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Summary 

Prostate tumours are typically accompanied by an aberrantly activated stroma, 

populated by myofibroblastic cells. These stromal cells support angiogenesis, and 

tumour growth in preclinical models. The tumour-derived factors responsible for 

the onset of stromal myofibroblasts remains poorly defined, but the secretion of 

transforming growth factor beta-1 (TGFβ1) is strongly implicated in the 

differentiation of various precursors, such as fibroblasts. 

Like other epithelial cancers, prostate cancer cells secrete small extracellular 

vesicles, these carry TGFβ1 on their outer surface, and can deliver to fibroblasts, 

driving their differentiation into myofibroblasts. Unlike stimulation with soluble 

TGFβ1, the vesicle generated myofibroblast is analogous to those naturally 

occurring at the cancer site. The vesicle form of TGFβ1 delivery therefore is TGFβ1 

dependent yet the phenotype arising is distinct from that driven by soluble TGFβ1. 

This observation suggests that vesicles are likely to co-deliver other factors to the 

fibroblast that collectively generate the in vivo-like myofibroblast differentiation 

response. Because uptake of acquired vesicles is documented as important in many 

other biological systems, we hypothesised that vesicle entry into fibroblasts was an 

important aspect of vesicle-mediated communication, and relevant for the 

differentiation response. 

The aim of this project was to define the uptake process of prostate cancer vesicles 

by fibroblasts, to determine the intracellular fate of the vesicles once internalised, 

and the importance of cell entry in the complex differentiation process. To achieve 

this, we developed labelling techniques to fluorescently tag vesicles and used these 

to monitor vesicle uptake and intracellular trafficking in fibroblasts by 

fluorescence microscopy and flow cytometry. 

Prostate cancer vesicles can be flexibly fluorescently labelled with the novel 

maleimide linked Alexa dyes. Using Alexa labelled vesicles, we found that 

fibroblast uptake primarily occurs through Clathrin-mediated endocytosis, and we 

reveal a role for vesicle-cell surface interaction in the uptake process. The vesicles 

were observed in early endocytic compartments, then transit through maturing 

endosomes reaching lysosomes within 2 hours of cellular uptake. Vesicle labelling 

with intraluminal fluorescent dyes revealed the requirement of vesicle 
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internalisation by fibroblasts to occur prior to luminal cargo delivery to the cell 

cytosol, and this escape occurs before the vesicles reach lysosomes. Vesicle 

internalisation by fibroblasts is independent of the TGFβ1 mediated stimulation of 

the cell and occurs even if fibroblast differentiation is blocked. 

This study concludes that prostate cancer vesicles can deliver their intraluminal 

contents to fibroblasts after clathrin dependent vesicle endocytosis, but before 

reaching the lysosome. Any effect the intraluminal cargo has on the fibroblast 

phenotype would be independent of the TGFβ1 mediated effects. 
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1.1. Tumour microenvironment in solid cancer 

Cancer is one of the leading causes of death in the developed world. In the UK, 

cancer accounts for more than a quarter of deaths each year (CRUK, 2016a). 

Cancer can be characterised by generally accepted features, including genomic 

instability, uncontrolled proliferation, induction of angiogenesis, immune evasion, 

invasion and metastasis (Hanahan and Weinberg, 2011). 

Prostate cancer (PCa) is the most common cancer in British males, and is 

responsible for more than 10,000 deaths per year in the U.K (CRUK, 2016b). Risk 

of developing disease increases with age (Leitzmann and Rohrmann, 2012), and 

with an ever-ageing population, PCa is likely to become a greater burden on health 

services in the coming years. 

1.1.1. Prostate cancer 

The prostate is a small organ in males, located at the base of the bladder 

surrounding the urethra. The prostate glands secrete fluid which contributes to 

semen, and the organ helps to expel semen during ejaculation through contraction 

(Kumar and Majumder, 1995). Many small epithelial glands are present in a 

uniform pattern, but during the progression of cancer, the disrupted tissue 

architecture and glands become more irregular in shape and size. Histology of a 

prostate biopsy is used to score the grade of disease (Gleason score), the 

classification of cancer based on these scores is used as a prognostic marker for 

PCa (Gleason and Mellinger, 1974). In aggressive disease, metastasis from the 

primary tumour site can occur, most commonly to bone (Bubendorf et al., 2000), 

which is incurable and leads to increased morbidity. 

Besides age, the most strongly associated risk factors for PCa are race and family 

history of disease, and less established factors, such as diet and exercise 

(Leitzmann and Rohrmann, 2012). Prostatic intraepithelial neoplasia (PIN) is a 

condition characterised by the abnormal appearance and proliferation of 

intraepithelial cells. PIN is also a significant risk factor for development of PCa and 

is considered a precursor to malignant disease (Montironi et al., 2000). 

Current methods used to diagnose PCa are problematic, some due to lack of 

accuracy, and others due to their invasiveness. Prostate epithelial cells secrete a 
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protein called prostate specific antigen (PSA). PSA has been used as a screening 

tool for PCa since the 1980s. However, PSA levels generally increase with age 

(Oesterling et al., 1993), and are also increased in other conditions such as benign 

prostatic hyperplasia (BPH) (Stamey et al., 1987). Furthermore, PCa can present 

with normal PSA levels (Nishio et al., 2003). This lack of specificity shows PSA is 

not ideal for detecting PCa and highlights the need for a more specific diagnostic 

method. Digital rectal examination (DRE) is often used when cancer is suspected to 

detect nodules on the prostate, as an additional tool to determine whether there 

are any obvious abnormalities. PSA and DRE together are not enough to 

definitively diagnose PCa, so prostate tissue biopsy is usually carried out to give a 

more accurate diagnosis. Tissue samples are graded based on the Gleason scoring 

system (Gleason and Mellinger, 1974), with a high score of 8-10 considered an 

aggressive cancer, with a poor prognosis. PSA and Gleason score are used to 

classify patients by risk of treatment failure (Hernandez et al., 2007). Tissue 

biopsy, is an invasive test and can give false negative results if the diseased tissue 

is missed during biopsy, and since current liquid biopsy are insufficient to 

diagnose disease, there is an interest in developing an accurate and non-invasive 

diagnostic marker (Tian et al., 2018). 

In early stage disease in which the cancer is confined to the primary tumour site, 

monitoring of the disease is often sufficient, alternatively patients can undergo 

radical prostatectomy (Murphy et al., 1994), although side effects such as 

impotence and incontinence can occur. In metastatic disease, prostatectomy is no 

longer helpful. Radiotherapy is an alternative treatment course, in which the 

prostate is targeted with high energy x-rays, 3D conformal radiotherapy being a 

popular tool, which allows the radiation beams to target the prostate more 

specifically, thus inflicting less damage to surrounding tissues (Heidenreich et al., 

2014). In PCa, testosterone is known to stimulate proliferation in cancer cells and 

promote tumour growth (Ahmad et al., 2008). Androgen deprivation therapy 

(ADT), through orchiectomy or treatment with anti-androgen agents remain 

widely used tools for slowing cancer growth, particularly in aggressive disease 

(Rove and Crawford, 2014). Though ADT can be initially effective in slowing 

tumour growth, castration resistance develops, when the tumour continues to 

grow despite the ADT (Chandrasekar et al., 2015). Chemotherapy is used in 
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patients with advanced disease and castrate resistance. Docetaxel is a widely used 

cytotoxic drug used in PCa, which shows survival benefits (Tannock et al., 2004), it 

binds microtubules in dividing cells preventing mitosis (Pienta, 2001), hence hair 

loss is a common side effect. 

In prostate tumour tissue, in addition to the population of proliferative cancer 

cells, there is a reactive environment containing other cells which work to aid 

tumour growth and survival, termed the tumour microenvironment (TME). To 

better understand PCa progression, and identify future targets for diagnosis and 

therapy, it is important to appreciate the role of the TME in the disease pathology. 

1.1.2. Components of the tumour microenvironment 

In healthy tissues, all cell types in the tissue stroma work synergistically to 

maintain the local microenvironment and contribute to the functioning of the 

epithelial glands. Conversely, cells which usually preserve homeostasis in health, 

have been shown to support tumour survival and growth in cancer (Wang et al., 

2017). Figure 1.1 depicts the cells that are part of the tumour microenvironment 

and are involved in supporting disease progression (Prajapati and Lambert, 2016).  

In a growing tumour, the high number of malignant cells need an increased blood 

supply to satisfy their nutrient requirements; an inhibition of angiogenesis in a 

tumour is capable of halting growth (Holmgren et al., 1995). This need for new 

vessel formation leads to induction of persistent angiogenesis in tumours 

(Folkman et al., 1971). Tumour vasculature is abnormal in both structure and 

function (Jain, 2005); branching is chaotic, and the vessel lumen is uneven and 

leaky. Vessel leakiness raises the interstitial fluid pressure, resulting in uneven 

blood flow and distribution of nutrients, furthermore drug delivery to the tumour 

is impaired. Aberrant vasculature is accompanied by a low pericyte coverage, this 

is associated with poor prognosis (O'Keeffe et al., 2008). Tumours also drive 

lymphangiogenesis, and again this is linked to poor outcome (Alitalo, 2011). 

Abnormal blood flow is well characterised in aggressive tumours, and anti-

angiogenic therapy is often used in treatment of cancer (Cao et al., 2011), 

bevacizumab, an anti-VEGF antibody based therapy, for example is used in the 

treatment of colorectal cancer (Hurwitz et al., 2004), though is associated with a 

number of side effects. 
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Local adipose cells contribute to cancer progression (Wang et al., 2017), secreting 

pro-inflammatory factors, recruiting immune cells and supporting angiogenesis 

(Gilbert and Slingerland, 2013). Increased adiposity in obesity enhances the role of 

adipose cells, thus increasing the risk of aggressive disease in the obese. 

Recruitment of immune cell is key step in cancer progression. The immune system 

usually fights infection and destroys damaged cells, however in neoplastic 

growths, this is not always the case. Immune evasion and inflammation in the TME 

are now considered hallmarks of cancer (Hanahan and Weinberg, 2011). In the 

TME, macrophages, which usually digests damaged tissue, convey a cancer 

promoting phenotype, and are termed tumour associated macrophages (TAMs) 

(Qian and Pollard, 2010). TAMs secrete factors to promote angiogenesis (Lin et al., 

2006), aid tumour invasion (Condeelis and Pollard, 2006), and even drive 

chemoresistance (Challagundla et al., 2015; Shree et al., 2011). The tumour 

interacts with other immune cells to promote immunosuppression in order for the 

tumour to evade immune responses. For example, recruitment of regulatory T cells 

(Tregs) via tumour chemokines (Curiel et al., 2004), results in reduced survival 

(Bates et al., 2006), likely through immunosuppression(Hsieh et al., 2012).  

In tumours, there is increased extracellular matrix (ECM) deposition, as a result, 

tumour tissue is often stiffer than its healthy counterpart (Weigelt and Bissell, 

2008). Elevated desmoplasia increases interstitial pressure within the tumour 

tissue, inhibiting nutrient distribution, and causing cell necrosis (Brown et al., 

2004). The physical barrier created through ECM deposition contributes to drug 

resistance (Miyamoto et al., 2004). High expression of matrix metalloproteinases 

(MMPs), enzymes which carry out ECM remodelling, in the TME correlate with 

poor outlook in cancer (Bergamaschi et al., 2008). It is believed that 

overexpression of MMPs may help degrade the basement membrane enabling 

tumour invasion and metastasis (Lu et al., 2011). ECM deposition and MMP 

secretion in the TME is carried out in particular by tumour associated 

myofibroblasts (DeClerck, 2000; Lagacé et al., 1985). These fibroblasts orchestrate 

tissue remodelling and this loss of architecture in cancer is considered a vital, rate 

limiting step in disease progression.  
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Figure 1.1. The tumour microenvironment. A schematic illustration of the 
components of the tumour microenvironment in solid cancers, cancer cells 
educate and are supported by local cells to aid tumour growth and survival. 
Cancer associated fibroblasts can be seen at the leading edge of the tumour 
(adapted from Prajapati and Lambert, 2016). 
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1.1.3. Cancer associated fibroblasts 

Fibroblasts are elongated cells of mesenchymal origin, thin and spindle-like, 

identified by the intermediate filament protein Vimentin (Franke et al., 1978). In 

health, the fibroblast is a quiescent cell, becoming activated to be involved in 

wound healing (Gabbiani et al., 1971). In wound healing, fibroblasts act to repair 

the injury through promotion of angiogenesis, ECM deposition and contraction, 

then after the wound is healed, the number of activated myofibroblasts falls as 

they undergo apoptosis (Tomasek et al., 2002). In tumours, activated 

myofibroblasts are present (Lagacé et al., 1985), though in contrast to the wound 

healing cells, the myofibroblasts present in tumours are considered to be in a 

persistent wound healing state as they are present in large numbers and do not 

return to their quiescent state (Dvorak, 1986). 

In healthy prostate tissue, stromal smooth muscle cells are abundant (Tuxhorn et 

al., 2002), and there are few fibroblasts (Rønnov-Jessen et al., 1996); in contrast, 

the reactive stroma present in tumours contains many more fibroblasts. The 

smooth muscle cells in PCa stroma are replaced by myofibroblasts, characterised 

by dual expression of Vimentin and α smooth muscle actin (αSMA) (Tuxhorn et al., 

2002). Cancer associated myofibroblasts have been identified in prostate (Olumi et 

al., 1999), breast (Rønnov-Jessen et al., 1996), colon cancer (Martin et al., 1996) 

and others, this phenotype is indicative of solid cancer stroma. The myofibroblast 

phenotype is present in prostatic intraepithelial neoplasia (PIN) lesions (Tuxhorn 

et al., 2002), though in a smaller proportion to those present in a high Gleason 

score cancer. Since PIN is thought to be a precursor to PCa (Montironi et al., 2000), 

myofibroblast differentiation probably occurs very early in the progression of 

cancer. A high stroma ratio in tumours is linked to poor prognosis in cancer  

(Moorman et al., 2012; Yanagisawa et al., 2007).  

The presence of myofibroblasts and association with aggressive disease is well 

documented. These cells are not just bystanders of the tumour’s growth, but 

actively work to promote cancer progression (Olumi et al., 1999). Cancer 

myofibroblasts increase invasiveness of cancer cells (Dimanche-Boitrel et al., 

1994), due to the various factors the activated cells produce. Cancer 

myofibroblasts are the principal source of vascular endothelial growth factor 
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(VEGF) in the TME (Fukumura et al., 1998), and they secrete hepatocyte growth 

factor (HGF) (De Wever et al., 2004), together they promote endothelial cell 

proliferation (Xin et al., 2001). HGF also stimulates proliferation and motility in 

epithelial cells (Bhowmick et al., 2004). MMP production by activated fibroblasts 

degrades the ECM, increasing tumour invasiveness (Boire et al., 2005). 

Myofibroblasts are found at the leading edge of the tumour, and ECM deposition 

provides tracks for cancer cells to aid invasion (Gaggioli et al., 2007).  

1.1.4. Myofibroblast differentiation 

Tumour promoting myofibroblasts are of unclear physiological origin within the 

prostate, they may originate from multiple sources, such as: resident fibroblasts 

(Desmoulière et al., 1993), as well as endothelial cells (Zeisberg et al., 2007), 

mesenchymal stem cells (Chowdhury et al., 2015), and epithelial cells (Petersen et 

al., 2003). These activated myofibroblasts exhibit a pro-tumoural phenotype, 

which is induced by the cancer cells (Rønnov-Jessen and Petersen, 1993).  

Fibroblasts can undergo phenotypic change following stimulation by growth 

factors. Transforming growth factor beta-1 (TGFβ1), secreted by cancer cells 

(Rønnov-Jessen and Petersen, 1993), is an important inducer of differentiation, 

and in PCa, TGFβ1 is required for generating a tumour supporting stroma (Verona 

et al., 2007). TGFβ1 binds TGFβ type II receptor, which recruits TGFβ type I 

receptor and initiates SMAD signalling, SMAD complexes translocate to the nucleus 

where they act as transcription factors, driving myofibroblast differentiation 

(Verona et al., 2007). αSMA negative fibroblasts become contractile αSMA positive 

myofibroblasts, indicating differentiation has occurred (Rønnov-Jessen and 

Petersen, 1993). These TGFβ1 stimulated fibroblasts are now capable of 

supporting the tumour promoting functions already discussed. The crosstalk 

between cancer cell and fibroblast is schematically presented in figure 1.2 

(Erdogan and Webb, 2017). 
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Figure 1.2. TGFβ1-mediated cancer cell-fibroblast crosstalk. TGFβ1 
secreted by cancer cells can stimulate fibroblasts, generating alpha-smooth 
muscle actin (αSMA) positive myofibroblasts. These activated fibroblasts 
secrete various factors, promoting extracellular matrix (ECM) remodelling, 
tissue angiogenesis, and proliferation and motility of the cancer cells. Through 
these actions, cancer-associated fibroblasts support the growth and survival of 
tumours (adapted from Erdogan and Webb, 2017).  
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Although TGFβ1 triggers myofibroblast differentiation, it has been demonstrated 

that soluble TGFβ1 alone fails to generate the disease promoting phenotype in 

stromal fibroblasts (Webber et al., 2015b), whereas stimulation of fibroblasts with 

TGFβ1-positive PCa derived small extracellular vesicles (sEVs) is able to induce the 

phenotype which facilitates tumour growth and angiogenesis. This reveals a key 

role for PCa sEVs in the progression of cancer. 

 

1.2. Small extracellular vesicles 

sEVs are cell derived nanovesicles of 30-150nm in diameter (Pan et al., 1985; 

Raposo et al., 1996; van Niel et al., 2001). An early visualisation of these vesicles by 

electron microscopy was noted in the cartilage tissue of mice in the 1960’s 

(Anderson, 1969). In the 1980s, these vesicles were named exosomes (Johnstone 

et al., 1987), and were found to originate from multivesicular bodies (MVBs) 

within the cell. Exosomes were first identified in maturing red blood cells, as a 

means of Transferrin receptor disposal (Harding et al., 1983). Later, B lymphocyte 

derived vesicles were found to play a role in antigen presentation (Raposo et al., 

1996), revealing that exosomes may be key components to cell signalling and not 

just a means of removing waste. Following on from these early studies, sEV 

secretion has been demonstrated in many cell types, including dendritic cells 

(Zitvogel et al., 1998), fibroblasts (Richards et al., 2017), mesenchymal stem cells 

(Lai et al., 2011), epithelial cells (van Niel et al., 2001), and notably, tumour cells 

(Wolfers et al., 2001). sEVs are also present in most biological fluids (Keller et al., 

2011). 

In addition to MVB derived exosomes, sEVs, are also reported to be secreted 

directly from the plasma membrane (Booth et al., 2006). Furthermore, cell secrete 

larger vesicles up to 1000nm in size (Hess et al., 1999; Trams et al., 1981), mostly 

of plasma membrane origin. The nomenclature describing these vesicles is 

somewhat confusing, with many terms having been used to describe vesicles sized 

between 30-1000nm (Gould and Raposo, 2013). 
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1.2.1. Defining EVs 

Nomenclature 

Cell derived vesicles are principally viewed as derived from either endosomal or 

plasma membrane origin. Often, the term extracellular vesicle (EV) is used as a 

blanket term to describe all secreted vesicles, regardless of their size or origin. 

Whilst exosomes are described as the sEVs formed in MVBs, the term is almost 

universally used to describe sEVs in general, since there is currently no way to 

distinguish them from plasma membrane derived sEVs. Cells secrete other large 

vesicles >200nm which shed directly from the plasma membrane, as microvesicles 

(MVs) (Heijnen et al., 1999), also called ectosomes (Hess et al., 1999), apoptotic 

bodies have also been described (Hristov et al., 2004). The term exosome has also 

been used to describe these larger vesicles (Trams et al., 1981). As of 2014, 

exosome was the most popular term used to describe EVs (Lötvall et al., 2014). 

Recently, the International Society for Extracellular Vesicles (ISEV) set out 

guidelines in order to normalise the terminology used to name EVs (Théry et al., 

2018). Since it remains challenging to identify the exact origin of an isolated 

population of vesicles, the position paper proposes that EVs <200nm be termed 

small extracellular vesicles, and EVs >200nm large extracellular vesicles. Herein, 

the sEVs isolated and used in this study shall therefore be referred to as sEVs, not 

exosomes, as their exact subcellular origin cannot be determined. 

EV characterisation 

As studies with EVs typically require isolation of the vesicles from the cell 

supernatant/bodily fluid, characterisation of EV preparations should be carried 

out to assess the degree of isolation/purification which has been achieved. 

Demonstration of successful EV isolation increases the confidence in any results 

attributed to EVs (Lötvall et al., 2014).  

Evaluation of EV proteins is an important characterisation step, since many 

proteins are enriched in EVs (Raposo and Stoorvogel, 2013), and this can be shown 

by standard protein detection methods, such as Western blot, enzyme-linked 

immunosorbant assay (ELISA) and flow cytometry. Demonstrating absence of 

proteins not associated with EVs is often used as further evidence for separation of 
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the vesicle from the parent cell. Calnexin, an endoplasmic reticulum (ER) protein, 

is factor not typically found on EVs, because it is not present in MVBs or on the 

plasma membrane, and is not detectable by Western blot in high quality vesicle 

isolates (Wolfers et al., 2001). Presence of Calnexin for example, would indicate 

contamination of the isolates by intracellular constituents. Online databases are 

available, collating EV characterisation data from hundreds of primary papers 

(Kalra et al., 2012; Kim et al., 2015), although the quality of vesicle isolates varies 

considerably across studies, as do the methods of isolation and analysis. One 

should approach such databases with some caution with regards to the validity of 

some findings. 

Visualisation of vesicles by electron microscopy (EM) provides both evidence of 

vesicle shaped structures, and the presence/absence of large aggregated and non-

vesicular material. Previously, EM revealed sEVs had a cup shaped morphology 

and this was considered characteristic of the vesicles (Raposo et al., 1996). The cup 

shape was later found to be an artefact of the sample fixation procedure for EM, 

likely due to osmotic damage, and the true spherical shape of the vesicle is 

retained and can be seen when the sample is prepared using cryo-EM techniques 

(Conde-Vancells et al., 2008), or variations such as high pressure freezing. Using 

immuno-EM can reveal expression of EV related proteins (Théry et al., 2006). 

Whilst EM allows counting of both vesicle number and vesicle size within a given 

area, this can be biased since it only samples a relatively small number of vesicles 

and therefore may not be representative of the whole population. Nanoparticle 

tracking analysis (NTA) is an alternate method for quantifying the size and 

concentration of vesicles in solution (Dragovic et al., 2011; Soo et al., 2012). EVs 

exhibit Brownian motion in solution, and their velocity in suspension is related to 

their size. Using optical approaches, EVs in suspension are illuminated and scatter 

light. EV movement (seen by the movement of the scattered light) is tracked by the 

NTA software. NTA software generates data detailing the concentration of vesicles 

in solution, and the size of every detected particle which can be plotted as a 

histogram to provide a size distribution across the whole sample (Dragovic et al., 

2011; Soo et al., 2012). A limitation however of light scattering based techniques is 

particles <50nm in size are difficult to detect. These very small sized vesicles in a 

sample are therefore likely to be underestimated. Although conventional flow 
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cytometry is not sensitive enough to detect individual sEVs, high resolution 

alternatives are being explored to allow for sophisticated high throughput analysis 

of single vesicles (Nolte-'t Hoen et al., 2012). 

1.2.2. Biogenesis and composition 

Biogenesis and secretion 

EVs originate from MVBs and direct plasma membrane budding; secretion of EVs 

by cells has been described through both of these mechanisms (Muralidharan-

Chari et al., 2009), and there are likely other routes of manufacture of less well 

characterised vesicles, or vesicle-like structures. Although sEV generation through 

plasma membrane budding has been described (Booth et al., 2006), this biogenesis 

pathway is difficult to distinguish from the MVB mechanism, since MVBs 

eventually fuse with the plasma membrane to release their sEVs and so in effect 

become part of the plasma membrane themselves. Moreover, the most defined and 

discussed mechanism for sEV biogenesis is through MVB formation and release 

(Raposo and Stoorvogel, 2013).  

Following early endosome formation, late endosomes arise from endosome 

maturation (Stoorvogel et al., 1991). Here, MVBs are created, as intraluminal 

vesicles (ILVs) form from inward budding of the endosome membrane into the 

endosome lumen. MVBs often fuse with lysosomal compartments, however 

different subsets of MVBs are likely to exist (Colombo et al., 2014), and some 

subsets are destined to fuse with the plasma membrane to release these sEVs as 

exosomes, into the extracellular space (Raposo et al., 1996; Verweij et al., 2018).  

Generation of ILVs is largely driven by a large group of proteins from the 

endosomal sorting complex required for transport (ESCRT). The components of 

the ESCRT work together to: recruit endosomal membrane proteins and vesicle 

associated cargo, initiate inward budding of the membrane, and scission of the 

vesicle, forming an ILV (Hanson and Cashikar, 2012). Ceramide dependent ILV 

production independent of ESCRT proteins has also been described (Trajkovic et 

al., 2008), though the ESCRT independent mechanisms are less well defined. 

After ILV production, MVBs destined for the plasma membrane are transported 

under the regulation of Rab proteins (Stenmark, 2009). Secretion of sEVs can be 
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perturbed through knockdown of some of these proteins. sEV secretion by cells is 

inhibited by knockdown of Rab11b, Rab35 (Yeung et al., 2018), Rab27a and 

Rab27b (Bobrie et al., 2012b; Ostrowski et al., 2010). Inhibition of one of these Rab 

proteins may result in a partial reduction in sEV secretion, sEVs may be being 

secreted by MVBs regulated by different Rab proteins, or a significant number 

through plasma membrane budding. Yeung et al found that knockdown of Rab35, 

but not Rab11b in PCa cells rendered the remaining vesicles incapable of driving 

myofibroblast differentiation, suggesting that Rab proteins may regulate distinct 

sub-populations of vesicles (Yeung et al., 2018). Soluble N-ethylmaleimide-

sensitive factor attachment protein receptors (SNAREs) play a fundamental role in 

membrane-membrane fusion (Bonifacino and Glick, 2004), and are involved in 

fusion of the plasma membrane with lysosomes (Rao et al., 2004), and MVB-

plasma membrane fusion has been recently been shown to be dependent on the 

presence of SNAREs (Verweij et al., 2018).  

Cells do not all secrete sEVs to the same degree. Some cell types secrete more 

vesicles than others, MSCs have been shown to secrete more sEVs than THP1 or 

HEK cells (Yeo et al., 2013). Vesicle production is increased in cancer cells relative 

to their healthy counterparts (Yu et al., 2006), as well as in cells submitted to 

stress, such as heat (Clayton et al., 2005) or hypoxia (King et al., 2012). These data 

presenting changes in dynamics of vesicle output demonstrate that sEV biogenesis 

and secretion is a highly regulated process, and sEVs are secreted to suit the needs 

of the parent cell. 

Composition 

sEVs are formed of a lipid bilayer, similar in some respects to the parent cell 

plasma membrane. They are made up of diverse composition, with proteins and 

lipid containing molecules in the sEV membrane, and a number of cytosolic 

molecules in the vesicle lumen. Examples of sEV contents and their topography are 

represented graphically (figure 1.3) (Clayton, 2012). 

Early studies of EVs revealed a series of proteins expressed on their membranes 

(figure 1.3). The tetraspanins CD9 (Théry et al., 1999), CD63 and CD81 (Escola et 

al., 1998) are group of transmembrane proteins found on sEVs, and are often used 

as markers, however these are found on the cell surface and on MVs so cannot be 
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described as sEV specific markers. Other markers commonly found on sEVs are the 

ESCRT related proteins, ALIX and TSG101 (Théry et al., 2001), and the endosomal 

related lysosomal associated membrane proteins (LAMPs) LAMP1 (Wolfers et al., 

2001) and LAMP2 (Escola et al., 1998), evidence of the endosomal origin of sEVs. 

Major histocompatibility complex (MHC) class I and class II are cell surface 

proteins involved in antigen presentation, these are also expressed on sEV 

membranes (Lamparski et al., 2002; Raposo et al., 1996), uncovering a role for 

sEVs in immune regulation. In addition to proteins found in most sEV population, 

sEVs also express proteins specific to their parent cell. Epithelial cell derived sEVs 

carry the marker epithelial cell surface antigen (EpCAM) (Mathivanan et al., 2010; 

Runz et al., 2007). The aggressiveness of a cancer cell is also relevant in generating 

the sEV proteome, as Peinado et al showed when they found that malignant 

melanoma cells secrete sEVs expressing the oncogenic MET protein up to 20-fold 

higher than those from a non-malignant origin (Peinado et al., 2012). sEVs from 

cancer cells also carry integrins (Hoshino et al., 2015; Webber et al., 2014), a family 

of adhesion proteins overexpressed in cancer (Desgrosellier and Cheresh, 2010). 

Less is known about sEV lipids, though enrichment of a number of membrane 

components has been noted. sEVs are enriched in cholesterol, phosphatidylserine 

(PS), sphingomyelin and ceramide, the molecule implicated in an ESCRT 

independent MVB formation mechanism (Llorente et al., 2013; Trajkovic et al., 

2008; Wubbolts et al., 2003). Lipid composition, like protein content, varies 

between sEV of different cellular origin (Skotland et al., 2019). 

Within the sEV lumen are an assortment of encapsulated molecules (figure 1.3). 

One particular growing interest is in sEV nucleic acids. sEVs are known to carry 

messenger ribonucleic acid (mRNA) and micro RNA (miRNA) (Skog et al., 2008; 

Valadi et al., 2007). Interestingly, even mitochondrial DNA has been reported to be 

carried by sEVs (Sansone et al., 2017b). The ability of sEVs to transfer nucleic acids 

to recipient cells has made this field an area of increased attention. Enzymes are 

also present in sEVs. Calcein acetoxymethyl (Calcein AM) becomes fluorescent 

following hydrolysis by intracellular esterases (Weston and Parish, 1990); sEVs 

become fluorescent when treated with Calcein AM (Clayton et al., 2003; Gray et al., 

2015), indicating that esterases are incorporated into sEVs. Acetylcholinesterase, 

an enzyme of the neurotransmitter acetylcholine , was reported to be in EVs in an 
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early study (Johnstone et al., 1987). Importantly, these contents are protected 

within the vesicles; protein is protected from proteolytic cleavage (Klibi et al., 

2009) and RNA is protected from RNAse digestion (Keller et al., 2011), ensuring 

their stability in the extracellular space. This makes sEVs desirable as drug 

delivery vehicles, with artificial loading of sEVs with therapeutic cargo being 

explored (Vader et al., 2016). However, in cells infected with pathogens, sEV 

loading is hijacked, resulting in the addition of cargo such as bacterial toxins 

(Abrami et al., 2013) and virus miRNA (Pegtel et al., 2010).  
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Figure 1.3. sEV composition. Small extracellular vesicles (sEVs) are 
nanometre sized vesicles made up of a lipid bilayer, enriched with cholesterol, 
and phosphatidyl serine. Membrane associated proteins are present, such as 
tetraspanins (CD9/CD63/CD81), integrins, MHC molecules etc. The sEV also 
contains an assortment of intraluminal cargo, including various RNA species 
(adapted from Clayton, 2012). 
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1.2.3. Isolation of sEVs 

In early studies of sEVs, tissue culture supernatant underwent serial centrifugation 

steps to clear the fluid of cells and cellular debris, followed by high speed 

ultracentrifugation at 100,000g which is sufficient to pellet sEVs (Johnstone et al., 

1987). Further separation of sEVs from co-sedimented protein aggregates is 

achieved through floatation of the sEVs on a sucrose gradient. Raposo et al showed 

that sEVs float at a density of roughly 1.1-1.2g/mL (Raposo et al., 1996). A protocol 

involving ultracentrifugation of sEVs on a 30% sucrose Deuterium oxide (D2O), 

with a corresponding density of 1.21g/mL) was developed as a practical method 

for purification and concentration of sEVs from cultured dendritic cells (Lamparski 

et al., 2002). Combined with tangential flow filtration, the method allowed high 

quality sEV isolation whilst avoiding vesicle pelleting. Alternatively, sEV-

containing sucrose can be diluted and undergo a second ultracentrifugation step to 

pellet the sEVs and wash off the sucrose. Although now a widely used technique for 

sEV isolation, there are reports of diverse vesicle populations in these preparations 

(Bobrie et al., 2012a), as well as aggregation and possible damage of sEVs after 

high speed centrifugation (Linares et al., 2015), likely to affect the vesicle function. 

Furthermore, Alternative isolation methods have also been developed to attempt 

to optimise the isolation and higher purification of sEVs. 

Iodixanol has been proposed as an alternative to sucrose for density gradient 

ultracentrifugation (OptiprepTM), and has been shown to produce highly purified 

sEVs (Lobb et al., 2015; Van Deun et al., 2014). This protocol requires preparation 

of a step-gradient with multiple iodixanol densities laid on top of one another. 

Currently, there are a number of commercially available isolation kits available, 

designed to be fast and practical. ExoQuickTM and Total Exosome IsolationTM 

precipitation kits work by mixing the kits with sEV containing solutions, and 

leaving overnight, allowing sEVs to precipitate. These use a straightforward 

protocols, apparently yielding high quantities of sEVs, but have been reported to 

also precipitate contaminants (Van Deun et al., 2014). With prior knowledge of sEV 

surface protein expression, antibody coated beads can be used to capture sEVs 

(Clayton et al., 2001), which can then be analysed by flow cytometry, whilst 

attached to the beads. Whilst use of antibodies allows specific capture of the 

desired sEVs, sub-populations of sEVs negative for the target protein will be 
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excluded from analysis, therefore proteomic analysis associated with the beads 

may not necessarily be truly representative of the whole sEV population. 

Tangential flow filtration (TFF) is a method used to concentrate small particles in 

solution by pumping the particle containing fluid across a porous membrane with 

a small size cut off, thus removing excess fluid and retaining the particles. TFF has 

been used in the concentration of sEVs from MSCs (Haraszti et al., 2018), showing 

promise, though being a purely size based capture of vesicles this may also retain 

sEV sized contaminants. Plasma is a challenging fluid to isolate sEVs from because 

it is a very viscous fluid loaded with lipoproteins, which can be of similar size and 

density to sEVs (Théry et al., 2006), in this case ultracentrifugation in unsuitable 

for generating purified vesicles. In the absence of ultracentrifuge induced protein 

aggregate and vesicle aggregate formation, size exclusion chromatography (SEC) 

was reported to isolate sEVs whilst removing a significant portion of lipoproteins 

(Böing et al., 2014), though it now appears that a combination of SEC and a density 

gradient is required to remove lipoproteins (Karimi et al., 2018).  

There are now various methods for sEV isolation, and choosing a suitable protocol 

should depend upon what the sEVs are required for post-isolation and what type 

of fluid the sEV is to be isolated from. How attainable a high-quality preparation is 

in terms of the degree of concentration and purification achieved should also be 

considered. sEV purity can be calculated by measuring a preparations particle to 

protein (P:P) ratio, by measuring the concentration of vesicles in solution and 

dividing this by the protein concentration (Webber and Clayton, 2013). A high P:P 

ratio indicates a highly pure preparation of sEVs, though protein load per vesicle 

can be variable depending on the cell of origin. Alternatively, EV quality can be 

assessed by other measures, such as protein to lipid ratios (Osteikoetxea et al., 

2015). For any isolation procedure used, accurate reporting of methods is 

important for replication and study (Théry et al., 2018), and preparations of sEVs 

should be well characterised (see section 1.2.1.). 

1.2.4. Role of sEVs in cancer 

Since the discovery that sEVs from B lymphocytes act as antigen presenting 

vesicles, inducing responses in T cells (Raposo et al., 1996), sEVs have been found 

to play functional roles in a diverse range of settings in health and disease (Yáñez-
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Mó et al., 2015). Inhibition of sEV secretion in cancer cells reduces tumour growth 

(Bobrie et al., 2012b; Yeung et al., 2018), and the interactions of cancer sEVs with 

the tumour microenvironment has been well documented (Webber et al., 2015a).  

Cancer derived sEVs have a peculiar role in regulating the immune system, with a 

large amount of data supporting both immune activation by sEVs, but also 

immunosuppression (Barros et al., 2018). One such example of sEV mediated 

immune evasion is a marked decrease of NKG2D expression in natural killers (NK) 

cells and CD8+ T cells in response to stimulation by TGFβ1 positive cancer sEVs 

(Clayton et al., 2008), reducing the ability of the lymphocytes to kill. Apoptosis of 

tumour reactive CD8+ T cells induced by cancer sEV stimulation has also been 

noted (Wieckowski et al., 2009). In contrast, others have shown that cancer sEVs 

induce anti-tumour effects in CD8+ T cells through antigen presentation (Wolfers 

et al., 2001), and they can promote tumour killing function in NK cells (Gastpar et 

al., 2005). The contrasting roles of cancer sEVs in immune regulation may 

underline the diverse phenotypes exhibited by sEVs secreted by different 

cancers/cell line sources. More research needs to be conducted to better 

understand this relationship between cancer sEV and the immune response to 

cancer.  

Tumour growth is reliant upon angiogenesis to meet its needs (Holmgren et al., 

1995). In tumours, sEV secretion is known to be increased during hypoxia, 

regulated by hypoxia-inducible factor (HIF) expression (King et al., 2012). Indeed, 

cancer sEVs are now believed to be involved in driving tumour supporting 

angiogenesis through direct endothelial cell stimulation, and through activation of 

vessel supporting cells. Many groups have shown evidence of endothelial cell 

activation and proliferation, dependent upon sEV surface markers (Nazarenko et 

al., 2010), and through delivery of angiogenic proteins (Sheldon et al., 2010; Skog 

et al., 2008) and mRNA (Hong et al., 2009). In addition, endothelial activation is 

also achieved through stimulation by TME cells themselves stimulated by cancer 

sEVs. TAMS (Bardi et al., 2018) and tumour associated fibroblasts (Webber et al., 

2015b) notably secrete angiogenic factors following cancer sEV induction. The 

clear part cancer sEVs play in promoting angiogenesis make this an attractive 

target for therapy (Ludwig and Whiteside, 2018).  
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Away from the primary tumour site, cancer sEVs are being unmasked as drivers of 

pre-metastatic niche formation. In concurrence with the “seed and soil” theory, 

there is data indicating that cancers metastasise to areas prepared by sEVs. 

Melanoma sEVs prepare distant sites for metastasis, through education of bone 

marrow progenitor cells and promoting vascular leakiness in lung, bone and brain 

(Peinado et al., 2012), enabling invasion of cancer cells; similarly, this is seen in 

lymph nodes (Hood et al., 2011). Interestingly, the organotropism of the sEV itself 

appears to be determined by its expression of specific integrins on the sEV surface 

(Hoshino et al., 2015), making it attracted to certain organs. These data underline 

how important cancer sEVs are, not just within the TME, but beyond at distant 

sites. 

