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Abstract 

It has long been known that canonical 5' splice site (5'SS) GT>GC variants may be 

compatible with normal splicing. However, to date, the actual scale of canonical 5'SSs 

capable of generating wild-type transcripts in the case of GT>GC substitutions 

remains unknown. Herein, combining data derived from a meta-analysis of 45 human 

disease-causing 5'SS GT>GC variants and a cell culture-based full-length gene 

splicing assay of 103 5'SS GT>GC substitutions, we estimate that ~15-18% of 

canonical GT 5'SSs retain their capacity to generate between 1 and 84% normal 

transcripts when GT is substituted by GC. We further demonstrate that the canonical 

5'SSs in which substitution of GT by GC generated normal transcripts exhibit stronger 

complementarity to the 5' end of U1 snRNA than those sites whose substitutions of 

GT by GC did not lead to the generation of normal transcripts. We also observed a 

correlation between the generation of wild-type transcripts and a milder than expected 

clinical phenotype but found that none of the available splicing prediction tools were 

capable of reliably distinguishing 5'SS GT>GC variants that generated wild-type 

transcripts from those that did not. Our findings imply that 5'SS GT>GC variants in 

human disease genes may not invariably be pathogenic. 
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Graphical Abstract 

 

Based upon complementary data from the meta-analysis of 45 disease-causing 5'SS 

GT&gt;GC variants and the cell culture-based full-length gene splicing analysis of 

103 5'SS GT&gt;GC substitutions, we have provided a first estimate of ~15-18% for 

the proportion of canonical GT 5'SSs that are capable of generating between 1 and 

84% normal transcripts in case of the substitution of GT by GC. Given that even the 

retention of 5% normal transcripts can significantly ameliorate a patient’s clinical 

phenotype, our findings imply the potential existence of hundreds or even thousands 

of disease-causing 5'SS GT&gt;GC variants that may underlie relatively mild clinical 

phenotypes. Because 5'SS GT&gt;GC variants can also give rise to relatively high 

levels of wild-type transcripts, our findings imply that 5’SS GT&gt;GC variants may 

not invariably be pathogenic in disease-causative or disease-associated genes. 

KEYWORDS 

Canonical 5' splice site, full-length gene splicing assay, genotype and phenotype 

relationship, human gene mutation database, human inherited disease, non-canonical 

splice donor site 
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1. INTRODUCTION 

The vast majority of eukaryotic introns are spliced by the U2 spliceosome (the only 

alternative U12 spliceosome is responsible for <0.5% of all introns (Parada, Munita, 

Cerda, & Gysling, 2014; Turunen, Niemela, Verma, & Frilander, 2013; Verma, 

Akinyi, Norppa, & Frilander, 2018)), which interacts with RNA sequences specifying 

the 5' and 3' splice sites (Papasaikas & Valcarcel, 2016; Sharp & Burge, 1997). In 

vertebrates, the 9-bp consensus sequence for the U2-type 5' splice site (5'SS) has 

traditionally been described as 5'-MAG/GURAGU-3' (where M denotes C or A, R 

denotes A or G and / denotes the exon-intron boundary; the corresponding nucleotide 

positions are denoted -3_-1/+1_+6) although in reality this consensus sequence does 

not reflect the true extent of sequence variability (Abril, Castelo, & Guigo, 2005; 

Burset, Seledtsov, & Solovyev, 2000; Mount, 1982; Roca et al., 2012; Roca, Krainer, 

& Eperon, 2013; Wong, Kinney, & Krainer, 2018). Base-pairing of this 9-bp sequence 

with 3'-GUCCAUUCA-5' at the 5' end of U1 snRNA (Figure 1A) is critical for 

splicing to occur (Kondo, Oubridge, van Roon, & Nagai, 2015; Kramer, Keller, 

Appel, & Luhrmann, 1984; Mount, Pettersson, Hinterberger, Karmas, & Steitz, 1983; 

Roca et al., 2013; Zhuang & Weiner, 1986). Although the GT dinucleotide in the first 

two intronic positions (in the context of DNA sequence) constitutes the most highly 

conserved portion of the U2-type 5'SS, it was reported, as early as 1983, that GC 

occasionally occurs in place of GT (Dodgson & Engel, 1983; Erbil & Niessing, 1983; 

King & Piatigorsky, 1983). Subsequent genome-wide analyses have established that 

this non-canonical 5'SS GC is present as wild-type in ~1% of human U2-type introns 

(Abril et al., 2005; Burset et al., 2000; Burset, Seledtsov, & Solovyev, 2001; Parada et 

al., 2014; Sheth et al., 2006). Importantly, the remaining nucleotides in these 
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evolutionarily fixed non-canonical GC 5'SSs exhibit a stronger complementarity to the 

3'-GUCCAUUCA-5' sequence at the 5' end of U1 snRNA than those in the canonical 

GT 5'SSs (Figure 1A), thereby in all likelihood compensating for the decreased 

complementarity between the 5'SS and the 5' end of U1 snRNA due to the U to C 

substitution (Abril et al., 2005; Burset et al., 2000). Comparative genome analyses 

have also revealed frequent switching of U2-type introns from the canonical 5'SS GT 

subtype to the non-canonical 5'SS GC subtype during mammalian evolution (Abril et 

al., 2005; Churbanov, Winters-Hilt, Koonin, & Rogozin, 2008). Finally, GC has 

recently been ranked first among the six non-canonical 5′SSs identified by genome-

wide RNA-seq analysis and splicing reporter assays (Erkelenz et al., 2018). 

The finding that GC occasionally occurs instead of GT within the canonical 5'SS 

in some vertebrate genes implies that substitution of the canonical 5'SS GT by GC 

(termed a 5'SS GT>GC variant) may still allow normal splicing to occur. The first 

direct experimental evidence supporting such a postulate came in the late 1980s; 

analyses of both the splicing products of in vitro transcribed rabbit beta globin (Hbb) 

RNA in a HeLa cell nuclear extract and the splicing products of the Hbb gene 

transiently expressed in HeLa cells demonstrated that, of all the possible single 

nucleotide substitutions of the canonical 5'SS GT of the second and last intron of Hbb, 

only the substitution of T by C was compatible with normal splicing, albeit at a much 

reduced rate (approximately 10% of normal; see also Figure 1B) (Aebi, Hornig, 

Padgett, Reiser, & Weissmann, 1986; Aebi, Hornig, & Weissmann, 1987). Further 

supporting evidence came from the study of disease-causing 5'SS GT>GC variants, 

some of which were reported to generate wild-type transcripts (see below). 

