for futilitymust be smaller than the type 2 error, as seen below
in Eq. (2), and so the expected sample sizewill be greater than
βn1+(1−β)n. For β near 0 the expected sample size is close
to the upper bound of n, and the optimal designwill be the one
with the smallest n. So for studies with high power (small β)
the H1-optimal and H1-minimax designs will be very similar.

By definition;
�
R p1ð Þ ≤ β for an acceptable design:

But B n1;p1; r1ð Þ ≤ �
R p1ð Þ; from equation 1

So PET p1ð Þ ≤ β:

ð2Þ

2.2. Stopping for efficacy

It is possible to reduce expected sample sizes by terminating
early for efficacy aswell as futility. One obvious design is to stop
for efficacy at the first stage when there are greater than r
responders, since the criterion to reject the null hypothesis at
the endof the second stage has already beenmet. Although this
would have little efficiency advantage under H0 [5] because
there is only a small chance of stopping for efficacy, thiswill not
necessarily be true for designs that are optimal under H1.

We consider here a less conservative design that allows
for early stopping for efficacy when there are N r2 responders
at the first stage. The full design is as follows:

• recruit n1 participants,
– stop for futility if there are ≤ r1 responders,
– stop for efficacy if there are Nr2 responders (where r2≤ r,

and r1b r2≤n1),
• recruit a further n2 participants (where n=n1+n2),
– Do not reject H0 if there are ≤ r responders,
– Reject H0 if there are N r responders.
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This design is now indexed by 5 numbers and will be
referred to as a “(r1 r2)/n1 r/n” design.

Using the same notation as previously, using suffix E to
represent stopping for efficacy or futility, the probability of
not rejecting the null hypothesis is as follows:

�
RE pð Þ = B n1; p; r1ð Þ + ∑

r2

i= r1 + 1
b n1;p; ið ÞB n−n1;p; r−ið Þ:

This equation only differs from Eq. (1) in that the summation
upper limit is now bounded by r2. As before we require that
the error probabilities are controlled by

�
RE p0ð Þ≥1−α and�

RE p1ð Þ ≤ β. The probability of early termination for this design
is as follows:

PETE pð Þ = 1−B n1; p; r2ð Þ + B n1; p; r1ð Þ:

For the samevaluesof r1 andn1,PETE(p)≥PET(p). Theoptimal
and minimax designs are found using a grid search given an
upper limit for n, and for p0 or p1, and these designs are labelled
H0-optimalE, H0-minimaxE, H1-optimalE and H1-minimaxE.

2.3. Implementation

A program has been written to find the minimax and
optimal designs under eitherH0 orH1with stopping for efficacy
and futility, or with stopping only for futility, using Stata 11
[13]. This command is freely available and can be downloaded
via Stata using the command ssc install simon2stage. The
program uses the Mata language to do a grid search of all the
possible values of r, r1, r2,n1 andn, has options to select stopping
only for futility, or stopping for futility and efficacy, and canfind
the optimal or minimax designs for any value of the true
response probability p. Only results for p=p0 and p=p1 are
used in this paper.
Table 1
Minimax and optimal designs, with and without stopping for efficacy and under bo

(α,β) Design

(0.1,0.1) H0-minimax 0/13 2/20
(0.05,0.2) 0/12 2/16
(0.05,0.1) 0/15 3/25
(0.1,0.1) H1-minimax 0/13 2/20
(0.05,0.2) 0/12 2/16
(0.05,0.1) 0/15 3/25
(0.1,0.1) H0-minimaxE (0 2)/13 2/20
(0.05,0.2) (0 2)/12 2/16
(0.05,0.1) (0 2)/13 3/25
(0.1,0.1) H1-minimaxE (0 2)/13 2/20
(0.05,0.2) (0 2)/12 2/16
(0.05,0.1) (0 2)/13 3/25
(0.1,0.1) H0-optimal 0/9 2/24
(0.05,0.2) 0/9 2/17
(0.05,0.1) 0/9 3/30
(0.1,0.1) H1-optimal 0/13 2/20
(0.05,0.2) 0/12 2/16
(0.05,0.1) 0/15 3/25
(0.1,0.1) H0-optimalE (0 2)/9 2/24
(0.05,0.2) (0 2)/9 2/17
(0.05,0.1) (0 3)/9 3/30
(0.1,0.1) H1-optimalE (0 1)/10 3/26
(0.05,0.2) (0 2)/9 2/17
(0.05,0.1) (0 2)/13 3/25
3. Results