Besides the effect cancer sEVs have on the TME, cancer cells can be altered by 

other cells in the TME through sEV stimulation. sEVs from MSC cells can increase 

tumour growth through induction of expression of angiogenic factors in the 

tumour cells (Zhu et al., 2012). On the other hand, MSC derived MVs are shown to 

inhibit tumour growth (Bruno et al., 2013), pointing to potential differences 

between actions of EVs of distinct sizes and origins. Fibroblast derived sEVs 

activate NOTCH3 signalling pathways in breast cancer cells, leading to expansion 

of therapy resistant cancer cells (Boelens et al., 2014). sEV mediated drug 

resistance is another phenomenon within the TME, which occurs through various 

mechanism, not just stromal cell to cancer cell directed. Cisplatin treated ovarian 

cancer cells increase resistance in bystander cells in a sEV dependent manner 

(Samuel et al., 2018). Remarkably, cisplatin treated cells secrete sEVs loaded with 

cisplatin, perhaps as a protective mechanism (Safaei et al., 2005). 

1.2.5. Cancer sEVs induce myofibroblast differentiation 

The presence of myofibroblasts in solid cancers, and their role in tumour growth 

and survival has been known for many years (Olumi et al., 1999; Rønnov-Jessen 

and Petersen, 1993; Tuxhorn et al., 2001). More recently, sEVs from PCa cells were 

found to initiate myofibroblast differentiation in fibroblasts (Webber et al., 2010). 

Since then, this sEV driven phenotype has been described in various solid cancers, 

with sEVs stimulating cells of distinct origins (Atay et al., 2014; Cho et al., 2012; 

Chowdhury et al., 2015; Gu et al., 2012).  
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Following the finding that TGFβ1 not only existed in a soluble form, but was also 

bound the surface of DU145 (PCa cell line) sEVs (Clayton et al., 2007), and that 

TGFβ1 had a known role in myofibroblast differentiation (Rønnov-Jessen and 

Petersen, 1993), the distinctions between sTGFβ1 and sEV associated TGFβ1 in 

myofibroblast differentiation was explored. PCa sEV induced fibroblast to 

myofibroblast differentiation is dependent upon TGFβ1, which induces SMAD 

signalling (Webber et al., 2010). sEVs from a cell line considered less malignant 

(LNCaPs) fail to drive differentiation, these cells also express less TGFβ1 than 

DU145 cells (Webber et al., 2010). Differentiation could also be inhibited through 

TGFβ1 blockade. Whilst a TGFβ1 dependent process, the growth factor was found 

to be tethered to the vesicles by the Heparan sulphate proteoglycan (HSPG) 

Betaglycan, and this must remain intact for differentiation to occur. In an in vivo 

model with co-administered PCa cells and fibroblast, knockdown of Rab27a 

(thereby inhibiting sEV secretion) in the cancer cells inhibited tumour growth, 

demonstrating that the myofibroblasts generated by the sEVs are key for cancer 

progression (Webber et al., 2015b). sEV treated fibroblasts express the typical 

αSMA fibres, but in addition to this they also secrete various growth factors, 

including HGF and VEGF, meaning stimulated fibroblast conditioned media was 

capable of driving angiogenesis in a vessel formation assay (Webber et al., 2015b). 

Though sEV stimulated fibroblasts enhance tumour growth, and drive 

angiogenesis, these processes, and secretion of growth factors by the fibroblast can 

be attenuated by TGFβ1 blockade, however sTGFβ1 alone cannot support vessel 

formation, and actually inhibits tumour growth in vivo (Webber et al., 2015b).  

Myofibroblast differentiation is TGFβ1 dependent, but since the sEV is required to 

drive the disease promoting phenotype seen in cancer, the sEV must be interacting 

with the fibroblast (or other cell type) in a distinct manner to sTGFβ1. sEV 

mediated myofibroblast differentiation appears to be a significant step in the 

progression of cancer, therefore uncovering the mechanism underlying the 

interaction is desirable. The cell surface interaction of the recipient cell with the 

HSPG bound TGFβ1 is important in this process. sEVs are also known to be taken 

up by recipient cells, and can deliver functional cargo to them (Valadi et al., 2007). 

An understanding of the uptake mechanism of PCa sEVs by fibroblasts may help 
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elucidate their role in myofibroblast differentiation and may also provide 

therapeutic targets to attenuate this differentiation stimulus. 

 

1.3. Cellular uptake and intracellular fate of sEVs 

The first evidence of a functional role for sEVs came in the form of a surface 

interaction between sEVs and T cells (Raposo et al., 1996). But since the discovery 

that sEVs are internalised by cells (Morelli et al., 2004) and that they can contain 

nucleic acids which is delivered to cells (Valadi et al., 2007), we now know that 

sEVs can communicate with cells through delivery of their cargo, and have begun 

to elucidate the mechanisms by which they are taken up and processed. 

1.3.1. Evidence for delivery of sEV cargo 

Since mRNA was shown to be transferred from sEVs to recipient cells (Valadi et al., 

2007), there has been mounting evidence demonstrating that sEV derived nucleic 

acids can be delivered to cells, affecting gene expression. In several cancer models, 

sEV mediated interactions with cells implicate translation of sEV derived mRNA. 

Skog et al showed translation of a Glioblastoma sEV reporter mRNA in endothelial 

cells (Skog et al., 2008); Glioblastoma sEVs contain mRNA transcripts linked to 

angiogenesis, and these sEVs elicit an angiogenic response in endothelial cells, 

presenting the possibility that tumour promoting phenotypic changes in cells of 

the TME could be brought on through transfer of mRNA transcripts from cancer 

cells to non-cancerous cells. Indeed, other groups have reported on the phenotypic 

changes in cells potentially driven through sEV mRNA (Hong et al., 2009; 

Nazarenko et al., 2010). miRNA associated with sEVs are also reported for their 

role in directing phenotypic change in cells treated with sEVs (Donnarumma et al., 

2017; Fabbri et al., 2012; Montecalvo et al., 2012; Valadi et al., 2007). Conveyance 

of the miRNA function however is reported through different mechanisms. Post-

transcriptional regulation by miRNAs, the conventional miRNA function has been 

described in sEV miRNAs (Tian et al., 2014a; Zhou et al., 2014). In contrast, sEV 

miR-21/29a induced inflammatory responses in TAMs through toll-like receptor 8 

binding (Fabbri et al., 2012), revealing an alternative mechanism for sEV miRNA 

action, and perhaps through a distinct delivery route. In parallel with the 
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emergence of sEV-miRNA function in disease, these nucleic acids are also being 

investigated as potential biomarkers (Salehi and Sharifi, 2018). 

Another mechanism for functional delivery of sEV cargo is direct protein transfer 

to cells. PCa cells highly express the integrin αvβ6, this integrin is packaged into 

sEVs, and can be transferred to αvβ6 negative cells, localising to the cell surface 

and promoting cell migration (Fedele et al., 2015). Transfer of the epidermal 

growth factor receptor vIII (EGFRvIII) from vesicles to cells has also been 

described, the oncogenic activity of the receptor is also transferred to the cell (Al-

Nedawi et al., 2008) Promotion of tumorigenesis through sEV protein transfer has 

been reported by various groups (Peinado et al., 2012; Singh et al., 2016; Skog et 

al., 2008). 

Infections can lead to the hijacking of sEV loading, sEVs secreted by infected cells 

can deliver this pathogenic cargo to recipient cells. Epstein-Barr virus infected cells 

load their sEVs with viral miRNA and uptake of these sEVs by non-infected cells 

leads to miRNA mediated gene down-regulation (Pegtel et al., 2010). Transfer of 

bacterial toxins by sEVs has also been described (Abrami et al., 2013). 

As the functional role of sEV cargo has become clearer in recent years, the idea to 

load sEVs with therapeutic molecules has become more prevalent. Small 

interfering RNA (siRNA) is a small RNA molecule suitable for sEV loading. Multiple 

groups have artificially loaded sEVs with siRNAs and demonstrated successful 

knockdowns in recipient cells (Alvarez-Erviti et al., 2011; Ohno et al., 2013; Pan et 

al., 2012), as well as demonstrate the ability of the sEV to penetrate biological 

obstacles such as the blood brain barrier (Alvarez-Erviti et al., 2011). 

We do not yet have a good comprehension of how all these sEV contents can 

become functional in recipient cells, especially with extracellular and intracellular 

barriers to overcome. Endocytosis of sEVs and their processing has been described 

(Morelli et al., 2004), pointing to machinery which may be used by the sEVs to 

deliver their cargo. Understanding endocytosis and intracellular processing of sEVs 

may provide information on how sEVs deliver their contents to recipient cells. This 

knowledge will give us a greater comprehension of how sEVs convey their 

functions and help identify therapeutic targets in disease. 
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1.3.2. Endocytosis 

Endocytosis is an important cellular process, it involves the internalisation of 

macromolecules which cannot pass through the plasma membrane. In simplistic 

terms, the plasma membrane invaginates inwards and pinches off, forming an 

internalised vesicle, termed endosome, containing any material taken up with 

extracellular fluid and the proteins present on the plasma membrane. In reality, 

endocytosis is a series of processes and can occur through various machineries 

(figure 1.4) (Mayor and Pagano, 2007) 

Overview of endocytic pathways 

Each endocytic route is defined by the proteins involved and the complexes 

formed. Some internalised materials are specific to an endocytic route, and some 

pathways are only seen in specialised cell types. 

Phagocytosis is a receptor mediated means of internalisation in which the particle 

taken in is engulfed by plasma membrane extensions, this material is destined for 

degrading phagosomes (Swanson, 2008). This uptake pathway is dependent on 

PI3K activity, which can be blocked with Wortmannin, thus preventing 

phagocytosis (Wymann et al., 1996). Only specialised cells, namely macrophages, 

monocytes and neutrophils are capable of genuine phagocytosis, and this is 

dependent on actin polymerisation (Doherty and McMahon, 2009). 

Macropinocytosis also involves large membrane protrusions into the extracellular 

space, engulfing material with the extracellular fluid, although macropinocytosis 

doesn’t require ligand binding (Doherty and McMahon, 2009). PAK1 is one of key 

regulators of macropinocytosis (Dharmawardhane et al., 2000), and Na+/H+ 

exchange is also required; amilorides, potent Na+/H+ exchange inhibitors can block 

macropinocytosis (Ivanov, 2008). 

Clathrin-mediated endocytosis (CME) involves internalisation of molecules 

through assembly of clathrin molecules in lattices, invaginating the plasma 

membrane and forming clathrin coated pits, pinching off to produce a clathrin 

coated vesicle, finally the vesicle is uncoated and deposits its contents into an early 

endosome (Kirchhausen, 2000). This is a receptor driven form of uptake. Like 

phagocytosis and macropinocytosis, CME is also dependent on actin 

polymerisation (Lamaze et al., 1997). Formation of the clathrin coated vesicle is 
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dependent on its scission from the plasma membrane by dynamin (Marks et al., 

2001). Dynamin is also involved in clathrin independent endocytosis, notably in 

caveolin dependent endocytosis (CDE) (Nabi and Le, 2003). In CDE, intracellular 

vesicles are formed without clathrin coat forming lattices, instead there are 

cholesterol rich lipid rafts and caveolin proteins, forming caveolae (Doherty and 

McMahon, 2009). Inhibition of uptake dependent on lipid rafts is achievable 

through depletion of cholesterol (Parton and Simons, 2007). Lipid rafts are regions 

of the plasma membrane enriched with receptors and sphingolipids, and are 

associated with caveolin-1 (Cav1) in membrane invaginations, or oligomerised 

flotillin domains (Doherty and McMahon, 2009). Flotillin-1 (Flot1) containing lipid 

rafts are capable of endocytosis, independent of both clathrin and caveolin, and 

these are associated with endocytosis of glycosylphosphatidylinositol (GPI)-linked 

proteins (Glebov et al., 2006). 

Other, less well-defined uptake machineries are also present. The clathrin-

independent carrier (CLIC)/GPI enriched early endosomal compartment (GEEC)  

uptake pathway is a peculiar uptake pathway identified by its tubular 

invaginations in the plasma membrane (Kirkham et al., 2005), and its regulation by 

cdc42 (Chadda et al., 2007). CME can compensate for CLIC/GEEC interruption 

(Sabharanjak et al., 2002), masking the role of CLIC/GEEC in endocytosis. Further 

study on the more unknown of the uptake pathways will help us understand their 

specific role in endocytosis. 
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Figure 1.4. Mechanisms of endocytosis. Overview of the routes of 
endocytosis. Pathways involve distinct machinery to endocytose their material, 
typically delivering their contents to early endosomes. Large engulfment of 
extracellular material is possible through macropinocytosis and phagocytosis 
(in specialised cells). Dynamin dependent mechanisms exist, as Clathrin or 
Caveolin directed endocytosis. There are also less well characterised pathways, 
such as the CLIC/GEEC route for example (Adapted from Mayor and Pagano, 
2007). 
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Determining the route of endocytosis 

Traditionally, the route of endocytosis for a given internalised material is 

determined through pharmacological inhibition of specific pathways to identify the 

relevant route. Actin polymerisation is important for multiple endocytic pathways, 

and is inhibited by Cytochalasin D (Flanagan and Lin, 1980). Inhibition of a protein 

vital in so many endocytic pathways is limited in that it cannot identify a specific 

route of endocytosis. Dynamin function can be abrogated with the inhibitor 

Dynasore (Newton et al., 2006). Dynamin is known to be involved in both clathrin 

dependent and independent uptake (Marks et al., 2001; Nabi and Le, 2003). 

Inhibitors such as Dynasore should not be used to prove the role of a single 

pathway in uptake, unless corroborating data can also be provided. Many 

pharmacological inhibitors suffer from a lack of specificity for distinct endocytic 

pathways (Ivanov, 2008; Vercauteren et al., 2010), furthermore these inhibitors 

can be extremely cytotoxic (Vercauteren et al., 2010), but this is rarely considered. 

Knockdown of known regulators of specific endocytic pathways has been explored 

more recently, for determining the route of uptake (Al-Soraj et al., 2010; Payne et 

al., 2007; Vercauteren et al., 2011). siRNA targeted against clathrin heavy chain 

(CHC) will inhibit uptake of the CME specific transferrin (Tf), whereas this uptake 

is unaffected in cells treated with a Cav1 knockdown (Vercauteren et al., 2011), 

demonstrating the specificity of siRNAs, which is not attainable with an inhibitor 

such as Dynasore. Alternatively, generation of cell lines expressing fluorescent 

variants of endocytic regulators can define uptake route through co-localisation 

studies of internalised material with a fluorescent endocytic protein, e.g. Cav1 

(Nanbo et al., 2013; Svensson et al., 2013).  

Care should be taken when identifying endocytic pathways based on 

pharmacological inhibition alone, and additional studies with alternative methods 

would be beneficial. Endocytosis, through the pathways discussed, results in 

extracellular material being internalised by the cell, subsequently followed by 

intracellular sorting, and distribution to distinct cellular compartments. 
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1.3.3. Intracellular trafficking 

Following uptake, internalised materials transit the endosomal system. The 

endosomal tract is formed of a series of maturing endosomes, identifiable by their 

expression of particular proteins. Sorting of the endocytic cargo in this system 

determines its fate (figure 1.5) (Huotari and Helenius, 2011). 

Internalisation of material is quickly followed by fusion of the primary endosome 

with the early endosome (EE), the sorting centre at the cell periphery (Huotari and 

Helenius, 2011). From here endocytic cargo can be sorted and sent to the golgi 

apparatus, to lysosomes for degradation, or to recycling endosomes for exocytosis. 

The majority of internalised cargo is recycled back to the cell surface, transferrin 

(Tf) is a probe used for cargo sorted to recycling endosomes (Huotari and 

Helenius, 2011). EEs are slightly acidic (6.8-5.9) relative to the extracellular space 

(Maxfield and Yamashiro, 1987), this acidity increases in maturing endosomes 

bound for lysosomes (6.0-4.9), creating a better environment for hydrolytic 

reactions, and receptor-ligand decoupling (Huotari and Helenius, 2011). The 

family of Rab GTPases are key regulators in endosomal trafficking and maturation. 

Rab proteins are therefore used as markers to identify endosomes, Rab5 being a 

marker associated with the EE (Christoforidis et al., 1999). Endosomes move 

around the cell along microtubules (Nielsen et al., 1999), in a highly regulated 

system, although sorting of internalised cargo is not a particularly efficient process, 

as cargo taken up at the same time will gradually arrive at its destination over the 

course of hours (Kielian et al., 1986). 

In maturing endosomes, Rab5, characteristic of the EE, is switched for Rab7 (Rink 

et al., 2005), these endosomes are now referred to as late endosomes (LEs). LEs 

are further characterised by expression of LAMP1, the presence of ILVs, plus the 

endosome lumen now contains various hydrolase enzymes (Huotari and Helenius, 

2011). For LEs that do not become plasma membrane bound MVBs, they typically 

transfer their cargo to lysosomes. LEs can deliver their contents to lysosomes 

through membrane fusion (Luzio et al., 2007), thus it can be difficult distinguishing 

LEs from lysosomes, as they share many of the same proteins, notably LAMP1. In 

lysosomes, the pH can reach as low as 4.5 (Maxfield and Yamashiro, 1987), making 

it suitable for enzymatic degradation of the contents. Probes known to traffic to 
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lysosomes can be useful tools for determination of intracellular location of 

internalised materials. Dextran (Dx) is one such probe taken up and trafficked to 

lysosomes (Baravalle et al., 2005). Studying the effect of lysosomal localisation on a 

given cargo can be achieved through use of agents that raise the endosomal pH, 

impeding lysosomal function. The bafilomycins are a group of inhibitors which 

block V-ATPase activity, abrogating proton pumping thus raising the pH of the 

lysosome (Bowman et al., 1988), however these inhibitors also impair EE to LE 

cargo transfer (Baravalle et al., 2005) meaning results from use of these inhibitors 

can be challenging to interpret. 

Endosomal trafficking is a complex process in which the cell decides the fate of 

internalised cargo. Pinpointing the destination of this cargo can provide evidence 

of whether it is degraded, but also how it may deliver information and educate the 

cell, through manipulation of the endosome system. In the uptake of viruses, 

delivery of viral genomes to the cell nucleus through endosomal escape is a well 

characterised process (Mudhakir and Harashima, 2009), which can occur through 

various mechanisms, including endosome membrane fusion and endosome 

disintegration. Studying sEV trafficking through this system may reveal the means 

of sEV cargo delivery and resulting phenotypic change in the cell. 
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Figure 1.5. The endosomal system. Following endocytosis, cargo is typically 
delivered to early endosomes. Here cargo is sorted, recycling of material to the 
plasma membrane occurs, and endosome maturation ensues, in which early 
endosomes become late endosomes. Much of the material in the late endosome 
is bound for lysosomes, where degradation of the cargo takes place. Endosomal 
compartments can be characterised by the expression of particular proteins. 
Transport of proteins between the golgi network and the endosomal system 
also takes place (Adapted from Huotari and Helenius, 2011).  
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1.3.4. Tools to monitor sEV uptake 

Visualising and tracking sEVs can clarify how they are taken up and traffic through 

cells, which is key to understanding the delivery of their contents, giving insights 

into their functions and how they may be employed as drug delivery vehicles or 

targeted therapeutically. The mechanisms behind these processes are now being 

elucidated through use of techniques to fluorescently label sEVs and monitor their 

interactions with cells. Typically, uptake of fluorescently labelled sEVs is 

monitored by fluorescence microscopy, the fluorescent signal can also be detected 

by flow cytometry (Morelli et al., 2004). There is an array of fluorescent dyes with 

distinct properties allowing them to bind to different parts of the vesicle.  

As the quickest and simplest technique for labelling, addition of exogenous 

artificial dyes to sEVs is very widely used. Lipophilic dyes remain the most 

common. Lipophilic dyes insert themselves into the sEV membrane, and their 

fluorescent moiety allows their detection following uptake of the vesicle (Morelli et 

al., 2004), PKH dyes are widely used lipophilic dyes which are live cell stains, but 

have been used in a large number of sEV uptake studies (Christianson et al., 2013; 

Fedele et al., 2015; Fitzner et al., 2011; Frühbeis et al., 2013; Ohno et al., 2013; 

Pegtel et al., 2010; Peinado et al., 2012; Ronquist et al., 2016; Svensson et al., 

2013). Other lipophilic dyes used to label sEVs include the carbocyanine dyes DiI 

(Nanbo et al., 2013), DiD (Tian et al., 2010) and DiO/DiR (Tian et al., 2014b), as 

well as octadecyl rhodamine B chloride (R18) (Pan et al., 2012) and FM4-64 (Wolf 

et al., 2015). Whilst labelling sEVs with lipophilic dyes is a straight forward 

procedure, usually involving simple incubation of dye with vesicle, their chemistry 

can make them problematic as sEV labels. PKH and DiI can form 

micelles/aggregates of size similar to sEVs (Morales-Kastresana et al., 2017; Pužar 

Dominkuš et al., 2018), meaning these dyes can give false-positive signals when 

used to detect sEV uptake. Floatation of PKH-sEVs may be sufficient to rid the sEVs 

of contaminating PKH particles (Pužar Dominkuš et al., 2018). Non-lipophilic dye 

alternatives may be more suitable for sEV labelling if they do not spontaneously 

form large fluorescent particles. 

Carboxyfluorescein diacetate succinimidyl ester (CFDA-SE, also referred to as 

CFSE) is a dye which binds amine groups on proteins and has been used in sEV 
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labelling (Longatti et al., 2018; Morales-Kastresana et al., 2017; Pospichalova et al., 

2015). Acetate groups on the CFSE molecule make it membrane permeable, 

although intracellular esterases cleave these groups decreasing permeability 

(Parish, 1999), therefore CFSE likely binds proteins on the sEV surface and 

proteins on the intraluminal membrane, with the dye being trapped within the sEV 

in the presence of intraluminal esterases. In contrast to the lipophilic dyes, CFSE 

does not form nano-particulate aggregates (Morales-Kastresana et al., 2017), 

though as a protein binding dye will bind to contaminating proteins in a sEV 

preparation. pHrodo is a protein binding dye with a twist. The fluorescent moiety 

in pHrodo becomes fluorescent at a low pH, indicative of phagosome pH, this has 

been used to confirm that sEVs could be taken up by phagocytosis in dendritic cells 

(Montecalvo et al., 2012). Dyes such as pHrodo can provide extra information on 

the intracellular location of sEVs following uptake. The presence of nucleic acids in 

sEVs has made them a target for fluorescence labelling, though to a lesser extent. 

SYTO 13, a membrane permeable compound which becomes highly fluorescent 

when bound to DNA/RNA enables detection of larger “microparticles” 

fluorescently (Ullal et al., 2010). SYTO RNASelect is more selective for RNA 

binding, and its delivery by sEVs to recipient cells has been demonstrated (Li et al., 

2014; Singh et al., 2015), however SYTO RNASelect labelled sEVs themselves were 

undetectable by flow cytometry whereas PKH or CFSE labelled sEVs could be 

detected (Morales-Kastresana et al., 2017), which may be due to the strength of the 

SYTO RNASelect dye signal, or due to lack of RNA in the vesicle. Calcein AM is 

another membrane permeable dye, described in section 1.2.2, its fluorescence in 

sEVs shows it can permeate the membrane and be hydrolysed by intraluminal 

esterases (Clayton et al., 2003; Gray et al., 2015). Calcein labelled sEVs have rarely 

been used for cellular uptake studies (Samaeekia et al., 2018).  

Stable cell lines genetically engineered to express a fluorescent molecule tagged to 

a protein known to be enriched on sEVs is a common method to produce 

fluorescent sEVs. Whilst addition of exogenous dyes to sEVs requires the isolation 

of the sEVs, or post-labelling purification to remove contaminants, cell lines 

secreting endogenously fluorescent sEVs circumvent this, making this method 

suitable for cell co-culture or in vivo studies where sEV isolation is not possible. 

Fluorescent sEV producing cell lines have also been utilised for monitoring sEV 
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secretion (Verweij et al., 2018). Proteins which are conserved and highly 

expressed on most sEV are ideal for attachment of fluorescent proteins. CD63, a 

sEV expressed tetraspanin is often targeted. sEVs produced from CD63-GFP cell 

lines have been used in cellular uptake studies (Heusermann et al., 2016; 

Koumangoye et al., 2011; Maida et al., 2016). This labelling method has some clear 

advantages over the addition of exogenous dyes, but it is not without its 

limitations. In generating these cell lines, it should be taken into account that 

overexpression of sEV proteins may alter the function of the sEV, sEV sub-

populations which don’t express the target protein will not be labelled and sEV 

output itself may be altered in the parent cell. 

Since sEV contents have distinct intracellular fates (section 1.3.1), the cellular 

uptake and trafficking of a sEV dye will likely depend on which part of the vesicle 

they are conjugated to. Fluorescent sEVs have been a useful tool in clarifying how 

sEVs are taken up by recipient cells.  

1.3.5. Endocytosis of sEVs 

Addition of sEVs to cells results in the uptake of the sEVs, in a time dependent 

manner, with fluorescent sEVs appearing as punctate dots within the cell (Tian et 

al., 2010). Internalisation of sEVs by cells can be confirmed in several ways. 

Capturing z-stacks of fluorescent sEV treated cells, generating a 3D image of the 

cell, reveals that sEVs are within the cell, and not exclusively bound to the plasma 

membrane (Lai et al., 2015). Co-localisation of sEVs with fluorescently stained 

endosomal compartments is further evidence that sEVs can be taken up (Morelli et 

al., 2004). Acid stripping or trypsinisation of the cell surface can remove surface 

bound sEVs (Feng et al., 2010; Franzen et al., 2014). sEV uptake is inhibited by 

reducing the temperature during treatment of the cell (Franzen et al., 2014; 

Morelli et al., 2004), indicating the uptake process is an active energy requiring 

one. Endocytosis is possible through various mechanisms (Doherty and McMahon, 

2009), and through many studies, sEV uptake has been reported in these 

mechanisms (Mulcahy et al., 2014).  

Though phagocytosis is known to engulf large bodies such as bacteria or cell 

fragments, sEV uptake has been reported through this mechanism in phagocytic 

cells (Feng et al., 2010; Montecalvo et al., 2012). Similarly to phagocytosis, 
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macropinocytosis can engulf vesicles through membrane extensions into the 

extracellular space (Fitzner et al., 2011), however macropinocytosis is not a 

mechanism in specialised cells only and has been implicated in sEV uptake in 

numerous cell types (Costa Verdera et al., 2017; Nakase et al., 2015; Sagar et al., 

2016). Other mechanisms of endocytosis have also been reported in sEV uptake. 

Both CME (Escrevente et al., 2011; Feng et al., 2010), and CDE (Nanbo et al., 2013) 

are involved in sEV uptake. Interestingly, knockdown, of Cav1 (a CDE related 

protein), actually increased sEV uptake in several cell lines (Svensson et al., 2013), 

maybe causing an upregulation of an alternative uptake pathway. Here, sEVs co-

localised with the lipid raft marker Flotillin 1, showing a lipid raft-based uptake 

independent of caveolin (Svensson et al., 2013). Furthermore, sEV uptake is 

inhibited by disruption of lipid rafts through cholesterol depletion (Plebanek et al., 

2015; Svensson et al., 2013). In the aforementioned studies on sEV endocytosis, 

this process has been described with diverse cancer model systems: endocytosis of 

cancer derived sEVs by the same cell type, in ovarian (Escrevente et al., 2011) and 

breast (Koumangoye et al., 2011) cancers, and monkey and mouse fibroblast cell 

lines to study internalisation of Glioblastoma sEVs (Svensson et al., 2013). 

However, the internalisation process of cancer derived sEVs has rarely been 

studied within the context of biologically relevant human cells present in the 

tumour microenvironment which are known to become activated by cancer 

derived sEVs. Pharmacological inhibition is frequently used to inhibit sEV uptake 

(Mulcahy et al., 2014). As mentioned in section 1.3.2, pharmacological inhibitors of 

uptake often do not specifically abrogate one endocytic mechanism. siRNAs 

downregulating specific endocytic regulators can help pinpoint routes of uptake 

for sEVs (Costa Verdera et al., 2017; Nanbo et al., 2013; Roberts-Dalton et al., 

2017).  

The protein profile of the sEV seems to be relevant for determining its cellular 

uptake, since protein stripping of the sEV surface inhibits internalisation 

(Escrevente et al., 2011). sEVs from a malignant cell line are more readily taken up 

by cells than those from a less aggressive cell line (Lázaro-Ibáñez et al., 2017), 

likely due to the difference in sEV surface proteins. On the other hand, malignant 

cell take up sEVs to a greater extent than less malignant cells (Parolini et al., 2009); 

in the central nervous system, oligodendrocyte sEVs are internalised by microglia 
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but less so in other local cell types (Fitzner et al., 2011), showing cell specificity for 

sEV uptake. These data indicate that the profile of the recipient cell surface is also 

important for determining uptake of sEVs. Integrins are a family of cell surface 

receptors which form heterodimers of α and β subunits (Humphries et al., 2006), 

these transmembrane proteins have been implicated in the uptake of sEVs, though 

the mechanisms are unclear. Obstruction of target cell integrins can inhibit sEV 

uptake, as can blockade of an integrin ligand (ICAM-1) on the sEV surface (Morelli 

et al., 2004), revealing a role for integrin-ligand binding in sEV uptake. sEVs 

containing the αvβ3 integrin counter receptor ADAM15 can block integrin 

mediated cell adhesion to matrix components, demonstrating that integrin 

mediated sEV-cell adhesion also plays functional roles other than aiding sEV 

uptake (Lee et al., 2012). Integrins themselves are also present on the sEV surface, 

and appear to be relevant in the adhesion to and uptake by cells (Wang et al., 

2015). sEVs have also been shown to bind matrix components such as collagen and 

fibronectin in an integrin dependent manner (Clayton et al., 2004), perhaps 

enabling sEV capture by cells moving through the matrix, or by blocking cell 

migration. We do not yet fully understand the relationship between the sEV and 

recipient cell surfaces and how route of uptake is determined. Elucidating the 

mechanisms underlying cell specificity and route of uptake for sEVs will allow 

more accurate therapeutic targeting, but will also aid the development of sEV-

based delivery vectors. 

1.3.6. Intracellular fate of sEVs 

Post-endocytosis, sEVs have been tracked within cells, to determine their 

intracellular fate, and monitor the delivery of their complex cargo. Parolini et al 

reported that sEV fusion can occur at the plasma membrane (Parolini et al., 2009). 

This fusion would release sEV cargo, notably nucleic acids, into the cytosol of the 

cell directly, and sEV proteins could be incorporated into the plasma membrane. 

However, EM investigations reveal sEVs intact in recipient cells within endocytic 

vesicles (Heusermann et al., 2016; Morelli et al., 2004; Svensson et al., 2013). 

Plasma membrane fusion is not an unreasonable theory, since sEV formation has 

been described through direct plasma membrane budding (Booth et al., 2006), 

though the mounting evidence showing uptake of sEVs would suggest uptake is 

more common than fusion. 
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sEVs in endocytic vesicles can be tracked microscopically. These endosomes are 

not stationary, but traffic through the cells along microtubules, seen in monkey 

kidney fibroblasts (Svensson et al., 2013). sEVs immediately co-localise with 

markers of early endosomes, demonstrated in various model systems with 

different recipient cells such as ovarian cancer cells (Escrevente et al., 2011), 

breast cancer cells (Koumangoye et al., 2011) and nasopharyngeal carcinoma cells 

(Nanbo et al., 2013), with this co-localisation decreasing after around 40 minutes 

(Nanbo et al., 2013), suggesting endosomal maturation as the sEVs are sorted into 

late endosomes. Late endosome marker Rab7 does indeed co-localise with sEVs 

(Nanbo et al., 2013), and sEVs were found to co-localise with lysosome marker 

LAMP1 in other studies (Escrevente et al., 2011; Koumangoye et al., 2011). sEVs 

are not transferred to organelles in the recipient cell such as the Golgi apparatus or 

ER (Escrevente et al., 2011; Tian et al., 2013). However, ER is known to wrap 

around endosomes (Friedman et al., 2013), and sEV containing endosomes do 

transit closely to the ER (Heusermann et al., 2016). Co-localisation of sEVs with 

CD71, a marker for recycling endosomes has also been reported, occurring 4 hours 

post-uptake, after co-localising with LAMP1 positive compartments (Koumangoye 

et al., 2011). Most studies reporting of sEV trafficking have sEVs reaching 

lysosomes, though reports of close interactions with ER and movement to 

recycling endosomes suggest there is some sorting of sEVs and potential material 

exchange in this system. There are also reports of blood brain barrier passage by 

sEVs (Alvarez-Erviti et al., 2011; Chen et al., 2016), and it is proposed that sEVs 

may cross this barrier through transcytosis, though there is little evidence so far to 

support transcytosis of sEVs. 

How the sEV unloads its cargo, making it available to the recipient cell is poorly 

understood. mRNA can be translated in recipient cells within an hour after uptake 

(Lai et al., 2015), and sEV delivered luciferin is catalysed within minutes of sEV 

uptake (Montecalvo et al., 2012). These data reveal sEV cargo delivery occurs very 

rapidly. Fusion between the sEVs and the plasma membrane or early endosomal 

membrane are reasonable propositions as delivery mechanisms for sEV cargo. 

Indeed, sEV cargo delivery to the cytosol has been reported to be dependent upon 

functioning ESCRT components usually involved in MVB formation (Abrami et al., 
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2013), though more research needs to be carried out to demonstrate the relevance 

of endosomal proteins for sEV cargo delivery to corroborate this finding.  

 

1.4. Hypothesis and aims 

PCa sEVs induce myofibroblast differentiation in fibroblasts, a key step in the 

progression of cancer. Modulation of cell behaviour brought about by delivery of 

sEV cargo has been demonstrated in various settings, though little is known about 

how PCa derived sEVs deliver their contents to cells within the tumour 

microenvironment. To this end, using primary human fibroblasts as a model cell 

for PCa derived sEV uptake, we sought to determine whether PCa derived sEVs 

delivered its contents to the fibroblast, driving phenotypic change.  

Hypothesis: PCa derived sEVs are internalised and sorted by fibroblasts, 

delivering their intraluminal contents to the cell, in a process required for sEV-

driven fibroblast stimulation.  

The aims for this study were as follows: 

1. Develop a labelling protocol for the fluorescent detection of sEVs using a novel 

protein binding fluorescent dye. Then validate the use of the dye for cellular 

uptake studies with the sEVs.  

2. To detail the route of endocytosis of the sEV in the fibroblast and determine the 

subsequent intracellular fate of the sEV. 

3. To clarify the mechanisms of sEV cargo transfer to the fibroblasts, using diverse 

fluorescent dyes. 

4. Assess the relevance of sEV internalisation by the fibroblast in inducing 

phenotypic change within the cell. 

Defining PCa sEV internalisation, trafficking and intraluminal cargo delivery in 

fibroblasts will give us a greater comprehension of the interaction between PCa 

cells and fibroblasts, as well as the role of sEVs in driving fibroblast activation. 

Moreover, elucidating the mechanism of sEV intraluminal cargo delivery is 

fundamental for understanding sEV-cell communication in cancer and other 

disease settings. 
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2.1. Cell culture 

2.1.1. Monolayer cell culture 

The source of sEVs used in this study is the DU145 PCa cell line (ATCC, USA). These 

are human derived PCa cells taken from a brain metastasis (Stone et al., 1978). 

sEVs from these cells are known to induce myofibroblast differentiation in 

fibroblasts (Webber et al., 2010). Cells were cultured in RPMI-1640 media (Lonza, 

UK), supplemented with 10% FBSev- (Thermofisher Scientific, UK), 100µg/mL 

streptomycin (Lonza) and 100U/mL penicillin (Lonza). Cultured cells for sEV 

studies must have FBS depleted of sEVs, to prevent any bovine derived sEV 

mediated effects on cells (Shelke et al., 2014). Ultracentrifugation of FBS for 18 

hours at 120,000g almost completely removes sEVs from the serum, this depleted 

serum is referred to as FBSev-. The sEV recipient cells used were AG02262 human 

lung fibroblasts (Coriell institute for medical research, USA); these primary 

fibroblasts were used in this study as a model cell in the tumour 

microenvironment. Fibroblasts were cultured in DMEM/F12 media (Lonza) and 

the same supplements as used with the DU145 cells. Cells were cultured in a 95% 

humidified incubator at 37°C and 5% CO2. MycoAlert detection kits (Lonza) were 

used to test for Mycoplasma every 2 months. 

For fibroblasts seeded for uptake or functional experiments, cells were growth 

arrested at 80% confluency for 24 hours prior to experiments through culture in 

FBSev- free media, to deplete the culture conditions of growth factors. 

2.1.2. CELLine bioreactors for DU145 cells 

For continuous culture of DU145 cells and production of sEVs for isolation, cells 

were grown in CELLine bioreactor flasks (Wheaton, USA). These flasks allow 

weekly collection of sEV concentrated supernatant. The flask contains two 

chambers separated by a 10kDa semipermeable membrane, allowing movement of 

nutrients and O2/CO2, but does not permit movement of sEVs. 1.2x107 DU145 cells 

are initially seeded, into the smaller chamber, in 15mL DMEM/F12 with 5% FBSev- 

and penicillin/streptomycin, and the outer chamber contains 500mL DMEM/F12 

with 5% FBS and penicillin/streptomycin in the absence of cells. The high volume 

of media maintains a colony of DU145 cells, whilst weekly collection of secreted 

sEVs are all contained within the 15mL cell supernatant. Use of these flasks for sEV 
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production is more cost-effective, is less labour intensive, and generates more 

highly concentrated sEV supernatants than regular monolayer cell culture 

(Mitchell et al., 2008). Large cell masses do form in these flasks however, therefore 

there is likely to be regions of hypoxia which would not be seen in monolayer cell 

culture. 

2.1.3. Fluorescence microscopy of fibroblasts 

For all brightfield and fluorescence microscopy, except for time-lapse microscopy 

experiments (see section 2.5.7), images were taken using an Axio Observer Z1 

widefield microscope with Apotome (Zeiss, Germany) with a 20x objective lens or 

63x objective lens with oil where stated. Green dyes were visualised using a 

488nm laser, red dyes visualised using a 561nm laser, and DAPI was visualised 

using a 405nm laser. Apotome is a form of structural illumination and is a means of 

removing out of focus light. Images were saved and processed using Zen Blue 

software (Zeiss). Cell morphology of fibroblasts was examined by taking brightfield 

images.  

For immunofluorescence, fibroblasts were seeded in 96 well glass-bottomed plates 

(Greiner Bio-One, Germany) at 10,000 cells per well and incubated until 

confluency reached ≈80%. In differentiation experiments, fibroblasts were treated 

(section 2.6.1), and were then fixed. Fibroblasts stained for endosomal markers 

were just fixed in culture once confluent. Cells were washed in PBS, then fixed in 

ice cold 1:1 acetone/methanol (100µL/well) for 5 minutes, fixative was then 

removed and wells were allowed to dry at room temperature. Cells were treated 

with 1% BSA/PBS as a blocking solution for 1 hour at room temperature before 

being washed in PBS again. Primary antibody (αSMA, EEA1 or LAMP1, see table 

2.1) was then added to wells diluted in 0.1% BSA/PBS at a working concentration 

of 2µg/mL for 1 hour at room temperature. Cells were washed in phosphate 

buffered saline (PBS; Lonza) then treated with an Alexa488/594 conjugated goat 

anti-mouse secondary antibody (Thermofisher) at 10µg/mL in 0.1% BSA/PBS for 

1 hour in the dark, at room temperature, then washed in PBS. Cell nuclei were 

stained in fixed cells using 4’,6-diamidino-2-phenylindole (DAPI), a 14.3mM stock 

was diluted 1:50,000 times in PBS and added to wells for 5 minutes in the dark at 
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room temperature. Cells could then be visualised using Alexa488/594 and DAPI 

filters on the Axio Observer Z1. 