Additionally, the activation of cryptic non-canonical 5'SS GC has also been reported 
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as a consequence of some disease-causing variants (Kralovicova et al., 2011; Pagani 

et al., 2002).  

The above notwithstanding, to date, the actual scale of canonical 5'SSs capable of 

generating wild-type transcripts in the case of GT>GC substitutions, both in the 

context of the frequency of such substitutions and the level of wild-type transcripts 

generated by such substitutions, remains unknown owing to the intrinsic complexity 

of splicing (Boehm et al., 2018; De Conti, Baralle, & Buratti, 2013; Krainer, 2015; 

Wong et al., 2018; Zhang, Arias, Ke, & Chasin, 2009) and the lack of suitable model 

systems for study. This issue has important implications for medical genetics since 

mutant genotypes retaining even a small fraction of their normal function may differ 

significantly from null genotypes in terms of their associated clinical phenotypes (e.g., 

5% normal CFTR gene expression is sufficient to prevent the lung manifestations of 

cystic fibrosis (Ramalho et al., 2002; Raraigh et al., 2018); for hemophilia B and other 

coagulation factor deficiencies, raising plasma levels above 5% normal often results in 

milder bleeding phenotypes (Den Uijl et al., 2011; Scalet et al., 2019)). Herein, we 

attempted to address this issue by employing two distinct but complementary 

approaches in concert. 

2. MATERIALS AND METHODS 

2.1. Meta-analysis of disease-causing 5'SS GT>GC variants 

Human disease-causing 5'SS GT>GC variants logged in the Professional version of 

the Human Gene Mutation Database (HGMD; 

http://www.hgmd.cf.ac.uk/ac/index.php; as of June 2017) (Stenson et al., 2017) were 
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used as starting material. The procedure of the meta-analysis is described in Figure 

1C. 

2.2. Cell culture-based full-length gene splicing assay 

The outline of the cell culture-based full-length gene splicing assay is illustrated in 

Figure 1C.  

2.2.1. Amplification of full-length gene sequences 

For this experiment, we focused on genes whose genomic sizes were <8 kb (from the 

translation initiation codon to the translation termination codon) and whose exons 

numbered ≥3. Long-range PCR was performed in a 25 µL reaction mixture containing 

0.5 U KAPA HiFi HotStart DNA Polymerase (Kapa Biosystems), 0.75 µL KAPA 

dNTP Mix (300 µM final), 5 µL 5 × KAPA HiFi Buffer, 50 ng DNA, and 0.3 µM 

forward and reverse primers (primer sequences available upon request). The PCR 

program comprised an initial denaturation at 95°C for 5 min, followed by 30 cycles of 

denaturation at 98°C for 20 s, annealing at 66°C for 15 s, extension at 72°C for 1 

min/kb, and a final extension at 72°C for 5 min. In some of the cases where the 

desired fragments could not be obtained, a second amplification was attempted: PCR 

was performed using 50 ng DNA in a 50 µL reaction mixture with 2.5 U TaKaRa LA 

Taq DNA polymerase (TaKaRa), 8 µL dNTP Mixture (400 µM final), 5 µL 10 × LA 

PCR Buffer, and 1 µM forward and reverse primers; thermal cycling conditions were 

initial denaturation at 94°C for 1 min, 30 cycles of denaturation at 98°C for 10 s, 

annealing and extension at 68°C for 1 min/kb, and a final extension at 72°C for 10 

min. 
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2.2.2. Cloning of the amplified full-length wild-type gene sequences into the 

expression vector 

Early experiments were performed by means of TA cloning. In those cases in which 

the PCR products contained multiple bands, the band of the expected size was gel 

purified using the QIAquick Gel Extraction Kit (Qiagen) and 3’-A overhangs added; 

in cases where a single and expected band was obtained, 3’-A overhangs were directly 

added to the PCR products amplified from the KAPA HiFi HotStart DNA Polymerase 

(this step was omitted for those amplified using the TaKaRa LA Taq DNA 

polymerase). The resulting products were cloned into the pcDNA3.1/V5-His-TOPO 

vector (Invitrogen) in accordance with the manufacturer’s instructions. 

Transformation was performed using Stellar Competent Cells (TaKaRa) or XL10-

Gold Ultracompetent Cells (Agilent Technologies). Transformed cells were spread 

onto LB agar plates with 50 µg/mL ampicillin and incubated at 37°C overnight. 

Plasmid constructs containing inserts in the correct orientation were selected by PCR 

screening using the HotStarTaq Master Mix Kit (Qiagen). 

Later experiments were performed by means of in-fusion cloning. PCR products of 

the expected size were purified using the QIAquick Gel Extraction Kit (Qiagen) after 

gel electrophoresis. The purified products were cloned into EcoRI restriction site of 

the linearized pcDNA3.1(+) vector with the In-Fusion HD Cloning kit (TaKaRa) 

according to the manufacturer’s instructions. Transformation was performed using 

Stellar Competent Cells (TaKaRa) or XL10-Gold Ultracompetent Cells (Agilent 

Technologies). Transformed cells were spread onto LB agar plates with 50 µg/mL 

ampicillin and incubated at 37°C overnight. Plasmid constructs containing inserts 

were confirmed by PCR using the HotStarTaq Master Mix Kit (Qiagen). 
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2.2.3. Mutagenesis 

Variants were introduced into the wild-type full-length gene expression constructs by 

means of the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent 

Technologies). Mutagenesis was performed in a 25.5 μL mixture containing 1.25 U 

PfuUltra HF DNA polymerase, 0.5 μL dNTP mix, 2.5 μL 10× reaction buffer, 1.5 μL 

QuikSolution, 100 ng wild-type plasmid, and 62.5 ng each mutagenesis primer 

(primer sequences available upon request). The PCR program had an initial 

denaturation at 95°C for 2 min, followed by 18 cycles of denaturation at 95°C for 1 

min, annealing at 60°C for 50 s, and extension at 68°C for 1 min/kb, and a final 

extension at 68°C for 7 min. The PCR products were transformed into XL10-Gold 

Ultracompetent cells (Agilent Technologies) after treated with DpnI at 37°C for 1 h. 