3.1. Optimal designs

Optimal designs were found for a set of design parameters
p0,p1,α andβ thatwerefirst used in theSimon two-stagedesign
paper [5], which included a comparison to single stage designs,
and then in subsequent papers [6,7,14]. Our designs are shown
for p1−p0=0.2 for p0=0.05,0.1and 0.3 and (α,β)=(0.1,0.1),
(0.05,0.2)and(0.05,0.1). These target values were within the
range of typical null response rates and target improvement
rates reported in phase II cancer studies [2].

Table 1 displays the minimax and optimal designs under
H0 and H1 with and without efficacy stopping for p0=0.05
and p1=0.25. In this case the minimax designs are the same
when considering the null or alternative response probabil-
ities. Stopping for efficacy always gives smaller expected
sample sizes. Stopping for efficacy gives the largest gain in
efficiency for the H0-minimax design when (α,β)=
(0.05,0.1): the expected sample size under H0 improves
from 20.4 to 18.5 and under H1 from 24.9 to 16.7. Stopping for
efficacy has a much larger impact on E(N|p1) than E(N|p0)
because PET(p1) is small for designs which do not allow
stopping for efficacy and large for those that do.

The design with the smallest E(N|p1)=13.0 is the H1-
optimalE design for (α,β)=(0.1,0.1) and is indexed as (0 1)/
10 3/26; the study continues to a second stage only if there is a
single event in thefirst 10participants. If the true treatmenteffect
is p1 then the probability of stopping for efficacy is 0.812. In fact
this design also has the smallest value for E(N|p0)+E(N|p1) in
Table 1 for (α,β)=(0.1,0.1) and so performs well under both
hypotheses. The corresponding H1-optimal design has an
expected sample size of E(N|p1)=19.8 so the gains can be
substantial if the treatment is efficacious. The traditional Simon
two-stage design, the H0-optimal design, has the highest
th hypotheses when p0=0.05 and p1=0.25.

E(N|p0) E(N|p1) PET(p0) PET(p1)

16.4 19.8 0.513 0.024
13.8 15.9 0.540 0.032
20.4 24.9 0.463 0.013
16.4 19.8 0.513 0.024
13.8 15.9 0.540 0.032
20.4 24.9 0.463 0.013
16.2 15.2 0.538 0.691
13.8 13.4 0.560 0.641
18.5 16.7 0.538 0.691
16.2 15.2 0.538 0.691
13.8 13.4 0.560 0.641
18.5 16.7 0.538 0.691
14.5 22.9 0.630 0.075
12.0 16.4 0.630 0.075
16.8 28.4 0.630 0.075
16.4 19.8 0.513 0.024
13.8 15.9 0.540 0.032
20.4 24.9 0.463 0.013
14.4 16.9 0.639 0.474
11.9 13.2 0.639 0.474
16.8 24.9 0.631 0.241
15.0 13.0 0.685 0.812
11.9 13.2 0.639 0.474
18.5 16.7 0.538 0.691
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expected sample size E(N|p1)=22.9 compared to all the other
designs.

Table 2 displays theminimax and optimal designs under H0

and H1 with and without efficacy stopping for p0=0.1 and
p1=0.3. The minimax designs now show some considerable
differences underH0 andH1: thefirst stages are different for the
minimaxdesignsnot stopping for efficacybut the second stages
r /n are the same. There is not a clear consistency in the
direction of the change in n1, it is 16 for theH0-minimax design
and 11 for H1-minimax design when (α,β)=(0.1,0.1). In
contrast to this, for the other type 1 and 2 errors, n1 is bigger
under H1 than under H0. However the impact on the expected
sample sizes is small. Stopping for efficacy in minimax designs
usually results in a reduction in expected sample sizes but this is
not the case when (α,β)=(0.05,0.2) where E(N|p0) increases.
The H0-optimal design has a smaller E(N|p0) than all the
minimax designs but has a much higher value (up to over 50%)
for E(N|p1). In Table 2 the H1-optimal designs are exactly the
same as the H1-minimax designs. The H0-optimalE and H1-
optimalE designs give small expected sample sizes and have
similar values forE(N|p0)+E(N|p1) but theH1-optimalEdesign
has much smaller values of n. So optimising under H1 also
seems to control the maximum sample size.