In experiments where acetone/methanol fixation was unsuitable, 

paraformaldehyde (PFA) fixation was carried out where stated. 16% PFA 

(Thermofisher) was freshly diluted in PBS generating a 4% PFA working 

concentration. PFA was added to washed cells for 15 minutes at room 

temperature. Cells were then washed and were ready for microscopy, following 

staining with DAPI. Where stated, in some situations cells were visualised live, 

DMEM/F12 was washed off cells, and this media was replaced with colourless 

FluoroBriteTM DMEM, an imaging compatible media, with little endogenous 

autofluorescent properties. 

 

2.2. sEV isolation 

2.2.1. Bioreactor supernatant collection 

Once a week, the CELLine bioreactor cell supernatant is collected and replaced 

with 15mL of fresh media/supplements, the outer chamber is replaced with 

500mL fresh media/supplements. The collected cell supernatant is centrifuged 

twice at 400g for 6 minutes, and once at 2000g for 15 minutes, this removes any 

cells and large particles from the media. The resulting media is filtered through a 

0.22µm Millex GP syringe filter unit (Merck Millipore, UK). Filtered media is stored 

at -80°C. 

2.2.2. Sucrose cushion ultracentrifugation 

Centrifuged and filtered DU145 bioreactor media is defrosted and sEVs are 

isolated by sucrose cushion ultracentrifugation. Ultracentrifuge tubes (Beckman 

Coulter, USA) are loaded with sEV containing media, on top of 4mL of 30% 

sucrose/D2O solution (Sigma-Aldrich, USA). Tubes are sealed and loaded into a 

SW32 swing rotor (Beckman Coulter), then spun at 100,000g for 90 minutes. The 

now sEV containing sucrose (usually 20mL) is collected and mixed with 79mL PBS, 

then loaded into new ultracentrifuge tubes. A second ultracentrifuge spin, in a 

fixed angle 70Ti rotor (Beckman Coulter) at 100,000g for 90 minutes pellets the 
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sEVs on the bottom of the tubes. All of the fluid in the tubes is discarded, sEVs are 

resuspended in 500µL PBS and stored in aliquots of 10µL and 30µL at -80°C. 

 

2.3. sEV characterisation 

2.3.1. Bicinchoninic acid protein assay 

sEV protein is quantified using a micro bicinchoninic acid (BCA) protein assay kit 

(Thermofisher Scientific). Bovine serum albumin (BSA) is used as the protein 

concentration standard. 2000µg/mL BSA is used as the highest concentration, and 

a 12-point serial dilution is carried out. 10µL of sEV is diluted in 70µL PBS (1:8 

dilution). Absorbance values at 562nm of the sEV sample and standards were 

recorded in duplicate in a PHERAstar FS Microplate plate reader (BMG Labtech, 

Germany). sEV protein concentration was calculated based on the standard curve 

absorbance values of known BSA concentrations. sEV protein concentration was 

used as a surrogate for sEV quantity in experiments. 

2.3.2. Nanoparticle tracking analysis 

Nanometre sized particles (<1µm) can be analysed in solution using NTA. NTA 

uses the light scattering of particles to track their movement under Brownian 

motion to calculate particle size. Sample particles are detected through use of laser 

beams, beams are sent through the particle containing sample, the particles then 

scatter this light which can be detected by a camera. The NTA software tracks 

particle velocity, and the velocity of the particles is used to calculate the particle 

sizes, using the Stokes-Einstein equation. The size of every particle in the 

population is recorded and the concentration of particles/mL is plotted against 

size in nm as a histogram. 

Before sEV samples were run on the NanoSightTM NS3000 (Malvern instruments, 

UK), 100nm latex beads (Malvern instruments) were first run to confirm correct 

calibration of the instrument. For sEVs/beads, samples were diluted in particle-

free water (Fresenius Kabi, UK), then run at a constant flow rate using a 

NanoSightTM syringe pump (Malvern instruments) for 5 x 30 second captures at 

25°C. Videos were captured with a sCMOS camera system (OrcaFlash 2.8, Japan), 

and the videos analysed using the NTA software v3.1. sEV concentration, size 
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distribution, mean and mode sizes were calculated by the software and exported 

as excel files, which were used to plot histograms on Prism 5 software (v5.03) for 

presentation. 

2.3.3. Western blot 

Cells were seeded at 1.5x105 per well in 6 well plates (Greiner Bio-One) and left till 

around 90% confluent. Cells were treated with specified conditions (e.g. siRNA 

transfections), and cell lysates were prepared using RIPA lysis buffer (Santa Cruz, 

USA). The buffer was made up of 1X protease inhibitor cocktail, 100mM Sodium 

orthovanadate, 200nM phenylmethane sulfonyl fluoride (PMSF) and 1X lysis 

buffer. Lysates were centrifuged for 10 minutes at 10,000g and 4°C to pellet 

insoluble material, then the supernatant was collected and stored at -80°C for later 

use. 

Cell lysate or isolated sEVs were prepared for electrophoresis. 20µg (Calculated by 

Bradford protein assay; BioRad, UK) of samples were boiled in Sodium dodecyl 

sulphate sample buffer (Invitrogen, USA) with 20nM Dithiotheitol (DTT; Santa 

Cruz). NuPAGETM precast 4-12% gels (Life Technologies, USA) were loaded with 

samples, and the molecular weight markers SeeBlue® Plus 2 precision stain and 

Magic MarkTM XP in separate lanes. An Intivtrogen PowerEase® 500 

(Thermofisher) power system ran the gels in NuPAGETM MOPS Sodium dodecyl 

sulphate (SDS) running buffer (Life Technologies). Gels were transferred onto a 

methanol activated polyvinylidene fluoride (PVDF) membrane (GE Life Sciences, 

UK), in a BioRad mini trans-blot electrophoretic transfer cell with 25mM Tris 

(Sigma Aldrich) and 192mM glycine (Sigma Aldrich), at ice cold conditions and 80V 

for 90 minutes. Membranes were blocked in 0.5% Tween®20 (Sigma Aldrich) and 

5% milk powder (Marvel, UK) overnight at 4°C. 1µg/mL primary antibodies (table 

2.1) were added to membranes at room temperature for 2 hours, then membranes 

were washed in 0.5% Tween®20/PBS for 3x5 minutes. 1:10,000 goat anti-

mouse/rabbit Horseradish peroxidase (HRP) conjugate (Santa Cruz) was added to 

membranes for 1 hour at room temperature, then membranes were washed again 

for 3x5 minutes. Membranes were enhanced in a chemiluminescent substrate (Li-

Cor, USA) and bands were detected using a C-Digit blot scanner (Li-Cor). 
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2.3.4. Immunophenotyping plate assay 

For detection of protein on the sEV surface, immunophenotyping plate assays were 

carried out. 1µg/mL sEV isolates were seeded onto a high protein bind ELISA strip 

96 well plates (Greiner Bio-One, Germany), and incubated at 4°C overnight. Tris-

based wash buffer (Perkin Elmer, USA) was used to wash wells 3 times. 1% BSA in 

PBS was added to wells for a 2 hour block at room temperature. Following 3 

washes, 1µg/mL primary antibody (table 2.1) in 0.1% BSA/PBS was added to wells 

for 2 hours at room temperature, then wells were washed 3 times again. Goat anti-

mouse/rabbit (depending on species of primary antibody) biotinylated antibody 

(Perkin Elmer) was added to wells at 200ng/mL in 0.1% BSA/PBS for 1 hour at 

room temperature, then wells were washed 3 times. Europium streptavidin 

conjugate (Perkin Elmer), diluted 1:1000 in red assay buffer (Kaivogen), which 

provides some enhanced blocking properties, was added to wells for 45 minutes at 

room temperature, then wells were washed 6 times. Europium fluorescence 

intensifier (Kaivogen) was added to wells for 5 minutes at room temperature, then 

time resolved fluorescence (TRF) was measured in the plate using a PHERAstar FS 

Microplate reader (Webber et al., 2014).  

2.3.5. Cryo-electron microscopy 

Cryo-EM was carried out for visualisation of isolated sEVs. sEVs were added to 

glow-discharged holey carbon grids (Quantifoil, Germany) and then a Vitrobot 

(Maastricht instruments BV, The Netherlands) was used to vitrify the grids. A JEM-

2200FS/CR transmission cryo-electron microscope (JEOL, Japan) imaged the 

samples at liquid nitrogen temperatures with an acceleration voltage of 200kV. All 

cryo-EM was performed by our collaborator Professor Juan Falcon-Perez (CIC 

bioGUNE, Spain). Analysis of exported tiff images using ImageJ was carried out to 

determine sizes and morphologies of structures in the cryo-EM field of views, and 

averages were plotted on graphs using Prism 5 software. 
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Primary 

antibody 
Isotype Company 

Catalogue 

number 
Application 

Concentration 

(µg/mL) 

ALIX IgG1 Santa Cruz Sc-166952 Western blot 1 
TSG101 IgG2a Santa Cruz Sc-7964 Western blot 1 
Calnexin IgG1 Santa Cruz Sc-23954 Western blot 1 

MHC1 IgG2a eBioscience 16-9983-85 Western blot 1 

CD9 IgG2b R&D Systems MAB1880 
ELISA, uptake 

blockade 1-10 

CD63 IgG1 AbD Serotec MCA2142 ELISA 1 
CD81 IgG1 BioRad MCA1847EL ELISA 1 

TGFβ pan 
specific  

Rabbit 
IgG 

R&D Systems AB-100-NA 
Differentiation + 
uptake blockade 

10 

Integrin 
α3 

IgG1 Merck 
Millipore 

MAB1952Z sEV ELISA + sEV 
uptake blockade 

0.1-10 

Integrin 
α6 

Rat 
IgG2a 

R&D Systems MAB13501 
sEV ELISA 

0.1-10 

Integrin 
β1 IgG1 R&D Systems MAB17781 

sEV ELISA + sEV 
uptake blockade 0.1-10 

Integrin 
β3 

IgG1 Sigma Aldrich MAB2023Z 
sEV ELISA 

0.1-10 

AP2µ2 IgG1 
BD 

Transduction 
Laboratories 

611351 
Confirmation of 

protein knockdown 1 

CAV1 
Rabbit 

IgG 
Cell Signalling 
Technologies 

D46G3 
Confirmation of 

protein knockdown 
1 

FLOT1 IgG1 
BD 

Transduction 
Laboratories 

610821 
Confirmation of 

protein knockdown 1 

PAK1 
Rabbit 

IgG 
Cell Signalling 
Technologies 

2602S 
Confirmation of 

protein knockdown 
1 

αSMA IgG1 Santa Cruz Sc-32251 
Fibroblast expression, 

fluorescence 
microscopy 

2 

EEA1 IgG1 BD Biosciences 610456 
Fibroblast expression, 

fluorescence 
microscopy 

2 

LAMP1 IgG1 Santa Cruz Sc-20011 
Fibroblast expression, 

fluorescence 
microscopy 

2 

 

 

 

 

 

 

Table 2.1. Primary antibodies. All primary antibodies used for Western blots, 
ELISA-like plate assays and immunofluorescence, antibody isotypes, companies 
and catalogue numbers are shown. 
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2.4. Detection of sEVs 

2.4.1. Fluorescent labelling  

5-200µg/mL Alexa maleimide linked dye (Alexa; Thermofisher Scientific), e.g. 

Alexa488 (Thermofisher-Scientific, 2019) was added to a 30µL sEV sample, and 

made up to 50µL with PBS, this mixture was incubated for 0.5-5 hours in the dark 

at room temperature. sEV concentration was typically 2000-4000µg/mL, though 

this was subject to variation between isolations. Exosome Spin Columns MW3000 

(Thermofisher) were prepared according to manufacturer’s instructions, 650µL 

PBS was used to rehydrate the powder in the columns, for 15 minutes at room 

temperature. Excess PBS was removed by centrifugation of the column at 750g for 

2 minutes. 50µL Alexa dye and sEV mixture was added to the top of the gel now 

formed in the column. The columns were centrifuged again, this time for 3 

minutes, to pull through the labelled sEVs, leaving the unbound Alexa trapped in 

the column. The remaining solution contains sEVs labelled with Alexa (Alexa-

sEVs). Experiments with controls for free dye used solution collected from a 

column in which Alexa only had been centrifuged through, in the absence of sEVs. 

These controls were used to demonstrate retention of the Alexa by the columns. 

Concentration of sEVs after the labelling process was estimated by measuring 1µL 

of labelled sEVs applied onto a NanodropTM 2000 Spectrometer (Thermo Scientific, 

UK). Concentrations calculated post-labelling were used as the basis for sEV doses, 

when treating fibroblasts. 

sEVs were also labelled with SYTO RNASelect green fluorescent cells stain 

(Invitrogen), herein referred to as SYTO, CFSE (EBioscience, USA) and Calcein AM 

(Invitrogen), shortened to Cal. The labelling protocol for sEVs with SYTO, CFSE or 

Cal is the same as with the Alexa dyes, but with doses of 50-200µM CFSE, 10-40µM 

Cal and 50-200µM SYTO. For dual labelling experiments, sEVs were first labelled 

with an intraluminal dye by the described labelling protocol, then the collected 

labelled sEVs were then co-labelled with 200µg/mL Alexaa594, again under the 

same labelling procedure. 
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2.4.2. Detection of fluorescent sEVs 

For visualisation of fluorescently labelled sEVs, labelled sEVs were diluted 1:60 in 

PBS and added to wells of a 96 glass-bottomed plate for 1 hour at room 

temperature in the dark. Labelled sEVs could then be visualised stuck to the glass 

plate or floating in suspension. sEVs labelled with Alexa594 were visualised using 

the Alexa594 filter on the Axio Observer Z1 microscope, sEVs labelled with 

Alexa488, SYTO, CFSE or Cal were visualised using the Alexa488 filter. 

Intensity of fluorescent sEVs was measured using a PHERAstar FS Microplate 

reader. Increasing doses of labelled sEVs diluted in PBS were added to wells of 96 

well cell culture plates (Greiner Bio-One). Fluorescent intensity of sEVs labelled 

with Alexa488, CFSE, Cal or SYTO was measured using an Alexa488 optic module 

in the plate reader. Fluorescent intensity of controls for free dye were also 

measured. 

2.4.3. Monitoring dye loss from sEVs 

Loss of fluorescent dye from labelled sEVs in PBS was assessed by monitoring the 

fluorescent signal of the sEVs over time. Labelled sEVs were diluted 1:6 in PBS and 

added to high protein binding ELISA plates (Greiner Bio-One) at 100µL/well. The 

plate was incubated at room temperature in the dark for 1 hour, then was washed 

3 times with a Tris-based buffer, and 100µL PBS was added to each well. 

Fluorescent intensities were measured using the PHERAstar FS microplate reader 

with an Alexa488 optic module. Plates were then incubated, washed and measured 

again every hour for 6 hours to track fluorescent signal of sEVs over the time 

course. Separation of dye from sEV may result in movement of the dye into the 

surrounding PBS, therefore change in sEV signal following wash steps was used as 

a measure of sEV dye loss. In parallel, fluorescent signal was measured over 6 

hours in wells not washed in PBS as a control for photobleaching effect arising 

from repeat measures. 
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2.5. Uptake of sEVs 

2.5.1. Detection of cellular uptake of fluorescent sEVs 

Fluorescence microscopy 

Fibroblasts were seeded at 10,000 cells per well in 96 glass-bottomed plates 

(175µm thick glass) and cultured until 80% confluent. Cells were treated with 

labelled sEVs at stated doses and incubation times in DMEM/F12 free of FBS. For 

experiments when cells are fixed, sEV containing media is washed off the cells with 

PBS prior to fixation. For experiments conducted with live cells, DMEM/F12 is 

washed off and replaced with FluoroBriteTM DMEM. sEV containing fibroblasts are 

typically visualised on the Axio Observer Z1 microscope with a 63x/1.4 numerical 

aperture objective lens with oil. Alexa488, CFSE, Cal and SYTO labelled sEVs are 

visualised using an Alexa488 filter (Ex/Em = 493/520) and Alexa594 sEVs using 

an Alexa594 filter (Ex/Em = 590/619). 

Flow cytometry 

Fibroblasts were seeded in 24 well cell culture plates (Greiner Bio-One) at 40,000 

cells/well and cultured until 80% confluent. Cells were treated with labelled sEVs 

at stated doses. Following treatment, cells were washed in PBS and stripped from 

the well surface using 200µL/well trypsin (Lonza) at 37°C until cells have detached 

from the plate (usually 5-10 minutes). Cell suspension was added to flow 

cytometry tubes (StemCell Technologies, Canada), then cells were pelleted by 

centrifugation at 400g for 6 minutes, washing off the trypsin. Pelleted cells were 

resuspended in 300µL PBS per tube and put on ice. Following calibration of the 

FACSverse cytometer (BD Biosciences, USA), using cytometry signalling and 

tracking (CST) beads (BD Biosciences), tubes were loaded, forward scatter and 

side scatter measurements are taken, and a gated population of cells considered 

live based on the scatter measurements. Fluorescent intensity of gated cells was 

measured until 1,000 cells have been measured (unless otherwise stated). 10,000 

cells were initially measured, however this was reduced to 1,000 cells, to allow 

reduced sEV consumption for experiments. Mean fluorescent intensity (MFI) was 

used to represent the fluorescent intensity of the population. 
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2.5.2. Pharmacological inhibition 

In experiments involving treatment of fibroblasts with sEVs and pharmacological 

inhibitors, cells were pre-treated with inhibitors for 30 minutes prior to sEV 

addition, to ensure endocytic blockade before addition of sEVs (Roberts-Dalton et 

al., 2017). All inhibitors were diluted in Dimethyl sulfoxide (DMSO) and working 

concentrations were diluted in DMEM/F12. Fibroblasts were washed with DMEM, 

then pre-incubated with inhibitors at stated doses for 30 minutes. Doses of 

inhibitors were derived from published reports, and to validate these we 

performed experiments to establish their toxicities. Cells were then treated with 

stated doses of sEVs in the continued presence of the inhibitors. Pharmacological 

inhibitors used were: Dynasore (EMD Millipore, USA), Cytochalasin D (Sigma 

Aldrich), EIPA (Sigma Aldrich) and Bafilomycin A1 (Sigma Aldrich). Heparin 

(Sigma Aldrich) was prepared as a stock concentration of 50mg/mL in purified 

water, working concentrations were diluted in DMEM/F12 for experiments, again 

cells were pre-treated for 30 minutes with Heparin before addition of sEVs. 

2.5.3. siRNA transfection 

siRNAs of the 4 targets (AP2µ2, Cav-1, Flot-1, PAK1) and GFP (used as an irrelevant 

siRNA control since GFP is not expressed in our cells) were previously used, 

validated in HeLa cells (Al Soraj et al., 2012; Roberts-Dalton et al., 2017) and 

custom made by Europhins MWG Operon, Germany. The target sequences are 

shown in table 2.1. 

For transfections, fibroblasts were seeded in 6 well cell culture plates (Greiner Bio-

One) at 150,000 cells/well and left overnight. On the day of transfection, 100nM 

siRNA in 185µL Opti-MEM® (Invitrogen) per well was made up and mixed via 

gentle inversion. 2µL LipofectamineTM (Invitrogen) was mixed with 13µL Opti-

MEM per well. Diluted Lipofectamine was transferred to the diluted siRNA and 

mixed by gentle inversion and pipetting. This mixture was incubated for 30 

minutes at room temperature. Cells were washed 3 times in Opti-MEM before 

addition of 800µL Opti-MEM per well. The siRNA-Lipofectamine mixture was 

added to the Opti-MEM containing wells drop by drop. Cells were incubated at 

37°C for 4 hours, then 500µL of 30% FBSev-/Opti-MEM was added to each well. 
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Following incubation of cells for 48 hours (Roberts-Dalton et al., 2017), transfected 

cells were then used for mRNA/protein analysis or used for uptake experiments. 

 

 

2.5.4. Quantitative polymerase chain reaction 

To confirm knockdown of target mRNA by transfected siRNA, mRNA content in 

treated cells was assessed by quantitative polymerase chain reaction (qPCR) and 

compared target mRNA expression in cells treated with the target siRNA versus a 

GFP siRNA treated cell as a control. siRNA treated cells were lysed with 1mL TRI 

Reagent® (Sigma Aldrich) per well. Samples were then added to Eppendorf tubes 

and 200µL chloroform was added to each tube, and the solutions were mixed. 

Phenol and aqueous layers were separated through centrifugation of the tubes at 

4°C, 16,000g for 20 minutes, then the aqueous colourless layer was extracted and 

mixed with ice cold isopropanol for precipitation of RNA, this mix was left for 24 

hours, at -20°C. The following day, Isopropanol was removed through another 

centrifugation step, a 16,000g spin for 20 minutes at 4°C. RNA pellet was then 

resuspended in 1mL of 70% ethanol and spun again under the same centrifuge 

conditions. Ethanol was removed, fresh ethanol added, and the samples were 

centrifuged once again. This time the RNA pellets were allowed to air dry after 

ethanol removal, then pellets were dissolved in 11µL of RNAse free molecular 

grade water. 

Analysis of 1µL of dissolved RNA using a NanoDropTM 2000 Spectrometer was used 

to calculate the purity of the RNA sample. Absorbance at 260nm indicates nucleic 

Target Sequence 

AP2µ2 GUGGAUGCCUUUCGGGUCAdTdT 

Cav-1 AGACGAGCUGAGCGAGAAGdTdT 

Flot-1 UGAGGCCAUGGUGGUCUCCdTdT 

PAK1 AUAACGGCCUAGACAUUCAdTdT 

GFP GGCUACGUCCAGGAGCGCAdTdT 

Table 2.2. siRNA sequences for knockdown of endocytic regulators. List 
of protein targets for siRNA-mediated knockdown, with sequences 
complementary to target mRNA. 
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acid quantity and absorbance at 280nm indicates protein quantity, the ratio 

between these absorbance values is used to determine the quality of RNA 

extraction. Ratios of 260:280nm >1.7 were required for RNA sample to be 

considered pure enough for reverse transcription. The Beer-Lambert equation 

takes the RNA extinction coefficient as 40 and uses the absorbance value measured 

to calculate the concentration of nucleic acid. 1µg of RNA is then added to a reverse 

transcription master mix. The master mix (Thermofisher) was made up of 2µL 10X 

reverse transcription buffer, 2µL 10X reverse transcription random primers, 1µL 

RNAse inhibitor, 1µL MultiscribeTM reverse transcriptase and 0.8µL of 

deoxynucleotide triphosphate (dNTP) mix (with dATP/dCTP/dGTP/dTTP), the 

final volume of this mix with the RNA sample is 20µL. Reverse transcription was 

carried out using a S1000 thermal cycler (BioRad), the first incubation for primer 

annealing was for 10 minutes at 25°C. the next step, extension, was for 2 hours at 

37°C. This step creates complementary DNA (cDNA), the reverse transcriptase 

enzyme is deactivated through incubation at 85°C for 5 minutes. Created cDNA is 

stored at -20°C. 

In a 20µL PCR reaction, 1µL cDNA is mixed with 10µ TaqMan® universal master 

mix, 1µL TaqMan® custom gene expression assay primer and probe mixes (all from 

Thermofisher), and 8µL of water. A StepOnePlusTM real time PCR thermocycler 

(Thermofisher) was used for the PCR procedure. Heating steps were: 50°C for 2 

minutes, 95°C for 15 seconds and 60°C for 1 minute, these were repeated for 40 

cycles. The cycle threshold (CT) value (number of cycles required to detect a 

fluorescent signal) was calculated to determine relative mRNA expression, GAPDH 

was used as a standard reference gene. CT of GAPDH was subtracted from the 

target CT, this generated the ∆CT, allowing calculation of relative expression of the 

target gene by the equation 2-(∆CT1-∆CT2) where ∆CT1 is the ∆CT for the experimental 

target and ∆CT2 is the ∆CT for the control GAPDH samples. Negative controls for 

reverse transcription and PCR were done by using water as a sample in place of 

RNA/cDNA. 
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2.5.5. Cell viability assays 

OranguTM Cell counting solution (Cell guidance systems, UK) was used to 

determine viability of AG02262 fibroblasts. OranguTM is a water-soluble 

tetrazolium salt (WST)-8 which exhibits a strong orange colour when reduced by 

viable cell dehydrogenase activity, and the number of living cells is related to the 

amount of orange dye formed. For a viability assay, cells were washed in media, 

then treated with 1:10 dilution of OranguTM in DMEM/F12 for 1 hour at 37°C, then 

absorbance at 450nm was read on a PHERAstar FS microplate reader. 

2.5.6. Bacmam transfections 

CellLight® BacMam reagents (Thermofisher), were used to tag target proteins in 

live fibroblasts with red fluorescent protein (RFP) (Dolman et al., 2013). 

Fibroblasts were seeded at 150,000 cells/well and incubated overnight. Cells were 

treated with 1:200 of a BacMam reagent in DMEM/F12, reagents used were to 

fluorescently label early endosomes (Rab5-RFP), late endosomes (Rab7-RFP) or 

lysosomes (LAMP1-RFP). Following overnight treatment, the media was washed 

and replaced with FluoroBriteTM DMEM/F12, for live cell imaging, the cells would 

now be expressing the RFP-tagged proteins and could be visualised fluorescently. 

Fluorescence microscopy was carried on cells following Alexa488-sEV treatment. 

2.5.7. Time-lapse microscopy 

Time-lapse microscopy experiments were carried out on an Axiovert 100 widefield 

microscope (Zeiss) with a temperature and CO2 controlled black box encasing the 

area around the plate (Solent Scientific, UK), creating an incubator like 

environment to maintain cells in incubator-like conditions. For experiments using 

this microscope, a 40x objective lens was used, and red dyes were visualised using 

a 633nm laser. Multi-dimensional acquisition software on the MetaMorph 

v7.8.13.0 program was used to set stage positions, experiment time course, and 

time points for image capture. Alexa633-sEVs were typically used for time-lapse 

experiments, unless otherwise stated, and cell morphology was tracked with 

brightfield imaging. 
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2.5.8. Endocytic probes 

For comparison of uptake kinetics of sEVs versus Transferrin (Tf) and Dextran 

(Dx), fibroblasts were pulsed with 25µg/mL Alexa488-sEVs, 5µg/mL Tf-Alexa488 

(Molecular Probes, USA) or 100µg/mL Dx-Alexa488 (Invitrogen) for 30 minutes, 

then washed in fresh media, the uptake was then “chased” for the stated time 

points, dosing and treatment time had been previously used for similar 

experiments in HeLa cells (Roberts-Dalton et al., 2017). Fibroblasts of 80% 

confluency were cultured prior to experiments. For microscopy experiments, cells 

were fixed in 4% PFA and visualised using the Axio Observer Z1, and for flow 

cytometry, cells were washed and trypsinised, then cooled to 4°C for analysis. 

Co-localisation experiments of Alexa594-sEVs with Dx or Tf were used to 

determine intracellular location of sEVs post-uptake. Fibroblasts were treated with 

100µg/mL Dx-Alexa488 for 2 hours, the cells were then washed, and the Dx was 

chased overnight, ensuring Dx loading of lysosomes. The following day, cells were 

treated with 25µg/mL Alexa594-sEVs for 30 minutes, then washed and chased for 

stated time points. For evaluation of early endosome localisation of sEVs, co-

localisation of Alexa594-sEVs with Tf was measured. Fibroblasts were treated with 

25µg/mL Alexa594-sEVs and 5µg/mL Tf-Alexa488 simultaneously for 30 minutes, 

washed, then chased for stated time points. Co-localisation was determined by the 

proportion of 594 signal overlapping 488 signal, a calculation of Mander’s 

coefficient using the JACoP plug-in on ImageJ (ImageJ, USA). This allowed us to 

determine the proportion of sEVs in early endosomes or lysosomes at given time 

points post-uptake. 

Fibroblasts were treated with Mitotracker (Invitrogen) for determination of 

mitochondrial localisation of sEV delivered SYTO/Alexa488. Fibroblasts treated 

with 100nM Mitotracker in FluoroBriteTM DMEM for 1 hour, the cells were washed, 

then treated with 25µg/mL SYTO/Alexa488-sEVs for 1 hour. Cells were washed 

again and replaced with fresh FluoroBriteTM DMEM, then visualised fluorescently.  
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2.5.9. Antibody labelling of sEVs 

sEVs were tagged with antibodies against surface proteins as an approach to 

inhibit cellular binding and uptake. Alexa633-sEVs were incubated with 10µg/mL 

of primary antibody over night at 4°C. Fibroblasts were treated with 25µg/mL 

Alexa-sEVs in the presence of blocking antibody for 1 hour at 37°C, then cells were 

washed, and trypsinised for measurement by flow cytometry. Antibodies used for 

these experiments were: anti-TGFβ, anti-CD9, anti-β1 (all R&D Systems) and anti-

α3 (Merck Millipore; Table 2.1). 

  

2.6. Assessment of sEV functional effects on fibroblasts 

2.6.1. Fibroblast differentiation 

AG02262 fibroblasts were seeded in a 96 well glass-bottomed plates at 10,000 

cells per well, in DMEM/F12 media with supplements as described in section 2.1.1. 

Once the cells were around 80% confluent, they were growth arrested for 24 

hours. Cells were treated with 200µg/mL (unless otherwise stated) DU145 sEVs or 

1.5ng/mL sTGFβ1 in DMEM/F12 for 72 hours. Following the treatment, the cell 

conditioned media was frozen at -80°C, for later use in growth factor assays, and 

the cells were fixed in ice cold 1:1 acetone/methanol for 5 minutes. Alpha-smooth 

muscle actin (αSMA) expression in fibroblasts, a marker of myofibroblast 

differentiation (Desmoulière et al., 1993), was evaluated by staining of fixed cells 

with an αSMA antibody (Santa Cruz). Cells were visualised with an Axio Observer 

Z1 with apotome. 

2.6.2. Quantification of secreted HGF 

Fibroblast conditioned media was analysed for HGF quantity using DuoSet ELISA 

systems (R&D Systems). 1µg/mL HGF capture antibody in PBS was added to high 

protein binding ELISA strip 96 well plates, these plates were incubated at room 

temperature overnight. The plates were washed 3 times using a Tris-based buffer. 

Wells were then treated with 1% BSA/PBS for 2 hours at room temperature as a 

blocking step, then the wash step was repeated. 100µL defrosted fibroblast media 

was added to each well. In other wells a serial dilution of recombinant human HGF 

was added, with concentrations ranging from 0ng/mL to 8ng/mL in PBS, these 
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were used to generate a standard curve. Following a 2 hour treatment at room 

temperature, wells were washed again, then treated with 200ng/mL HGF detection 

antibody for 2 more hours, at room temperature, then washed. In a departure from 

manufacturer instructions, wells were treated with Europium-streptavidin 

conjugates in a 1:1000 dilution in red assay buffer for 45 minutes at room 

temperature, wells were then washed 6 times. Europium fluorescence intensifier 

was added to wells for 5 minutes, then the signal assessed by TRF on a PHERAstar 

FS microplate reader. Fluorescence values generated were used to quantify HGF 

expression extrapolated from the standard curve. 

 

2.7. Image and statistical analysis 

Quantification of sEV uptake in microscope images was carried out by measuring 

mean fluorescent intensity (MFI) of fields of view (divided by number of nuclei 

where stated), using ImageJ software V1.51n. Co-localisation analysis of 

microscopic images were performed using the JACoP plug-in with ImageJ software 

v1.51n, using program default thresholding, calculating Mander’s coefficients of 

colour 1 over colour 2 (M1) or colour 2 over colour 1 (M2) (Dunn et al., 2011). 

Measurement of sEV clustering in fibroblasts overtime was evaluated by 

integrated morphometry analysis, calculating average fluorescent area size with 

auto-thresholding of light objects, using MetaMorph v7.8.13.0 software (Molecular 

Devices, USA). 

1-way (with Tukey’s post-test) and 2-way (Bonferroni post-test) Analysis of 

variance (ANOVA) tests were used in experiments with more than two 

experimental groups. Otherwise, experiments with two groups were analysed by 

Students T-test. ANOVAs and T-tests were performed using Prism-5 software 

v5.03 (GraphPad, USA). Data on graphs signifies mean +/- Standard error of the 

mean (SEM) from a representative experiment, unless otherwise stated. Significant 

P-values were deemed significant when p<0.05. *=p<0.05, **=p<0.01, ***=p<0.001. 

 

All materials used can be seen in table 2.3. 
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Material Company 
Catalogue 
number 

Material Company 
Catalogue 
number 

DU145 cells ATCC HTB81 
Alexa488 

Maleimide 
Life 

technologies 
A10254 

AG02262 Primary 
fibroblasts 

Coriell AG02262 
Alexa594 

Maleimide 
Life 

technologies 
A10256 

RPMI 1640 Thermofisher 31870074 
Alexa633 

Maleimide 
Life 

technologies 
A20342 

DMEM/F12 Lonza BE04-687F 
Exosome spin 

column MW3000 
Life 

technologies 
4484449 

Penicillin- 
Streptomycin 

Lonza 17602E CFSE EBioscience 65085084 

L-Glutamine Lonza BE17605E Calcein AM Invitrogen 65085378 
Foetal bovine 

serum 
Thermo 

Scientific 11573397 SYTO RNASelect Invitrogen S32703 

T75 flask 
Greiner Bio 

One 
658170 

BCA protein 
assay kit 

Thermofisher 
Scientific 

23235 

CELLline 
Bioreactor 

Sigma-Aldrich Z688045 
100nm latex 

beads 
Malvern 

Instruments 
NTA4088 

Acetone GPR Rectapur 20065.327 
Particle free 

water 
Fresenius Kabi 3158589 

Methanol GPR Rectapur 85650.320 
High protein bind 

ELISA strip 96 
well plate 

Greiner Bio One      756071 

Paraformaldehyde 
Life 

technologies 
28906 Wash buffer Perkin Elmer 1244114 

Phosphate 
buffered saline Sigma-Aldrich D8537 

Goat anti-mouse 
biotinylated 
secondary 
antibody 

Perkin Elmer 
NEF8-

23001EA 

Trypsin Lonza CC5012 
Europium-

Streptavadin 
Perkin Elmer 1244360 

96 well glass 
bottom plate 

Greiner Bio 
One 

655892 Red assay buffer Kaivogen 4202 

96 well plastic 
plate 

Greiner Bio 
One 

655930 
Europium 

fluorescence 
intensifier 

Kaivogen 4204 

24 well plate 
Greiner Bio 

One 
662892 RGD peptide Sigma-Aldrich A8052 

6 well plate 
Greiner Bio 

One 
657160 BSA R&D Systems 5217 

0.22µm Millex GP 
syringe filter unit 

Merck 
Millipore 

SLGP033RS 
Chemi- 

luminescent 
substrate  

LiCOR 92695000 

Ultracentrifuge 
tubes 

Beckman 
Coulter 

344623 
Flow cytometry 

tubes 
StemCell 

technologies 
38057 

Sucrose Sigma-Aldrich S9378 
Cytometry 

signalling and 
tracking beads 

BD Biosciences 656504 

D20 Sigma-Aldrich 151882 DMSO Sigma-Aldrich D2650 

DAPI 
Thermo 

Scientific 
D1306 Dynasore EMD Millipore 324410 

FluoroBrite 
DMEM 

Thermofisher A1896701 Cytochalasin D Sigma-Aldrich C8273 

Alexa488 goat 
anti-mouse 
secondary 
antibody 

Thermo 
Scientific 

A11001 EIPA Sigma-Aldrich A3085 

Alexa594 goat 
anti-mouse 
secondary 
antibody 

Thermo 
Scientific 

R37121 Bafilomycin A1 Sigma-Aldrich B1793 

Opti-MEM Invitrogen 31985047 Heparin Sigma-Aldrich H33393 
Lipofectamine Invitrogen 11668030 TRI reagent Sigma-Aldrich T9424 
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Material Company 
Catalogue 
number 

Material Company 
Catalogue 
number 

Chloroform Amresco 0757 
SeeBlue Plus 2 

precision 
Thermo 

Scientific 
LC5925 

Isopropanol VWR 437423R Magic Mark XP 
Thermo 

Scientific 
LC5602 

Molecular grade 
water 

Sigma-Aldrich W4502 MOPS Buffer 
Thermo 

Scientific 
NP0001 

TaqMan universal 
PCR master mix 

Thermofisher 4304437 PVDF membrane 
GE Life 

Sciences 
10600023 

Orangu Cell 
counting solution 

Cell Guidance 
Systems 

OR01-1000 Glycine Sigma-Aldrich G8898 

CellLight BacMam 
Rab5 RFP 

Thermofisher C10587 Tris Sigma-Aldrich 252859 

CellLight BacMam 
Rab7 RFP 

Thermofisher C10589 Tween Sigma-Aldrich P9416 

CellLight BacMam 
LAMP1 RFP 

Thermofisher C10597 
Goat anti-mouse 
HRP secondary 

antibody 

Santa Cruz 
Biotechnologies 

Sc2005 

RIPA lysis buffer 
system 

Santa Cruz 
Biotechnology 

Sc24948 
Transferrin-

Alexa488 
Molecular 

Probes 
T13342 

Bradford protein 
assay kit 

BioRad 5000001 
Dextran-
Alexa488 

Invitrogen D22910 

DTT Sigma-Aldrich 
101977770

01 
Mitotracker Invitrogen M7512 

SDS buffer Invitrogen NP000202 
Recombinant 
human TGFβ1 

Peprotech 10021C 

NuPAGE precast 
4-12% gel 

Life 
technologies 

NP0321BO
X 

HGF DuoSet 
ELISA kit 

R&D Systems DY294 

Table 2.3. List of materials. A list of materials used in experiments. 
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3.1. Introduction 

In cancer, tumour derived sEVs educate cells of the tumour microenvironment to 

promote growth and survival of the cancer (Webber et al., 2015a). The presence of 

cancer associated myofibroblasts is well documented in the tumour 

microenvironment (Kalluri, 2016), and induction of myofibroblast differentiation 

from fibroblasts (Webber et al., 2010), as well as mesenchymal stem cells for 

example (Chowdhury et al., 2015) by cancer derived sEVs has been uncovered and 

has been repeated across many cancer types. These studies collectively reveal a 

key role for cancer derived sEVs in microenvironment modulation and progression 

of cancer.  

In this study we examine the cellular uptake of PCa derived sEVs by fibroblasts, in 

order to better understand sEV modes of action relating to stromal cell 

differentiation. The DU145 PCa cell line was the chosen source of sEVs for our 

experiments, sEVs from this cell line have been previously well characterised by 

the group and have been shown to play various tumour promoting roles, including 

induction of myofibroblast differentiation (Webber et al., 2010), and immune 

evasion (Clayton et al., 2007). sEVs have been widely studied in recent years for 

their potential to deliver numerous factors to recipient cells (Tkach and Théry, 

2016), driving phenotypic change. Cellular uptake of sEVs, and delivery of both 

protein (Fedele et al., 2015) and nucleic acids (Valadi et al., 2007) by sEVs have 

been described, suggesting a well-regulated processing of sEVs by recipient cells 

following internalisation. Progress has been made on mapping out the uptake 

routes and intracellular fate of sEVs in various recipient cells. Here, internalisation 

and intracellular trafficking of DU145 derived sEVs was defined in primary 

fibroblasts, a cell type biologically relevant in the tumour microenvironment. Our 

recipient cells in this study were the AG02262 lung fibroblasts, primary human 

fibroblasts used as model cells for myofibroblast differentiation (Midgley et al., 

2013; Webber et al., 2010), shown by the group previously to undergo 

differentiation following stimulation by DU145 PCa derived sEVs. 