Transformed cells were spread onto LB agar plates with 50 µg/mL ampicillin and 

incubated at 37°C overnight. Selected colonies were cultured overnight. Plasmids 

were isolated using the QIAprep Spin Miniprep Kit (Qiagen) and the successful 

introduction of the desired substitutions was validated by DNA sequencing with the 

BigDye Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems). 

2.2.4. Cell culture, transfection, RNA extraction, and reverse transcription 

Human embryonic kidney 293T (HEK293T) and HeLa cells were cultured in the 

Dulbecco’s modified Eagle’s medium (BioWhittaker) with 10% fetal calf serum 

(Eurobio). 3.5 × 105 cells were seeded per well in 6-well plates 24 h before 

transfection. For conventional RT-PCR analyses, 1 µg wild-type or variant plasmid, 

mixed with 2 µL jetPEI DNA transfection reagent (Polyplus-transfection), was used 

for transfection per well. For real-time quantitative RT-PCR analyses, 500 ng wild-
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type or variant plasmid was mixed with 500 ng pGL3-GP2 minigene for transfection 

(Boulling, Chen, Callebaut, & Férec, 2012; Zou, Boulling, Masamune, et al., 2016; 

Zou et al., 2017). Forty-eight hours after transfection, total RNA was extracted using 

the RNeasy Mini Kit (Qiagen). RT was performed with 200 U SuperScript III Reverse 

Transcriptase (Invitrogen), 500 µM dNTPs, 4 µL 5 × First-Strand Buffer, 5 mM 

dithiothreitol, 2.5 µM 20mer-oligo (dT), and 1 µg total RNA. The resulting 

complementary DNA (cDNA) were treated with 2U RNaseH (Invitrogen) to degrade 

the remaining RNA. 

2.2.5. Conventional RT-PCR analyses and sequencing of the resulting products 

Conventional RT-PCR was performed in a 25-μL reaction mixture containing 12.5 μL 

HotStarTaq Master Mix (Qiagen), 1 μL cDNA, and 0.4 μM each primer (5’-

GGAGACCCAAGCTGGCTAGT-3’ (forward) and 5’-

AGACCGAGGAGAGGGTTAGG-3’ (reverse) for TA cloning-obtained plasmids 

(both primers are located within the pcDNA3.1/V5-His-TOPO vector sequence); 5’-

TAATACGACTCACTATAGGG-3’ (forward) and 5’-

TAGAAGGCACAGTCGAGG-3’ (reverse) for in-fusion cloning-obtained plasmids 

(both primers are located within the pcDNA3.1(+) vector sequence)). The PCR 

program had an initial denaturation step at 95°C for 15 min, followed by 30 cycles of 

denaturation at 94°C for 45 s, annealing at 58°C for 45 s, and extension at 72°C for 1 

min/kb (in the step to screen wild-type genes for which RT-PCR analysis of 

transfected cells generated a single or quasi-single band of expected size) or for 2 min 

(in the step to analyze the splicing outcomes of 5'SS GT>GC substitutions), and a 

final extension step at 72°C for 10 min. RT-PCR products of a single band were 

cleaned by ExoSAP-IT (Affymetrix). In the case of multiple bands, the band 
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corresponding to the normal-sized product was excised from the agarose gel and then 

purified by QIAquick Gel Extraction Kit (Qiagen). Sequencing primers were those 

used for the RT-PCR analyses. Sequencing was performed by means of the BigDye 

Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems).  

2.2.6. Quantitation of the relative level of correctly spliced transcripts from 

constructs with artificially introduced GT>GC substitutions 

The relative level of correctly spliced transcripts in association with GT>GC 

substitutions that generated only wild-type transcripts (confirmed by Sanger 

sequencing) was determined by real-time quantitative RT-PCR analyses in accordance 

with Pfaffl’s mathematical model (Pfaffl, 2001), essentially as described elsewhere 

(Boulling et al., 2012; Zou, Boulling, Masamune, et al., 2016; Zou et al., 2017). In 

brief, the previously constructed GP2 minigene (Boulling et al., 2012) was employed 

as an internal control for this analysis. 500 ng wild-type or variant plasmid was mixed 

with an equal amount of minigene for co-transfection in HEK293T cells. Real-time 

RT-PCR analysis was performed 48 hours after transfection. After RNA extraction 

and reverse transcription, seven serial dilutions of the resulting cDNA (1:10, 1:20, 

1:40, 1:80, 1:160, 1:320 and 1:640) were used to determine the real-time RT-PCR 

efficiency for each primer set. Finally, a 1:80 dilution of cDNA was used to quantify 

the relative expression ratio of the variant construct versus the wild-type construct, 

which was normalized against the co-transfected GP2 minigene. Results were 

obtained from three independent transfection experiments, with each experiment 

being performed in three replicates.  



 

 

This article is protected by copyright. All rights reserved. 

A
cc

ep
te

d 
A

rt
ic

le
 

2.3. Pictogram analysis of the 9-bp 5'SS signal sequences associated with 5'SS 

GT>GC variants 

The 9-bp canonical 5'SS signal sequences of the currently studied disease-associated 

and artificially introduced GT>GC variants were extracted from the UCSC Genome 

Browser (https://genome.ucsc.edu/). The respective pictograms were constructed 

using WebLogo (http://weblogo.berkeley.edu/).  

2.4. In silico splicing prediction 

In silico splicing prediction was performed by means of Alamut® Visual v.2.11 rev. 0 

(https://www.interactive-biosoftware.com/; Interactive Biosoftware, Rouen, France) 

and a recently reported prediction protocol, Splicing Prediction in Consensus 

Elements (SPiCE; https://sourceforge.net/projects/spicev2-1/) (Leman et al., 2018), 

under default conditions. 