Table 3 displays the minimax and optimal designs under
H0 and H1 with and without efficacy stopping for p0=0.3.
The H0-optimal designs have much larger expected sample
sizes E(N|p1) than the H0-minimax design. Stopping for
efficacy lowers E(N|p1) substantially but the effects on E(N|p0)
differ depending on the error probabilities. For (α,β)=(0.1,0.1)
the expected sample size E(N|p0) was 35.0 for the H0-minimax
design butwas 32.7 for theH0-minimaxEdesign. Howeverwhen
(α,β)=(0.05,0.2) it rose from 25.7 to 30.7 because n1 increased
from 19 to 27 and n decreased from 39 to 36. The H1-optimal
designs are again exactly the same as the H1-minimax designs.
Stopping for efficacy can also slightly increase n as seen for the
Table 2
Minimax and optimal designs, with and without stopping for efficacy and under bo

(α,β) Design

(0.1,0.1) H0-minimax 1/16 4/25
(0.05,0.2) 1/15 5/25
(0.05,0.1) 2/22 6/33
(0.1,0.1) H1-minimax 0/11 4/25
(0.05,0.2) 2/18 5/25
(0.05,0.1) 3/25 6/33
(0.1,0.1) H0-minimaxE (1 4)/16 4/25
(0.05,0.2) (2 4)/19 5/24
(0.05,0.1) (1 4)/16 6/33
(0.1,0.1) H1-minimaxE (0 3)/11 4/25
(0.05,0.2) (0 3)/13 5/24
(0.05,0.1) (1 4)/16 6/33
(0.1,0.1) H0-optimal 1/12 5/35
(0.05,0.2) 1/10 5/29
(0.05,0.1) 2/18 6/35
(0.1,0.1) H1-optimal 0/11 4/25
(0.05,0.2) 2/18 5/25
(0.05,0.1) 3/25 6/33
(0.1,0.1) H0-optimalE (1 3)/13 5/31
(0.05,0.2) (1 4)/10 5/29
(0.05,0.1) (2 4)/17 7/41
(0.1,0.1) H1-optimalE (0 2)/9 5/30
(0.05,0.2) (0 3)/13 5/24
(0.05,0.1) (1 4)/16 6/33
H0-optimal design with (α,β)=(0.1,0.1). Amongst the optimal
designs the H1 designs have smaller second stages than the H0

designs and bigger first stages, but this does not have a huge
impactonPET(p1).Again theH1-optimalEdesignhas the smallest
values for E(N|p1)+E(N|p0) except for (α,β)=(0.1,0.1) where
the H0-optimalE design is best on this metric.

3.2. Acceptable designs for a range of n

Both the H0-minimax and the H0-optimal designs have been
widely applied in the literature and other designs have been
largely ignored. However, these two designs can give highly
divergent characteristics. For example the H0-minimax can lead
to a much smaller maximum sample size than the H0-optimal
design [8]; given the design parameters (p0,p1,α,β)=
(0.1,0.3,0.05,0.15), then the H0-minimax design is 2/18 5/27
and the H0-optimal design is 1/11 6/35. Using the same design
parameters Fig. 1 shows the expected sample sizes underH0 and
H1 for each optimal design over a range of values for n starting
from the maximum sample size for the H0-minimax design. The
figure shows that the H0-optimal and H1-optimal designs give
almost identical expected sample sizes under H1 and these
increase approximately linearly with n. Under H1, only the H1-
optimalE design does not have a generally increasing expected
sample size. Under H0, the H0-optimalE designs always have the
smallest expected sample sizes and theH1-optimalEdesignshave
some larger expected sample sizes but the difference is variable.

4. Application of the H1-optimalE design

A recent paper studying the effects of Pazopanib on soft tissue
sarcoma (STS) [15] reported the results from four Simon two-
stage designs; the Simon two-stage designs were used indepen-
dently in four different strata defined by STS type. Each design
th hypotheses when p0=0.1 and p1=0.3.