To understand the biological relevance of sEVs in functional studies, their isolation 

from their cell supernatant/ biological fluid is vital, in order to attribute results to 

the role of sEVs. In this study, sEVs were isolated through ultracentrifugation on a 

30% sucrose/D2O cushion, followed by a second ultracentrifugation step to wash 
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off the sucrose and pellet the sEVs. The International Society for Extracellular 

Vesicles (ISEV) has recently published guidelines for defining EVs by their 

characteristics (Théry et al., 2018). EVs can typically be characterised by their 

morphology, size and expression of specific proteins, ISEV guidelines strongly 

encourage explicit description of these features, to better define EVs being used in 

further experiments. We have employed a number of techniques to characterise 

sEVs isolated from DU145 cells, showing their morphology and size, assessing 

their purity, expression of marker proteins and their ability to drive myofibroblast 

differentiation in primary fibroblasts. 

In this chapter, isolated sEVs from DU145 cells were subject to characterisation 

using diverse techniques, with the aim of demonstrating successful purification of 

DU145 derived sEVs through the sucrose cushion isolation method. Firstly, 

structures in a sEV sample were analysed by cryo-EM to determine the 

heterogeneity of the morphologies present. Light scattering and protein assays of 

sEVs were carried out to evaluate the purity of the preparations. Next, 

immunophenotyping plate assays and Western blotting were employed to reveal 

expression of particular sEV associated proteins. Finally, we assessed the ability of 

these sEVs to stimulate activation of primary fibroblasts, to confirm the known 

function of these sEVs. The data collected here will define our sEVs, in accordance 

to ISEV guidelines, and these sEVs will be used to monitor cellular uptake by 

fibroblasts in subsequent chapters. 

 

3.2. DU145 derived sEV characterisation 

3.2.1. Vesicle morphology 

The cells used to generate sEVs is the DU145 PCa cell line (ATCC, USA), derived 

from a brain metastasis. DU145 cells underwent continuous culture in bioreactors 

flasks described in section 2.2, the cell conditioned media is collected weekly and 

goes through serial centrifugation steps to remove dead cells and larger debris. 

Following filtration of the media through a 0.22µm filter, the sEV containing media 

is floated on a sucrose cushion, and the sEVs are then isolated by 

ultracentrifugation driven pelleting.  
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Cryo-EM, which retains the native structure of sEVs (Conde-Vancells et al., 2008), 

was carried out by our collaborator (Professor Juan Falcon-Perez, CIC-bioGUNE, 

Spain) to examine the morphology of structures present in sEV isolates. This 

revealed a heterogenous population of vesicle like structures, electron dense 

bodies and other structures (Figure 3.1a). Figure 3.1b shows examples of distinct 

structures present in sEV isolates. The “classical exosome” or vesicle-like structure 

is the most common structure seen in the sEV preparation (figure 3.1c), 

representing 67% of the total structures counted. These vesicles are sized around 

66nm (figure 3.1d), indicative of sEVs. Besides these, are numerous distinct 

morphologies (figure 3.1b). There are unusual structures seen, such as vesicles 

with two or more membrane layers (termed bi-membrane and multi-membrane 

structures) and large irregular sacks which appear to contain smaller vesicles. 

These structures are present in almost all fields of view, however, together they 

represent less than 5% of total structures counted in these images (figure 3.1c). 

The sizes of these structures varied greatly (figure 3.1d), with many of them 

measuring above the size range indicative of sEVs (200nm). More than a quarter of 

all structures present are very small electron dense particles (figure 3.1c), which 

appear to lack a lumen (figure 3.1a, b), and were typically around 22nm in 

diameter (figure 3.1d), in contrast to the larger structures which exhibit a 

membrane. The larger structures present contain a greater volume than the small 

vesicles (figure 3.1e), however these small vesicles have a much greater surface 

area to volume ratio, likely making them more biological relevant in terms of 

vesicle to cell surface interactions. The nature and origin of these structures is 

unexplained, though their presence suggests that the sEV isolation procedure is 

not perfect in generating entirely homogenous uni-lamellar sEV preparations. 
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Figure 3.1. Cryo-EM of sucrose cushion purified DU145 derived sEV isolates. Cryo-EM was performed on a sample of isolated 
DU145 derived sEVs and structures were counted and classified. (A) Morphologies of structures visible in a DU145 sEV preparation, 
by cryo-EM. Scale bar = 100nm. (B) Examples of distinct structures seen in sEV isolates. Scale bar = 100nm. (C) Count of each 
structure type represented in the sEV preparation, with percentages each represents in the total count. Schematic representations of 
each respective structure are also shown. (D) Mean diameter (nm) of every structure counted in the sEV sample. (E) Volumes and 
surface areas of each structure, represented as their percentage of the whole population. Bars represent means +/- SEM. Data based 
on 584 structures counted across 40 fields of view from 1 sEV preparation. Cryo-EM was performed by Professor Juan Falcon-Perez, 
CIC-bioGUNE, Spain.  
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3.2.2. Vesicle size distribution and purity assessment 

Nanoparticle tracking analysis (NTA) was performed to gain a size distribution of a 

typical sEV population. Diluted sEVs were subject to analysis by Nanosight under 

flow conditions. Following analysis by NTA software, distribution of particle sizes 

within a sEV population is plotted as a histogram, with size plotted against 

respective concentrations of particles at these sizes (figure 3.2). In concurrence 

with cryo-EM, the vast majority of particles detected by the Nanosight were below 

200nm in size, falling into the range of small EVs as defined by ISEV (Théry et al., 

2018), with the modal size around 100nm. The lower end of the distribution curve 

is steeper than the upper end, and with the very small particles seen by cryo-EM, it 

is possible that the NTA is unable to detect particles <50nm. The size distribution 

of the sEV isolate is typical of a DU145 sEV preparation subject to NTA (Yeung et 

al., 2018). 

The BCA protein assay is routinely used to determine protein concentration of our 

sEV isolates. The protein concentration of the sample is determined by comparing 

the absorbance readout against a BSA standard. Protein concentration of a sEV 

preparation is typically given in µg/mL (table 3.1) and is used to normalise sEV 

quantity in later experiments. NTA also provides the sEV concentration of a 

preparation, in particles/mL (table 3.1). The particle and protein concentrations 

seen in table 3.1 show variation from preparation to preparation and can be 

affected by factors such as volume of supernatant used for an isolation, and 

number of cells in a bioreactor flask used to collect sEV containing media, but also 

operator dependent nuances. Using these two measures of concentration, the 

purity of sEVs, in terms of the number of detected particles per µg of protein, in a 

given sample can be assessed. The particle to protein (P:P) ratio calculation, see 

below, allows us to confirm the purity of the preparation procedure, with low P:P 

ratios indicative of protein contamination (Webber and Clayton, 2013). 

Particles/mL ÷ µg/mL protein = Particles/µg protein (P:P ratio) 

Examples of P:P ratios calculated in our sEV samples are shown in Table 3.1. 

Despite sizeable differences in particle and protein concentrations between 

preparations, P:P ratios are mostly above 1x1010 particle/µg protein, meaning they 

are considered to be of high purity, according to study examining P:P ratios 

(Webber and Clayton, 2013). Preparations with P:P ratios <1x1010 particle/µg 
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protein were deemed impure (table 3.1, red). We would be cautious in using sEVs 

that had been deemed impure as they would have considerable contaminating 

protein, and these preparations were generally discarded. The high P:P ratios 

usually calculated in DU145 sEV preparations shows that the sucrose cushion 

method for isolation of sEVs produces samples of high purity. 

3.2.3. Vesicle protein profiling 

DU145 sEV isolates were next assessed for their expression of accepted sEV or 

“exosome” markers. Western blotting was carried out to compare the expression of 

the proteins ALIX, TSG101, MHC1 and Calnexin in DU145 cell lysate versus DU145 

derived sEVs to look for enrichment in sEVs (Figure 3.3). As expected, ALIX, 

TSG101, MHC1 were all found to be enriched in the sEV lanes relative to the DU145 

cell lysate, normalised for input protein quantity. TSG101 and MHC1 appeared as 

thick single bands, however ALIX in the sEV sample was peculiar in that the 

staining produced multiple bands; this suggests distinct isoforms of the protein, 

which we consistently observe in these sEVs, though the reason for this 

observation requires clarification. Calnexin, an ER protein, was not detected in the 

sEV lane, suggesting that the isolates are void of contaminating cellular material. 

Lack of detectable non-vesicular material in the Western blot is in agreement with 

the high purities determined by the P:P ratios and further assures that the sEVs 

isolation method is effective at removing soluble cell components.  

The classical sEV-related tetraspanins, CD9, CD63 and CD81 were assessed in a 

semi-quantitative fashion, by immunophenotyping plate assay. 1µg of sEVs per 

well were added to sticky ELISA plates and subject to labelling with tetraspanin 

antibodies, and Europium was later attached for a TRF readout. DU145 derived 

sEVs were positive for all three of the tetraspanins (figure 3.4). CD9 was detected 

with the highest signal, followed by CD81 and CD63 respectively, and negligible 

signal in the isotype controls demonstrates the specific binding of the tetraspanins 

antibodies to their targets. The proteins expected to be expressed on the DU145 

derived sEVs were all expressed, and Western blot analysis demonstrated 

enrichment of all the sEV markers in sEVs and a lack of contaminating materials. 
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Figure 3.2. Size distribution of DU145 derived sEVs. NTA histogram 
demonstrating the size distribution of a typical sEV isolate. Histogram 
represents the concentration of analysed particles against their respective 
size in nm. Presented histogram is based on summary data from 5 videos, 
each video tracks particles across 749 frames over 30 seconds. Collected 
data also allows us to calculate the particle concentration of the sample, as 
well as the mode and mean sizes of the particles. 
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sEV 
preparation 

date 

Particle 
concentration 
(particles/mL) 

Protein 
concentration 

(µg/mL) 

P:P ratio 
(Particles/µg 

protein) 

4/11/15 3.73x1013 1760 2.12x1010 

3/12/15 8.31x1012 903 9.2x109 

21/3/16 4.59 x1013 1550 2.96x1010 

16/8/17 6.11x1013 4273 1.43x1010 

29/11/17 6.42x1013 1999 3.21x1010 

1/2/18 6.87x1013 3286 2.09x1010 

11/6/18 6.49x1013 3382 1.92x1010 

3/7/18 6.23x1013 3917 1.59x1010 

Table 3.1. Particle and protein concentrations of DU145 derived 
sEVs. A summary of particle and protein concentrations (calculated by 
BCA protein assay and NTA respectively) of 8 separate sEV preparations, 
isolated by the sucrose cushion method. Particle and protein 
concentration variation between preparations is noted. Particle and 
protein concentrations are used to calculate the P:P ratio of the sEV 
samples, which can be used to assess preparation purity (Webber and 
Clayton, 2013). Red = sEV preparation deemed impure (P:P ratio <1x1010). 
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Figure 3.3. Western blot characterisation of DU145 derived sEVs versus 
DU145 cells. 20µg protein of DU145 cell lysate or DU145 derived sEVs were 
loaded into parallel lanes, and SDS-PAGE and Western blotting were 
performed, with primary antibodies as indicated. Western blotting revealed 
relative expression of ALIX, TSG101 and MHC1, as well as the endoplasmic 
reticulum marker not expected in sEV isolates, Calnexin. 
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Figure 3.4. Immunophenotyping plate assay for detection of DU145 
derived sEV tetraspanins. 1µg/well sEVs were seeded onto high protein 
binding ELISA plates and analysed for the surface tetraspanins CD9, CD63 
and CD81. Bars represent means +/- SEM, based on triplicate wells, 
***P<0.001, one-way ANOVA with Tukey’s multiple comparison test. 
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3.2.4. Functional potency assay - induction of myofibroblast differentiation 

Following characterisation of DU145 derived sEVs, we carried out myofibroblast 

differentiation experiments on primary fibroblasts using these isolated sEVs, to 

confirm their known functionality. Fibroblasts were cultured as described in 

section 2.1 and seeded in microscopy plates for differentiation experiments. 

Fibroblasts were treated with the known differentiation stimulating dose of 

200µg/mL DU145 sEVs (Webber et al., 2010), equivalent dose of 1.5ng/mL sTGFβ1 

to compare sEV and sTGFβ1 mediated effects, or control media, for 72 hours. Cell 

supernatant was then collected for HGF assays and cells were fixed in 1:1 

acetone/methanol then stained for αSMA. The primary fibroblasts, which will be 

used in later uptake studies, are large elongated cells, spindle-like in shape, 

sometimes with filopodia protruding from the main cell body (figure 3.5). 

Stimulated fibroblasts stained for αSMA were visualised by fluorescence 

microscopy (figure 3.6a). Fibroblasts treated with control media do not express 

αSMA, as quiescent fibroblasts are negative for αSMA (Rønnov-Jessen and 

Petersen, 1993). Fibroblasts treated with either DU145 sEVs or sTGFβ1 both 

exhibited the onset of αSMA stress fibres (figure 3.6a, zoom), indicative of an 

acquired myofibroblastic phenotype.  

Collected supernatants were subjected to HGF DuoSet ELISA-like assay, with a 

Europium TRF readout. HGF was significantly detected in the supernatant of 

fibroblasts treated with sEVs compared to those treated with control media (figure 

3.6b). sTGFβ1 did not elicit HGF secretion in the fibroblasts, as expected, 

underlining the clear differences in the myofibroblasts generated by DU145 

derived sEVs versus sTGFβ1. These data show that PCa derived sEVs are capable of 

driving myofibroblast differentiation in fibroblasts, a rate-limiting step in cancer 

progression, in a manner distinct to sTGFβ1 alone, demonstrating the complexity 

of the sEV driven response. 

Here, in the presence of DU145 derived sEVs, the fibroblasts behave as expected, 

as reported previously (Webber et al., 2010). 
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Figure 3.5. Morphology of primary lung fibroblasts. Monolayer of 1:1 
acetone/methanol fixed fibroblasts, visualised by brightfield microscopy. 
Images captured by Axio Observer Z1, 63x lens used, scale bar = 20µm.  
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Figure 3.6. Myofibroblast differentiation induced by DU145 derived sEVs. (A) Fibroblasts were treated for 72hrs with 
200µg/mL sEVs, 1.5ng/mL sTGFβ1 or control media, then conditioned supernatant was collected, and the cells were fixed. Cells were 
stained for αSMA (red), and nuclei were stained with DAPI (blue), and visualised by fluorescence microscopy. Examples at higher 
magnification show stress fibre structures. Representative images from 3 separate wells are shown. Images captured by Axio 
Observer Z1, 20x lens used, scale bar = 50µm (B) Cell supernatants were analysed by sandwich ELISA assay for levels of HGF secreted 
by conditioned fibroblasts, detected by time resolved fluorescence of Europium labelled HGF. bars represent means +/- SEM, based 
on triplicate wells, ***P<0.001, one-way ANOVA with Tukey’s multiple comparison test. 
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3.3. Discussion 

In this chapter, sEVs isolated from DU145 cells were characterised based on their 

size, morphology and protein content; their ability to drive a complex process of 

cellular differentiation to myofibroblasts. This data is schematically summarised in 

figure 3.7. The analysis seems to satisfy the definition of the vesicles isolated as 

sEVs, according to the ISEV guidelines (Théry et al., 2018). The data also presents 

evidence for both the quality of EVs used and to what extent results attributed to 

EVs can be believed. We demonstrated that sucrose cushion ultracentrifugation-

based isolation of DU145 sEVs produces a population of vesicles mostly of sEV size 

and morphology, with particle to protein ratios indicative of low protein 

contamination. The isolates express the tetraspanins CD9, CD63 and CD81 on their 

surface, and are enriched in ALIX, TSG101 (indicating an endosomal origin of at 

least of subset of vesicles) and MHC1, whilst ER protein calnexin could not be 

detected. sEVs could also drive myofibroblast differentiation in primary fibroblasts 

in a manner distinct to sTGFβ1. Data shown here allows us to define our vesicle 

isolates as small extracellular vesicles of high purity, with protein markers 

indicative of the classic “exosome” termed vesicle (Lötvall et al., 2014). 

Large numbers of ≈100nm vesicles were identified by cryo-EM, similar to sEVs 

identified in other studies (Conde-Vancells et al., 2008; Zabeo et al., 2017). Yet 

there are other structures present with distinct appearances. Peculiar multi-

membrane encased vesicle-like structures were present, as well as sacks of 

material >200nm, the presence of the larger structures is perhaps unexpected 

since sEVs were isolated based on their floatation characteristics, which should be 

distinct from sacks of that size. High speed ultracentrifugation is known to cause 

aggregation in sEV samples (Linares et al., 2015), therefore irregular shaped 

vesicles could be an artefact of the centrifugation process. Comparison of 

morphologies of sEVs isolated by centrifugation versus other methods may clarify 

this issue. However, large numbers of small electron dense particles were also 

present, the origin of these is unclear, though they are reminiscent of histone 

proteins (Jodoin and Hincke, 2018), which would indicate there is a degree of 

contamination in the sEV preparations. Given the complexity of bioreactor 

cultures, the input material is likely to contain an assortment of cell-derived debris. 

Others have similarly noted abnormal vesicular structures in their EM images, 
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Zabeo et al note that the majority of their vesicles appear like typical sEVs, but 

there are also a number of other structures present, including very long tubules 

(Zabeo et al., 2017). Like this study, the majority of the population is made up of 

sEV sized vesicles, but it is important to point out other structures, since they 

honestly reflect the contents of the sEV preparation. Most studies fail to present 

heterogeneity in sEV samples, therefore the presented analyses of sEVs are more 

often than not, poorly defined. It is important to discuss the presence of these 

other structures, since there is clearly production of structures of unknown origin 

by cells, but also, it points out problems in the process of sEV 

isolation/purification, as we see material in sEV isolates which should be excluded 

from the sEV fraction based on their sizes/densities. However, the uni-lamellar 

vesicle is the predominant structure, in terms of both the entities observed and in 

providing the overall surface area of secreted material, so it is a good 

representation of the sEV sample, despite the heterogeneity of structures present. 

NTA was utilised to quantify sEV concentration and the size distribution of the 

population. Whilst the nature of the particles measured by NTA cannot be 

determined, the cryo-EM images compliment this by showing the proportion of 

particles that are in fact sEV-like vesicles. NTA does reveal that the vast majority of 

particles in a sEV sample are <200nm in size, however it is also likely under 

sampling particles <50nm since the lower end of the distribution curve is very 

steep and there many structures <50nm, clearly visible by cryo-EM which are not 

being captured by the Nanosight. Calculations of particle (NTA) and protein (BCA 

protein assay) concentrations allowed us to determine the purity of the sEV 

isolates. We could be confident that high P:P ratios in sEV preparations used in 

future experiments were low in contaminating protein, meaning that results we 

gathered from sEV could be attributed to sEVs with some assurance. Keeping in 

line with studies that have previously quantified exosomes by their protein 

concentration (Christianson et al., 2013; Hoshino et al., 2015; Peinado et al., 2012; 

Webber et al., 2010), this study will normalise sEVs used in experiments by their 

protein concentration measured by BCA protein assay, unless otherwise specified. 

To further characterise the sEV isolates, expression of proteins known to be 

associated with sEVs was evaluated. DU145 sEVs were positive for CD9, CD63 and 

CD81, all standard sEV markers (Colombo et al., 2014), suggesting at least part of 



  Results 

76 
 

the vesicle population was expressing these proteins. Other markers, ALIX, TSG101 

and MHC1 are all enriched in sEVs compared with DU145 cells, pointing to 

selective loading of proteins into the vesicles. ALIX and TSG101 are also markers of 

MVB formation, showing that at least a portion of the vesicle population are likely 

MVB derived, though sEVs of plasma membrane origin have also been reported 

(Booth et al., 2006). To further demonstrate the purity of the sEV isolates, we 

showed that an ER protein not expected to be in the sEV fraction (calnexin) was 

indeed not detectable, showing the effectiveness of clearance of non-vesicular 

material during the isolation process.  

Cancer derived sEVs from various sources are known to induce myofibroblast 

differentiation (Atay et al., 2014; Cho et al., 2012; Chowdhury et al., 2015; Gu et al., 

2012; Webber et al., 2010), this sEV driven response is characteristic of solid 

cancer progression. Here, we showed isolated DU145 derived sEVs can stimulate 

αSMA expression and production of HGF in primary fibroblasts, a biologically 

relevant cell type in solid tissues. This sEV mediated phenotypic change in the 

fibroblasts generates a myofibroblast distinct to that generated by sTGFβ1 alone, 

in agreement with previous findings by the group (Webber et al., 2010), showing 

that the differentiation process with DU145 sEVs is reproducible, and that our 

isolation process produces a population of vesicles which respond as expected 

according to previous studies. 

Overall, sucrose cushion-based ultracentrifugation produces DU145 derived sEVs 

of high purity, enriched in sEV markers with an indication of the endosomal origin 

of at least part of the population. Various structures are present in these isolates 

however which reflects the heterogeneity of structures in the sEV preparations. 

This shows the limitation of the sEV isolation process, as we are currently unable 

to solely isolate the small vesicle-like structures from the rest of the observed 

morphologies. 
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Figure 3.7. Schematic summary of chapter 3. Summary of the data 
collected in chapter 3. (A) The DU145 derived sEV isolates are a 
heterogenous population of structures of various shapes and sizes, the most 
common structure is the single membrane vesicle. (B) Isolates express 
proteins indicative of sEVs, but lack contaminating soluble cellular material. 
(C) sEVs stimulate fibroblasts, inducing the onset of αSMA expression and 
secretion of HGF by the fibroblast. 

B A 

C 



  Results 

78 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Results 

79 
 

4.1. Introduction 

sEVs interact with cells at the plasma membrane and can undergo internalisation, 

delivering their membrane bound contents and intraluminal cargo to the recipient 

cell, driving phenotypic change. The delivery of this cargo has been implicated in 

the progression of cancer. Colorectal cancer derived sEVs deliver mRNA to 

endothelial cells which drives proliferation (Hong et al., 2009), key for 

angiogenesis of tumour tissue. miRNA delivery by cancer derived sEVs, inducing 

pro-metastatic inflammatory response in macrophages has also been described 

(Fabbri et al., 2012). Elucidating the machinery behind uptake of sEVs is therefore 

a logical target for cancer therapy, as evidence shows numerous pro-tumoural 

effects are governed by delivery of this intraluminal sEV cargo to recipient cells. In 

this chapter, the mechanism of DU145 derived sEV internalisation by fibroblasts 

was examined, a cell type relevant in the pathology of prostate cancer progression. 

For tracking exosome uptake and intracellular trafficking, fluorescently tagging the 

sEV remains the easiest and most widely published method. Of the methods for 

fluorescently labelling exosomes, lipophilic dyes (mainly the PKH family) have 

been the most commonly used (Mulcahy et al., 2014), however there has recently 

been a desire to move away from these dyes due to them forming fluorescent 

particulates, of comparable size to sEVs (Lai et al., 2015), providing misleading 

information about sEV delivery. Fluorescent sEVs generated through genetically 

engineered cell lines, such as those with GFP-tetraspanin fusions (Heusermann et 

al., 2016) also have their limitations (section 1.3.4) and can be costly and time 

consuming to develop. In this study, we present a novel fluorescent tag, available 

in various colours, for rapid covalent labelling of sEVs. Maleimide linked-Alexa 

Fluor (Alexa) dyes are designed to covalently bind thiol groups on proteins. In this 

chapter we explored the utility of this alternative method of sEV labelling to study 

cellular uptake of sEVs. Alexa dyes were assessed for their ability to fluorescently 

label sEVs. Excess unbound Alexa dye would be separated from the sEVs using 

Exosome Spin Columns MW3000 (Thermofisher); the fluorescent sEV labelling 

protocol is described in section 2.4.1.  

sEV proteins are usually instrumental when the vesicles interact with cells 

(Clayton et al., 2011; Nazarenko et al., 2010; Peinado et al., 2012; Raposo et al., 

1996), and they are vital for sEV internalisation (Escrevente et al., 2011). In PCa, 
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sEV mediated TGFβ1 delivery to fibroblasts is dependent on the HSPG Betaglycan 

(Webber et al., 2010). Since our proposed sEV label exploits thiol groups for 

protein binding, it is possible that this could impact sEV functionality in terms of 

the biological response of the fibroblast to the sEV. We felt it was important to 

examine the consequences of labelling in terms of sEV function, therefore we 

evaluated the effect of sEV labelling on the ability of the sEV to induce 

myofibroblast differentiation in the fibroblast model. 

Internalised fluorescent sEVs are visualised by fluorescence microscopy, and the 

detection of their signal by flow cytometry of the cells allows for high-throughput 

quantification of sEV uptake (Barrès et al., 2010; Franzen et al., 2014; Morelli et al., 

2004; Nakase et al., 2015). Detection of sEVs labelled with maleimide linked Alexa 

dyes following cellular uptake by fibroblasts was assessed by fluorescence 

microscopy and flow cytometry. Using these platforms for detection of internalised 

fluorescent sEVs, we then sought to pinpoint the specific route of endocytosis used 

by fibroblasts to take up the sEVs, as endocytosis is possible through various 

mechanisms (Mayor and Pagano, 2007). Defining the route used by PCa derived 

sEVs in fibroblasts would enable more accurate therapeutic targeting.  

In summary, the aim of this chapter was to develop a sEV labelling approach to 

monitor internalisation in fibroblasts, and for the specific endocytic route to be 

defined. 
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4.2. Fluorescent labelling of sEVs 

4.2.1. Detection of labelled vesicles 

Initially, DU145 sEVs were treated for 1 hour with increasing doses of Alexa488 

from 5 to 200µg/mL, and after removal of the unbound dye, the fluorescent 

intensity of the sEVs was measured using the PHERAstar FS microplate reader, 

using the Alexa488 optic module. These results showed a dose dependent 

relationship between dye concentration and fluorescent output, as expected. With 

the input of sEVs, saturation of the fluorescent signal was achieved at doses of 

100µg/mL (figure 4.1a). At 200µg/mL, labelling marginally increases from 1 hour 

to 5 hour incubation times (figure 4.1b), surprisingly with a peak signal at 3 hours, 

however in the interest of developing a rapid labelling technique, further labelling 

experiments would continue with a 1 hour incubation. No free dye is detectable in 

post-spin solutions at any incubation time (figure 4.1b), suggesting that the dye 

does not from artificial aggregates greater than 3000Da in size (as these would be 

pulled through the spin column), at least up until 5 hours in PBS. At our chosen 

conditions, sEVs treated with 200µg/mL Alexa488 dye for 1 hour are highly 

fluorescent, detectable using a PHERAstar FS microplate reader, sEVs alone are not 

fluorescent, and there is no detectable free dye when 200µg/mL Alexa488 alone is 

spun through a spin column (figure 4.2), experiments using controls for free dye 

will be referred to as “Dye CTR”. N-acetyl-L-cysteine (NaLc), a thiol containing 

compound (Parasassi et al., 2010) was added to the incubation process as a 

competitor of sEV thiol-maleimide binding. NaLc blocked Alexa488-sEV binding in 

a dose dependent manner, 1mM NaLc reduced the fluorescent signal of the sEVs by 

≈80% (figure 4.3), an indication that the majority of the Alexa-sEV labelling occurs 

via the maleimide-thiol bond. 
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Figure 4.1. Dose and treatment time optimisation of DU145 derived 
sEVs with Alexa dyes. DU145 derived sEVs were incubated with (A) 5-200µg/mL 
Alexa488 for 1 hour, (B) 200µg/mL Alexa488 for 0.5-5 hours. Unbound dye was 
removed and labelled sEVs were diluted 1:6 in PBS and their mean fluorescent 
intensities measured using on a PHERAstar FS microplate reader with an Alexa488 
optic module. Points on graphs represent means +/- SEM, based on triplicate 
wells, ***P<0.001, one-way ANOVA with Tukey’s multiple comparison test. 
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Figure 4.2. Chosen treatment conditions for Alexa labelling of DU145 derived 
sEVs. DU145 derived sEVs were incubated 200µg/mL Alexa488 for 1 hour. 
Unbound dye was removed and labelled sEVs were diluted 1:6 in PBS and their 
mean fluorescent intensities measured using on a PHERAstar FS microplate reader 
with an Alexa488 optic module. Intensities of Alexa488-sEVs was compared with 
the control for free dye (Dye CTR) and unlabelled sEVs. Bars represent means +/- 
SEM, based on triplicate wells, ***P<0.001, one-way ANOVA with Tukey’s multiple 
comparison test. 
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Figure 4.3. Effect of N-acetyl-L-cysteine (NaLc) on Alexa labelling of 
DU145 derived sEVs. DU145 derived sEVs were incubated 200µg/mL Alexa488 
and 0-1mM NaLc for 1 hour. Unbound dye was removed and labelled sEVs were 
diluted 1:6 in PBS and their relative fluorescent intensities measured using on a 
PHERAstar FS microplate reader with an Alexa488 optic module. Bars represent 
means +/- SEM, based on triplicate wells, ***P<0.001, one-way ANOVA with 
Tukey’s multiple comparison test. 
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Alexa488 sEVs taken post-spin could be visualised by fluorescence microscopy 

using an Axio Observer Z1 microscope, when diluted 1:60 in PBS and added to 

wells of a 96 well glass bottomed plate (figure 4.4), sEVs appeared as small puncta 

floating in suspension. Fluorescent signal is likely linked to the sEVs since no 

puncta or signal of any sort can be visualised in Dye CTR wells.  

Nanoparticle tracking analysis (NTA) of Alexa488-sEVs shows that the size profile 

of the sEV population is not grossly affected by Alexa labelling (figure 4.5a). In both 

the sEV and Alexa-sEV populations, the proportion of particles measured by NTA 

smaller than 200nm ≈80%, indicative of the majority of the populations being 

within the size range of sEVs, and there is no significant difference between the 

respective modal sizes (figure 4.5b), so the dye does not alter the sizes of sEVs, 

since the most commonly sized particles in the populations are the same. As the 

labelling procedure involves diluting sEVs in PBS and spinning them through a 

column containing more PBS, concentration of sEVs is roughly halved (figure 4.5a). 

Negligible particles were detected in analysis of Dye CTR experiments (figure 

4.5a), in agreement with figure 4.4, in which no fluorescent particles were detected 

in the absence of sEVs, meaning that the Alexa dye does not pass through the spin 

columns by itself in a way which would make it detectable by fluorescence 

microscopy or light scattering techniques. 
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Figure 4.4. Visualisation of DU145 sEVs labelled with Alexa dyes. Alexa488-
sEVs were diluted 1:60 PBS and added to microscopy plates for fluorescent 
visualisation, respective dye CTR fluorescence was also measured. Images were 
captured of sEVs floating in suspension.  sEVs = white. Images captured by Axio 
Observer Z1, 63x lens used, Scale bar = 20µm. Images are representative from an 
experiment of 9 fields of view across 3 wells. 
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Figure 4.5. NTA of DU145 sEVs labelled with Alexa dyes. NTA histogram demonstrating the size distributions of sEV populations labelled with 
Alexa488 dye. Histogram represents the concentration of analysed particles against their respective size in nm. Presented histograms are an 
average of 5 measurements. (A) Histograms of particles detected in unlabelled DU145 derived sEV, Alexa488-sEV and Dye CTR samples. (B) 
Modal sizes of measured particles from the histograms in A. Bars represent means +/- SEM, based on the 5 measurements taken per sample, 
Students t-test tested for significant differences. 
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4.2.2. Effect of labelling on myofibroblast differentiation 

As shown in section 3.2.6, DU145 sEVs induce phenotypic changes in fibroblasts, 

inducing the onset of αSMA expression and de novo production and secretion of 

HGF. Alexa488-sEVs were used in fibroblast stimulation experiments to assess the 

impact of Alexa labelling on differentiation function of the sEVs. Fibroblasts were 

hence treated with 200µg/mL of labelled or unlabelled sEVs for 72 hours, and 

αSMA expression and HGF secretion in stimulated fibroblasts were used as 

markers for sEV functionality.  

Alexa labelling does not impede the DU145 sEVs ability to induce αSMA expression 

in fibroblasts (figure 4.6a). Fibroblast treated with either sEVs or Alexa488-sEVs 

differentiate into αSMA-positive myofibroblasts. Fibroblasts treated with a control 

for free dye in media do not undergo differentiation. Analysis of cell conditioned 

media by sandwich ELISA further reveals that HGF production by fibroblasts, a 

process unique to the sEV which sTGFβ1 does not drive, is also not perturbed by 

the conjugation of maleimide linked dye to the sEV surface (figure 4.6b). Again, a 

control for free dye does not stimulate HGF secretion by fibroblasts. The Alexa dye 

linked DU145 sEV is capable of driving differentiation in fibroblasts, akin to 

unconjugated sEVs, at least in its ability to generating myofibroblasts which 

secrete growth factors beneficial to tumour growth and survival.
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HGF 

Figure 4.6. Effect of Alexa labelling on DU145 sEV induced myofibroblast differentiation. Fibroblasts were treated for 72hrs with control 
media, 200µg/mL sEVs, 200µg/mL Alexa488-sEVs or a control for free dye (Dye CTR), cell supernatants were collected, and cells were fixed. (A) 
Cells were stained with an antibody for αSMA (red) and nuclei were stained with DAPI (blue), images are representative of 9 fields of view taken 
across 3 wells. Images captured by Axio Observer Z1, 20x lens used, scale bar = 50µm. HGF levels were measured in collected cell 
conditioned media by sandwich ELISA. Bars represent means +/- SEM, based on triplicate wells, one-way ANOVA with Tukey’s multiple 
comparison test. 
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4.3. Detection of DU145 sEV uptake in fibroblasts 

Following optimisation and validation of sEV labelling with Alexa Fluor Alexa dyes, 

Alexa-sEVs was next tested for their capacity to be taken up by fibroblasts addition 

to fibroblast media. 200µg/mL of red Alexa594-sEVs (myofibroblast stimulation 

dose) in DMEM/F12 were added to fibroblasts for 1 hour. Following washing and 

fixation of the cells, red puncta are clearly visible by fluorescence microscopy, the 

vast majority of which appear overlaid in association with the fibroblasts (figure 

4.7). However, some regions of the cells exhibit large fluorescent aggregates 

(figure 4.7, zoom, arrows), making it difficult to distinguish individual sEV 

containing compartments from one another, this is possibly due to oversaturating 

the cells with sEVs. Furthermore, persistent use of 200µg/mL Alexa-sEVs for 

uptake studies would rapidly deplete stocks of isolated sEVs, and since generating 

sEVs is a costly and time-consuming process, lowering doses of sEVs for 

experiments to reduce depletion of stocks would be desirable. Fibroblasts were 

next treated with 25-200µg/mL Alexa594-sEVs for 1 hour to assess detection of 

lower sEV doses in fibroblasts. Uptake was dependent on sEV dose (figure 4.8a), 

though clear red puncta were visible in all cells at the lowest dose of 25µg/mL 

(figure 4.8b). At this dose and treatment time, individual puncta are dispersed 

throughout the cells, without the appearance of large fluorescent aggregates. 

Cellular uptake of sEVs was also dependent on treatment time (figure 4.9a), the 

appearance of fluorescent aggregates become more common with the longer 

treatment times, particularly at 2 or more hours (figure 4.9b). sEVs are still 

detectable at 25µg/mL and 30 minutes of treatment, however Alexa-sEVs do not 

appear to label all fibroblasts (figure 4.9b). For future uptake studies, unless 

otherwise specified, an optimal fibroblast treatment of 25µg/mL Alexa-sEVs for 1 

hour will be used. 

Detection of Alexa-sEVs in fibroblasts was also possible by flow cytometry. 

Fibroblasts were treated with 25µg/mL green Alexa488-sEVs for 1 hour, then 

trypsinised and resuspended in PBS, to be used with the flow cytometer. A gated 

population of cells was based upon the forward and side scatter profiles, to 

eliminate cell fragments and large particulates from measurement (figure 4.10a). 

Alexa488-sEV treated fibroblasts are detectable, producing histograms of higher 

signal than untreated cells or cells treated with controls for free dye (figure 4.10b). 
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There is a small tail in the Alexa488-sEV treated fibroblast histogram, representing 

a population of fibroblasts which are not fluorescent, meaning they have not taken 

up sEVs, though this is only roughly 6% of the population. There is no difference 

between the fluorescent signals in cells treated with a control for free dye and 

untreated cells. Fibroblasts can exhibit a strong green autofluorescence (Carter et 

al., 2018), giving untreated cells an apparent positive fluorescent signal. 

Fibroblasts were treated with 25µg/mL of either Alexa488-sEV or red Alexa633-

sEVs to compare the relative signal to noise ratios of the treated versus untreated 

cells. Since fibroblast do not typically express red autofluorescence, Alexa633-sEV 

treated fibroblast histograms displayed a greater separation in signal from their 

control cells than Alexa488-sEV treated fibroblasts (figure 4.10c). Therefore, 

Alexa633-sEV treated fibroblasts exhibited a higher signal to noise ratio compared 

with Alexa488-sEV treated cells (figure 4.10d), the signal to noise ratio of the 

Alexa633 treatment was roughly 6-fold higher than the Alexa488 treatment. 