2.5. Relative mRNA expression levels of genes of interest in HEK293 and 

HeLa cells 

Relative mRNA expression levels of genes of interest, represented as transcripts per 

million (TPM), in HEK293 and HeLa cells were obtained from the Human Protein 

Atlas (https://www.proteinatlas.org/) (Uhlen et al., 2015).  

2.6. Variant nomenclature 

Nomenclature with respect to disease-causing variants followed Human Genome 

Variation Society (HGVS) recommendations (den Dunnen et al., 2016). For ease of 

description, artificially introduced 5'SS GT>GC substitutions were named in 
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accordance with the traditional IVS (InterVening Sequence; i.e., an intron) 

nomenclature. 

3. RESULTS AND DISCUSSION 

3.1. Estimation by meta-analysis of disease-causing 5'SS GT>GC variants 

First, we performed a meta-analysis of disease-causing 5'SS GT>GC variants logged 

in the Professional version of Human Gene Mutation Database (HGMD; as of June 

2017) (Stenson et al., 2017), with a view to generating an “in vivo” dataset to estimate 

the scale of those 5'SS GT>GC variants capable of generating wild-type transcripts. 

Employing a stringent approach (Figure 1C), we identified 45 disease-causing 5'SS 

GT>GC variants (from 42 genes) that were informative with respect to the presence or 

absence of wild-type transcripts derived from the variant allele (Table 1; see Supp. 

Table S1 for more information including affected intron number, reference mRNA 

accession number, chromosomal location, hg38 coordinates, and patient-derived tissue 

or cells used for RT-PCR analysis, etc.). It should be noted that the assignments of 

“presence” or “absence” of mutant allele-derived wild-type transcripts depended upon 

the agarose gel evaluation of RT-PCR products as described in the corresponding 

original publications. Thus, we conservatively annotated an isolated case (i.e., the 

PCCB c.183+2T>C variant) which was not found to generate wild-type transcripts 

upon agarose gel evaluation of RT-PCR products but which was nevertheless found to 

generate <0.1% normal wild-type transcripts by means of quantitative RT-PCR 

(Desviat et al., 2006), as generating no wild-type transcripts. 

The 45 informative 5'SS GT>GC variants comprised 30 homozygotes, 13 

hemizygotes and 2 compound heterozygotes (Table 1). Whilst the presence or absence 

of wild-type transcripts derived from the variant allele was straightforward for all 
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homozygous or hemizygous variants studied here, the two compound heterozygotes 

required special treatment. In the case of the CD3E c.520+2T>C variant, the 

pathogenic CD3E variant in trans was a nonsense variant in exon 6. Sequencing of the 

patient-derived, normal-sized RT-PCR products failed to demonstrate the presence of 

the exon 6 variant, suggesting that the wild-type transcripts were derived from the 

c.520+2T>C allele (Soudais, de Villartay, Le Deist, Fischer, & Lisowska-Grospierre, 

1993). In the case of the PNPLA2 c.757+2T>C variant, the second PNPLA2 variant in 

trans was a missense variant, c.749A>C (p.Gln250Pro). RT-PCR analysis detected 

only the c.749A>C variant mRNA in skeletal muscle from the patient, indicating the 

absence of detectable wild-type transcript emanating from the c.757+2T>C allele (Lin 

et al., 2012). 

15.6% (n=7) of the 45 informative variants were found to have been capable of 

generating some correctly spliced transcripts (Table 1). Information on the expression 

level of the variant allele-derived wild-type transcripts relative to that of the wild-type 

transcripts from a normal control (by definition, 100%) was directly available from 

four of the seven original publications (i.e., CD3E c.520+2T>C (Soudais et al., 1993), 

CD40LG c.346+2T>C (Seyama et al., 1998), DMD c.8027+2T>C (Bartolo et al., 

1996) and SLC26A2 c.-26+2T>C (Hastbacka et al., 1999)), and was reported to range 

from 1-15% of normal in individual cases (Table 1). All three of the remaining 

variants generated both wild-type and aberrant transcripts (i.e., CAV3 c.114+2T>C 

(Muller et al., 2006), PLP1 c.696+2T>C (Aoyagi et al., 1999) and SPINK1 

c.194+2T>C (Kume, Masamune, Kikuta, & Shimosegawa, 2006)); based upon visual 

inspection of the original gel photographs, we estimate that the relative expression 
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level of the mutant allele-derived wild-type transcripts in these three cases would fall 

within the 1-15% range. 

Taken together, the meta-analysis of disease-causing variants suggests that 15.6% 

of 5'SS GT>GC variants retained the ability to generate between 1 and 15% correctly 

spliced transcripts relative to their wild-type counterparts. 

3.2. Estimation from the cell culture-based full-length gene splicing assay of 

5'SS GT>GC substitutions 

To corroborate the findings derived from the above “in vivo” dataset, we sought to 

generate an “in vitro” dataset of 5'SS GT>GC substitutions. In this regard, we have 

previously used a cell culture-based full-length gene splicing assay to analyze a series 

of SPINK1 intronic variants; and this full-length gene expression system has proved 

itself in practice by accurately representing the in vivo situation in the context of the 

observed splicing pattern of a disease-causing 5'SS GT>GC variant, SPINK1 

c.194+2T>C (Zou, Boulling, Masson, et al., 2016; Zou, Masson, et al., 2016). 

Specifically, the full-length 7-kb SPINK1 genomic sequence (including all four exons 

plus all three introns of the gene) was cloned into the pcDNA3.1/V5-His-TOPO 

vector (Boulling et al., 2012). The full-length gene splicing assay preserves better the 

natural genomic context of the studied variants as compared to the commonly used 

minigene splicing assay, a point of importance given the highly context-dependent 

and combinatorial nature of alternative splicing regulation (Fu & Ares, 2014). 