E(N|p0) E(N|p1) PET(p0) PET(p1)

20.4 24.8 0.515 0.026
19.5 24.6 0.549 0.035
26.2 32.8 0.620 0.021
20.6 24.7 0.314 0.020
19.9 24.6 0.734 0.060
26.9 32.7 0.764 0.033
20.2 19.8 0.532 0.576
20.3 20.2 0.741 0.764
24.0 23.2 0.532 0.576
20.3 18.7 0.332 0.450
20.8 17.5 0.288 0.589
24.0 23.2 0.532 0.576
19.8 33.0 0.659 0.085
15.0 26.2 0.736 0.149
22.5 34.0 0.734 0.060
20.6 24.7 0.314 0.020
19.9 24.6 0.734 0.060
26.9 32.7 0.764 0.033
19.2 19.4 0.656 0.643
15.0 23.3 0.738 0.300
22.2 24.5 0.784 0.689
20.8 17.9 0.440 0.578
20.8 17.5 0.288 0.589
24.0 23.2 0.532 0.576



Table 3
Minimax and optimal designs, with and without stopping for efficacy and under both hypotheses when p0=0.3 and p1=0.5.

(α,β) Design E(N|p0) E(N|p1) PET(p0) PET(p1)

(0.1,0.1) H0-minimax 7/28 15/39 35.0 38.9 0.365 0.006
(0.05,0.2) 6/19 16/39 25.7 37.3 0.666 0.084
(0.05,0.1) 7/24 21/53 36.6 52.1 0.565 0.032
(0.1,0.1) H1-minimax 10/33 15/39 35.4 38.9 0.599 0.018
(0.05,0.2) 7/21 16/39 26.0 37.3 0.723 0.095
(0.05,0.1) 7/24 21/53 36.6 52.1 0.565 0.032
(0.1,0.1) H0-minimaxE (7 12)/26 15/39 32.7 31.3 0.486 0.592
(0.05,0.2) (8 13)/27 15/36 30.7 31.3 0.592 0.526
(0.05,0.1) (11 17)/37 20/50 42.5 41.7 0.579 0.639
(0.1,0.1) H1-minimaxE (5 11)/23 15/39 34.4 30.9 0.290 0.505
(0.05,0.2) (6 12)/24 15/36 31.2 30.8 0.400 0.431
(0.05,0.1) (7 15)/31 20/50 45.2 40.5 0.254 0.502
(0.1,0.1) H0-optimal 7/22 17/46 29.9 44.4 0.671 0.067
(0.05,0.2) 5/15 18/46 23.6 41.3 0.722 0.151
(0.05,0.1) 8/24 24/63 34.7 60.0 0.725 0.076
(0.1,0.1) H1-optimal 10/33 15/39 35.4 38.9 0.599 0.018
(0.05,0.2) 7/21 16/39 26.0 37.3 0.723 0.095
(0.05,0.1) 7/24 21/53 36.6 52.1 0.565 0.032
(0.1,0.1) H0-optimalE (6 9)/20 18/47 29.3 29.6 0.656 0.646
(0.05,0.2) (5 11)/15 18/46 23.6 40.8 0.722 0.168
(0.05,0.1) (8 14)/24 24/63 34.7 54.0 0.726 0.230
(0.1,0.1) H1-optimalE (5 9)/21 18/45 34.7 28.6 0.430 0.681
(0.05,0.2) (4 9)/18 16/38 30.9 29.5 0.354 0.423
(0.05,0.1) (7 11)/24 24/59 38.1 37.6 0.596 0.613
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assumed (p0,p1,α,β)=(0.2,0.4,0.1,0.1) and the H0-optimal
design was 3/1710/37 with E(N|p0)=26.0, but E(N|p1)=36.1.
At the end of the study the observed response probabilitieswere,
in order of magnitude, 5/19, 16/41, 18/41 and 18/37. The first
stratum had 3 responses and stopped after the first stage
although subsequently 2 responses were re-classified into this
stratum. Themiddle two strata recruited 4 extra patients beyond
the originally planned sample size. Assuming the observed
Fig. 1. Expected sample sizes given (p0,p1,α,β)=(0.1,0.3,0.05,
responses reflected the true response rates then the probabilities
of stopping for futility were 0.31, 0.06, 0.02 and 0.01 and the
resulting expected sample sizes were 30.8, 35.9, 36.5 and 36.8; it
is clear that the studieswere unlikely to stop for futility.With the
same design parameters the H1-optimalE design is (1 5)/15 11/
38; assuming the same true response rates the probabilities of
stopping early are 0.24, 0.57, 0.71 and 0.82 and the expected
sample sizes are 32.4, 24.8, 21.6 and 19.1. By adding the expected
0.15) for different values of the maximum sample size n.
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sample sizes over the four strata, the total expected sample size
for theH0-optimal design is 140 and for theH1-optimalEdesign is
97.9; on average this new design would have required 42 fewer
patients. A single stage designwould have required a sample size
of 36 per stratumwith the null hypothesis being rejected if there
were≥11 responders. In totalthe studywouldhave required144
patients, slightly more than the H0-optimal design.