Histograms of Alexa488/633 signal was generated based on 10,000 cells (scaled 

down to 1000 cells in later experiments to reduce vesicle input requirements). For 

future experiments, Alexa633 dye was used to label sEVs for flow cytometry 

experiments unless otherwise stated. Herein, fluorescent intensity in fibroblasts 

associated with sEVs, detected by flow cytometry, will be used as a quantitative 

measure of the level of sEV uptake within the fibroblast population. 
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Figure 4.7. Staining patterns of fibroblasts treated with Alexa594-sEVs. 
Fibroblasts were treated with 200µg/mL Alexa594-sEVs for 1 hour. Fibroblasts 
were visualised for the staining pattern exhibited. White arrows in zoomed section 
point to areas of fluorescent aggregation. sEVs = red, DAPI = blue. Images captured 
by Axio Observer Z1, 63x lens used, scale bar = 20µm. Images are representative 
from an experiment of 9 fields of view across 3 wells.  
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Figure 4.8. Optimisation of Alexa594-sEV treatment dose for fibroblast 
uptake studies. Fibroblasts were treated with 25-200µg/mL Alexa594-sEVs for 1 
hour. Fibroblasts were visualised for the staining pattern exhibited. (A) Cells were 
visualised by fluorescence microscopy and their fluorescent intensities quantified 
by ImageJ, points on graphs represent means +/- SEM, based on 9 fields of view 
across 3 wells, ***P<0.001, one-way ANOVA with Tukey’s multiple comparison test. 
(B) Representative images of each treatment condition, sEVs = red, DAPI = blue.  
Images captured by Axio Observer Z1, 63x lens used, scale bar = 20µm. Images 
are representative from an experiment of 9 fields of view across 3 wells. 
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Figure 4.9. Optimisation of Alexa594-sEV treatment time for fibroblast 
uptake studies. Fibroblasts were treated with 25/mL Alexa594-sEVs for 0.5-4 
hours. Fibroblasts were visualised for the staining pattern exhibited. (A) Cells were 
visualised by fluorescence microscopy and their fluorescent intensities quantified 
by ImageJ, points on graphs represent means +/- SEM, based on 9 fields of view 
across 3 wells, ***P<0.001, one-way ANOVA with Tukey’s multiple comparison test. 
(B) Representative images of each treatment condition, sEVs = red, DAPI = blue. 
Images captured by Axio Observer Z1, 63x lens used, scale bar = 20µm. Images 
are representative from an experiment of 9 fields of view across 3 wells. 
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Figure 4.10. Use of flow cytometry to detect DU145 sEV uptake by fibroblasts. 
Fibroblasts were treated with 25/mL Alexa488/633-sEVs for 1 hour, then cells 
were prepared for flow cytometry. (A) Representation of the gated population for 
fluorescent intensity analysis, determined by forward and side scatter profiles of 
cells. (B) Detection of Alexa488-sEV treated (red) fibroblasts plotted as a histogram, 
in comparison with media treated (green) or control for free dye treated (black) 
cells. (C) Comparison of signal detection of the green Alexa488-sEV versus the red 
Alexa633-sEV in fibroblasts. (D) Signal to noise ratios of Alexa488-sEV versus the 
red Alexa633-sEV in fibroblasts, bars represent means +/- SEM, based on triplicate 
wells, Students t-test tested for significant differences, ***P<0.001. 
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4.4. Endocytosis of DU145 sEVs 

4.4.1. Evidence for endocytosis of DU145 sEVs 

sEV internalisation by cells has been described through various endocytic 

mechanisms (Mulcahy et al., 2014). Inhibition of this process through treatment of 

recipient cells at a reduced temperature indicates the endocytosis of the vesicle is 

energy requiring (Franzen et al., 2014). We treated fibroblasts with Alexa-sEVs at 

37°C versus 4°C to determine whether there is evidence of endocytosis of the sEVs 

by fibroblasts. Treating fibroblasts with Alexa-sEVs at 4°C instead of 37°C 

abrogates their uptake (figure 11). When fluorescence images are overlaid with the 

brightfield, Alexa594-sEVs largely appear along the cell peripheries in 4°C treated 

cells (figure 4.11a, 4°C. zoom, white arrows), in contrast to the disperse 

appearance of sEVs throughout the 37°C treated cells (figure 4.11a, 37°C. zoom, 

white arrows). Acid stripping or trypsinisation is reported to remove any sEVs 

bound to the plasma membrane of a recipient cell (Feng et al., 2010; Franzen et al., 

2014). Alexa-sEVs detected by flow cytometry (figure 4.10) should therefore be 

within the fibroblast, as trypsinisation of the cells occurs prior to the experiment. 

Flow cytometry reveals that the fluorescent signal of 4°C/Alexa633-sEV treated 

fibroblasts is almost entirely eliminated (figure 4.11b), suggesting that 

trypsinisation of the cells does strip them of surface bound sEVs, since any sEVs 

that may be present at the cell surface, as seen in figure 4.11a, are barely 

detectable by flow cytometry.  

Time-lapse fluorescence microscopy reveals that sEVs are mobile when in 

association with the fibroblast, meaning they have been internalised and are not 

bound to the plasma membrane. Captured across an 8 second time course (figure 

4.12, yellow/red arrow), sEVs move in straight trajectories, consistent with sEV 

movement along microtubules, likely within endosomes (Svensson et al., 2013).  

DU145 sEVs are internalised by fibroblasts, and this is inhibited through reduction 

in temperature of the experimental conditions, suggesting the uptake process is an 

active energy requiring process for the fibroblast.  
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Figure 4.11. Temperature dependent uptake of DU145 sEVs by fibroblasts. 
Fibroblasts were treated with 25µg/mL Alexa594/633-sEVs for 1 hour at either 
37°C or 4°C. (A) Fibroblasts were visualised for the staining pattern exhibited. 
White arrows in zoomed section point to areas of plasma membrane bound sEVs in 
the 4°C treatment, and intracellular sEVs in the 37°C treatment. Alexa594-sEVs = 
red, DAPI = blue. Images captured by Axio Observer Z1, 63x lens used, scale 
bar = 20µm. Images are representative from an experiment of 9 fields of view 
across 3 wells. (B) Fluorescent intensity of fibroblasts treated with Alexa633-sEVs 
at 37°C or 4°C was measured by flow cytometry. Bars represent means +/- SEM, 
based on triplicate wells, ***P<0.001, one-way ANOVA with Tukey’s multiple 
comparison test. 
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Figure 4.12. Movement of Alexa633-sEVs 
in fibroblasts. Fibroblasts were pulsed with 
25µg/mL Alexa633-sEVs for 30 minutes, then 
sEVs washed off and 10 second time-lapses 
were conducted. Images were captured every 
second with an Axiovert 100 and a 40x lens, 
with the fibroblasts contained within an 
incubator-like black box. Alexa633-sEVs = 
white. In zoomed images, Red/yellow arrows 
point to sEVs moving in the fibroblast, blue 
lines represent the path of movement of the 
tracked sEVs. Images are representative 
images from an experiment of 9 fields of view 
across 3 wells. 
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4.4.2. Pharmacological inhibition of uptake 

To pinpoint route of cellular uptake of DU145 derived sEVs in fibroblasts, 

pharmacological inhibitors of endocytosis were used. Pharmacological inhibitors 

were selected to target the common endocytic regulators and the most well 

characterised pathways. Actin, a filament protein important for cell structure and 

contraction, is implicated in numerous endocytic pathways (Doherty and 

McMahon, 2009). Cytochalasin D (CytoD) is a compound known to cause actin 

depolymerisation (Flanagan and Lin, 1980), thus is a standard inhibitor of 

endocytosis. Dynasore, inhibitor of dynamin function (Newton et al., 2006), 

abrogates both clathrin and caveolin coated vesicle formation. Macropinocytosis, 

another well characterised endocytic pathway is reliant upon Na+/H+ exchanger 

activity, which can be inhibited by ethyl-isopropyl amiloride (EIPA) (Hosogi et al., 

2012). Inhibitors CytoD, Dynasore and EIPA were all assessed for their ability to 

block sEV uptake. Bafilomycin A1 (BafA), typically used to raise pH of endocytic 

compartments is also thought to affect endosome trafficking (Baravalle et al., 

2005), therefore effect of endosomal transport inhibition on endocytosis would be 

gauged using BafA. Pharmacological inhibitors of uptake are often highly cytotoxic, 

and the cytotoxicity varies depending on the recipient cell (Vercauteren et al., 

2010). Dosing of inhibitors was carried out on fibroblasts and cell viability 

measured to find a suitable dose, which does not kill the cells, allowing any 

perturbation of sEV uptake to be attributed to the specific inhibition and not the 

cytotoxicity of the drug. Heparin, a Heparin sulphate mimetic, blocks uptake of 

Glioblastoma sEVs (Christianson et al., 2013). Here Heparin was also evaluated as 

inhibitor of DU145 sEV uptake to assess the importance of cell/sEV surface 

interactions. 

Pharmacological inhibition of endocytosis was carried out on the fibroblasts to 

expose the relevant molecular machinery used in uptake of DU145 sEVs and 

provide clues to the specific route of endocytosis. WST-8 cell viability assays were 

undertaken to identify doses of inhibitors which would not impact cell viability. 

Fibroblasts were treated with increasing doses of CytoD, Dynasore, EIPA or BafA 

for 24 hours, then cell viability was measured. Chosen doses: 100ng/mL CytoD, 

10µg/mL Dynasore, 1µg/mL EIPA and 100ng/mL BafA were deemed not to impact 

the viability of the fibroblasts (figure 4.13a). All inhibitors were diluted in DMSO; 
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the highest dilution of DMSO associated with an inhibitor in DMEM/F12 is 1:1000, 

DMSO itself does not impact cell viability at this dose (figure 4.13b). Chosen 

inhibitor doses, which did not affect cell viability were taken forward for use in sEV 

uptake studies. 

Measured by flow cytometry, the actin depolymerising agent CytoD blocks uptake 

of almost 50% of Alexa633-sEVs (figure 4.14a). Macropinocytosis inhibitor EIPA 

modestly inhibited Alexa633-sEV uptake by around 20%, whereas Dynasore, an 

inhibitor of dynamin had a much greater impact, reducing uptake of sEVs by 60% 

(figure 4.14a). Surprisingly, pH raising and endosomal traffic blocking agent BafA 

also abrogated sEV uptake by 60% (figure 4.14a). These data reveal the 

importance of actin in internalisation of sEV containing endosomes, the role of 

dynamin, a scission protein involved in both Clathrin and Caveolin mediated 

pathways, and Na+/H+ exchange activity, though to a lesser extent. Targeting the 

internal endosomal trafficking network appears to perturb endocytosis.  

The pharmacological inhibitors described here all impact in the internal machinery 

of the fibroblast to impede uptake, HS mimetic Heparin interrupts interactions 

between sEV and the recipient cell surface. Here, co-treatment of fibroblasts with 

Alexa633-sEVs and 50µg/mL Heparin (above concentration of Heparin used in 

other studies to perturb sEV internalisation (Christianson et al., 2013)) inhibited 

sEV uptake by 45% (figure 14b), demonstrating the role of the sEV/fibroblast 

surface interactions in sEV internalisation, in addition to the importance of the 

internal endocytic machineries of the fibroblast. 

Effect of inhibitors CytoD, Dynasore, EIPA and Heparin on sEV uptake was also 

assessed by fluorescence microscopy (figure 4.14c). The images appear to show 

agreement with flow cytometry with regards to reduced uptake in the presence of 

Dynasore and Heparin, however significant differences between the 

treated/untreated conditions were not detected (figure 4.14d), suggesting that 

fluorescence microscopy is not as sensitive in gauging differences in sEV uptake 

compared to flow cytometry. 
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Figure 4.13. Effect of pharmacological endocytosis inhibitors on fibroblast 
viability. Fibroblasts were treated for 24 hours with (A) 0-1µg/mL CytoD, 0-
200µg/mL Dynasore, 0-1µg/mL EIPA and 0-1µg/mL BafA, or (B) 1:1000 DMSO in 
DMEM F/12, then viability was measured by WST-8 assay. Cells were treated with 
WST-8 for 1 hour, then absorbance of orange light (corresponding to viability) was 
measured at 450nm using the PHERAstar FS microplate reader. Points on graph/ 
bars represent means +/- SEM, based on triplicate wells, selected doses for future 
experiments are circled in red. 
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Figure 4.14. Effect of pharmacological inhibitors on DU145 sEV uptake by 
fibroblasts. Fibroblasts were treated with 25µg/mL Alexa594/633-sEVs for 1 hour 
with 100ng/mL CytoD, 10µg/mL Dynasore, 1µg/mL EIPA and 100ng/mL BafA, 
50µg/mL Heparin or 1:1000 DMSO in DMEM F/12. Fluorescent intensity of 
fibroblasts treated with Alexa633-sEVs with (A) pharmacological inhibitors or (B) 
Heparin, was measured by flow cytometry. Bars represent means +/- SEM, based on 
triplicate wells, ***P<0.001, one-way ANOVA with Tukey’s multiple comparison 
test. (C) Treated fibroblasts were visualised by fluorescence microscopy. Alexa594-
sEVs = red, DAPI = blue. Images captured by Axio Observer Z1, 63x lens used, 
scale bar = 20µm. Images are representative from an experiment of 9 fields of view 
across 3 wells, (D) and their fluorescent intensities were quantified by ImageJ, bars 
represent means +/- SEM, based on 9 fields of view across 3 wells, one-way ANOVA 
with Tukey’s multiple comparison test.  

A B 

Ale
xa

63
3-

sE
V

+DM
SO

+Dyn
as

ore

+Cyt
oD

+E
IP

A

+B
af

A

Dye
 C

TR

0

20000

40000

60000

80000
***

Inhibitor

M
F

I (
A

U
)

Ale
xa

63
3-

sE
V

+D
M

SO

+H
ep

ar
in

Dye
 C

TR

0

20000

40000

60000

80000
***

M
F

I (
A

U
)

C 

D 

Ale
xa

63
3-

sE
V

+D
M

SO

+D
yn

as
ore

+C
yt

oD

+E
IP

A

+Hep
ar

in

Dye
 C

TR

0.00

0.05

0.10

0.15

Fibroblast treatment

M
F

I (
A

U
)/

n
u

cl
ei

 p
er

 f
ie

ld



  Results 

103 
 

4.4.3. siRNA mediated inhibition of uptake 

Inhibitors such as Dynasore or CytoD do not specifically block one endocytic route, 

furthermore specificity of inhibitors for their claimed target is often lacking 

(Vercauteren et al., 2010). Whilst pharmacological inhibitors are not sufficient to 

identify an exact route of endocytosis for sEVs, siRNA are available which target 

specific regulators of endocytosis, enabling a knockdown of a desired route of 

uptake (Al Soraj et al., 2012). The panel of siRNAs have been previously used to 

probe uptake of DU145 sEVs by HeLa cells (Roberts-Dalton et al., 2017), but they 

have not been employed in the fibroblasts before, therefore their efficacy for 

mRNA downregulation in fibroblasts was validated by qPCR,  then protein 

knockdown by Western blot, before reporting on their effect on sEV uptake.  

Fibroblasts were treated with siRNAs against AP2µ2 (Clathrin adaptor protein), 

CAV1 (Caveolin), PAK1 (Macropinocytosis), FLOT1 (Flotillin) or GFP as a 

transfection control, then knockdowns were validated at the mRNA and protein 

levels. All 4 targets (AP2µ2, CAV1, FLOT1, PAK1) were successfully knocked down 

at the mRNA level relative to the GFP control siRNA, reducing mRNA levels of the 

targets by 80%, 95%, 60% and 70% respectively (figure 15). Knockdown was then 

validated at the protein level by Western blot (figure 16). Clear protein knockdown 

was observed in CAV1 and PAK1 siRNA treated cells, whereas detection of AP2µ2 

and FLOT1 proteins proved challenging, even in untreated cells. Furthermore, 

GAPDH staining of blots was often found to be inconsistent between experimental 

groups. It seems that solubilisation of membrane related proteins in these 

fibroblasts was difficult. 

In contrast to pharmacological inhibitors, siRNAs were found to have no impact on 

the viability of the fibroblasts (figure 17a). Uptake of Alexa633-sEVs was then 

measured in siRNA treated cells by flow cytometry (figure 17b). Irrelevant GFP 

siRNA did not affect sEV uptake. Of all the targets, only knockdown of AP2µ2 

(Clathrin adaptor protein subunit) inhibited uptake, achieving a 40% reduction in 

uptake. CAV1 knockdown did not perturb cellular uptake. Interestingly, PAK1 and 

FLOT1 knockdowns both, contrary to expectation, increased sEV internalisation 

significantly, by 36% and 43% respectively. 

As with the pharmacological inhibitors, the effect of endocytic knockdowns on sEV 

uptake measured by fluorescence microscopy was also carried out. Representative 
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images are shown in figure 4.17c, with differences between conditions difficult to 

see. Similarly, to figure 4.14d, significant differences between treated/untreated 

cells were not seen, with the exception of the FLOT1 knockdown, in which cellular 

uptake of sEVs was higher than in non-siRNA treated cells (figure 4.17d). Lack of 

sensitivity or sampling capacity of the fluorescence microscopy technique could 

explain our inability to observe significant differences in these experiments, in 

contrast to flow cytometry. 
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Figure 4.15. Confirmation of target mRNA knockdown by qPCR. 
Fibroblasts were transfected with siRNAs against AP2µ2, CAV1, PAK1, 
FLOT1 and GFP and an siRNA control. qPCR was carried out to determine the 
relative expression of target mRNA in target siRNA versus GFP siRNA control 
treatments, with GAPDH as the internal control. Bars represent means +/- 
SEM, based on triplicate wells. Students t-test tested for significant differences, 
***P<0.001. 
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Figure 4.16. Confirmation of target protein knockdown by Western blot. Fibroblasts were transfected with siRNAs against AP2µ2, CAV1, 
PAK1, FLOT1 and GFP and an siRNA control. 20µg protein of cell lysates were loaded into parallel lanes, and SDS-PAGE and Western 
blotting were performed, with primary antibodies as indicated.  
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Figure 4.17. Effect of siRNAs on fibroblast viability and uptake of DU145 sEVs. 
(A) WST-8 assays were carried out on fibroblasts treated with siRNAs. Cells were 
treated with WST-8 for 1 hour, then absorbance of orange light (corresponding to 
viability) was measured at 450nm using the PHERAstar FS microplate reader. (B) 
siRNA transfected fibroblasts were treated with 25µg/mL Alexa633-sEVs for 1 
hour, then fluorescent intensities assessed by flow cytometry. (C) Treated 
fibroblasts were visualised by fluorescence microscopy. Alexa594-sEVs = red, DAPI 
= blue. Images captured by Axio Observer Z1, 63x lens used, Scale bar = 20µm. 
Images are representative from an experiment of 9 fields of view across 3 wells, (D) 
and their fluorescent intensities were quantified by ImageJ. In all experiments, bars 
represent means +/- SEM, based on triplicate wells (or 9 fields of view over 3 wells 
for (D)), *P<0.05, **P<0.01, one-way ANOVA with Tukey’s multiple comparison test. 

Untre
at

ed
GFP 2

AP2
CAV1

PAK1

FLOT1

0.0

0.5

1.0

1.5 ns

siRNA

45
0n

m
 A

b
so

rb
an

ce
 (

A
U

) B A 

C 

Ale
xa

63
3-

sE
V

GFP 2
AP2

CAV1

PAK1

FLOT1

0.0

0.2

0.4

0.6 **

Fibroblast treatment

M
F

I (
A

U
)/

n
u

cl
ei

 p
er

 f
ie

ldD 

Ale
xa

63
3-

sE
V

GFP 2
AP2

CAV1

PAK1

FLOT1

0

5000

10000

15000

20000
** ***

siRNA

M
F

I (
A

U
)



  Results 

108 
 

4.5. Comparison of DU145 and LNCaP sEV uptake 

We showed that there is some interaction between the DU145 sEVs and fibroblasts 

as we could block uptake with Heparin, others have described the importance of 

sEV proteins in the vesicle’s endocytosis (Christianson et al., 2013; Escrevente et 

al., 2011). In addition, PCa sEVs are more readily internalised if they are from a 

malignant cell line compared to a less aggressive one, and this is also correlated to 

their cancer promoting functionality (Lázaro-Ibáñez et al., 2017). We investigated 

whether fibroblasts would endocytose DU145 sEVs to a greater extent than LNCaP 

sEVs. 

LNCaP sEVs were isolated using the same protocol used to isolate the DU145 sEVs, 

then both sEV populations were labelled with Alexa594. After a 1 hour treatment 

with 25µg/mL with one of the respective sEV populations, microscopic analysis 

showed a preferential uptake of DU145 sEVs by fibroblasts over LNCaP sEVs by a 

factor greater than 10 (figure 18).  

Labelling DU145 sEVs with Alexa488, and LNCaP sEVs with Alexa594 allowed us to 

co-treat fibroblasts with both sEV populations simultaneously. As expected, DU145 

sEVs appeared to be much more readily taken up, though LNCaP sEV uptake still 

occurred in the presence of the DU145 sEV (figure 19a). Co-localisation analysis 

revealed that almost 60% of LNCaP sEVs overlapped the DU145 sEV signal (figure 

4.19b), meaning a majority of LNCaP sEVs are probably in the same endocytic 

compartment, or in very close association with DU145 sEVs. 

 

 

 

 

 

 

 

 



  Results 

109 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DU14
5

LNCaP

0.0

0.2

0.4

0.6

***

sEV donor cell line

M
F

I (
A

U
)/

n
u

cl
ei

 p
er

 f
ie

ld

Figure 4.18. Comparative uptake of DU145 derived sEVs versus LNCaP 
derived sEVs by fibroblasts.  Fibroblasts were treated with 25µg/mL DU145 
Alexa594-sEVs or 25µg/mL LNCaP Alexa594-sEVs for 1 hour, then visualised by 
fluorescence microscopy. Alexa594-sEVs = red, DAPI = blue. Images captured by 
Axio Observer Z1, 63x lens used, scale bar = 20µm. Images are representative 
from an experiment of 9 fields of view across 3 wells for each condition. Fluorescent 
intensities of the two conditions were quantified by ImageJ. Bars represent means 
+/- SEM, based on 9 fields of view over 3 wells, ***P<0.001, Students t-test. 



  Results 

110 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19. Co-localisation of DU145 derived sEVs and LNCaP derived sEVs following uptake by fibroblasts.  Fibroblasts were treated 
with 25µg/mL DU145 Alexa488-sEVs and 25µg/mL LNCaP Alexa594-sEVs for 1 hour, (A) then visualised by fluorescence microscopy, images 
were captured for co-localisation analysis. DU145 sEVs = green, LNCaP sEVs = red, DAPI = blue. Images captured by Axio Observer Z1, 63x 
lens used, scale bar = 20µm. Images are representative from an experiment of 9 fields of view across 3 wells for each condition. (B) Mander’s 
coefficient analysis to determine co-localisation of DU145 sEVs and LNCaP sEVs from fields of view taken in A, co-localisation was defined as 
proportion of red signal (LNCaP sEVs) associated with green signal (DU145 sEVs), measured by the JACoP plugin on the ImageJ software. Graph 
represent means +/- SEM of Mander’s coefficients calculated, based on 9 fields of view across 3 wells. 
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4.6. Discussion 

In this chapter, we examined internalisation of PCa derived sEVs by fibroblasts 

using sEVs fluorescently labelled with a novel maleimide linked Alexa dye. The 

main findings of this chapter are summarised in figure 4.20.  

We explored the use of a novel maleimide linked Alexa dye to label sEVs for use in 

uptake studies. The Alexa Fluor maleimides were found to be robust sEV labelling 

dyes, available in multiple colours, making them suitable for various applications. 

The dyes produce a strong enough signal to allow fluorescent imaging of sEVs in 

suspension and following internalisation by primary fibroblasts. The molecular 

weight of the dye (Alexa488= 720.66MW) is such that it will be captured by the 

Exosome Spin Column in its unbound form, and hence free dye is removed. All 

fluorescent material used in uptake studies is therefore sEV-associated, or due to 

dye binding to macromolecular protein-containing aggregates. Acetylcysteine 

mediated inhibition of sEV-Alexa labelling supports the thiol-based targeting of the 

maleimides, and points to a covalent disulphide bonding between sEV and dye. 

100% blockade of sEV-maleimide binding was not achieved however, higher doses 

of NaLc may have reduced the binding further, though we cannot rule out the 

possibility that some maleimide binds to the sEVs in a thiol independent manner.  

Despite the protein binding nature of the dye, we did not observe an impact on the 

ability of the sEV to drive myofibroblast differentiation when labelled with the 

Alexa dye, suggesting sEV functionality is not impeded by this labelling process at 

least with respect to this particular phenotypic induction. The impact of sEV-dye 

labelling on sEV functionality is rarely considered, but important to study, as an 

alteration in function may reflect perturbed and non-natural uptake mechanisms. 

The Alexa dye does not spontaneously form large particulates, of similar size to 

sEVs, as seen with the widely used PKH dyes (Lai et al., 2015; Pužar Dominkuš et 

al., 2018), since no detectable dye comes through the 3000Da cut-off spin columns, 

reducing the likelihood of false positive signals associated with Alexa dyes, this 

was confirmed by measurement of fluorescent intensity of controls for free dye 

and by NTA. Overall, the Alexa Fluor maleimide dyes are proposed as easy to use 

labels to stain sEVs for use in uptake studies, they are versatile in their availability 

in different colours, do not appear to impact the size or functionality of the sEV and 

do not generate false positive signals post-clearance through spin columns. Use of 
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Alexa dyes in monitoring DU145 sEV uptake in HeLa cells has recently been 

published (Roberts-Dalton et al., 2017). 

Fluorescence microscopy of the labelled sEVs in fibroblasts shows dispersed 

punctate staining with the appearance of fluorescent puncta, this quality of image 

will enable further studies monitoring intracellular sorting of the sEVs with the use 

of these dyes. Large aggregates of fluorophores were sometimes seen both within 

the fibroblast and externally (figure 7-9). Whilst these masses of fluorophore are 

unexplained, they could derive from multiple sources. Sorting of many sEVs into a 

single endocytic compartment could be a source of the appearance of aggregation, 

as the distance between the individual sEVs may fall below the resolution limit of 

light, thus giving the appearance of one large fluorescent particle. Aggregates of 

vesicles are known to form during high-speed ultracentrifugation (Linares et al., 

2015), and may also be a source of the large fluorescent masses seen, particularly 

those seen in the extracellular space. A limitation of maleimide based labelling is 

that large contaminating protein structures will be labelled as well as sEVs, again a 

potential cause for the presence of large fluorescent materials within the sEV 

sample, though the use of a sucrose cushion during sEV isolation means the 

protein contaminants pulled into the sEV containing layer must be of similar size 

and density to the sEVs, therefore their presence should be limited in the sEV 

isolates. Alexa-sEV treated fibroblasts are also detectable fluorescently by flow 

cytometry. The large separation between the histograms of treated and untreated 

fibroblasts gives us room to detect interference of sEV uptake in future 

experiments, and use of far red dyes (Alexa633) to label sEVs exhibits a greater 

signal:noise ratio over green Alexa488 dye as it removes the green autofluorescent 

nature of the fibroblast from consideration. The high sampling capacity nature of 

flow cytometry allows us to quantify uptake in 1000s of cells rapidly, making this a 

robust method for analysing sEV uptake, and will be used to complement or 

replace analysis by microscopy in future experiments. Microscopy remains 

essential however for experiments identifying intracellular location of sEVs. 
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Figure 4.20. Schematic summary of chapter 4. Summary of the data collected in 
chapter 4. (A) sEVs can be fluorescently tagged with Alexa dyes and free dye can be 
removed. (B) Alexa labelling does not impede the myofibroblast differentiation 
function of the sEV. (C) Alexa-sEVs can be detected fluorescently in fibroblasts, by 
fluorescence microscopy and flow cytometry. (D) sEVs are taken up by fibroblasts 
primarily through Clathrin mediated endocytosis, shown by inhibition of uptake 
with Dynamin inhibitor Dynasore and AP2µ2 siRNA. 
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It is challenging to determine the exact proportion of visible sEVs which have been 

internalised versus plasma membrane bound sEVs, without advanced 3-D imaging 

of the cell, though sEV which are very mobile and move typically in straight lines 

are most likely internalised, since sEVs outside the cell would either be stuck to the 

plasma membrane or move under Brownian motion which would appear much 

more random. Co-localisation of sEVs with fibroblast internal markers would be 

further evidence of their uptake, this will be investigated in chapter 5. Our sEV 

movement was often stop and start, described previously by others (Tian et al., 

2013) and since cells are known to sort cargo slowly (Kielian et al., 1986), the 

movement of sEVs in the fibroblast is in keeping with what is known of endosomal 

trafficking. Cell trypsinisation prior to flow cytometry may be a way to ensure 

measured sEVs are internal as this is thought to strip the cell surface of sEVs 

(Franzen et al., 2014). Indeed, fluorescent signal of fibroblasts treated at 4°C 

versus 37°C is almost entirely eradicated when measured by flow cytometry, 

whereas many sEVs are clearly visible using microscopy in which cells are not 

trypsinised, and sEVs appear in close association with the plasma membrane of the 

fibroblasts. Since the uptake process is temperature dependent, we believe that it 

is an active energy requiring one, this temperature dependent mechanism has 

been reported numerous times (Christianson et al., 2013; Escrevente et al., 2011; 

Tian et al., 2013). 

Through complimentary use of pharmacological inhibitors and siRNAs against 

specific endocytic regulators, we were able to identify the key route of uptake for 

DU145 sEVs in fibroblasts. Actin polymerisation, fundamentally key to endocytosis 

(Galletta and Cooper, 2009), was blocked using CytoD, resulting in reduction of sEV 

uptake by almost 50%. EIPA only had a modest effect on uptake, macropinocytosis 

may therefore not play a large role in sEV uptake in fibroblasts. In contrast, 

Dynasore had a sizeable impact on uptake, indicating the role of dynamin in 

endocytosis, a protein involved in both Clathrin and Caveolin mediated uptake. 

Interestingly, BafA also blocked a high percentage of sEV uptake, though it is 

unclear whether the perturbation in uptake is due to the pH raising or endosomal 

maturation action of BafA. The decreased fluorescent signal is unlikely due to an 

effect of alteration of endosomal pH on fluorescence of the fluorophore, since the 

Alexa Fluor maleimide dyes are pH insensitive between pH 4-10 (Panchuk-

Voloshina et al., 1999). None of the inhibitors achieved a 100% blockade in sEV 
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uptake. Continued tweaking of the inhibitor doses may have allowed us to increase 

the doses further before impacting cell viability, improving the impact on sEV 

uptake. Some of the targets are critical to normal cellular function, however full 

blockade of them may not be possible without a severe reduction in the viability of 

the population. Blockade of an uptake route may be compensated by another, 

uptake in the presence of Dynasore may still occur through macropinocytosis for 

example, supported by evidence that sEVs can be internalised via more than one 

route in a given cell (Costa Verdera et al., 2017; Tian et al., 2014a). 

Knockdown of the protein AP2µ2 significantly abrogated sEV endocytosis. The 

knockdown of this Clathrin related protein, together with the Dynasore mediated 

inhibition demonstrates that uptake of DU145 sEVs by fibroblasts is primarily 

through Clathrin mediated endocytosis. Dynamin is also involved in caveolin 

dependent endocytosis, however knockdown of CAV1 showed no impact on uptake 

at all, meaning the role of dynamin is entirely related to CME in this instance. 

Surprisingly, knockdown of PAK1 and FLOT1 both lead to an increase in sEV 

uptake. The result seen with PAK1 was particularly unexpected because treatment 

with macropinocytosis inhibitor EIPA did slightly block uptake, whereas PAK1 

knockdown has had the opposite effect. Whilst these results are so far 

unexplainable, perhaps their knockdowns are causing an upregulation of the other 

pathways, which could be tested by qPCR/Western blot, or using known probes of 

the other pathways. It has been shown that CAV1 for example can negatively 

regulate sEV uptake in mouse embryonic fibroblasts (Svensson et al., 2013), 

supporting this theory. The siRNAs allowed for a more accurate defining of the 

endocytic routes used by sEVs and did not affect cell viability. Although 

confirmation of our knockdowns at the mRNA was straightforward, Western blot 

analysis of these protein in the fibroblasts proved difficult, despite repeated 

attempts, high quality blots were not achievable for most targets, meaning we 

could not be certain of knockdown at the protein level. However, with the qPCR 

data, and that these siRNAs have been validated previously in HeLa cells (Roberts-

Dalton et al., 2017), we were confident that they functioned as they were designed 

to, and that the poor protein knockdown confirmation was due to the difficulty of 

carrying out Western blots with these cells rather than the knockdowns 

themselves. The Western blots may have been challenging due to the solubility of 
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the target proteins in these cells, or simply due to the low abundance of the protein 

in the fibroblast, however we have not tested these theories. 

Together, siRNA knockdown and pharmacological inhibition identify CME as the 

principal endocytic route for DU145 sEV uptake in fibroblasts. CME is not the main 

endocytic mechanism for DU145 sEV though in every recipient cell, we previously 

showed that DU145 uptake in HeLa cells is actually macropinocytosis driven 

(Roberts-Dalton et al., 2017). Furthermore, internalisation of cancer sEVs by 

fibroblasts has been described via different mechanisms too. Glioblastoma sEVs 

rely on lipid rafts, rich in Flotillin-1, and are independent of Clathrin Heavy Chain 

protein in mouse embryonic fibroblasts for their uptake (Svensson et al., 2013). 

Clearly, endocytosis of sEVs is dependent on both the origin of the recipient cell, 

but also the origin of the sEV. Uncovering the specific pathways for sEV uptake in 

different cell types will be a challenge for the EV field, but essential for allowing for 

more accurate therapeutic targeting of sEV uptake into target cells.  

The protein content of the sEV surface is key for uptake to occur (Escrevente et al., 

2011). Here we showed uptake could be significantly abrogated by Heparin, 

suggesting a role for HSPGs for sEV endocytosis, shown previously by others 

(Christianson et al., 2013). CME is a receptor mediated uptake route, so since we 

show DU145 sEVs are taken up by fibroblasts through this mechanism, the sEV 

surface proteins are clearly important. Our maleimide linked dyes bind sEV 

proteins, possible interference this has with endocytic route used by our sEVs is 

unclear; determining route of endocytosis using alternative dyes to the maleimide 

linked dye may reveal whether the Alexa dyes have any impact on route of uptake. 

DU145 sEVs are detected in fibroblasts to a higher degree than the less malignant 

LNCaP sEVs. We do not know if the differences recorded are in fact due to 

increased uptake of the DU145 sEV, or that the LNCaP sEVs are not labelled as 

efficiently, resulting in uptake of unlabelled LNCaP vesicles. Though since LNCaP 

sEVs are detectable with the dye, and that discrepancies between uptake of PCa 

sEVs from distinct cell lines has been reported before (Lázaro-Ibáñez et al., 2017), 

it seems likely that the DU145 sEVs are just preferentially endocytosed. The big 

difference in extent of uptake between DU145 and LNCaP sEVs in the same 

recipient cell and under the same experimental conditions is very interesting and 

suggests that the protein content of the respective sEV surfaces must be pivotal in 
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regulating their internalisation. Analysis of DU145 and LNCaP cell surface proteins 

shows differential expression of many (Liu, 2000), such as positive expression of 

CD44, a marker of advanced prostate cancer (Liu et al., 1999), and CD55 (decay 

accelerating factor) on DU145 versus negative expression on LNCaP cells. 

Proteomic analysis and comparison of the two sEV populations may reveal 

differential expression of surface proteins relevant in the process of cellular 

uptake.  

Movement of sEVs within the fibroblast post-uptake (figure 11), and the tendency 

for sEVs of different origin to co-localise into the same endosomal compartments 

(figure 19), illustrates that PCa sEVs begin to undergo sorting by the fibroblasts 

when they are internalised. Tracking the intracellular fate of the DU145 sEV will 

help uncover how cargo is delivered to the cell, which may provide more 

information on how the PCa sEVs interact with fibroblasts.  
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5.1. Introduction 

It is well established that sEVs can deliver diverse cargo to recipient cells. PCa 

derived sEVs transfer integrins to non-cancerous cells, which become expressed on 

the target cell surface (Fedele et al., 2015; Singh et al., 2016). As well as membrane 

proteins, cancer derived sEVs also deliver intraluminal cargo such as nucleic acids 

to recipient cells (Skog et al., 2008). Transfer of both protein and nucleic acids by 

sEVs suggest a complex processing of the vesicles by cells and potentially the 

degradation of the sEV with distinct components directed to different parts of the 

cell. Furthermore, the contents delivered to cells may become active within an 

hour of sEV treatment (Lai et al., 2015; Montecalvo et al., 2012), showing this 

delivery mechanism is surprisingly rapid. Rapid uptake can be visualised, with 

fluorescent sEVs detectable in cells within minutes of sEV addition (Feng et al., 

2010; Tian et al., 2010), and after uptake, sEVs can be seen intact within endocytic 

compartments (Heusermann et al., 2016; Morelli et al., 2004; Svensson et al., 

2013), meaning they are unlikely to transfer their contents to cells at the plasma 

membrane. Some groups have looked at sEV fate within recipient cells post-uptake 

and numerous studies have detailed intracellular trafficking of sEVs to late 

endocytic and lysosome-like compartments (Escrevente et al., 2011; Koumangoye 

et al., 2011; Nanbo et al., 2013). Fluorescently tracking sEVs following their uptake 

by cells may clarify where sEVs are sorted to and how they deliver their contents 

to the cells. Mapping out this cargo transfer could give us a greater understanding 

of fundamental sEV-cell interactions, and by studying this in our model system 

gain insights into how PCa derived sEVs communicate with fibroblasts.  

Assessment of intracellular trafficking and luminal cargo delivery of DU145 

derived sEVs in primary fibroblasts was the focus of this chapter. This was 

achieved through tracking of fluorescently tagged sEVs, firstly subcellular location 

of Alexa-sEVs post-uptake was investigated, then we examined use of alternative 

fluorescent dyes to probe delivery of intraluminal sEV cargo, and this aspect is 

particularly novel. Through these experiments, we aimed to increase our 

understanding of PCa derived sEV interactions with fibroblasts post-

internalisation and expand our knowledge of luminal cargo delivery mechanics 

from sEVs to recipient cells. 
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5.2. Trafficking kinetics of sEVs 

Before determining subcellular compartment localisation of DU145 derived sEVs 

following uptake by fibroblasts, we first monitored Alexa-sEV signal post-

internalisation. We wanted to see whether sEVs were retained or perhaps ejected 

by the fibroblasts, since evidence of lysosome (Escrevente et al., 2011) and 

recycling endosome localisation (Koumangoye et al., 2011), even transcytosis 

(Chen et al., 2016) has been described for sEVs taken up by cells. Then we sought 

to identify any clear changes in the staining patterns of Alexa-sEVs over time, 

which could provide clues on the sorting or fate of the sEV. 

5.2.1. Uptake kinetics of sEVs compared to endosomal probes 

Firstly, sEV retention by fibroblasts was evaluated, to see whether sEVs would 

remain within the cells post-uptake. Signal for Alexa488-sEVs in fibroblasts over 4 

hours was compared against the changes in signal over time of the endocytic 

probes transferrin (Tf) and dextran (Dx). Alexa488 conjugated Tf (Tf488), was use 

as a probe of recycling endosomes, and we expected it to be rapidly internalised, 

then recycled back to the plasma membrane and released (Mellman, 1996). 

Alexa488 conjugated Dx (Dx488), in contrast to Tf488, was expected to be retained 

by fibroblasts and localise to lysosomes (Baravalle et al., 2005). The fluorescent 

signal of Alex488-sEVs over time versus these probes may indicate whether sEVs 

are recycled or retained by fibroblasts. To monitor sEV retention by fibroblasts, we 

employed a “pulse and chase” treatment approach. Fibroblasts were treated (or 

pulsed) for 30 minutes with 25µg/mL Alexa488-sEVs, 5µg/mL Tf488 or 100µg/mL 

Dx488, then the wells were washed, and fresh media was added, cells were then 

incubated for 0-4 hours (chased) so we could track only the sEVs/probes that had 

been internalised and not inadvertently record continuous cellular uptake over the 

time course. Treated fibroblasts were visualised by fluorescence microscopy and 

the signal quantified in parallel experiments using flow cytometry. 