Moreover, the full-length gene splicing assay can be readily used to evaluate all 

intronic variants including those located near the first or last exons of the gene (Tang 

et al., 2019). Despite these advantages, the full-length gene assay cannot easily be 
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applied to large-sized genes owing to the technical difficulties inherent in amplifying 

and cloning long DNA fragments into the expression vector. Finally, it is pertinent to 

point out that, to functionally evaluate the impact on splicing of any given gene 

variant in a transient expression system, it is highly desirable to use of cell types of 

pathophysiological relevance owing to the tissue specificity of the splicing process in 

some instances (Boehm et al., 2018; De Conti et al., 2013; Wong et al., 2018; Zhang 

et al., 2009). However, this may not always be possible in practice, particularly if 

variants in multiple genes are to be analyzed in large-scale studies. For example, one 

recent study that measured 5'SS activity in the context of three minigenes was 

performed in transfected HeLa cells (Wong et al., 2018) whereas another study, that 

analyzed the splicing of thousands of minigene molecules, was performed in 

transfected HEK293 cells (Ke et al., 2018). In the present study, we used HEK293T 

cells for transfection as previously described (Wu, Boulling, Cooper, Li, Liao, Férec, 

et al., 2017; Zou, Boulling, Masamune, et al., 2016; Zou, Boulling, Masson, et al., 

2016).  

Bearing in mind the aforementioned advantages and disadvantages, we co-opted a 

cell culture-based full-length gene splicing assay (Figure 1C; Figure 2A). In brief, for 

various technical reasons/practical considerations, we firstly selected genes whose 

genomic sizes did not exceed 8 kb (from the translation initiation codon to the 

translation termination codon) and whose exons numbered ≥3, in order to construct 

full-length gene expression vectors; we then screened those genes, which had yielded 

a single or quasi-single band of the expected size by means of the RT-PCR analysis of 

transfected cells, for subsequent mutagenesis of all available 5'SS GT dinucleotides in 

the construct (for details of the genes selected and screened, see Supp. Table S2). In 
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the end, we succeeded in functionally analyzing 103 GT>GC substitutions from 30 

different genes (Supp. Table S3). 18.4% (n=19) of these artificially introduced 5'SS 

GT>GC substitutions generated wild-type transcripts (all confirmed by Sanger 

sequencing; Figure 2B and Supp. Figure S1), a finding that concurs with the 15.6% 

value obtained from the meta-analysis of disease-causing 5'SS GT>GC variants.  

Only wild-type transcripts were observed for 10 of the aforementioned 19 5'SS 

GT>GC substitutions (e.g., FATE1 IVS1+2T>C in Figure 2B). In other words, no 

aberrantly spliced transcripts were observed in these 10 cases. It is possible that 

aberrantly spliced transcripts may be rendered invisible by RNA degradation 

mechanisms such as nonsense-mediated mRNA decay (NMD) (Lykke-Andersen & 

Jensen, 2015; Popp & Maquat, 2016). One way to test such a possibility is to add an 

NMD inhibitor such as cycloheximide (Pereverzev et al., 2015) to the cell culture 

medium, but this was considered to be beyond the scope of the present study. We 

quantified the relative level of correctly spliced transcripts for these 10 5'SS GT>GC 

substitutions using our previously described quantitative RT-PCR method (Boulling et 

al., 2012; Wu, Boulling, Cooper, Li, Liao, Chen, et al., 2017; Zou, Boulling, 

Masamune, et al., 2016). Here we would like to reiterate that a co-transfected 

minigene construct was used as an internal control in this analysis (Figure 3A), a 

prerequisite for obtaining accurate results. As shown in Figure 3B, the relative level of 

correctly spliced transcripts emanating from these 10 substitutions is remarkably 

similar to that observed for the disease-causing 5'SS GT>GC variants in terms of the 

lower bound (2-5% vs. 1-5%); however, the upper bound for the level of correctly 

spliced transcripts (84%) is much higher than the corresponding 15% value observed 

for the disease-causing 5'SS GT>GC variants (Table 1). We were initially puzzled by 
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this disparity, but it could be accounted for in two different ways. On the one hand, 

the currently analyzed disease-causing variants were likely to be biased toward those 

that generated either no wild-type transcripts or only a low level. On the other hand, 

given (i) that 5'SS GC may occur as wild-type in the human genome, (ii) the highly 

degenerate nature of the 5'SS splice signal sequences and (iii) the complex regulation 

of the splicing process in vivo, it is entirely possible that a 5'SS GT>GC variant may 

behave similarly to its original wild-type counterpart. It should however be noted that 

no single GC variant was found to have an identical or higher than normal splicing 

activity than its 5'SS GT counterpart (Figure 3B), an observation consistent with the 

inherently weaker binding of any 5'SS GC sites, as compared to their corresponding 

wild-type GT sites, to U1 snRNA. 

Additionally, the single RT-PCR band of wild-type transcript size from either the 

wild-type CCDC103 gene or the CCDC103 IVS1+2T>C variant (refer to Supp. Figure 

S1) was revealed by Sanger sequencing to comprise the correctly spliced transcript 

and an alternatively spliced transcript; the level of the correctly spliced transcripts 

generated from the variant allele was estimated to be ~18% of that generated from the 

wild-type allele based upon evaluation of the corresponding sequence peak heights 

(Supp. Figure S2). By contrast, we did not attempt to quantify the relative expression 

level of correctly spliced transcripts for the remaining 8 GT>GC substitutions due to 

the co-presence of aberrantly spliced transcripts (e.g., DBI IVS2+2T>C in Figure 2B). 

Nonetheless, based upon the relative intensities of the wild-type and aberrant 

transcript bands (Figure 2B; Supp. Figure S1), we consider it unlikely that the relative 

expression level of correctly spliced transcripts in these cases will have fallen outside 

of the abovementioned, experimentally obtained, 2-84% range. 
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Finally, we sequenced some aberrantly spliced transcripts (n=12), which resulted 

from exon skipping, retention of intronic sequence or deletion of partial exonic 

sequences (Table 2). Most notably, the PRSS2 IVS4+2T>C substitution activated a 

cryptic 5'SS GC that is located 15 bp upstream of the normal one, resulting in the 

deletion of the last 17 bp of exon 4 (i.e., the most abundant band generated by PRSS2 

IVS4+2T>C; Figure 2B). 