5. Discussion

This article highlights that if researchers have an agent that
is effective then the Simon two-stage design is not an optimal
design. In the extreme case, if the true response probability is 1,
the study will never stop for futility and the expected sample
size is n. In the less extreme case, for a true response probability
of p1, there is a chance smaller than β of stopping the study; so
studies with high power have only a small chance of being
stopped early for futility. All the H1-optimal designs reduce the
expected sample size under the alternative compared to the
traditional designs. However, this comes at the cost of slightly
larger expected sample sizes under the null. The main effect of
stopping for efficacy is that the probabilities of early termina-
tion increase, under bothhypotheses, leading to efficiencygains
over a broader set of true response probabilities.

In designing studies there is a choice whether to minimise
the expected sample size or to minimise the maximum sample
size. Our results show that theminimax design is beneficial if a
treatment is efficacious: for this case the H1-optimal and H0-
minimax designs were very similar. The only differences
between the H1-optimal and H0-minimax designs were in the
first stage; optimising under H1 and not stopping for efficacy
has a small probability of early termination when p=p1 and
hence the size of n dominates the expected sample size. It is
clear from the results presented (Tables 1–3) that the best
designs vary between situations with different design para-
meters; this is because of the discrete nature of the binomial
distribution and exact probability calculations involved.

Only a few papers have investigated designs optimal for
alternative values of the true response. Simon [16] explored a
few values that were close to p0 in designs that only stopped
for futility and did not minimise the expected sample size,
Shuster [17] looked at minimising the maximum expected
sample size over a range of response rates and Hanfelt et al.
[18] considered minimising the median sample size. Our
designs allow stopping for efficacy and focus on minimising
the expected sample size under the alternative hypothesis.
Another paper proposed an adaptive version of the Simon
two-stage design [12]. This design considers two alternative
response rates, p1 and p2, and the size of the second stage
depends on the number of responders in the first stage. One
optimality criterion was to minimise the maximum of
expected sample sizes at the null and two response rates,
max E N jpið Þ; i = 0;1;2f g. The design developed here differs
in that it is specified before the study begins but can consider
a range of possible true response probabilities. It is still reliant
on the null and alternative values for the true probability of
response. Another approach would be to elicit a prior
distribution for the true response probability and find a
design that minimises the expected sample size over this
distribution. This is likely to be difficult in practice because
the discreteness of the Binomial distribution leads to a lack of
ordering of designs and might require a discrete prior to be
computationally possible. The other effect of the discreteness
is that a single type of design is not uniformly more efficient
than any other and the best design depends on what the true
response probability is.

Newer treatments, such as cytostatic drugs may require
randomised phase II studies [19] and these studies can also
incorporate an interim analysis to stop for efficacy or futility.
Any two-stage randomised design should consider optimality
criteria with both the alternative and null values as possible
true response rates. The effect of changing the optimality
criteria in extensions of the Simon single arm two-stage design,
such as the three-stage design, could also be assessed. It would
also be possible to use other definitions of optimality such as
minimising E(N|p0)+E(N|p1). The methods here could be
further improved by using a curtailed sampling approach [14]
and stopping each part as soon as the desired number of
responders has been reached. If the aim of the study is to
estimate the response probability then the equivalence
between p-values and confidence intervals can be used to
obtain interval estimates [11,20].

This article has presented a new set of designs that consider
stopping for efficacy as well as futility under H0 and H1. All the
designs can be found using freely available software imple-
mented in the common statistical package Stata. Although our
focus has been on tumour response in cancer trials, these
designs could be used for any binary outcome. The issues
covered here should stimulate more discussion during the
design of new studies and encourage consideration of a broader
rangeof possibilities insteadof using traditional designs tofit all
situations.
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