Immediately following a 30 minute pulse, Tf488 was clearly visible inside 

fibroblasts (figure 5.1a), then as expected its signal deteriorated when the cells 

were chased prior to microscopy or flow cytometry; over the 4 hour time course, 

the Tf488 signal, measured by flow cytometry significantly fell (figure 5.1b), and 

little TF488 could be seen in the cells (figure 5.1a). In contrast, Dx488 can be 
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clearly visualised in fibroblasts at 0 and 4 hours at similar levels post-uptake 

(figure 5.1c) and the fluorescent signal of the cells is not significantly different at 0 

hours versus 4 hours, assessed by flow cytometry (figure 5.1d). Alexa488-sEVs do 

not appear to be recycled by fibroblasts, as signal does not decrease over the time 

course and Alexa488-sEVs are clearly visible in fibroblasts at 4 hours post-uptake 

(figure 5.1e). However, neither do they exhibit a comparable signal to Dx488. Flow 

cytometry reveals that over the time course, Alexa488-sEV signal dramatically 

increased over 3 hours (figure 5.1f), suggesting continued cellular uptake of sEVs 

after the wash step. Nevertheless, fibroblasts are likely retaining and not expelling 

the sEVs following uptake since the Alexa488-sEV signal does not fall during the 4 

hour time course. Alternatively, this apparent retention of sEVs could be explained 

by a net balance of sEVs taken in versus those recycled; determining subcellular 

location of sEVs could determine whether this was in fact the case.  
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Figure 5.1. Fibroblast uptake kinetics of Alexa488-sEVs versus endocytic probes. Fibroblasts were pulsed with (A) 5µg/mL Tf488, 
(B) 100µg/mL Dx488 or (C) 25µg/mL Alexa488-sEVs, for 30 minutes, then chased for 0-4 hours. Expression of sEVs/probes were 
visualised by fluorescence microscopy and signal intensity measured by flow cytometry in parallel experiments. sEVs/endocytic probes = 
green, nuclei = blue. Images captured by Axio Observer Z1, 63x lens used, scale bar = 20µm. Points on graphs represent means +/- 
SEM, based on triplicate wells, ***P<0.001, one-way ANOVA with Tukey’s multiple comparison test. 
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5.2.2. Time-lapse microscopy of intracellular trafficking of sEVs 

After finding sEVs are retained by fibroblasts over 4 hours, we monitored sEV 

movement over this time by time-lapse microscopy to see how the staining pattern 

of sEVs changed, as changes could provide useful information on intracellular 

distribution/sorting of acquired sEVs. Fibroblasts were pulsed with 25µg/mL 

Alexa633-sEVs for 30 minutes, then wells were washed with fresh media and 

Fluorobrite DMEM was added to wells for imaging. Cells were incubated and 

simultaneously visualised using an Axiovert 100 (Zeiss) with a black box enclosure 

mimicking incubator conditions. Imaging was then carried out over a 4 hour time 

course to monitor sEV behaviour. Collected images were analysed using Integrated 

morphometry analysis (Metamorph v7.8.13.0) to calculate the size of fluorescent 

areas in fibroblasts; the size of the fluorescent areas would be related to how 

closely associated sEVs are within the endosomal system. Areas of positive 

fluorescent signal are highlighted in orange in figure 5.2a to signify areas used for 

analysis. 

As seen previously, Alexa633-sEVs appear as punctate dots shortly after 

internalisation (figure 5.2a). Within 2 hours of uptake, the sizes of the surface 

areas of regions which were fluorescent in fibroblasts had significantly increased, 

and continued to increase through 4 hours (figure 5.2b). At 4 hours, clusters of 

Alexa633-sEVs are clearly visible in fibroblasts (figure 5.2a, zoom, white arrows). 

The increase in mean fluorescent area sizes in fibroblasts over time suggests that 

sEV are being sorted so that they are in close association, they are now close 

enough together that our microscope sees these as single fluorescent entities, 

rather than in nearby distinct endosomes, though the resolution limit of the 

microscope may mean we are overestimating how closely associated these sEVs 

are.  
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Figure 5.2. Clustering of Alexa633-sEVs in fibroblasts. Fibroblasts were pulsed with 
25µg/mL Alexa633-sEVs for 30 minutes, then chased for 4 hours. Images were 
captured every hour for analysis, using an Axiovert 100 and a 40x lens. (A) Using 
Metamorph software, fields of view were auto-thresholded for light objects, shown in 
orange. (B) Integrated morphometry analysis was used to analyse light regions, mean 
fluorescent area sizes were plotted on a line graph. White arrows represent large 
fluorescent areas. Points on graphs represent means +/- SEM, based on 9 fields 
of view across 3 wells, *P<0.05, **P<0.01, ***P<0.001, one-way ANOVA with 
Tukey’s multiple comparison test. 
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A fibroblast differentiation experiment typically takes 72 hours (Webber et al., 

2010). If we extended the time course for the time-lapse experiments, we can see 

that fibroblasts are still fluorescent 72 hours post sEV treatment (figure 5.3a). 

Fluorescent signal of fibroblasts remains elevated at 72 hours, measured by flow 

cytometry (figure 5.3b), albeit slightly decreased from 48 hours post-sEV 

treatment. At 72 hours, very few clear puncta can be seen (figure 5.3a, zoom), and 

many cells exhibit a diffuse staining pattern. Due to lack of follow up experiments, 

it is unclear whether photo bleaching of the Alexa633 fluorophore occurred over 

this long time-lapse, with images taken every hour, or whether the patterns seen 

are due to further processing of the sEVs/ redistribution of the fluorophore 

following decoupling from the sEV.  

We have demonstrated here that DU145 derived sEVs are retained by fibroblasts 

following uptake, and at the very least, the Alexa dye used to label the sEVs is still 

present in the fibroblast at 72 hours though the fate of the sEV, whether they 

remain structurally intact is unknown because fluorescent puncta are rare. We 

have evidence of the transit of sEV-containing compartments to a similar 

intracellular location by the fibroblasts, seen by small areas of fluorescent signal 

merging into larger areas (figure 5.2), indicating transit of sEVs through the 

endosomal system. Next, we investigated the specific subcellular location of sEVs 

during this intracellular sorting. 
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Figure 5.3. 72 hour time-lapse of Alexa633-sEV signal in fibroblasts. Fibroblasts 
were pulsed with 25µg/mL Alexa633-sEVs for 30 minutes, then chased for 72 hours. 
(A) Images were captured every hour with an Axiovert 100 and a 40x lens, with the 
fibroblasts contained within an incubator-like black box. sEVs = white. Images are 
representative images from an experiment of 9 fields of view across 3 wells. (B) 
Parallel experiment, measuring fluorescent signal of sEVs in fibroblasts. Points on the 
graph represent means +/- SEM, based on triplicate wells, ***P<0.001, one-way 
ANOVA with Tukey’s multiple comparison test. 
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5.3. Endosomal localisation of sEVs in fibroblasts 

Co-localisation analysis of sEVs with fluorescently labelled endocytic 

compartments was next carried out, in order to examine the route of intracellular 

transport of sEVs, to see if they transit towards lysosomes. We decided to track 

sEVs through the endosomal system, fluorescently labelling early endosomes, late 

endosomes and lysosomes for co-localisation with sEVs. These endosomal 

compartments are often fluorescently labelled through antibody staining of 

proteins characteristic of particular compartments (e.g. LAMP1 staining for 

LE/lysosomes). Antibody staining of endosomal compartments for sEV co-

localisation may be unsuitable however, since at least a substantial proportion of 

sEVs are of an endosomal origin, and endosomal markers such as Rab5 

(Christianson et al., 2013) and LAMP1 (Wolfers et al., 2001) are detectable in sEV 

isolates. Antibodies for endosomal proteins may therefore stain the internalised 

sEV itself, generating a false positive signal for the location of the sEV. CellLight® 

BacMam reagents (Thermofisher) are designed for fluorescent labelling of proteins 

in live cells (Dolman et al., 2013). They utilise a baculovirus to deliver a desired 

gene modified to include a red fluorescent protein (RFP) following translation in 

the target cell. Here, fibroblasts were transduced with CellLight reagents to 

express Rab5-RFP (EEs), Rab7-RFP (LEs) or LAMP1-RFP (lysosomes) and used for 

co-localisation analysis with sEVs. Subcellular location of sEVs was also examined 

through co-localisation with endocytic probes. These methods for fluorescent 

endosome labelling were assessed for their ability to effectively stain the 

fibroblasts and practicality in co-localisation experiments.  

5.3.1. Co-localisation of sEVs with Bacmam labelled endocytic compartments 

Bacmam reagents were ideal for co-localisation analysis as they permit specific 

tagging of endosomal markers in live cells. Fibroblasts were treated with 1:200 

diluted Rab5-RFP (early endosome), Rab7-RFP (late endosome) or LAMP1-RFP 

(lysosome) transduction reagents in DMEM/F12 overnight prior to sEV addition. 

Following washing of cells in DMEM/F12, 25µg/mL Alexa488-sEVs were added to 

cells for 1 hour, then in the first instance Rab7 and LAMP1 transduced cells were 

chased for a further hour, as late endosome and lysosome localisation of sEVs was 

not expected following an hour only treatment. Cells were then visualised live 

using an Axio Observer Z1 microscope. 
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Red-positive fibroblasts were identified with all three transductions, however the 

efficiency was very poor, most cells were positive for the Alexa488-sEV derived 

green signal only (figure 5.4). After 1 hour Alexa488-sEV treatment, co-localisation 

could be observed between sEVs and Rab5-RFP, seen as a yellow colour (figure 

5.4a, zoom). 1 hour Alexa488-sEV treatment followed by a 1 hour chase revealed 

sEVs also co-localised with Rab7-RFP (figure 5.4b, zoom) and LAMP1-RFP (figure 

5.4c, zoom), showing some evidence that sEVs can be found in early endosomes, 

late endosomes and lysosomes in fibroblasts after internalisation. The poor 

transduction efficiency in the fibroblast however meant quantification of co-

localisation analysis could not generate significant data, and increasing the 

concentration of the reagent for fibroblast treatment to 1:20 in DMEM/F12 did not 

clearly improve this efficiency (data not shown). 

Rab7 and LAMP1 tagging revealed the appearance of large ring-like structures 

(figure 5.4b-c, zoom, white arrows) in the fibroblasts; there was some concern that 

the transduction process had caused the formation of large artificial endosomes 

due to what is in essence an overexpression of the tagged proteins in transduced 

cells. LAMP1 staining in fibroblasts has been shown to appear punctate previously 

without the appearance of the ring-like structures (Falcón-Pérez et al., 2005). We 

therefore explored antibody labelling of early endosomes and lysosomes in 

untransduced fibroblasts to determine whether or not endosomes seen in 

fibroblasts were similar or different to their transduction positive counterparts. 

Fixed fibroblasts were labelled with EEA1 (early endosome antigen 1) or LAMP1 

antibodies and visualised using an Axio Observer Z1 microscope with structural 

illumination. Figure 5.5 shows that the early endosomes and lysosomes do appear 

similar to those labelled with Bacmam transduction reagents. EEA1 labelling 

shows puncta dispersed throughout the cell (figure 5.5.a, zoom, white arrows), 

whereas LAMP1 staining reveals the appearance of similar ring-like structures as 

seen with LAMP1-RFP (figure 5.5b, zoom, white arrows). If the Bacmam is not 

creating the ring-like endosomal compartments, then the structures we observed 

are likely to be real, and not an artefact arising from overexpression of the 

proteins. Fibroblast endosomal compartments tagged with RFP using the Bacmam 

system appear to match those labelled with antibodies, however the transduction 

efficiency was poor, and this was not resolved, therefore co-localisation of sEV 

with endosomal probes was carried out.
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Figure 5.4. Co-localisation of Alexa594-sEVs and Bacmam transduction reagents in fibroblasts. Fibroblasts were treated with 1:200 (A) 
Rab5-RFP, (B) Rab7-RFP or (C) LAMP1-RFP Bacmam transduction reagents in DMEM/F12 for 18 hours. Fibroblasts were then treated with 
25µg/mL Alexa488-sEVs for 1 hour, then chased for (A) 0 hours, (B) 1 hour and (C) 1 hour respectively. Images were captured to detect co-
localisation between Bacmam reagents (red) and Alexa488-sEVs (green). White arrows indicate (A) distinct punctate staining and (B, C) ring-like 
structures. Images captured by Axio Observer Z1, 63x lens used. Images are representative from an experiment of 6 fields of view.  
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Figure 5.5. Antibody staining of endosomal compartments in fibroblasts. 
Fibroblasts were fixed and stained with antibodies for (A) EEA1 and (B) LAMP1. 
Images were captured for observation of endosomal structures. White arrows indicate 
(A) distinct punctate staining and (B) ring-like structures. Images captured by Axio 
Observer Z1, 63x lens used, scale bar = 20µm. Images are representative from an 
experiment of 9 fields of view across 3 wells.  
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5.3.2. Colocalisation of DU145 sEVs with endosomal probes 

Endocytic probes were employed to determine subcellular localisation of DU145 

derived sEVs through co-localisation analysis. Tf is recycled quickly following 

uptake, but is found in early endosomes, before being sorted to recycling 

endosomes then sent back to the plasma membrane (Mayle et al., 2012). Since we 

showed that sEVs are retained by fibroblasts, TF488 was used to measure early 

endosome co-localisation of Alexa594-sEVs, as it was assumed the sEVs would not 

transit to recycling endosomes. Dx is known to be sorted to lysosomes (Baravalle 

et al., 2005), so would be used to determine lysosome localisation of sEVs.  

For Tf co-localisation experiments, fibroblasts were co-treated with 25µg/mL 

Alexa594-sEVs and 5µg/mL TF488 for 30 minutes, washed, then the cells were 

chased for 0-4 hours and co-localisation was measured. For lysosome localisation 

experiments, fibroblasts were pulsed with 100µg/mL Dx488 for 2 hours, then 

chased for 18 hours to ensure Dx488 has loaded the lysosomes (Roberts-Dalton et 

al., 2017), 25µg/mL Alexa594-sEVs were added to fibroblasts for 30 minutes, 

washed, and chased for 0-4 hours. Cells for Tf/Dx experiments were fixed with 4% 

PFA, since acetone/methanol fixation was unsuitable for these probes. Images 

were captured using an Axio Observer Z1 microscope, and images analysed using 

ImageJ. 

Immediately following Alexa594-sEV/Tf488 co-treatment, sEVs can be seen co-

localised with Tf488 (figure 5.6a, white arrows). Tf can be recycled within 15 

minutes of addition to cells (Mayle et al., 2012), so even at this early time point (30 

minute pulse), it is likely a portion of the Tf488 seen is already in or transiting to 

recycling endosomes. After a 1 hour chase, there is almost no detectable Tf488 

remaining in the cells (figure 5.6b), suggesting it has been recycled to the plasma 

membrane. In contrast, fluorescent sEVs persist beyond 1 hour and hence results 

in a decrease in the degree of co-localisation between sEVs and Tf. At 4 hours, 

there is no significant difference in co-localisation from the 1 hour measurement 

(figure 5.6b). This data shows evidence of early endosome localisation for sEVs 

within 30 minutes of fibroblast treatment, and subsequent distinct sorting from Tf 

as the Tf is recycled back to the plasma membrane. 

Alexa594-sEVs/Dx488 co-localisation after a 30 minutes sEV pulse is very rare 

(figure 5.7a), the Mander’s coefficient at this time is close to 0, and this is not 
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significantly different after a 1 hour chase (figure 5.7b). Co-localisation then 

significantly increases at 2 hours through 4 hours, suggesting sEVs begin reaching 

lysosomes 2 hours after a 30 minute treatment (figure 5.7b). The fluorescent area 

sizes represented by clustering sEVs begins to significantly increase after a 2 hour 

chase (figure 5.2), this together with the Dx co-localisation data shows that sEVs 

appear to be grouping together into lysosomes at 2 hours post-treatment, and this 

continues through 4 hours.  

sEVs have a 2 hour window of transport before they begin to reach lysosomes, we 

assume that they are then degraded here, hence the liberation of the sEV cargo 

may need to occur before the sEV reaches the lysosome. Next, we explored delivery 

of sEV luminal cargo and fate. 
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Figure 5.6. Co-localisation of Alexa594 sEVs and Tf488 over time in fibroblasts. Fibroblasts were pulsed with 25µg/mL Alexa594-sEVs and 
5µg/mL Tf488 for 30 minutes, then chased for 0-4 hours. Images were captured at 0, 1 and 4 hours. (A) Images shown at 0 and 1 hours to 
visualise co-localisation between sEVs (red) and Tf (green), white arrows indicate co-localisation. Images captured by Axio Observer Z1, 63x 
lens used, scale bar = 20µm. (B) Mander’s coefficient analysis to determine co-localisation of Alexa594-sEVs and Tf488, measured by the JACoP 
plugin on the ImageJ software, co-localisation was defined as the proportion of red signal (sEVs) associated with green signal (Tf). Points on 
graphs represent means +/- SEM of Mander’s coefficients calculated, based on 9 fields of view across 3 wells, *P<0.05, **P<0.01, one-
way ANOVA with Tukey’s multiple comparison test. 
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Figure 5.7. Co-localisation of Alexa594 sEVs and Dx488 over time fibroblasts. Fibroblasts were pulsed with 100µg/mL Dx488 for 2 hours, 
then pulsed for 18 hours. Fibroblasts were next treated with 25µg/mL Alexa594-sEVs for 30 minutes, then chased for 0-4 hours. Images were 
captured at hours 0-4. (A) Images shown at 0 and 4 hours to visualise co-localisation between sEVs (red) and Dx (green), white arrows indicate 
co-localisation. Images captured by Axio Observer Z1, 63x lens used, scale bar = 20µm. (B) Mander’s coefficient analysis to determine co-
localisation of Alexa594-sEVs and Dx488, measured by the JACoP plugin on the ImageJ software, co-localisation was defined as the proportion of 
red signal (sEVs) associated with green signal (Dx). Points on graphs represent means +/- SEM of Mander’s coefficients calculated, based 
on 9 fields of view across 3 wells, **P<0.01, ***P<0.001, one-way ANOVA with Tukey’s multiple comparison test. 

B 
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5.4. Tracking intraluminal sEV contents 

There is not currently a good understanding of how sEVs transfer their contents to 

recipient cells. To this end, we carried out labelling of DU145 derived sEVs using 

intraluminal fluorescent dyes to monitor the delivery of luminal cargo into 

fibroblasts.  

With use of these alternative dyes, we wanted to track their staining patterns 

following sEV internalisation as a surrogate for sEV cargo delivery. Similarly, to 

Alexa labelling of sEVs, we optimised sEV labelling with chosen dyes to make the 

process simple and rapid, to allow for easy reproducibility. The fluorescent dyes 

chosen for sEV labelling were CFSE, Calcein AM (Cal) and SYTO RNASelect (SYTO). 

The selected dyes were chosen based on their membrane permeability, size, 

distinct chemistries and colour. The molecular weights of the dyes: 557.47 for 

CFSE, 994.87 for Cal and ≈800 for SYTO mean they are small enough that they can 

be captured in their unbound form with the Exosome Spin Columns used with 

Alexa-sEV labelling. All three of the dyes are membrane permeable, allowing them 

to label intraluminal contents in the sEV and are described in detail in sections 

1.2.2 and 1.3.4. CFSE is a protein binding dye which will likely bind proteins on 

both the inner and outer leaflet of the sEV membrane, and may be trapped in the 

lumen if it is cleaved by intraluminal esterases (Parish, 1999). Cal permeates sEV 

membranes and becomes fluorescent upon cleavage by intraluminal esterases 

(Clayton et al., 2003). SYTO becomes highly fluorescent when bound to RNA 

molecules (Singh et al., 2015). All three of the dyes have been previously used to 

fluorescently label sEVs (Gray et al., 2015; Li et al., 2014; Morales-Kastresana et al., 

2017), and all exhibit green fluorescence allowing their detection with the 

available instruments, such as the microscopes, flow cytometer and plate reader. 

Collectively, these dyes will be referred to as intraluminal dyes. 

Optimisation and validation of sEV labelling with these three distinct dyes: CFSE, 

Cal and SYTO was performed, allowing easy and rapid sEV labelling. Then the 

staining patterns of fibroblasts treated with these labelled sEVs and the effect of 

uptake inhibition on their expression was assessed. Lastly, sEVs were co-labelled 

with both a green intraluminal dye and a red Alexa maleimide linked dye, 

demonstrating a simple method for dual-labelling sEVs with exogenous dyes. The 
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cellular uptake of the dual-labelled dyes was then carried out, to monitor co-

localisation of the two dyes within the fibroblasts.  

5.4.1. Fluorescent labelling of sEV lumen 

Before use of labelled sEVs in cellular uptake experiments, we had to carry out 

optimisation and validation of the labelling of sEVs, with membrane permeable 

dyes to demonstrate their association with the vesicles and determine their 

stability, as carried out in chapter 4. The three selected dyes, CFSE, Cal and SYTO 

were first subject to detection and dosing experiments, to identify optimal doses 

for sEV labelling. The labelling protocol would be the same as Alexa labelling in 

chapter 4, where sEVs would be incubated with stated doses of dye for 1 hour and 

spun through Exosome Spin Columns to remove unbound dye from the solution. 

Labelled sEVs were then diluted in PBS, and fluorescent intensities were measured 

using a PHERAstar FS microplate reader, controls for free dye were also included. 

DU145 sEVs were labelled with increasing doses of each dye for 1 hour at 37°C, 

this temperature was introduced for the labelling process as it was thought this 

would aid intraluminal esterase activity for CFSE and Cal cleavage. These dyes 

have all been previously used to label sEVs, sEVs had been tagged with 40µM CFSE 

(Morales-Kastresana et al., 2017), 10µM Cal (Gray et al., 2015) and 10µM SYTO (Li 

et al., 2014). Here we increased these doses for our sEVs in order to ensure close to 

saturating levels of labelling. Doses used were 50-200µM CFSE, 10-40µM Cal and 

50-200µM SYTO. There was no significant increase in fluorescent intensity of sEVs 

with increase in CFSE dose suggesting a saturation point had already been reached 

(figure 5.8a), surprisingly, the highest dose of CFSE tested, 200µM produced the 

lowest signal. With doses of Cal, there was no significant difference between the 

lowest and highest does (10µM vs 40µM; figure 5.8b). Similarly, to CFSE labelling, 

the highest dose of SYTO resulted in the lowest sEV signal detected (figure 5.8c), 

contrary to expectation. The highest tested doses would be used for sEV labelling, 

as they are, or at least are very close to, a saturating dose for fluorescence 

detection. Consistent saturation of sEV labelling would be difficult to achieve, due 

to the varying quantities of sEVs used in the labelling procedure. 

These three selected labelling doses, 200µM CFSE, 40µM Cal and 200µM SYTO, 

allow fluorescent detection of DU145 derived sEVs significantly above background 

PBS levels (figure 5.9), measured using the PHERAstar FS microplate reader. There 
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is also no detectable free dye above background fluorescence with any of the dyes, 

suggesting either the Exosome Spin Columns capture all the non-vesicular bound 

dye, or the dyes are not fluorescent in the absence of sEVs. SYTO-sEVs express the 

weakest fluorescent signal relative to background signal. SYTO-sEV fluorescent 

intensity was only ≈1.5x greater than background PBS signal, compared to ≈27.9x 

greater with Cal labelling, and ≈210.2x greater with CFSE labelling. Others have 

previously had difficulty detecting SYTO signal when staining EVs (Morales-

Kastresana et al., 2017). 

We successfully fluorescently labelled DU145 derived sEVs with the three selected 

intraluminal dyes.  Labelled sEVs were fluorescently measurable above 

background levels in the absence of detectable free dye. We observed unexplained 

decreases in fluorescent signal with the highest doses used for CFSE and SYTO 

labelling, though with the variations in sEV dose which will be labelled in future 

experiments, it is unclear whether this dosing phenomenon we saw is applicable to 

any quantity of sEVs in the labelling reaction. 
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Figure 5.8. Dosing of intraluminal dyes for sEV labelling. DU145 derived sEVs were 
incubated with (A) 50-200µM CFSE, (B) 10-40µM Cal or (C) 50-200µM SYTO for 1 hour 
at 37°C. Unbound dye was removed and labelled sEVs were diluted 1:6 in PBS and their 
mean fluorescent intensities measured using an Alexa488 optic module on a plate 
reader. Points on graphs represent means +/- SEM, based on triplicate wells, 
***P<0.001, one-way ANOVA with Tukey’s multiple comparison test. 
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Figure 5.9. Signal of chosen doses of intraluminal dyes for sEV labelling. DU145 
derived sEVs were incubated with (A) 200µM CFSE, (B) 40µM Cal or (C) 200µM SYTO 
for 1 hour at 37°C. Unbound dye was removed and labelled sEVs were diluted 1:6 in 
PBS and their mean fluorescent intensities measured using PHERAstar FS microplate 
reader. Respective fluorescence of controls for free dye (Dye CTR) were also measured. 
Points on graphs represent means +/- SEM, based on triplicate wells, 
***P<0.001, one-way ANOVA with Tukey’s multiple comparison test. 
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5.4.2. Characterisation of luminally labelled sEVs 

Intraluminal dye labelling of sEVs was optimised and effect of dyes on sEV size was 

evaluated. Since the dyes are all membrane permeable, we monitored their leakage 

from the vesicles. As in chapter 4 with Alexa labelled sEVs, sEVs labelled with 

CFSE/Cal/SYTO were visualised and evaluated by Nanoparticle Tracking Analysis 

(NTA). It was important to determine whether fluorescent sEVs alone could be 

visualised microscopically, because this would enable us to monitor the staining 

pattern of the sEVs before cellular uptake by fibroblasts as well as afterwards. The 

effect the labelling processes have on the size distribution of the sEV populations 

was also determined, as there is known fluorescent artificial particulate formation 

with some exogenous dyes, particularly lipophilic dyes such as PKH (Morales-

Kastresana et al., 2017; Pužar Dominkuš et al., 2018). 

DU145 derived sEVs labelled with 200µM CFSE, 40µM Cal or 200µM SYTO were 

diluted 1:60 in PBS and added to glass-bottomed plates, suitable for fluorescence 

microscopy. Since the sEVs were floating in suspension, Apotome could not be 

used when capturing images as the sEVs move around between image captures, 

therefore wide-field fluorescence was used (figure 5.10). In all three samples, 

many fluorescent puncta can be seen, reminiscent of Alexa488-sEVs (figure 4.4). 

Figure 5.9 showed that controls for free dye were not detected above background 

signal using the plate reader, and here there are no visible fluorescent particles 

observed microscopically (figure 5.10). 

NTA was carried out on the labelled sEVs, as well as samples of controls for free 

dye (CFSE CTR/Cal CTR/SYTO CTR), to observe the effect of the dyes on the size 

distribution of the sEV population and quantify any nanoparticles in the controls 

for free dye. Like with the Alexa labelling, the labelling process dilutes the sEVs, 

therefore histograms of the labelled sEVs are clearly smaller than the undiluted 

and untreated sEVs (figure 5.11a) and represents roughly a 50% reduction in 

particle concentration in all the labelled sEV populations from the starting sEV 

sample. With all three dyes, fluorescent nanoparticles were undetected (figure 

511b), demonstrating that artificial particulates are not formed by these dyes, in 

agreement with fluorescent signal data presented in figures 5.9 and 5.10. In 

relation to labelled sEVs, the portion of the particle population below 200nm (in 

the range of sEVs) were ≈80% for CFSE and Cal labelled sEVs, not significantly 
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different from the unlabelled sEVs (figure 5.11c), in the SYTO-sEV population, 

there was roughly a further 10% reduction in the portion of the population under 

200nm, revealing a possible aggregation of vesicles caused by SYTO dye. The most 

common sized particle in all samples was ≈100nm (figure 5.11d), so whilst the 

mean size of the SYTO-sEVs was higher than the rest of the samples, its modal size 

was approximately the same, meaning the SYTO-sEV population had a high 

proportion of larger particles than the others, but not a shift of the entire 

histogram up the particle size scale. 

 Since the selected dyes are able to permeate membranes, thus the reason they 

were chosen, it is possible that dye does not only enter the sEV lumen upon 

addition but can also pass through the membrane bi-directionally, escaping the 

sEV. Cleavage of acetate groups on CFSE by esterases decrease the permeability of 

the compound (Parish, 1999), and CFSE binds to proteins covalently (Quah and 

Parish, 2010), so we believe CFSE should remain once bound to sEVs. Once Calcein 

AM is cleaved by esterase enzymes, it too is considered less membrane permeant 

(Gray et al., 2015). SYTO would bind RNA molecules once inside the sEV, but we do 

not know how stable this bond is. Labelled sEVs were diluted 1:6 in PBS and 

seeded onto a high protein binding sticky ELISA plate for 1 hour before sEVs still in 

suspension were washed away, leaving sEVs bound to the sticky plate. We then 

measured fluorescence intensity of these sEVs using the PHERAstar FS microplate 

reader, then every hour washed and measured the plate again to monitor loss of 

fluorescent signal over 6 hours. In parallel, fluorescence intensity was also 

measured in a separate plate which was not washed over the 6 hour time course, 

to ensure changes in fluorescent signal were due to change in the amount of dye 

and not photobleaching or deterioration of the dye over 6 hours.  

After 6 hours, with washes every hour, fluorescent signal of CFSE-sEV and SYTO-

sEV decreases by roughly 5-6% from their starting signal intensities, not 

significantly different to the decrease in Alexa488-sEV signal over this time (figure 

5.12a). Cal-sEV signal however significantly decreases by about 26% over 6 hours, 

suggesting this dye is being lost from the immobilised vesicles and washed away 

every hour over this time course. Though we cannot rule out the possibility that 

the Cal dye is present on the sEV exterior and somehow reduces the stickiness of 

the vesicles to the plate (although since the plates are designed for high affinity 
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binding this seems unlikely). When the plate is not washed over 6 hours, Cal-sEV 

signal only decreases from ≈2% (figure 5.12b), showing that the signal decrease in 

the washed plate is not due to bleaching of the dye, as the signal is almost entirely 

intact after 6 hours in the unwashed plate. CFSE-sEV and SYTO-sEV signal 

increases by 5-6% over 6 hours in the unwashed plate, suggesting longer dye-sEV 

incubation times could increase the fluorescent intensity of the sEVs. It is possible 

that the sEVs in this experiment contained SYTO unbound to RNA and CFSE which 

had not been cleaved, the small increase of sEV signal over 6 hours with these dyes 

could be explained by further RNA binding of SYTO and CFSE cleavage by esterases 

over this time course. 

Fluorescent puncta can be visualised microscopically when sEVs are labelled with 

CFSE/Cal/SYTO, these puncta are analogous to Alexa-sEVs. Exosome Spin Columns 

appear to capture unbound dye as no fluorescent particles are detected 

microscopically in dye CTR samples and the Nanosight does not detect any 

particles by light scatter in these samples, meaning the dyes do not form 

aggregates of comparable size to sEVs. Cal-sEV signal is gradually lost over 6 hours 

compared to sEVs labelled with Alexa, CFSE or Cal. We were concerned that Cal 

could escape sEVs thus contaminating the solution with unbound Cal. On the other 

hand, the small decreases in fluorescent signals of CFSE/SYTO-sEVs were 

comparable to Alexa-sEV signal loss, and since the Alexa-sEV bond is covalent, this 

small signal loss could be explained by a loss of a small number of sEVs during 

wash steps. Therefore, we were confident that CFSE and SYTO dyes are retained by 

the sEVs following the labelling process.  
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Figure 5.10. Visualisation of sEVs labelled with intraluminal dyes. Labelled sEVs were diluted 1:60 PBS and added to microscopy plates for 
fluorescent visualisation, respective dye CTR fluorescence was also measured. Images were captured of sEVs floating in suspension.  sEVs = white. 
Images captured by Axio Observer Z1, 63x lens used, scale bar = 20µm. Images are representative from an experiment of 9 fields of view across 
3 wells 
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Figure 5.11. NTA of sEVs labelled with intraluminal dyes. NTA histogram demonstrating the size distributions of sEV populations 
labelled with intraluminal dyes. Histogram represents the concentration of analysed particles against their respective size in nm. 
Presented histograms are an average of 5 measurements. (A) Histograms of particles detected in unlabelled DU145 derived sEV, 
CFSE-sEV, Cal-sEV and SYTO-sEV samples. (B) Histograms of particles detected in control for free dye samples. (C) Percentage of 
measured particles from the histograms in A under 200nm. (D) Modal sizes of measured particles from the histograms in A. Bars 
represent means +/- SEM, based on the 5 measurements taken per sample, **P<0.01, one-way ANOVA with Tukey’s multiple 
comparison test. 
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Figure 5.12. Monitoring loss of intraluminal dyes from sEVs over time. DU145 derived sEVs labelled with intraluminal dyes or Alexa488 
were diluted 1:6 in PBS and added to sticky ELISA plates and incubated for 1 hour then washed. Change in fluorescent signal of labelled sEVs was 
measured over 6 hours. (A) Plates were washed, and fluorescent intensities measured by plate reader every hour for 6 hours. (B) Fluorescent 
intensities measured by plate reader every hour for 6 hours with no wash steps. Points on the graphs represent means +/- SEM, based on 
triplicate wells, ***P<0.001, two-way ANOVA with Bonferroni post hoc test. 
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5.4.3. Uptake of labelled sEVs 

Following validation of sEV labelling with intraluminal dyes, labelled sEVs were 

used for cellular uptake studies in fibroblasts to determine whether cellular uptake 

of the vesicle was required for the dyes to stain the fibroblast, through 

pharmacological inhibition, as this may clarify whether the intraluminal dyes are 

still associated with sEVs at the point of sEV internalisation. Similarly, to uptake 

studies with Alexa-sEVs, fibroblasts were treated with 25µg/mL CFSE/Cal/SYTO-

sEVs for 1 hour, in order to image their intracellular location before the sEVs enter 

lysosomes.  

We were unable to fix SYTO stained cells without compromising their staining 

pattern in the fibroblast, so for all cellular uptake microscopy studies with 

intraluminal dyes, cells were visualised live in Fluorobrite DMEM. Our aim was to 

monitor the staining patterns of intraluminal dye labelled sEVs post-uptake by 

fibroblasts and compare differences seen between dyes, as this could provide clues 

on sEV cargo delivery.  

Fibroblasts treated with 25µg/mL CFSE/Cal/SYTO-sEVs for 1 hour were analysed 

for fluorescent intensity by live cell flow cytometry to determine expression of 

these dyes within the fibroblast population. Fibroblasts treated with CFSE-sEVs 

(figure 5.13a), Cal-sEVs (figure 5.13b) and SYTO-sEVs (figure 5.13c) are highly 

fluorescent, the signals are significantly above cells treated with media only. 

Histograms show the distribution of fluorescent intensities across the fibroblast 

population, revealing positive fluorescent signal in roughly 91% of the CFSE-sEV 

treated cells, 100% of Cal-sEV treated cells and 99% of SYTO-sEV treated cells. As 

further evidence that there is no unbound dye in these treatments, fibroblasts 

treated with CFSE CTR, Cal CTR or SYTO CTR do not express any fluorescent signal 

above the background of media only treated cells (figure 5.13), reinforcing the 

evidence that any fluorescent entities added to these fibroblasts are associated 

with sEVs, and therefore any signal detected in the fibroblast is sEV derived. 

When we looked at fibroblasts treated with labelled sEVs using the Axio Observer 

Z1 microscope, we observed distinct staining patterns between the dyes. Due to 

the rapid photo bleaching of these dyes, Apotome was not used to capture images 

in these uptake studies. Fibroblasts treated with 25µg/mL CFSE-sEVs appear 

similar to those treated with Alexa-sEVs, with a dispersion of green puncta 
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throughout the cells (figure 5.14a), fluorescent signal cannot be seen in fibroblasts 

treated with CFSE CTR (figure 5.14a). Fibroblasts treated with 25µg/mL Cal-sEVs 

exhibit quite a distinct fluorescent staining pattern (figure 5.14b), again signal was 

not detected in the Cal CTR (figure 5.14b), There is a diffuse staining throughout 

the cell cytosol, with what appears to be intense nuclear staining. Some bright 

puncta can be seen over the diffuse staining (figure 5.14b, zoom, white arrows), 

though these puncta mostly appear close to the nuclei of the cell, rather than the 

cell-wide puncta seen with CFSE-sEV treatment. SYTO-sEV treated fibroblasts 

again have their own unique pattern of staining (figure 5.14c). Nuclear staining is 

observable, single puncta are also present, however much of the bright punctate 

staining is arranged as a reticular network (figure 5.14c, zoom, white arrows). The 

staining patterns in these cells appear reminiscent of mitochondria staining in 

fibroblasts (Burbulla and Krüger, 2012). SYTO CTR, like with CFSE or Cal, does not 

exhibit a fluorescent signal (figure 5.14c). 

As SYTO-sEV staining resulted in mitochondria-like patterns, we tested 

mitochondria localisation of sEV delivered SYTO. Fibroblasts were treated with 

100nM Mitotracker for 1 hour to stain mitochondria in the cells red, then the 

fibroblasts were treated with 25µg/mL SYTO-sEVs for 1 hour, before cells were 

visualised live in Fluorobrite DMEM. Overlap of the reticular regions of both SYTO-

sEV and Mitotracker staining reveal that SYTO dye is localising to mitochondria 

after sEV delivery to the cell (figure 5.15a), co-localised regions appear 

orange/yellow in colour (figure 5.15a, merge). Co-localisation analysis shows that 

almost all of the Mitotracker is co-stained with SYTO (figure 5.15b), and evidence 

here shows delivery of sEV cargo to the mitochondrial network in fibroblasts. We 

are unsure as to why the SYTO-sEVs delivered to fibroblasts almost entirely label 

the mitochondria, though the SYTO product supplier (ThermoFisher Scientific) 

note that SYTO does often label mitochondria in SYTO treated cells (ThermoFisher-

Scientific, 2004). This phenomenon is SYTO related and is not seen with protein 

binding dye, such as with Alexa488-sEV treated fibroblasts. In marked contrast, 

Mitotracker does not appear to co-localise with Alexa488-sEV signal at all (figure 

16a), all of the Mitotracker appears red as there is no co-localisation, which would 

generate the orange/yellow colour seen with SYTO. In these cells the Mander’s 

coefficient for Mitotracker co-stained with Alexa488-sEVs is roughly 0.01 (figure 

5.16b). 
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Figure 5.13. Fibroblast uptake of sEVs labelled with intraluminal dyes. Fibroblasts were treated with (A) 25µg/mL CFSE-sEVs, (B) 25µg/mL 
Cal-sEVs or (C) 25µg/mL SYTO-sEVs for 1 hour, then mean fluorescent intensities were measured by flow cytometry. Histograms show the 
distribution of fluorescent intensities across the fibroblast population, summarised as mean fluorescent intensities in bar graphs. Respective 
fluorescent intensities of fibroblasts treated with controls for free dye were also measured. Bars represent means +/- SEM, based on 
triplicate wells, ***P<0.001, one-way ANOVA with Tukey’s multiple comparison test. 
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Figure 5.14. Staining patterns of fibroblasts treated with sEVs labelled with intraluminal dyes. Fibroblasts were treated with (A) 25µg/mL 
CFSE-sEVs, (B) 25µg/mL Cal-sEVs or (C) 25µg/mL SYTO-sEVs for 1 hour, with parallel cells treated with respective controls for free dye. 
Fibroblasts were visualised for observation of staining patterns exhibited by each respective dye. sEVs = green. Images captured by Axio 
Observer Z1, 63x lens used, scale bar = 20µm. White arrows represent (B) highly fluorescent puncta and (C) a reticular labelling pattern. 
Images are representative from an experiment of 9 fields of view across 3 wells. 
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Figure 5.15. Co-localisation of SYTO-sEVs and Mitotracker in fibroblasts. Fibroblasts were treated with 100nM Mitotracker red for 1 hour, 
then 25µg/mL SYTO-sEVs for 1 hour, images were then captured for co-localisation analysis. (A) Representative image of co-localisation 
between Mitotracker and SYTO. SYTO-sEV = green, Mitotracker = red. Images captured by Axio Observer Z1, 63x lens used, scale bar = 
20µm. (B) Mander’s coefficient analysis to determine co-localisation of SYTO-sEVs and Mitotracker from fields of view taken in A, co-localisation 
was defined as proportion of red signal (Mitotracker) associated with green signal (SYTO-sEVs), measured by the JACoP plugin on the ImageJ 
software. Graph represent mean +/- SEM of Mander’s coefficients calculated from 9 fields of view across 3 wells (Each point 
represents 1 field of view). 