3.3. Synthesis of estimates from two distinct but complementary datasets 

We obtained remarkably similar findings in terms of both the frequency of 5'SS 

GT>GC substitutions generating wild-type transcripts (15.6% vs. 18.4%) and the 

relative level of mutant allele-derived wild-type transcripts at the lower bound (2-5% 

vs. 1-5%) from two quite distinct yet complementary datasets (i.e., the 45 human 

disease-causing variants vs. the 103 artificially introduced substitutions). The 

consistent relative level of mutant allele-derived wild-type transcripts at the lower 

bound across the two datasets suggested that the gel-based analytical method is 

sensitive enough to detect as little as ~1% of normally spliced transcripts. The 

apparent disparity in terms of the relative level of mutant-derived wild-type transcripts 

at the upper bound between the two datasets (15% vs. 84%) can however be 

accounted for largely by the selection bias inherent to disease-causing variants. 

Therefore, we estimate that some 15-18% of 5'SS GT>GC substitutions generate 

between 1 and 84% of wild-type transcripts. 
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3.4. Exploration of the mechanisms underlying the generation (or not) of wild-

type transcripts by 5'SS GT>GC variants 

As mentioned above, canonical GT and non-canonical GC 5'SSs in the human genome 

exhibit different patterns of sequence conservation, the latter showing stronger 

complementarity to the 3'-GUCCAUUCA-5' sequence at the 5' end of U1 snRNA 

(Figure 1A). We postulated that the canonical 5'SSs whose substitutions of GT by GC 

generated normal transcripts (termed group 1) might also exhibit stronger 

complementarity to the aforementioned 9-bp sequence than those sites whose 

substitutions of GT by GC did not lead to the generation of normal transcripts (termed 

group 2). We therefore extracted the 9-bp sequence tracts surrounding the 

corresponding groups of the 45 disease-causing 5'SS GT>GC variants (Supp. Tables 

S1) and those of the 103 functionally analyzed 5'SS GT>GC substitutions (Supp. 

Table S3). Comparison of the resulting pictograms confirmed our postulate in both 

contexts, the respective pictograms for the combined group 1 variants (n=26) and 

combined group 2 variants (n=122) being provided in Figure 4. It should be 

emphasized that the surrounding 9-bp sequence tract is an important (but certainly not 

the only) factor in determining whether or not a given 5'SS GT>GC variant will 

generate some wild-type transcripts. A simple example may be used to illustrate this 

point: the DMD c.8027+2T>C variant (which generates 10% of wild-type transcripts) 

contrasts with the NCAPD2 c.4120+2T>C variant (which generates no wild-type 

transcripts) despite occurring in an identical 9-bp sequence tract, AAGGTATGA (see 

Supp. Table S1). 

We also explored whether the creation or disruption of splice enhancer/silencer 

motifs by the 5'SS GT>GC variants could be associated with the generation or not of 
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some wild-type transcripts. To this end, we employed ESEfinder and RESUE-ESE 

provided by the Alamut software suite under default conditions. We were unable to 

draw any meaningful conclusions, primarily due to the short and degenerate nature of 

the splicing enhancer/silencer binding motifs. 

3.5. Correlation between the retention of wild-type transcripts and a milder 

than expected clinical phenotype 

Given that even the retention of a small fraction of normal gene function may 

significantly impact the clinical phenotype (Den Uijl et al., 2011; Ramalho et al., 

2002; Raraigh et al., 2018; Scalet et al., 2019), we reviewed the original publications 

describing the seven disease-causing 5'SS GT>GC variants that generated at least 

some wild-type transcript (Table 1) with respect to the accompanying genotypic and 

phenotypic descriptions. In six cases, the variants were specifically described as being 

associated with mild clinical phenotypes as compared to their classical disease 

counterparts (see Supp. Table S1). In the remaining case (SPINK1 c.194+2T>C), the 

original publication (Kume et al., 2006) was not informative in this regard; however, 

it is known that homozygosity for this variant causes chronic pancreatitis with 

variable expressivity (Ota et al., 2010) whereas null SPINK1 genotypes cause severe 

infantile isolated exocrine pancreatic insufficiency (Venet et al., 2017).  

The above noted apparent correlation between the retention of some wild-type 

transcripts and a milder than expected phenotype prompted us to postulate that 5'SS 

GT>GC variants previously reported to confer a milder than expected phenotype but 

having no supportive patient-derived transcript expression data, may have a tendency 

to be associated with a non-canonical 5'SS GC signal. We therefore collated a total of 
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six such variants (i.e., CYB5R3 c.463+2T>C (Yilmaz, Cogulu, Ozkinay, Kavakli, & 

Roos, 2005), HBB c.315+2T>C (Frischknecht et al., 2009), HPRT c.485+2T>C 

(Hladnik, Nyhan, & Bertelli, 2008), LAMB2 c.3327+2T>C (Wuhl et al., 2007), LMNA 

c.1968+2T>C (Bar et al., 2017) and MTTP c.61+2T>C (Al-Mahdili, Hooper, Sullivan, 

Stewart, & Burnett, 2006); Supp. Table S4). In this regard, two points require 

clarification. First, in two cases, patient-derived transcript expression data were 

available (Hladnik et al., 2008; Wuhl et al., 2007); these cases were however further 

explored here because the corresponding expression data were insufficiently 

informative for them to be listed in Supp. Table S1 (for explanations, see Sup. Table 

S4). Second, five of these six variants (all germline) were derived from the HGMD 

dataset whereas the remaining one (LMNA c.1968+2T>C) (Bar et al., 2017), a somatic 

variant, was obtained from a literature search; this somatic variant was included owing 

to its clear phenotypic impact. Pictogram analysis of the six corresponding 9-bp 

canonical 5'SSs revealed a non-canonical 5'SS GC signal (Supp. Figure S3). Notably, 

one of the variants affected the splice donor splice site of HBB intron 2 (i.e., HBB 

c.315+2T>C) (Frischknecht et al., 2009), site of the previously analyzed orthologous 

variant in the rabbit Hbb gene (Aebi et al., 1986; Aebi et al., 1987). We were able to 

study the effect of the HBB intron 2 GT>GC variant on splicing by means of the full-

length gene assay and found that it had indeed retained the ability to generate normal 

HBB transcripts (Figure 5).  