  Results 

151 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.16. Co-localisation of Alexa488-sEVs and Mitotracker in fibroblasts. Fibroblasts were treated with 100nM Mitotracker red 
for 1 hour, then 25µg/mL Alexa488-sEVs for 1 hour, images were then captured for co-localisation analysis. (A) Representative image of 
co-localisation between Mitotracker and Alexa488. Alexa488-sEV = green, Mitotracker = red. Images captured by Axio Observer Z1, 
63x lens used, scale bar = 20µm. (B) Mander’s coefficient analysis to determine co-localisation of Alexa488-sEVs and Mitotracker from 
fields of view taken in A, co-localisation was defined as proportion of red signal (Mitotracker) associated with green signal (Alexa488-
sEVs), measured by the JACoP plugin on the ImageJ software. Graph represent mean +/- SEM of Mander’s coefficients calculated 
from 9 fields of view across 3 wells (Each point represents 1 field of view). 
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In relation to the perhaps surprising staining patterns seen here, we wanted to 

know whether the uptake of the labelled sEV is necessary for fibroblast staining to 

occur, or whether the dyes can label the cells independent of sEV internalisation. 

Dynasore, an inhibitor of dynamin, was used in the previous chapter to 

demonstrate the relevance of dynamin in sEV internalisation and was shown to be 

a potent inhibitor of sEV uptake by fibroblasts. Dynasore was used again here to 

abrogate sEV uptake. The signal of CFSE/Cal/SYTO-sEV treated fibroblasts was 

compared against fibroblasts pre-treated with 10µg/mL Dynasore for 30 minutes 

prior to sEV treatment together with 10µg/mL Dynasore to determine the role of 

sEV internalisation for dye delivery. The signal of treated fibroblasts was 

measured by fluorescence microscopy and flow cytometry (figure 5.17). Dynasore 

treatment clearly reduces the presence of CFSE-sEVs in the fibroblast (figure 

5.17a), to a significant degree, and the fluorescent intensity of the cell populations 

measured by flow cytometry is also reduced by Dynasore treatment (figure 5.17b), 

suggesting CFSE uptake therefore requires uptake through a dynamin dependent 

route. With Cal-sEV treatment, there is disagreement between the two methods, 

microscopy shows no significant difference in fluorescent signal with Dynasore 

(figure 5.17c), whereas flow cytometry does show a decrease in signal with 

Dynasore (figure 5.17d), though to a lesser extent than Dynasore treatment in 

CFSE-sEV treated fibroblasts, meaning that the inhibition of Cal delivery to 

fibroblasts in minor and fibroblast staining with Cal occurs partially independently 

of sEV uptake. Like CFSE, cellular uptake of SYTO-sEVs are significantly inhibited 

by Dynasore treatment, seen by fluorescent microscopy (figure 5.17e) and 

measured by flow cytometry (5.17f).  

Despite the diverse staining patterns displayed by the three intraluminal dyes, we 

demonstrated that cellular uptake of the dye by the fibroblast is affected by 

inhibition of sEV internalisation. Dynasore inhibits uptake of both CFSE and SYTO 

labelled sEVs, two dyes with distinct staining patterns, with SYTO dyes showing 

less punctate staining following cellular uptake of the vesicle. It is unclear from the 

data how much of an impact Dynasore has on internalisation of Cal-sEVs, only 

showing significant results with flow cytometry analysis. Earlier we presented 

evidence of Cal escape from the sEV over time (figure 5.12b), and the lesser impact 

Dynasore has on Cal-sEV uptake compared to the other labelled sEVs could mean 

that a proportion of Cal uptake is independent of sEV delivery.  
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Figure 5.17. Fibroblast uptake inhibition of sEVs labelled with intraluminal dyes. 
Fibroblasts were pre-treated with/without 10µg/mL Dynasore for 30 minutes, then 
co-treated with (A, B) 25µg/mL CFSE-sEVs, (C, D) 25µg/mL Cal-sEVs or (E, F) 25µg/mL 
SYTO-sEVs with/without 10µg/mL Dynasore for 1 hour. Mean fluorescent intensities 
were measured in fibroblasts through images captured by fluorescence microscopy (A, 
C, E; fluorescent intensity measured using ImageJ software and divided by number of 
cells per field of view, sEVs = green. Images captured by Axio Observer Z1, 63x lens 
used, scale bar = 20µm), and flow cytometry (B, D, F) to determine the effect of 
Dynasore on sEV delivery of dye to the fibroblast. Bars represent means +/- SEM, 
based on 9 fields of view across 3 wells for microscopy experiments, and 
triplicate wells for flow cytometry, ***P<0.001, one-way ANOVA with Tukey’s 
multiple comparison test. 
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5.4.4. Dual-labelled sEVs 

SYTO and Cal labelled sEVs show a non-punctate staining in fibroblasts, but these 

signals (more so with SYTO) can be inhibited by abrogation of sEV internalisation. 

We believe this means that the dyes are released from the sEV after cellular 

uptake, and given that SYTO in particular does not spontaneously leach out from 

the sEV, this dye release from the sEV must be a cell directed phenomenon. The 

Alexa and CFSE labelled sEVs remain punctate following uptake by the fibroblast, 

as protein labelling dyes, their continued association with the sEV was therefore 

expected. Co-labelling of sEVs with a protein binding dye and one of our 

intraluminal dyes may allow us to monitor sorting of the different sEV components 

after cellular uptake and track escape of Cal/SYTO in real time through monitoring 

co-localisation of the dual-labelled vesicles. DU145 derived sEVs were first labelled 

with one of the green intraluminal dyes, using previously stated doses and 

incubation conditions, then after removal of unbound dye the collected labelled 

sEVs were then incubated with 200µg/mL red Alexa594 for 1 hour and unbound 

dye was removed again. The resulting solutions contained sEVs labelled with a 

green intraluminal dye and a red Alexa dye, and the whole labelling process takes 

roughly 2.5 hours including the incubation steps. Confirmation of dual-labelling 

was carried out through co-localisation analysis of sEVs only, following this we 

would study the cellular uptake of these vesicles. 

Dual-labelled sEVs were added to glass-bottomed microscopy plates and incubated 

for 1 hour at room temperature to allow settling of sEV on the plate surface. Co-

localisation analysis would only be possible on sEVs stuck to the plate, as sEVs 

floating in suspension would move too fast for multi-colour image capture. An Axio 

Observer Z1 was used to capture images of dual-labelled sEVs, then co-localisation 

analysis of the two colours was carried out to determine the success of the dual-

labelling process. Since CFSE is a protein binding dye, capable of labelling the 

internal and external sEV surface, we would expect a relatively low number of 

CFSE labelled sEVs to be co-labelled with Alexa594, whereas Cal and SYTO do not 

have known protein interactions, therefore we assume Cal/SYTO-sEVs will have a 

greater degree of Alexa594 labelling. Co-localisation was observed in CFSE-

Alexa594 labelling (figure 5.18a, zoom, white arrows) showing sEVs could be 

labelled with Alexa594 after CFSE incorporation, though the proportion of CFSE-
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sEVs which are also Alexa594 positive is low (Mander’s coefficient ≈0.14). It is 

possible that the amine binding CFSE labels a greater proportion of the sEV 

population than the sulphydryl group labelling Alexa dye, revealing a potential 

limitation of the Alexa labelling approach. Or, binding of CFSE to proteins causes 

some steric hindrance, inhibiting binding of Alexa dyes to the proteins. 

Surprisingly, practically no co-localisation was observed in Cal-Alexa594 sEVs 

(figure 5.18), meaning the Cal labelling is perhaps impeding Alexa594 binding, or 

Cal is exclusively labelling entities which do not express -SH bearing proteins for 

Alexa labelling. SYTO-Alexa594 co-labelling was more successful, co-labelled 

vesicles could be detected (figure 5.18c, zoom, white arrows), and the proportion 

of SYTO labelled sEVs which could be co-labelled with Alexa594 was much higher 

than with CFSE or Cal labelling (Mander’s coefficient ≈0.7). With SYTO labelling, 

there are a large number of Alexa594 positive yet SYTO negative sEVs present, 

suggesting that SYTO labelling protocols could be further optimised, or a 

significant portion of the sEV population lacks enough RNA for detection of SYTO. 

It has been reported that there may actually be a very small amount of RNA per 

vesicle (Chevillet et al., 2014). Since sEVs could not be co-labelled with Cal and 

Alexa594, and the earlier evidence that Cal may be leaking from the sEV over time, 

Cal labelling was abandoned for further experiments. We next investigated cellular 

uptake of CFSE/SYTO-Alexa594-sEVs. 
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5.4.5. Uptake of dual-labelled sEVs 

Fibroblasts were visualised using the Axio Observer Z1 following 1 hour treatment 

with 25µg/mL CFSE-Alexa594-sEVs or 25µg/mL SYTO-Alexa594-sEVs. With CFSE-

Alexa594-sEV treatment, a high degree of co-localisation is observed 1 hour post-

uptake (figure 5.19, zoom, white arrows) seen by the orange/yellow colour. 

Though CFSE positive sEVs had low Alexa594 positivity (figure 5.18a), the co-

localisation in fibroblasts is much higher (Mander’s coefficient ≈0.66), suggesting 

sorting of single labelled sEVs into endocytic compartments. This is known to 

occur after cellular uptake, possibly producing the increase in co-localisation 

observed. As SYTO staining does not conform to the punctate staining we see with 

CFSE/Alexa dyes, we observed little co-localisation between SYTO and Alexa594 

after sEV internalisation (figure 5.20). The proportion of SYTO co-localising with 

Alexa594 after sEV internalisation is low (Mander’s coefficient ≈0.15), which is 

lower than what was measured in sEVs prior to addition to fibroblasts (figure 

5.18c). This demonstrates separation of the two dyes within an hour of sEV uptake 

by the fibroblast. We showed that sEVs can be co-labelled with SYTO and Alexa594, 

and after cellular uptake, the Alexa594 remains punctate, whereas the SYTO has 

largely disassociated and exhibited its own very distinct staining pattern, 

indicating the SYTO has left the sEV within an hour of internalisation by the 

fibroblast.  
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Figure 5.18. Co-localisation of dual-labelled sEVs. DU145 derived sEVs were labelled with (A) 200µM CFSE, (B), 40µM Cal or (C) 200µM SYTO. 
Labelled sEVs were then dual-labelled with 200µg/mL Alexa594. Dual-labelled sEVs were diluted 1:6 in PBS and seeded onto microscopy plates 
for co-localisation analysis. Representative images are shown, CFSE/Cal/SYTO = green, Alexa 594 = red, white arrows indicate regions of co-
localisation. Images captured by Axio Observer Z1, 63x lens used, scale bar = 20µm. Mander’s coefficient analysis was carried out to 
determine co-localisation of red/green in dual-labelled sEVs from fields of view taken. Co-localisation was defined as proportion of green signal 
(CFSE/Cal/SYTO) associated with red signal (Alexa594-sEVs), measured by the JACoP plugin on the ImageJ software. Graphs represent mean 
+/- SEM of Mander’s coefficients calculated from 9 fields of view across 3 wells (Each point represents 1 field of view). 
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Figure 5.19. Fibroblast uptake of CFSE-Alexa594-sEVs. Fibroblasts were treated with 25µg/mL CFSE-Alexa594-sEVs for 1 hour, then 
visualised by fluorescence microscopy for co-localisation analysis. Representative image of co-localisation between CFSE and Alexa594 in 
fibroblasts is shown. CFSE = green, Alexa594 = red. Images captured by Axio Observer Z1, 63x lens used, scale bar = 20µm. Mander’s 
coefficient analysis to determine co-localisation of CFSE and Alexa594 from fields of view taken. Co-localisation was defined as proportion of 
green signal (CFSE) associated with red signal (Alexa594), measured by the JACoP plugin on the ImageJ software. Graph represent mean +/- 
SEM of Mander’s coefficients calculated from 9 fields of view across 3 wells (Each point represents 1 field of view). 
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Figure 5.20. Fibroblast uptake of SYTO-Alexa594-sEVs. Fibroblasts were treated with 25µg/mL SYTO-Alexa594-sEVs for 1 hour, then 
visualised by fluorescence microscopy for co-localisation analysis. Representative image of co-localisation between SYTO and Alexa594 in 
fibroblasts is shown. SYTO = green, Alexa594 = red. Images captured by Axio Observer Z1, 63x lens used, scale bar = 20µm. Mander’s 
coefficient analysis to determine co-localisation of SYTO and Alexa594 from fields of view taken. Co-localisation was defined as proportion of 
green signal (SYTO) associated with red signal (Alexa594), measured by the JACoP plugin on the ImageJ software. Graph represent mean +/- 
SEM of Mander’s coefficients calculated from 9 fields of view across 3 wells (Each point represents 1 field of view). 
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5.4.6. Tracking sEV intraluminal dye escape  

We next attempted to track release of SYTO dye by Alexa594 coated vesicles at the 

early stages of fibroblast uptake through use of time-lapse microscopy. In using 

time-lapse microscopy, we thought this would enable us to observe the release of 

sEV intraluminal dyes in real-time. 

 Fibroblasts were placed in the black box (used in section 5.2.2) with CO2 and 

temperature control, mimicking incubator conditions, and imaged by time-lapse 

microscopy using the Axiovert 100 microscope, capturing images in the brightfield 

(to visualise the fibroblasts) and with Alexa488/594 filters every 30 seconds. 

Time-lapses were initiated, then 25µg/mL SYTO-Alexa594-sEVs were applied 

directly onto the fibroblast containing wells, to allow real time uptake visualisation 

of the dual-labelled sEVs by the fibroblasts.  

Initially, monitoring dual-labelled sEVs floating in the media around the fibroblasts 

was challenging; the sEVs move between image capture of each colour, giving the 

appearance of a red sEV closely following a green sEV (figure 5.21a, zoom, white 

arrows), though when the sEV is less mobile in a given image capture, it then 

appears as one co-labelled entity (figure 5.21a, zoom, 2-3min). Over the course of 

the time-lapse, sEVs begin to stick to the plate in the spaces not covered by 

fibroblasts, and dual-labelled sEVs can clearly been seen (figure 5.21b, zoom, white 

arrows). sEVs which are dual-labelled are detectable within the time-lapse set up, 

though mobile sEVs are difficult to track in two colours. We detected what 

appeared to be a sEV sticking to the plasma membrane of a fibroblast (figure 5.22a, 

zoom, white arrows), which we hoped we would be able to observe in large 

numbers across multiple fields of view, allowing us to track uptake and SYTO 

escape from the Alexa594 labelled sEV, however we ran into a number of 

problems. The SYTO dye was sensitive to photobleaching with multiple image 

captures (figure 5.22b), with the green colour deteriorating minutes into the 

experiment, making the continuous tracking of the SYTO over time very difficult. 

Also, since we added the sEVs and imaged immediately, there were a large number 

of fluorescent sEVs in the media (usually washed off in other experiments), 

creating a background signal we were unable to overcome in many fields of view 

and making visualisation of single sEVs problematic. The field of view shown in 

figures 5.21 and 5.22 was the best we were able to achieve in terms of visualising 
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dual-labelled sEVs in the presence of fibroblasts, however we were not able to 

observe cellular uptake of these sEVs. 

In conclusion to this set of experiment, DU145 sEVs can be co-labelled with 

CFSE/SYTO and Alexa594 to produce dual-coloured sEVs, these sEVs were used to 

demonstrate release of SYTO from the sEV following cellular uptake, whilst sEV 

proteins remain associated within the fibroblast. Monitoring uptake of co-labelled 

sEVs by time-lapse microscopy was not entirely successful, and with the current 

experimental setup it was not possible to effectively detect very early sEV entry 

events and partition of the two dyes of the dual-labelled sEV. Such a system with 

an alternate microscopy setup however may be able to discern the separation of 

the dyes and determine the intracellular location of dye escape from sEVs. 
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Figure 5.21. Detection of SYTO-Alexa594-sEVs by time-lapse microscopy. Fibroblasts were visualised by time-lapse microscopy, images 
taken every 30 seconds, after first image capture 25µg/mL SYTO-Alexa594-sEVs were added to the fibroblast media, images were captured in the 
brightfield to detect the fibroblasts, and with Alexa488/594 filters to detect dual labelled sEVs. Time-lapse microscopy was assessed for its ability 
to detect dual-labelled sEVs. SYTO = green, Alexa594 = red. (A) Visualisation of movement of a dual-labelled sEV in fibroblast media over 3 
minutes, with loss of yellow/orange co-localisation signal with the mobile sEV in minutes 0-2. (B) Detection of dual-labelled sEVs settling on the 
microscopy plate over 20 minutes, white arrows indicate co-localisation of green and red signals. Images were captured using an Axiovert 100 
and a 40x lens. 
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Figure 5.22. Monitoring fibroblast uptake of SYTO-Alexa594-sEVs by time-lapse microscopy. Fibroblasts were visualised by time-lapse 
microscopy, images taken every 30 seconds, after first image capture 25µg/mL SYTO-Alexa594-sEVs were added to the fibroblast media, images 
were captured in the brightfield to detect the fibroblasts, and with Alexa488/594 filters to detect dual labelled sEVs. Time-lapse microscopy 
was assessed for its ability to monitor fibroblast uptake of dual-labelled sEVs. SYTO = green, Alexa594 = red. (A) Visualisation of binding of a 
dual-labelled sEV to the plasma membrane of a fibroblast over 3 minutes. (B) Loss of green fluorescent signal in a field of view over 10 minutes, 
indicating photobleaching of SYTO fluorophore. Images were captured using an Axiovert 100 and a 40x lens. 
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5.5. Discussion 

The aims of the current chapter were to elucidate the subcellular fate of the PCa 

sEV in fibroblasts and monitor transfer of sEV luminal cargo to the cell, our 

findings are summarised in figure 5.23. DU145 derived sEVs are taken up by 

primary fibroblasts, enter early endosomes and transit the endosomal system, 

beginning to arrive at lysosomes within 2 hours. We showed we can effectively 

label sEVs with membrane permeable fluorescent dyes. These dyes require sEV 

internalisation by fibroblasts to stain the cells, but express distinct patterns, 

indicating escape from the sEV within an hour of cell entry. A simple method for 

dual-coloured labelling of sEVs was presented, although we were unable to take 

full advantage of these sEVs for clarifying cargo transfer to fibroblasts. Overall, the 

data unveils a complex sorting of PCa sEVs by fibroblasts, and using simple 

labelling techniques, we demonstrated that we could use fluorescently labelled 

sEVs to show direct microscopic evidence of intraluminal content delivery shortly 

after the endocytosis of the vesicle. 

DU145 derived sEVs remain within fibroblasts following endocytosis, though after 

washing the cells of external sEVs, sEV signal in the fibroblast continues to rise 

over 3 hours. This in not due to the pH of the endosomal compartment of the sEV, 

as the Alexa dyes are described as insensitive to pH between pH4 and pH10. sEVs 

not washed off, if stuck to the plasma membrane of the fibroblast or the cell culture 

plate, could be continued to be taken up after media washing. This would explain 

rise in fluorescent signal over time. When fibroblasts were treated at 4°C, sEVs 

could be seen bound to the plasma membrane of the cell (figure 4.12), and this was 

after washing and fixing the cells, therefore the idea sEVs remain bound to the cell 

after simple media washing is not unreasonable.  

Fibroblasts are positive for Alexa633 signal 72 hours after Alexa633-sEV 

treatment. The staining pattern does not stay punctate however, a more diffuse 

staining is observed. Since we showed sEVs traffic to lysosomes over the first few 

hours post-uptake, it is probable that the Alexa633 dye has been disassociated 

from the sEV within the lysosome, as enzymes located in lysosomes will break 

disulphide bonds (Arunachalam et al., 2000). We do not currently know what 

happens to sEVs within the lysosome, so we can only speculate on how long the 

sEV survives for in the fibroblast, however it is plausible that the Alexa dyes 
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survive structurally intact in the fibroblast long after the sEV has been degraded. 

Grouping of Alexa633-sEVs over 4 hours post-uptake into larger fluorescent 

entities shows sorting of sEVs, from primary endocytic vesicles, merging into to 

other endosomal compartments. These fluorescent areas generated by the sEVs 

are significantly larger 2 hours after uptake, which is also when sEVs begin to 

reach lysosomes. The mean area size increases further through 4 hours, which 

correlates with increased lysosomal localisation of sEVs in the same time frame.  

Within 2 hours of cellular uptake, sEVs were identified in early endosomes, late 

endosomes and lysosomes using the Bacmam transduction reagents. Lysosomal 

fate of sEVs was supported by dextran co-localisation experiments. Even at 4 hours 

however there were still many sEVs which were not co-localising with dextran 

loaded lysosomes, though plasma membrane bound sEVs may be continuously 

entering the cell, which could affect this co-localisation readout.  

Due the shape of the fibroblasts, it is difficult to draw around cells for co-

localisation analysis, therefore co-localisation was measured on whole fields of 

view, again this could reduce the end result, as sEVs outside the fibroblasts would 

also be counted. Optimisation of dextran dose was not carried out either for this 

study, therefore there may be lysosomes within the fibroblast which are not 

labelled with dextran. Optimisation and polishing of the co-localisation 

experiments would have allowed us to determine a more accurate account of the 

proportion of sEVs which have reached lysosomes at a given time. Cells slowly 

process endocytosed cargo bound for lysosomes and they can take several hours to 

sort all of this cargo to its destination (Kielian et al., 1986). All sEVs will likely not 

reach the lysosomes until several hours post-uptake. Immediately after a 30 

minutes pulse of sEVs and transferrin, a proportion of sEVs are present in Tf 

positive compartments, presumably early endosomes since we did not see 

evidence of sEV recycling. Tf is recycled rapidly, so the exact proportion of sEVs in 

early endosomes at a given time is difficult to calculate, though combined with the 

Bacmam and dextran experiments, sEVs probably transit from early endosome to 

late endosomes within 1-2 hours after uptake, before reaching lysosomes. 

Antibody labelling could be explored to elucidate sEV subcellular location, though 

it would be sensible to demonstrate lack of sEV labelling with antibodies, to avoid 

false positive signals being generated. If PCa derived sEVs can transfer their 
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intraluminal cargo to fibroblasts, it is therefore reasonable to propose that this 

occurs within 2 hours of uptake, prior to lysosome localisation, as we assume that 

any sEV contents would be degraded at this point. 

For determination of intraluminal cargo delivery by sEVs, we used fluorescent 

dyes which were capable of permeating the sEV membrane and had been shown to 

label sEVs previously. Other dyes were tested for delivery by sEVs; through cellular 

uptake experiments (data not shown), we found that we could load sEVs with 

Hoescht and DRAQ5 (both ThermoFisher Scientific), however we could not carry 

out all experiments, such as those using the plate reader (detection and dye 

leakage experiments) due to lack of corresponding filter sets, therefore the dyes 

we selected for these experiments all emitted green fluorescence, so they could be 

detected using all instruments.  

Validation experiments showed we can fluorescently detect sEVs, and importantly 

show that what we are detecting is sEV associated and not free unbound dye, as 

this makes us more confident in later experiments that our observations can be 

attributed to labelled sEVs. Unlike some of the lipophilic dyes, neither CFSE, 

Calcein or SYTO produced fluorescent aggregates, SYTO-sEVs had a slightly higher 

mean size than the other sEVs, though the modal sizes were the same. CFSE and 

SYTO were shown to be stable in their binding to sEVs, whereas Cal may be leaking 

out of the sEV steadily over time, this could affect what we observe in cellular 

uptake studies. The effect dyes have on vesicle structure and the stability of their 

conjugation is an important aspect to consider, along with unbound dye (discussed 

in chapter 4), when using these labelled sEVs in experiments. These validation 

steps are vital for studies in which fluorescent sEVs are utilised, however they are 

rarely considered in the literature. Further experiments we could have carried out 

include RNAse treatment of sEVs to demonstrate intraluminal localisation of SYTO, 

though RNA is often reported to be protected by sEVs from RNAse and proteinase 

K treatment suggesting that most RNA is in fact within the sEV (Enderle et al., 

2015; Shelke et al., 2014), however this may not be the case for EVs from biofluid 

sources. Similarly, with CFSE, we did not calculate how much of the CFSE was 

intraluminal verses surface bound, which perhaps could have been achieved 

through sEV surface protein digestion experiments. 
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Figure 5.23. Schematic summary of chapter 5. Summary of the data collected in chapter 5. (A) Internalised sEVs enter early endocytic 
compartments within 30 minutes of uptake, and traffic to lysosomes within 2 hours. (B) sEVs can be labelled with intraluminal dyes, these exhibit 
distinct staining patterns following fibroblast uptake. (C) sEVs can be dual-labelled with Alexa594 and an intraluminal dye. Within an hour of 
uptake of SYTO-Alexa594-sEVs, the dyes mostly disassociate, with SYTO staining mitochondria. 
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Change of both the Cal and SYTO (non-protein binding dyes) staining patterns 

following cellular uptake of the sEV indicate escape of sEV cargo is possible shortly 

after endocytosis, when the sEV is in an early endocytic compartment. On the other 

hand, being a protein labelling dye, CFSE staining remains punctate indicating that 

sEV proteins remain associated with the rest of the sEV structure. SYTO staining 

exhibited a clearly different intracellular distribution pattern, which we found was 

due to mitochondrial labelling. Mitochondrial localisation of sEV dyes has been 

shown previously. Tian et al presented co-localisation of R18 (lipophilic dye) with 

Mitotracker within 3 hours of sEV uptake (Tian et al., 2013), though they note that 

R18 can be attracted to the mitochondria due to charge of the R18 dye 

(Reungpatthanaphong et al., 2003). The SYTO dyes have a positive charge at 

neutral pH, according to the suppliers (ThermoFisher-Scientific), which likely 

explains the co-localisation of SYTO and Mitotracker in this study. We did not 

observe co-localisation between Alexa488-sEVs and Mitotracker, suggesting the 

SYTO-Mitotracker co-localisation is due to the chemistry of the dye and not 

necessarily the subcellular location of the sEV itself, however sEV-mitochondria 

interactions shouldn’t be ruled out completely, as sEV have been shown to contain 

mitochondrial DNA (Sansone et al., 2017a), therefore interaction between 

endosomes and mitochondria is possible.  

The dyes are not escaping the sEV and permeating through the fibroblast plasma 

membrane before getting an opportunity to be endocytosed, since we showed the 

uptake blocker Dynasore could significantly reduce the fluorescent signal in the 

cells. The weakest effect uptake inhibition had was on Cal. This dye appears to be 

permeating the cell independently of the sEV, supported by our finding that Cal can 

leak from the sEV following labelling. When studying endocytosis and intracellular 

trafficking of sEVs, one must take into account the chemistry of the fluorescent dye 

chosen, because as we have shown, the cellular patterns of the dye depend on how 

the dye is bound to the sEV. Comparison of the dyes used here with the classical 

lipophilic dye may be useful to judge the effectiveness of lipophilic dyes and the 

accuracy of uptake studies which have used these probes. 

In dual-labelling the sEVs, we were able to assess how effectively we have labelled 

sEVs with the intraluminal dyes and extract more information on the delivery of 

intraluminal cargo to the fibroblast. CFSE seems to have inhibited some Alexa 
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binding, presumably due to CFSE sequestering sEV surface proteins and/or 

providing some steric hindrance for Alexa labelling. Or it is possible that amine 

groups which CFSE binds are more abundant within sEV populations than 

sulphydryl groups which the Alexa dye binds to. Despite a low proportion of CFSE-

sEVs co-labelling with Alexa594, a high degree of co-localisation is seen an hour 

after sEV uptake, which points towards the sorting and accumulation of many sEVs 

into common endocytic compartment. This also underlines the endosomal fate of 

sEV proteins, and clearly highlights that the proteins are not incorporated into the 

plasma membrane through sEV-plasma membrane fusion.  

How sEVs transfer proteins to recipient cells in a functional manner remains 

unclear, as with CFSE and the Alexa dyes, all of our data pointed to endocytosis and 

endosomal traffic to lysosomes. However, we also do not know how long the dyes 

remain bound to the sEV post-uptake and at what point we are tracking just the 

dye and not the sEV. SYTO effectively labels sEVs which are coated with Alexa594, 

and we found that much of this SYTO then labels the mitochondria/cytosol in the 

fibroblast, whereas Alexa594 remains punctate in a clear distinct fashion. This 

points to the capacity of SYTO to disassociate from the Alexa594-sEV shell soon 

following internalisation.  

It is unclear why Cal-sEVs could not be co-labelled with Alexa594, though we 

would assume that there is some interaction between Cal and the sEV surface 

which we do not understand, or there is a previously undetected population of 

particles in a sEV sample which do not have proteins available for Alexa binding, 

yet may incorporate the esterases needed to cleave the Calcein AM in a vesicle 

lumen. This unexplained effect on the sEV surface, as well as the data showing 

leakage of Cal from the vesicle, have led us to conclude that Calcein AM is not a 

suitable compound for the uniform labelling of all sEVs for use in cellular uptake 

studies. The presented data suggests that perhaps a distinct sub-population of 

sEVs is labelled by Cal, or that there are aggregates, or binding to other sample 

constituents during the labelling reaction. 

Use of CFSE or SYTO and a non-green Alexa maleimide binding dye was shown 

here to enable dual-labelling of sEVs, in a process which in straightforward and 

rapid. Further optimisation of the labelling procedure may have improved the 

proportion of sEVs which are co-labelled.  
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Our inability to carry out time-lapse experiments to monitor dual-labelled sEV 

cellular uptake in real-time reveals some limitations of this study. Whilst the Alexa 

dyes are insensitive to photobleaching, CFSE and SYTO rapidly bleach and become 

difficult to detect with constant light exposure. Another issue is the fluorescent 

state of the dye when it is bound to its target/cleaved by its respective enzyme 

versus unbound/ not cleaved. It is not clear how much SYTO the labelled sEVs is 

carrying which is not bound to RNA, and the delivery of this SYTO could suddenly 

become fluorescent upon cellular delivery. This would make tracking fluorescent 

dye delivery confusing. Strategies to engineer cells to produce sEVs with desirable 

intraluminal cargo (soluble protein or fluorescent dye) has been investigated in 

recent years. An elegant study describes sEV loading “via optically reversible 

protein-protein interactions” which produces sEVs with fluorescent dyes within 

their lumen (Yim et al., 2016). This method ensures luminal loading of sEVs during 

their formation and therefore could be a useful strategy for tracking sEV luminal 

cargo, particularly in co-culture or in vivo studies. Production of sEVs with a stable 

dye, insensitive to photobleaching and reacting with cellular organelles, would be 

desirable for tracking delivery of intraluminal sEV contents. Fluorescence 

microscopy itself is limited in its resolving limit and cannot provide all the answers 

on the mechanisms of sEV cargo transfer to recipient cells. A few studies have 

shown sEVs in endocytic vesicles by electron microscopy (Heusermann et al., 

2016; Morelli et al., 2004; Svensson et al., 2013). Analysis of sEV structure in 

different endosomal compartments by electron microscopy could help clarify the 

fate of sEVs following internalisation. We have begun exploring correlative light 

and electron microscopy (CLEM) as a means of determining the nature of 

fluorescently labelled sEV containing endosomes in fibroblasts. 

We have shown that fibroblasts process PCa sEVs, transporting them to lysosomes, 

whilst the sEVs transfer their intraluminal cargo to the cell cytosol shortly after 

endocytosis. The impact of this in terms of fibroblast differentiation was examined 

in the next chapter. 
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6.1. Introduction 

In the previous chapter, we demonstrated that DU145 derived sEVs can transfer 

intraluminal cargo to fibroblasts, shortly after cellular uptake. Inhibition of sEV 

internalisation abrogates the delivery of its luminal contents to the fibroblast. 

Others have shown that delivery of sEV contents to recipient cells can lead to 

phenotypic change in the cell (Skog et al., 2008; Valadi et al., 2007), and this is due 

at least in part to mRNA/miRNA acquisition by the cell and subsequent 

transcriptome modulation. Blocking cellular uptake of sEVs should therefore 

prevent phenotypic change driven by delivery of sEV cargo. Previously, the group 

detailed clear differences in the phenotype of the fibroblast stimulated by DU145 

derived sEVs versus soluble TGFβ1, and since the sEV contains a complex cargo 

made of proteins, lipids and nucleic acids, we hypothesise that the sEV is delivering 

its contents to the fibroblast, which is responsible for driving the complex and 

unique form of myofibroblast differentiation. Inhibiting sEV internalisation by the 

fibroblast and evaluating the markers of differentiation will allow us to determine 

the role of sEV uptake in driving changes in the fibroblast. 

Markers of fibroblast stimulation were assessed in cells induced in the 

presence/absence of sEV uptake inhibitors. Pharmacological inhibitors are known 

to have adverse and off target effects in cells (Ivanov, 2008; Vercauteren et al., 

2010), therefore specific blockade of the sEV surface to perturb cellular uptake 

may be a more suitable approach for determining relevance of sEV internalisation 

in functionality in future studies, as interruption of potentially multiple 

intracellular processes could be avoided. Use of Heparin resulted in successful 

blockade of cellular uptake of sEVs in chapter 4, showing that these vesicles were 

likely reliant on sEV-cell surface interactions for internalisation to occur. 

Furthermore, Clathrin mediated endocytosis (CME) is a receptor dependent 

process, so sEV surface proteins are very likely important factors. Integrins are a 

family of transmembrane proteins, typically arranged as heterodimers made up of 

an α and β subunit (Harburger and Calderwood, 2009), these proteins play roles in 

adhesion and mediating cell signalling related to cell motility and differentiation. 

Integrins that promote cancer progression are upregulated in tumours (Guo and 

Giancotti, 2004), enabling cell migration and invasion for example. Integrins are 

also present on the surface of sEVs in high abundance, though is not fully 
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appreciated. They have been implicated in cellular internalisation of the vesicles 

(Atay et al., 2011; Hoshino et al., 2015; Wang et al., 2015). Here we investigated the 

roles of integrins on the surface of the DU145 derived sEV in the internalisation of 

the sEV by fibroblasts. Identification of specific PCa derived sEV markers for the 

blockade of cellular uptake of the vesicle may reveal therapeutic targets. 

The aim of this chapter was to determine the role of sEV internalisation on the 

stimulation of fibroblast differentiation into a form of myofibroblast previously 

characterised as pro-angiogenic and tumour promoting in vivo (Webber et al., 

2015b). We attempted to achieve this objective through monitoring the effects of 

sEV internalisation blockade on sEV functionality, with the use of pharmacological 

inhibition and specific targeting of sEV surface integrins.  
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6.2. Effect of endocytosis inhibitors on sEV induced myofibroblast 

differentiation 

The fibroblast phenotype simulated by DU145 derived sEVs is distinct from that 

generated by soluble TGFβ1 (sTGFβ1), therefore we propose that delivery of the 

intraluminal cargo from the sEV to the fibroblast is key in invoking additional 

effects mediated by sEV co-delivered factors. In chapter 2 we demonstrated 

abrogation of sEV internalisation through use of pharmacological inhibitors. Here, 

the same pharmacological inhibitors were used to determine the role of sEV 

internalisation by fibroblasts on markers of fibroblast stimulation; in particular, 

we examined onset of expression of αSMA and elevated secretion of HGF. Since 

many fibroblast stimulation experiments were due to be carried out, and we 

wanted to maximise the effect of our pharmacological inhibitors, we decided to 

reduce the sEV dose and treatment time used previously to stimulate the 

fibroblasts. sEV dose can be reduced from 200µg/mL whilst still inducing secretion 

of significant levels of HGF by the fibroblast (Webber et al., 2015b), meaning we 

could lower the sEV dose used in the current study allowing us to be more 

economical in our use of sEVs. It was previously shown that there was 

approximately 7pg of TGFβ1 per 1µg of DU145 sEVs (Clayton et al., 2007). 

Equivalent doses of sTGFβ1 to <200µg/mL sEVs were tested on their ability to 

induce αSMA in fibroblasts following a 48 hour stimulation. 48 hours, rather than 

72 hours carried out previously, was the stimulation time here, as this we expected 

that this would reduce the chance of the pharmacological inhibitors to convey their 

cytotoxic effects on the fibroblast.  

Figure 6.1a shows the expression of αSMA in fibroblasts stimulated with 0.1675, 

0.375 or 0.75ng/mL sTGFβ1 (equivalent to 25, 50 and 100µg/mL sEVs 

respectively). Only 0.75ng/mL sTGFβ1 (equivalent to 100µg/mL sEVs, half of the 

previously used dose) was capable of inducing clear cut expression of αSMA 

positive fibroblasts (figure 6.1a). Following this finding, fibroblasts were treated 

with 100µg/mL sEV for 48 hours, and the supernatants were tested by sandwich 

ELISA for HGF levels, to confirm whether this dose was capable of inducing HGF 

secretion by the fibroblast. 100µg/mL sEVs could induce secretion of significant 

levels of HGF above unstimulated fibroblasts (figure 6.1b), and the equivalent dose 

of sTGFβ1 does not stimulate HGF secretion, as expected. For remaining fibroblast 
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stimulation experiments in this chapter, the 100µg/mL sEVs for 48 hours 

condition was used. 

Next, the effect of pharmacological inhibitors of endocytosis were assessed for 

their effect on sEV induced fibroblast stimulation. We used the same inhibitors as 

in chapter 4 to abrogate cellular uptake of sEVs at the previously stated doses: 

10µg/mL Dynasore, 100ng/mL Cytochalasin D (CytoD), 1µg/mL EIPA, 100ng/mL 

Bafilomycin A1 (BafA). αSMA expression and HGF secretion was assessed in 

fibroblast stimulated for 48 hours with 100µg/mL sEVs with/without an inhibitor. 

αSMA expression was unaffected by the presence of EIPA or Heparin (figure 6.2), 

however there was reduced αSMA expression in fibroblasts co-treated with either 

Dynasore, CytoD or BafA. These results were not entirely comparable to those seen 

with HGF assays. Again, Dynasore had an inhibitory effect, significantly reducing 

the detected HGF levels in the stimulated fibroblast supernatant (figure 6.3). No 

other inhibitor had significant impact on HGF levels. Dynasore, the most potent 

uptake inhibitor tested in chapter 4, inhibited both αSMA expression and HGF 

levels, however, whilst all of these inhibitors reduce sEV internalisation to an 

extent, not all inhibitors perturbed fibroblast differentiation as measured by HGF 

output. This discrepancy between uptake inhibition and effect on fibroblast 

stimulation suggests that there may not be a link between the two process.  

Pharmacological inhibitors are also limited, in that they can have unintended 

consequences on the functioning of the cell. CytoD is an inhibitor of actin 

polymerisation, and polymerisation of the smooth muscle specific α isoform of 

actin (Kinner et al., 2002), therefore its abrogation of αSMA  filament formation in 

stimulated fibroblasts would be expected, regardless of the inhibitory effect on sEV 

internalisation. Additionally, Dynamin-2 (target of Dynasore), is involved in actin 

function (Yamada et al., 2016), and Dynasore itself has been shown to destabilise 

actin filaments (Yamada et al., 2009). Interestingly, EIPA is reported to cause 

disassembly of actin filaments (Lagana et al., 2000), though αSMA was still 

detectable in fibroblasts treated with EIPA or Heparin (figure 6.2). Effects of 

cellular uptake inhibition of sEVs on HGF secretion by fibroblasts is difficult to 

determine with these inhibitors too, as we cannot be sure that an interruption to 

endocytic vesicle transport has no impact on the exocytic pathways for HGF 

production.  
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The sEV delivered TGFβ1 mediated response is known to be abrogated by addition 

of TGFβ neutralising antibody to the treatment conditions, inhibiting both αSMA 

expression and HGF secretion (Webber et al., 2015b). We confirmed functionality 

of the antibody, through inhibition of αSMA expression, when fibroblasts were 

treated with 200µg/mL sEVs with 10µg/mL TGFβ neutralising antibody for 72 

hours (figure 6.4a). We performed a typical sEV internalisation experiment with 

the presence of 10µg/mL TGFβ neutralising antibody to determine the role of 

TGFβ signalling in sEV uptake. By fluorescence microscopy, there does not appear 

to be any difference in the uptake efficiency of sEVs by fibroblasts (figure 6.4b). A 

small attenuation in uptake can be detected through measurement by flow 

cytometry (figure 6.4c), however without an isotype control antibody, we cannot 

confirm whether this specific impedance of uptake is genuine, or whether steric 

hindrance of the antibody is at play. Any blockade conveyed from the antibody 

though however is small, whereas the perturbation of sEV induced differentiation 

is very clear cut (Webber et al., 2015b), suggesting the two process are unlikely to 

be linked. 

The data here suggests that sEV internalisation is independent of the TGFβ1 

mediated changes in fibroblast phenotype. Whether sEV delivered luminal cargo 

could induce phenotypic change independent of TGFβ signalling was therefore 

worth examining. Due to undesirable effects of pharmacological inhibitors 

however, we investigated perturbation of highly expressed proteins on the sEV 

surface to bring about inhibition of sEV internalisation, as alternative to 

pharmacological inhibition of endocytosis. 
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Figure 6.1. Fibroblast stimulation with a reduced Du145 derived sEV dose. (A) 
Fibroblasts were treated for 48 hours with 0.1675, 0.375 or 0.75ng/mL sTGFβ1 
(equivalent to 25, 50, 100µg/mL sEVs respectively) or media, then stained with an 
antibody against αSMA (green). Images captured by Axio Observer Z1, 20x lens 
used, scale bar = 50µm. (B) Fibroblasts were treated with 100µg/mL sEVs, 0.75ng/mL 
sTGFβ1 or media for 48 hours, and HGF in the cell conditioned media was quantified by 
sandwich ELISA. Bars represent means +/- SEM, based on triplicate wells, ***P<0.001, 
one-way ANOVA with Tukey’s multiple comparison test. 
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Figure 6.2. Effect of endocytic inhibitors on sEV induced onset of αSMA expression in fibroblasts. Fibroblasts were treated for 48 hours 
with 100µg/mL sEVs in the presence of 10µg/mL Dynasore, 100ng/mL CytoD, 1µg/mL EIPA, 100ng/mL BafA or 1:1000 DMSO in DMEM/F12. 
Cells were then stained for αSMA, αSMA = green, nuclei = blue. Images captured by Axio Observer Z1, 20x lens used,  scale bar = 50µm. 
Images are representative images from an experiment of 9 fields of view across 3 wells. 
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Figure 6.3. Effect of endocytic inhibitors on sEV induced production of HGF by 
fibroblasts. Fibroblasts were treated for 48 hours with 100µg/mL sEVs in the 
presence of 10µg/mL Dynasore, 100ng/mL CytoD, 1µg/mL EIPA, 100ng/mL BafA,  
50µg/mL Heparin or 1:1000 DMSO in DMEM/F12. Cell supernatants were collected 
and HGF levels were measured by modified DuoSet ELISA. Bars represent means +/- 
SEM, based on three experiments, ***P<0.001, one-way ANOVA with Tukey’s multiple 
comparison test. 
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Figure 6.4. Effect of TGFβ neutralising antibody on sEV uptake by fibroblasts. (A) 
Fibroblasts were treated with 200µg/mL sEVs with/without 10µg/mL TGFβ 
neutralising antibody for 72 hours, then stained with an αSMA antibody. αSMA = green, 
nuclei = blue. Images captured by Axio Observer Z1, 63x lens used, scale bar = 
20µm. This demonstrates functionality of the TGFβ neutralising antibody as used in 
previous studies. Fibroblasts were treated with 25µg/mL Alexa594-sEVs (B) or 
Alexa633-sEVs (C) and 10µg/mL TGFβ neutralising antibody (table 2.1) for 1 hour. (B) 
Cells were visualised by fluorescence microscopy and their fluorescent intensities 
quantified by ImageJ, Alexa594-sEVs = red, nuclei = blue. Images captured by Axio 
Observer Z1, 63x lens used, scale bar = 20µm, Bars represent means +/- SEM, based 
on 9 fields of view across 3 wells, one-way ANOVA with Tukey’s multiple comparison 
test. (C) Fluorescent intensities of cells were measured by flow cytometry. Bars 
represent means +/- SEM, based on triplicate wells, *P<0.05, one-way ANOVA 
with Tukey’s multiple comparison test. 
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6.3. Blockade of sEV surface Integrins 

Integrins are shown to be involved in sEV uptake (Atay et al., 2011; Hoshino et al., 

2015; Wang et al., 2015), and were therefore a logical target to begin exploring 

cellular uptake inhibition of sEVs. Enrichment of integrins on DU145 derived sEVs 

relative to cells has also been described (Webber et al., 2014). We therefore 

examined whether cellular uptake of sEVs could be perturbed by blockade of sEV 

integrins. 

6.3.1. RGD peptide mediated blocking of sEV uptake by fibroblasts 

The RGD peptide has an integrin recognition sequence (Ruoslahti, 1996), and can 

be used to block interaction of many integrins, such as αvβ1 and αIIbβ3, with their 

RGD motif containing ligands. Other integrins bind domains like the LDV motif, 

independent of the RGD motif (Humphries et al., 2006). Due to the widely reported 

use of RGD peptide, and the large number of integrins which interact with RGD 

motifs, the RGD peptide was used here to demonstrate the role of integrin 

interactions between sEVs and fibroblasts. In sEV internalisation studies, RGD has 

been used to demonstrate the role of integrins in sEV-cell adherence (Wang et al., 

2015) and subsequent internalisation of the sEV (Atay et al., 2011; Wang et al., 

2015). We tested the effect of RGD peptide on internalisation of DU145 derived 

sEVs by fibroblasts, to identify a potential role for integrins.  

Fibroblasts were treated with 25µg/mL Alexa labelled sEVs for 1 hour in the 

presence of 25, 50 or 100µg/mL of RGD peptide (Sigma-Aldrich), then fluorescent 

intensity of the fibroblasts was measured by flow cytometry and in parallel by 

fluorescence microscopy. Microscopy reveals some, albeit weak inhibition of sEV 

uptake by fibroblasts. Doses of 25 and 100µg/mL significantly reduced fluorescent 

intensity (figure 6.5a), and whilst intensity is reduced, the dispersion of 

fluorescent puncta appears the same between conditions. Flow cytometry also 

showed a dose dependent reduction in MFI in fibroblasts by RGD (figure 6.5b). The 

highest doses of RGD reduction cellular uptake of sEVs by roughly 29% in the 

microscopy experiment and 40% in the flow cytometry experiment. Cellular 

uptake was not fully abrogated, and the data do suggest an integrin binding 

component is involved in sEV-fibroblast interaction and subsequent uptake.  
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Figure 6.5. RGD mediated blockade of DU145 derived sEV internalisation by fibroblasts. Fibroblasts were treated with (A) 25µg/mL 
Alexa488-sEVs or (B) 25µg/mL Alexa633-sEVs for 1 hour with 0, 25, 50 or 100µg/mL RGD. (A) Cells were visualised by fluorescence microscopy 
and their fluorescent intensities quantified by ImageJ, Alexa488-sEVs = green, nuclei = blue. Images captured by Axio Observer Z1, 63x lens 
used, scale bar = 20µm, Points on graphs represent means +/- SEM, based on 9 fields of view across 3 wells, *P<0.05, one-way ANOVA with 
Tukey’s multiple comparison test. (B) Fluorescent intensities of cells were measured by flow cytometry. Points on graphs represent means 
+/- SEM, based on triplicate wells, *P<0.05, **P<0.01, one-way ANOVA with Tukey’s multiple comparison test. 



  Results 

183 
 

We next decided to perform a small-scale integrin profiling experiment to identify 

specific integrin subunits present on the surface of DU145 derived sEVs, which 

would allow specific targeting of sEV integrins in later experiments. 

6.3.2. Detection of integrin subunits on sEV surface 

The RGD peptide can block a number of integrins from binding to their ligand, so 

identifying specific integrins relevant in sEV uptake was carried out. We performed 

integrin profile assessment through immunophenotyping of sEVs using antibodies 

against specific integrin subunits. Integrin subunits chosen for detection assays 

were based on their reported expression by DU145 cells. Not all the integrin 

subunits subsequently chosen have RGD binding motifs (Ruoslahti, 1996), 

however they were still evaluated, due to their reported expression on DU145 cells 

in the literature. Through a literature search of integrins expressed by DU145 cells, 

we selected 4 subunits for detection assays: β1 (Das et al., 2017; Dehghani et al., 

2014; Witkowski et al., 1993), β3 (Cooper et al., 2002; Witkowski et al., 1993), α3 

(Das et al., 2017; Witkowski et al., 1993) and α6 (Das et al., 2017; Witkowski et al., 

1993) were all reported to be expressed by DU145 cells, therefore we believed 

they may also be expressed by DU145 derived sEVs, since sEVs are known to 

express proteins specific to their parent cell.  

1µg/mL sEVs were seeded onto high protein binding ELISA plates, and the relative 

expression levels of the chosen integrin subunits was measured, as performed in 

chapter 3 for detection of tetraspanins on the sEV surface, described in chapter 

2.3.4. 1µg/mL anti-integrin primary antibodies (table 2.1) were used here. We 

detected significant expression of all 4 of the integrin subunits on the DU145 

derived sEVs (figure 6.6), these were all detectable above the background levels of 

non-specific binding of isotype control antibodies. β1 and α3 were detected to the 

highest degrees, with their detections 715-fold and 211-fold above background 

levels respectively, whereas β3 and α6 intensities were only 7.3-fold and 2.4-fold 

above background stickiness. These results indicate that β1 and α3 are likely more 

abundant on the DU145 derived sEV surface compared to β3 and α6, or that their 

respective antibodies have a greater binding affinity. 

Integrin antibodies were to be used to block sEV uptake by fibroblasts; the ability 

to block cellular uptake of sEVs using anti-integrin antibodies has been shown 

before, with an anti-β1 antibody (Wang et al., 2015). Prior to blocking experiments, 
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we first carried out titrations with the antibodies to determine whether there was 

a saturation point with the detection, as a saturating dose would give us as much 

integrin coverage as possible for sEV internalisation experiments. Titrations were 

carried out using anti-integrin antibodies at doses of 0.1-10µg/mL to determine a 

saturation point. Saturation of β1 detection was achieved with 0.5µg/mL anti-β1 

and 1µg/mL sEVs (figure 6.7), whereas signal of α3 did not saturate up to the 

highest dose of 10µg/mL anti-α3. With the two integrins which are not as highly 

detected, β3 detection was saturated and detectable above background levels, but 

only 2.3-fold, and α6 detection was not significantly different from background 

stickiness levels at 10µg/mL anti-α6. β3 and α6 integrins were excluded from 

cellular uptake blocking experiments due to their relatively low detection on the 

sEV surface. For cellular uptake experiments, the highest dose of 10µg/mL of anti-

β1 and anti-α3 were used to ensure as much sEV integrin coverage as possible, 

whilst α3 detection was not saturated, even with 1µg/mL sEVs being used, β1 

detection could be saturated at a much lower antibody dose. Using higher 

quantities of antibodies for cellular uptake experiments was impractical due to 

antibody costs. 

 

 

 

 

 

 

 

 

 

 

 

 



  Results 

185 
 

 

 

 

 

Figure 6.6. Detection of integrin subunits on DU145 derived sEVs by immunophenotyping plate assay. 1µg/well of sEVs were seeded onto 
high protein binding ELISA plates and analysed for the expression of the integrin subunits β1, β3, α3 and α6, using 1µg/mL anti-integrin 
antibodies, compared with detection of isotype control antibodies and the anti-integrin antibodies in PBS only. Bars represent means +/- SEM, 
based on triplicate wells, ***P<0.001, one-way ANOVA with Tukey’s multiple comparison test. 
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Figure 6.7. Dosing of anti-integrin antibodies for detection saturation of  DU145 derived sEV integrins by immunophenotyping plate 
assay. 1µg/well of sEVs were seeded onto high protein binding ELISA plates and analysed for the expression of the integrin subunits β1, β3, α3 
and α6, using 0.1, 0.5, 1, 5 or 10µg/mL anti-integrin antibodies, compared with detection of isotype control antibodies and the integrin antibodies 
in PBS only. Points on graphs represent means +/- SEM, based on triplicate wells, *P<0.05, **P<0.01, ***P<0.001, one-way ANOVA with Tukey’s 
multiple comparison test. 
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6.3.3. Integrin antibody blockade of sEV internalisation by fibroblasts 

25µg/mL Alexa633-sEVs were mixed with 10µg/mL anti-β1/anti-α3 or isotype 

control antibody for 18 hours at room temperature, as we thought this would 

enable sufficient coating of the sEVs, then fibroblasts were treated with these 

mixtures for 1 hour. Non-bound antibodies were not removed prior to fibroblast 

treatment, as we wanted their presence in the media during this 1 hour treatment 

to help ensure constant blockade of their targets. Fluorescent intensity of the 

fibroblasts was then measured by flow cytometry, with the aim of being repeated 

by fluorescence microscopy in later experiments to explore intracellular 

distribution. 

Unexpectedly, we did not observe any attenuation of cellular uptake of sEV with 

anti-β1 or anti-α3 addition and in fact noted a marked increase in fluorescent 

signal with either antibody treatments, relative to the sEV only treatment (figure 

6.8), this was about a 1.9-fold increase with anti-α3 and 1.7-fold with anti-β1. Also, 

surprisingly, Isotype control antibody also caused an increase in fluorescent signal 

in fibroblasts (1.6-fold). These results were opposite to what was expected. Before 

further experiments with these anti-integrin antibodies, we decided to try 

antibody blockade experiments using an antibody against an alternative, highly 

expressed protein to determine whether this result would be repeated, with a non-

integrin target. CD9 was shown earlier to be highly detected on the sEV surface 

(figure 3.4), and so was targeted here with an anti-CD9 antibody. Under the same 

experimental procedure, Alexa633-sEVs were mixed with 10µg/mL anti-CD9 or 

IgG2b control antibody, and following incubation were used to treat fibroblasts. 

Fluorescent intensities were again measured by flow cytometry. In an experiment 

attempted twice, we again did not find any reduction in fluorescent signal in the 

fibroblast using these antibodies, in the first attempt we could not detect a 

significant difference between antibody treated versus sEV only treated fibroblasts 

(figure 6.9a), but in the second attempt, we saw an increase in fluorescent signal in 

fibroblasts treated with sEVs and antibodies (figure 6.9b). Interestingly there was 

also a significant difference in this second experiment between the anti-CD9 and 

IgG2b control antibody conditions, suggesting the increased fluorescent signal in 

the anti-CD9 cells was due to the CD9 targeting of the antibody. Due to the 

unexpected results generated, we did not further investigate the role of integrins 
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in sEV internalisation in this study, and therefore did not perform microscopy 

experiments to complement the flow cytometry data. The results collected from 

these cellular uptake experiments were unexplainable, but our inability to block 

sEV internalisation by fibroblasts using antibodies against sEV surface proteins 

meant we were unable to further clarify the role of sEV uptake in the stimulation of 

the fibroblast. 

Here, we demonstrated inconsistencies in using pharmacological inhibitors to 

determine the role of PCa derived sEV internalisation in driving phenotypic change 

in the fibroblast, with the inhibitors showing varying impacts on sEV induced 

marker expression/secretion. And with the off-target effects of the inhibitors 

found through a literature search, we were unable to confidently use these 

inhibitors to identify a link between sEV uptake and function in this instance, 

though we did note case of inhibitors not impeding HGF secretion despite 

inhibiting sEV internalisation (e.g. CytoD, BafA). Block of sEV internalisation using 

RGD revealed a role for integrins in this process, and we then showed detection of 

integrins β1 and α3 on the sEV surface, as well as β3 and α6, albeit to a lesser 

extent. Unfortunately, we were unable to block sEV internalisation by fibroblasts 

using anti-integrin or anti-CD9 antibodies and saw evidence of increased cellular 

uptake in the presence of these antibodies. 
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Figure 6.8. Anti-integrin antibody mediated blockade of DU145 derived sEV 
internalisation by fibroblasts. Fibroblasts were treated with 25µg/mL Alexa633-
sEVs for 1 hour with/without 10µg/mL anti-β1/anti-α3/isotype control antibody. 
Fluorescent intensities of cells were measured by flow cytometry. Bars represent 
means +/- SEM, based on triplicate wells, **P<0.01, ***P<0.001, one-way ANOVA 
with Tukey’s multiple comparison test. 
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Figure 6.9. Anti-CD9 mediated blockade of DU145 derived sEV internalisation by 
fibroblasts. Fibroblasts were treated with 25µg/mL Alexa633-sEVs for 1 hour 
with/without 10µg/mL anti-CD9/isotype control antibody. Fluorescent intensities of 
cells were measured by flow cytometry. (A) Graph represents experiment one, (B) 
graph represents experiment two. Bars represent means +/- SEM, based on 
triplicate wells, **P<0.01, ***P<0.001, one-way ANOVA with Tukey’s multiple 
comparison test. 
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6.4. Discussion 

Here, we sought to determine whether there was a link between endocytosis of 

DU145 derived sEVs by fibroblasts and the triggering of myofibroblast 

differentiation into a phenotype that is analogous to a tumour promoting 

fibroblast. We also investigated inhibition of sEV internalisation through antibody 

targeting of sEV surface proteins. The data shown in this chapter is summarised in 

figure 6.10.  

Some pharmacological inhibitors, particularly Dynasore (the most potent 

inhibitor), showed perturbation of fibroblast differentiation, however these 

compounds are severely limited in that they are reported to have off-target effects 

on cells which make interpreting results problematic, such that impaired 

differentiation may not be directly linked to uptake. The inhibitors EIPA and 

Heparin however, whilst impeding sEV internalisation (modestly with EIPA), 

showed no effect on fibroblast expression of αSMA or secretion of HGF, other 

inhibitors, such as CytoD also showed no impact on HGF levels whilst αSMA 

expression was clearly affected, though CytoD is an inhibitor of actin 

polymerisation (Flanagan and Lin, 1980). Whilst the inhibitors are severely 

limited, they did not universally reduce expression of αSMA or secretion of HGF, 

suggesting there may not be a link between endocytosis of the sEV and the 

stimulation of the fibroblast. These experiments were also limited in the markers 

we measured to determine fibroblast differentiation, these myofibroblasts secrete 

numerous factors and have pro-tumoural effects in-vivo (Webber et al., 2015b), 

assessment of more markers of fibroblast stimulation or in-vivo experiments 

would help elucidate any effect endocytic inhibitors have on sEV function. The sEV-

mediated stimulation is dependent on TGFβ1 signalling, which occurs at the 

plasma membrane of the fibroblast, Webber et al demonstrated a role for sEV 

surface Heparan sulphate proteoglycans (HSPGs) in the handover of TGFβ1 to the 

fibroblast (Webber et al., 2010). Further investigation of the interaction at the 

plasma membrane and how HSPGs contribute to sEV induced stimulation of the 

fibroblast will give us a greater understanding of this process. The minor 

impedance of sEV uptake in the presence of TGFβ neutralising antibody, despite its 

significant effect on differentiation (Webber et al., 2015b), also strengthens the 
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likelihood that sEV internalisation is independent of the TGFβ signalling process 

between PCa derived sEVs and fibroblasts. 

TGFβ blockade, whilst known to inhibit differentiation of the fibroblast, did not 

appear to have a substantial effect on sEV internalisation, which further 

demonstrates that the processes of sEV internalisation and sEV delivered TGFβ1 

mediated fibroblast differentiation are not linked. Any effect sEV uptake has on 

determining fibroblast behaviour is therefore likely to be independent of TGFβ 

signalling. 

Integrins were a logical target for blocking, since they had been previously been 

implicated in the internalisation of sEVs (Hoshino et al., 2015; Wang et al., 2015), 

and some subunits are known to be highly expressed in prostate cancer (Goel et al., 

2008). Antibody blockade was presumed to be sufficient to impede endocytosis of 

the sEV, since integrin antibodies have been used to block sEV internalisation 

previously (Wang et al., 2015) and antibodies against other proteins, such as the 

tetraspanins CD9 and CD81 have also been effective (Morelli et al., 2004), though 

in this case the inhibition of sEV uptake was very modest, only a 5-12% reduction 

in signal was observed. The results gathered from the flow cytometry experiments 

were difficult to explain, though in hindsight, further investigation, with 

complementary microscopy experiments would have been useful to see whether 

there is an increase in internalised sEV, or if the antibodies cause greater plasma 

membrane stickiness. Whilst we presume trypsinisation of the fibroblast for flow 

cytometry strips the cell of surface bound sEVs, we cannot be sure whether the 

presence of antibodies has any effect in this regard. For the dose of sEVs used for 

uptake studies, we also cannot be sure whether the dose of antibodies used was 

sufficiently saturating, though doses used were comparable to previous studies 

(Morelli et al., 2004). The cost of dramatically increasing antibody doses however 

was not possible, and even if the doses used were not high enough, this still does 

not explain the increase in sEV uptake by the fibroblasts. We postulated that 

increased sEV internalisation in the presence of antibodies could be due to 

recognition by Fc receptors, however this was not followed up as these receptors 

are generally reported to be present on cells of the immune system and may not be 

very abundant on fibroblasts (Ravetch and Kinet, 1991).  
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In hindsight it may have been more logical to attempt to block specific integrin 

heterodimers known to interact with RGD motifs, since the RGD peptide is what 

provided an inhibition of sEV uptake. Instead integrin targeting was based on 

known expression on DU145 cells, since this was believed to ensure a blocking 

effect with antibodies, regardless of whether the target integrins were RGD 

binders. Furthermore, it could have helped to have had a more robust attempt at 

targeting the chosen integrins, through use of numerous antibodies targeting 

distinct epitopes, which may have revealed different blocking capabilities between 

the antibodies. Whilst the results reported in this chapter with regards to the 

impact of these antibodies on sEV internalisation are unexplained, they are 

certainly worth further investigation. Washing sEVs of unbound antibodies would 

be a more elegant approach to examining effects of antibody blockade on sEV 

uptake, as this would prevent antibody binding to the recipient cell surface 

allowing us to only consider the role of sEV related integrins and not fibroblast 

integrins. It is possible fibroblast integrins aid sEV binding through integrin 

receptors such as ICAM/VCAM/ADAM proteins, which could be expressed on the 

DU145 sEV surface. Defining the role of fibroblast surface integrins or sEV surface 

ICAM or ADAM proteins in sEV uptake could be another avenue for future study, as 

well as whether integrin mediated adhesion of sEVs to extracellular matrix 

components contributes to their interaction with fibroblasts. This is possible since 

RGD motifs clearly blocked a sEV-fibroblast interaction here and some matrix 

components, like vitronectin, contains an RGD motif (Humphries et al., 2006), 

suggesting sEVs could bind to these components. Ultracentrifugation is reported to 

wash off excess antibodies from sEVs (Zech et al., 2012). In future studies, a more 

robust look at the role of PCa derived sEV surface integrins may require a more 

effective blockade, potentially through knockdown of specific integrins, as 

described in a study of cancer derived sEVs previously (Hoshino et al., 2015).  

In studying the effects of sEV uptake by a recipient cell on its ability to drive 

phenotypic change in that cell could be alternatively studied through enhancement 

of sEV internalisation, as opposed to abrogation of endocytosis. Enhancement of 

sEV internalisation is of particular interest in the area of sEV-based therapeutics, 

in which sEVs are being explored as carriers of therapeutic molecules, making 

uptake of these sEVs by target cells desirable. Cell engineering has been employed 

to attach target tissue specific peptides to sEV-associated membrane proteins to 
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enhance cellular uptake of the sEV by a specific cell type (Alvarez-Erviti et al., 

2011). Others have attached peptides known to induce endocytosis in cells, termed 

cell penetrating peptides to the surface of sEVs and demonstrated increased 

internalisation by the recipient cell (Nakase et al., 2016). Taking nanobodies 

known to target receptors highly expressed on cancer cells (e.g. EGFR) and fusing 

them with a phospholipid (phosphatidylserine) which will embed itself in a sEV 

membrane is another elegant example of modification of the sEV surface for 

increases cellular uptake (Kooijmans et al., 2018). There are numerous described 

methods for enhancement of sEV internalisation (Johnsen et al., 2014), 

modification of the sEV surface may be an effective approach for studying the 

effect of PCa derived sEV uptake by fibroblasts on the phenotype of the cell. 

We have identified expression of a number of integrin subunits on the surface of 

DU145 derived sEVs, however found issues with blocking sEV internalisation using 

antibodies against integrins as well as the tetraspanin CD9. Use of RGD peptide 

however revealed a role for integrins in the endocytosis of these PCa derived sEVs 

and therefore this is worth following up on in the future. Through TGFβ blocking 

and pharmacological inhibition experiments, we show that TGFβ signalling 

between sEV and fibroblast is not linked to the internalisation of the sEV.
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Figure 6.10. Schematic summary of chapter 6. Summary of the data collected in 
chapter 6. (A) There does not appear to be a link between sEV internalisation by 
fibroblasts and the ability of the sEV to deliver functional TGFβ1 to the cell. (B) DU145 
derived sEVs express integrin subunits β1, β3, α3 and α6. (C) We were unable to 
impede sEV internalisation by fibroblasts with antibodies against the integrins β1, α3, 
or the tetraspanin CD9. 
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7.1. Summarising discussion 

sEVs are known to transfer their contents to target cells, how this occurs is not 

well understood. Here, we studied the cellular uptake and processing of PCa 

derived sEVs in primary fibroblasts, a biologically relevant cell type in the tumour 

microenvironment. Through examining this means of sEV-cell communication, we 

aimed to increase our knowledge of the nature of PCa-fibroblast interactions and 

the role of sEVs in modulating the stromal component in cancer, but also the 

mechanisms of sEV cargo delivery to recipient cells in a broader sense.  

 

In reporting on studies with sEVs, characterising the sEV sample is important to 

demonstrate successful purification, and allows one to confidently attribute results 

to sEV action. We presented data showing sEV isolates, generated through sucrose 

cushion ultracentrifugation and subsequent pelleting, have the size, structure and 

protein expression typical of sEVs, and satisfy the ISEV guidelines for defining sEVs 

(Théry et al., 2018). However, the isolates do not solely contain typical sEV 

structures, but numerous other membrane bounded or electron dense 

morphologies. The presence of these structures is rarely discussed, though others 

have described similar morphologies in their isolates (Zabeo et al., 2017). Whilst 

A schematic summary of the main findings of this study can be seen in figure 

7.1, and covers four main points: 

1. We have presented novel fluorescent Alexa dye for sEV labelling, Alexa dye 

labelling does not impede sEV driven TGFβ1-mediated fibroblast stimulation. 

2. PCa sEVs are internalised by fibroblasts primarily through Clathrin 

mediated endocytosis. They are seen in early endosomes after fibroblast 

uptake and begin to reach lysosomes within 2 hours. 

3. sEVs can be labelled with intraluminal fluorescent dyes, RNA binding dye 

SYTO RNASelect requires sEV internalisation to stain the fibroblast, and the 

dye escapes within an hour of cellular uptake of the sEV. 

4. Cellular uptake of sEVs is independent of sEV mediated delivery of 

functional TGFβ1 to fibroblasts. 
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the nature of these structures is unknown, their presence in sEV isolates from 

different cell types, and generated through different isolation protocols in different 

studies suggest that these are not artificially created through the isolation process 

but are real cell derived entities. These structures should be studied further so we 

can better understand the composition of the sEV population and potential roles of 

these vesicle subtypes in biological functions. 

The widely reported problems with lipophilic dyes in sEV labelling (Morales-

Kastresana et al., 2017; Pužar Dominkuš et al., 2018), led us to evaluate an 

alternative method for fluorescent labelling of sEV for use in cellular uptake 

studies. Here we proposed the maleimide linked Alexa dyes to label sEV surface 

proteins. These dyes were stable when bound to sEVs, available in many colours, 

insensitive to photobleaching and changes in pH, and do not form artificial sEV 

sized particulates (a common problem with lipophilic dyes). The use of this dye to 

label sEVs for cellular uptake analysis has now been published (Roberts-Dalton et 

al., 2017). We carried out experiments to determine the suitability of the dye to 

label sEVs, we showed that all of the detectable dye in a sEV sample is sEV bound 

and that the dye does not affect the ability of the sEV to induce fibroblast 

differentiation. These are important considerations to take into account, to ensure 

sEVs and not artificial fluorescent particles are being tracked, and that the function 

of the sEV is not impaired by the labelling process as this could have an unintended 

knock on effect on the uptake process. 

Fibroblasts internalise sEVs, which we can detect fluorescently by microscopy and 

flow cytometry. Through complimentary use of pharmacological inhibitors and 

siRNA against distinct endocytic regulators, we identified Clathrin mediated 

endocytosis as the primary route for cellular uptake of sEVs by fibroblasts. 

Interestingly, the main route of uptake in HeLa cells for the same sEVs is 

macropinocytosis (Roberts-Dalton et al., 2017), revealing an issue with targeting a 

recipient cell for therapeutic blockade of sEV endocytosis in vivo, as sEVs from the 

same source can be internalised through different routes, dependent on recipient 

cell type. One should be weary of using pharmacological inhibitors for blockade of 

endocytosis, we and others warn of the highly cytotoxic nature of the inhibitors, as 

well as their lack of specificity for their putative target and their off-target effects 

in the cell (Ivanov, 2008; Vercauteren et al., 2010).  
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Within 30 minutes of cellular uptake, sEVs are present in early endosomes, as 

shown by their co-localisation with transferrin and Rab5 labelled endosomes, then 

slowly transit to lysosomes within 2 hours, seen by their increased co-localisation 

with dextran over this time. Fluorescent signal is still present in cells even at 72 

hours post-uptake though less punctate. We do not know however what the fate of 

the sEV is once it reaches lysosome and at what point the fluorescent signal is 

disassociated dye following possible degradation of the sEV. We then wanted to 

see whether the intraluminal cargo of the PCa derived sEV was transferred to 

fibroblasts sometime after endocytosis. sEVs were labelled with membrane 

permeable fluorescent dyes and again we carried out experiments determining 

their suitability for sEV labelling. Calcein AM was found to leak from the sEV and 

was therefore shown to be undesirable as a sEV label in cellular uptake studies. 

SYTO dye requires endocytosis of the sEV before staining the fibroblast in its 

distinctive manner, labelling mitochondria. The SYTO dye disassociates from the 

sEV within an hour of sEV internalisation, suggesting sEV cargo can escape rapidly, 

possibly from early endocytic compartments. A platform for fluorescently tracking 

dual-coloured sEVs was created, in which these sEVs were detectable by wide-field 

time-lapse microscopy, with the aim of showing intraluminal cargo delivery in 

real-time. We will likely need higher power microscopy to monitor disassociation 

of the dyes from one another, as we were unable to achieve this with our current 

microscopy setup.  

Through pharmacological inhibition and TGFβ1 blocking experiments, we found 

that TGFβ1 dependent sEV induced fibroblast stimulation is not linked with the 

endocytosis of the sEV, meaning the markers measured following the stimulation 

of the fibroblast are mediated by sEV-fibroblast membrane surface interactions. 

Since we demonstrated that PCa derived sEVs can deliver intraluminal cargo to 

fibroblasts however, it is possible that mRNA/miRNA from these vesicles could 

induce phenotypic change in the fibroblast. We therefore sought to examine the 

impact of endocytic inhibition of TGFβ1 independent effects on the fibroblast. To 

achieve this, we moved away from pharmacological inhibitors, due to previously 

stated problems, and instead targeted the sEV surface proteins, since we had 

shown a difference in cellular uptake efficiency between DU145 and LNCaP 

derived sEVs, plus we had also impeded sEV internalisation through use of Heparin 

and RGD peptide, blockers of surface interactions. We targeted sEV surface 
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integrins for endocytic blockade, as they had a stated role in cancer progression 

and in internalisation of sEVs. We successfully identified expression of the subunits 

β1, β3, α3 and α6 on the DU145 derived sEVs, but did not achieve abrogation of 

cellular uptake with use of integrin antibodies to block these sEV proteins and 

unexpectedly observed heightened uptake in the presence of antibodies, 

independent of antibody specificity. More sophisticated assessment of the role of 

integrins in cellular uptake of PCa derived sEVs could be achieved through 

knockdown of integrins for example (Hoshino et al., 2015), to tease out the 

importance of specific integrins in uptake. 

Our evidence of PCa derived sEV intraluminal cargo transfer to fibroblasts shows 

this to occur shortly after sEV endocytosis, before they reach lysosomes. We also 

reveal the importance of the sEV-cell surface interactions in endocytosis of sEVs by 

fibroblasts. From this study, we also present new questions for consideration: 

 What is the mechanism of intraluminal cargo escape from the 

sEV/endosomal compartment? 

 How do sEVs mediate interactions at the cell surface leading to endocytosis 

of the vesicle and what sEV/fibroblast proteins are important? 

 Does PCa derived sEV intraluminal cargo, delivered to fibroblasts, drive 

TGFβ1 independent phenotypic change in the cell? 
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Figure 7.1. Endocytosis and intracellular processing of prostate cancer 
derived sEVs by fibroblasts. A schematic summary of the primary findings of this 
study. (1) sEVs can be labelled with Alexa dyes, without perturbing the sEV driven 
response in fibroblasts. (2) sEVs are taken up by Clathrin mediated endocytosis and 
are sorted to lysosomes. (3) Intraluminal dye escapes the sEV soon after 
endocytosis. (4) sEV internalisation is independent of the TGFβ1 response in 
fibroblasts. 
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7.2. Future directions 

Whilst we reveal the transfer of intraluminal cargo from PCa derived sEVs to 

fibroblasts soon after endocytosis of the sEV, the mechanism of delivery remains 

unclear. Elucidating the mechanism of cargo transfer from sEV to the cell cytosol 

would be an important step in our fundamental understanding of how sEVs 

operate to communicate with cells. 

To escape into the cytosol, intraluminal sEV contents must overcome the sEV and 

endosomal membranes, but we do not currently know how this occurs. Endosome 

associated proteins have been implicated in the transfer of sEV contents to target 

cells (Abrami et al., 2013), further implicating endosomal escape of sEV contents. 

Examining the sEV structure following endocytosis as it enters different 

endosomal compartments would clarify the fate of the sEV and could provide 

information on how its contents are transferred to cells. The study of sEV structure 

within a recipient cell endosome could be possible using electron microscopy (EM) 

Intact sEVs have been previously visualised by EM following endocytosis 

(Heusermann et al., 2016; Morelli et al., 2004). Through use of fluorescently 

labelled sEVs we have been able to track their subcellular location in fibroblasts, 

and complimentary use of EM could reveal the state of the sEVs in fluorescently 

tagged compartments. Correlative light and electron microscopy (CLEM) is a 

technique combining fluorescence microscopy with EM, which allows image 

capture of fluorescent entities within cells, followed by clarification of the 

structure of these entities through EM of the same field of view (de Boer et al., 

2015). Cellular uptake and trafficking of our fluorescently labelled sEVs, monitored 

by CLEM would allow us to identify the sEV structure at the point of intraluminal 

cargo escape. Furthermore, we could determine the fate of the sEV upon sorting to 

lysosomes, as well as determine how long protein binding dyes, such as the Alexa 

and CFSE dyes, remain associated with sEVs during the intracellular sorting 

process. Use of CLEM to study intracellular processing and fate of sEVs would give 

us an understanding of sEV-cell interactions not possible with fluorescence 

microscopy alone. 
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In this study, we found that proteins on the sEV surface were relevant in the 

internalisation of the sEV by the fibroblast. We also demonstrated intraluminal 

cargo transfer from sEVs to fibroblasts. Further study of the interaction between 

PCa derived sEVs and fibroblasts will give us a greater comprehension of the role 

of sEVs in driving important pathological processes in cancer.  

There was a sizeable difference in the cellular uptake efficiencies of DU145 derived 

sEVs versus LNCaP derived sEVs in fibroblasts, indicating a role of the sEV surface 

in driving endocytosis. Further, we were able to inhibit endocytosis through use of 

Heparan sulphate mimetic Heparin and integrin binding blocker RGD. Clearly sEV 

surface proteins are relevant for the internalisation of PCa derived sEVs by 

fibroblasts. Since we observed such a marked difference between the cellular 

uptake of DU145 and LNCaP derived sEVs, examining these differences is an 

interesting prospect. Proteomic analysis of these two sEV populations could reveal 

interesting differences in the make-up of the respective sEV surface protein 

content and identify targets for cellular uptake studies. It would also be intriguing 

to examine whether the cargo delivery kinetics are different between these sEV 

populations as well. Pin-pointing specific sEV surface proteins for blockade of 

endocytosis would be a desirable therapeutic target to perturb sEV mediated 

actions in the tumour microenvironment. 

Although the TGFβ1 mediated response in fibroblasts is not dependent on the 

cellular uptake of the sEV, we found that these sEVs could nonetheless transfer 

their cargo to the cell. RNAs are the most commonly reported intraluminal cargo 

delivered by sEVs. Enrichment of some RNAs in PCa derived sEVs has been 

reported (Ahadi et al., 2016), supporting the idea that these sEVs could be 

delivering functional RNAs to cells. Analysis of the RNA content of PCa derived 

sEVs and evaluation of their effects on fibroblast phenotype is another logical 

avenue for future study, to further clarify the mechanisms of sEV-fibroblast 

communication in the growth and survival of tumours. 
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Concluding remark 

In the current study, we showed evidence of transfer of sEV luminal contents to 

fibroblasts shortly after sEV endocytosis, through use of fluorescent dyes to 

monitor the sEV interactions with the fibroblast. Determining the functionally 

relevant cargo and defining the delivery mechanism from sEV to the fibroblast 

cytosol may present us with novel avenues for intervening and attenuating 

development of aberrant stromal cells arising due to sEV activities in the tumour 

microenvironment. 
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