3.6. Prediction of the functional effect of 5'SS GT>GC variants 

In a previous study, we observed that the functional effect of the SPINK1 c.194+2T>C 

variant could not be accurately predicted by the widely used Alamut® software suite 

under default conditions (Zou et al., 2017). Herein, we extended this analysis to the 45 
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disease-causing 5'SS GT>GC variants as well as the 19 functionally analyzed 5'SS 

GT>GC substitutions that generated some wild-type transcripts. Whereas 

SpliceSiteFinder-like tended to predict a slightly reduced score, MaxEntScan, 

NNSPLICE and GeneSplicer invariably yielded no scores, for all variants tested 

(Table 1; Supp. Table S3). We also analyzed these variants by means of the recently 

developed SPiCE tool (Leman et al., 2018); all variants were invariably predicted to 

alter splicing.  

Taken together, we conclude that none of the available splicing prediction tools 

were able to distinguish 5'SS GT>GC variants generating wild-type transcripts from 

those that did not generate wild-type transcripts, a reflection perhaps of our rather 

poor understanding of the rules governing the use of GC as a viable 5'SS site. This 

highlights the importance of functional analysis for accurate interpretation of this 

particular type of variation, although caution should always be exercised when 

extrapolating from functional analytical data to prediction of clinical phenotype. 

3.7. Further experiments using the cell culture-based full-length gene splicing 

assay 

The above notwithstanding, it is nevertheless appropriate to have reservations 

regarding the accuracy and reliability of data obtained from the experimental model 

system we adopted. To validate these data, we therefore performed additional 

experiments using expression plasmids available in the Brest laboratory. First, we 

sought to test whether 5'SS GT>GA or 5'SS GT>GG substitutions may also generate 

wild-type transcripts. To this end, we firstly mutated a set of 5'SS GT sites to GA and 

GG; and then analyzed the resulting substitutions under same experimental conditions 
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as per the analysis of 5'SS GT>GC substitutions. None of the 15 5'SS GT>GA 

substitutions or 18 5'SS GT>GG substitutions analyzed were found to generate wild-

type transcripts (Table 3; Supp. Figure S4). This served to exclude the (albeit rather 

remote) possibility that the generation of wild-type transcripts from 5'SS GT>GC 

substitutions was simply spurious. 

As mentioned earlier, the impact of genetic variants on splicing may be tissue- or 

cell-specific in some instances. To test this possibility, we analyzed 10 5'SS GT>GC 

substitutions that generated wild-type transcripts (Left panel, Figure 6A) and 10 5'SS 

GT>GC substitutions that did not generate wild-type transcripts (Right panel, Figure 

6A) in HEK293T cells for full-length splicing assay in HeLa cells. We observed 

entirely consistent findings in the two cell lines in terms of the generation of wild-type 

transcripts or not (Figure 6A; see also Supp. Figures S5 and S6).  

Finally, we evaluated whether the generation of wild-type transcripts by 5'SS 

GT>GC substitutions could be in some way related to the natural expression status of 

their corresponding genes in HEK293T or HeLa cells. We thus obtained the relative 

expression levels of the 10 genes shown in Figure 6A in the two cell lines via the 

Human Protein Atlas website (https://www.proteinatlas.org/). It should be noted that 

no data were available for HEK293T cells; we therefore used data for HEK293 cells 

instead (Figure 6B). The relative mRNA expression levels (represented as transcripts 

per million (TPM)) of the genes harboring wild-type transcript-generating 5'SS 

GT>GC substitutions in the two cells ranged from none to high (defined as >1000 

TPM by Human Protein Atlas). This suggests that the generation of wild-type 

transcripts by 5'SS GT>GC substitutions is not related to the natural expression status 

of their corresponding genes in either HEK293T or HeLa cells. 
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Taken together, these three lines of evidence supported the reliability and accuracy 

of the data obtained from our experimental model system. It may therefore be 

concluded that whether a given 5'SS GT>GC variant will generate some wild-type 

transcripts or not is primarily dependent on the corresponding gene’s sequence 

context, although tissue- or cell-specific splicing effects may exist in some instances. 

4. CONCLUSIONS 

Based upon complementary data from the meta-analysis of 45 disease-causing 5'SS 

GT>GC variants and the cell culture-based full-length gene splicing analysis of 103 

5'SS GT>GC substitutions, we have provided a first estimate of ~15-18% for the 

proportion of canonical GT 5'SSs that are capable of generating between 1 and 84% 

normal transcripts in case of the substitution of GT by GC. Extrapolation of the 15-

18% value to the entire human genome implies that in at least 30,000 U2-type introns, 

the substitution of 5'SS GT by GC would result in the retention of partial ability to 

generate wild-type transcripts. Given that even the retention of 5% normal transcripts 

can significantly ameliorate a patient’s clinical phenotype, our findings imply the 

potential existence of hundreds or even thousands of disease-causing 5'SS GT>GC 

variants that may underlie relatively mild clinical phenotypes. Because 5'SS GT>GC 

variants can also give rise to relatively high levels of wild-type transcripts, our 

findings imply that 5’SS GT>GC variants may not invariably be pathogenic in 

disease-causative or disease-associated genes. We believe that our study will not only 

raise fresh awareness of the 5'SS GT versus 5'SS GC issue in health and disease but 

also stimulate new studies that aim to better predict the functional effects of 5'SS 

GT>GC variants detected in a clinical context.  
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FIGURES 

FIGURE 1. Background information, aims and analytical strategy of the study. (a) 

Current knowledge of the canonical 5' splice sites (5'SS) GT and non-canonical 5'SS GC in 

the human genome in terms of their relative abundance of U2-type introns, their 

corresponding 9-bp 5'SS signal sequence position weight matrices (PWM) and their 

associated splicing outcomes. The two PWM illustrative figures were taken from (Leman et 

al., 2018); an Open Access article distributed under the terms of the Creative Commons 

Attribution Non-Commercial License. (b) Illustration of the first experimental evidence 

showing that a 5'SS GT>GC substitution may retain the ability to generate wild-type 

transcripts, albeit at a much reduced level (~10% of normal in (Aebi et al., 1986; Aebi et al., 

1987)). (c) Aim and analytical strategy of the study.  
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FIGURE 2. Qualitative analysis of 5'SS GT>GC substitutions. (a) Illustration of the 

cell culture-based full-length gene splicing assay in the context of a 5'SS GT>GC 

substitution generating some wild-type transcripts. The two horizontal arrows indicate the 

primers (both located within the vector sequence) used to amplify normally spliced 

transcripts (and also aberrantly spliced transcripts). F.L., full-length. (b) RT-PCR analyses 

of HEK293T cells transfected with full-length DBI, FATE1 and PRSS2 gene expression 

constructs carrying respectively the wild-type and 5'SS GT>GC substitutions as examples. 

Normal transcripts (confirmed by sequencing) resulting from two of the substitutions are 

indicated by arrows. IVS, InterVening Sequence (i.e., an intron). See Supp. Figure S1 for all 

103 functionally analyzed 5'SS GT>GC substitutions. 
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FIGURE 3. Quantitative analysis pertaining to the relative level of 5'SS GT>GC 

substitution-derived wild-type transcripts. (a) Illustration of one key feature of the 

quantitative RT-PCR analysis: co-transfection of a minigene expression vector with 

respectively the full-length wild-type target gene expression vector and the full-length 

variant target gene expression vector. The minigene was constructed in pGL3 (Boulling et 

al., 2012) whereas the target gene was constructed in either pcDNA3.1/V5-His-TOPO 

vector or pcDNA3.1(+). The minigene was used as an internal control for quantifying the 

expression level of wild-type transcripts generated from either the wild-type or variant target 

full-length gene. The horizontal arrows indicate the relative positions of the primers used for 

this purpose. Note that for amplifying the target gene sequence, either a primer pair 

comprising a forward vector-specific primer and a reverse gene-specific primer (as 

illustrated) or alternatively a primer pair comprising a forward gene-specific primer and a 

reverse vector-specific primer was used. This assay was performed exclusively for the 10 

5'SS GT>GC substitutions that generated only wild-type transcripts. F.L., full-length. (b) 

Quantitative RT-PCR-determined expression level of the mutant allele-derived correctly 

spliced transcripts relative to that derived from the corresponding wild-type allele (defined 

as 100%) in the 10 5'SS GT>GC substitutions that generated only wild-type transcripts. 

Results were expressed as means ± SD from three independent transfection experiments. 
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FIGURE 4. Pictogram analysis of the 5'SSs under study. Comparison of the pictogram 

of the 122 5'SSs whose substitutions of GT by GC did not lead to the generation of normal 

transcripts (upper panel) and that of the 26 5'SSs whose substitutions of GT by GC 

generated normal transcripts (lower panel). Middle panel shows the 5' end sequence of U1 

snRNA that is complementary to the 9-bp U2-type 5'SS signal sequence. 5'SS signal 

sequences are shown as RNA sequence. 

 

FIGURE 5. Functional characterization of the HBB c.315+2T>C variant. RT-PCR 

analyses of HEK293T cells transfected with full-length HBB gene expression constructs 

carrying respectively the wild-type and two 5'SS GT>GC substitutions. Wild-type 

transcripts (confirmed by sequencing) resulting from the wild-type and the IVS2+2T>C (i.e., 

c.315+2T>C) variant are indicated by arrows. The HBB c.315+2T>C variant was previously 

reported to be associated with a mild phenotype (Frischknecht et al., 2009). IVS, 

InterVening Sequence (i.e., an intron).  
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FIGURE 6. Further experiments and analysis validating the experimental model system 

used in the study. (a) Comparison of the splicing outcomes of 20 5'SS GT>GC substitutions 

in HEK293T and HeLa cells. For each variant, only the informative part of the gel is shown 

(all data in HEK293T cells were taken from Supp. Figure S1; refer to Supp. Figures S5 and 

S6 for data in HeLa cells). Normal transcripts (all confirmed by Sanger sequencing) are 

indicated by arrows. IVS, InterVening Sequence (i.e., an intron). (b) Relative mRNA 

expression levels of the 10 genes in HEK293 and HeLa cells. Data were taken from 

https://www.proteinatlas.org/. TPM, transcripts per million.  
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TABLE 1. The 45 informative disease-causing 5'SS GT>GC variants and their predicted splicing 
effects* 

Disease Gene Variant Reference Zygosit
y 

Genera
tion of 
Wild-
Type 
Transcr
iptsa 

SpliceSit
eFinder-
like  

(0-100)b 

MaxEn
tScan 

(0-12)b 

NNSP
LICE 

(0-1)b 

GeneS
plicer 

(0-
15)b 

Dubin-
Johnson 
syndrome 

ABC
C2 

c.1967
+2T>C 

(Kajihara et 
al., 1998) 

Homoz
ygote 

No 74.2→N
S 

7.4→N
S 

0.6→
NS 

1.8→
NS 

Acetoacetyl-
CoA-thiolase 
deficiency 

ACA
T1 

c.1163
+2T>C 

(Fukao et al., 
1993) 

Homoz
ygote 

No 76.8→7
4.1 

6.9→N
S 

1.0→
NS 

NS 

Ubiquinone 
deficiency 
with 
cerebellar 
ataxia 

COQ
8A 

c.1398
+2T>C 

(Lagier-
Tourenne et 
al., 2008) 

Homoz
ygote 

No 76.9→7
5.2 

6.4→N
S 

0.8→
NS 

4.6→
NS 

Analbuminae
mia 

ALB c.1428
+2T>C 

(Dolcini et al., 
2007) 

Homoz
ygote 

No 78.9→7
0.8 

5.6→N
S 

1.0→
NS 

NS 

Androgen 
insensitivity 
syndrome 

AR c.2173
+2T>C 

(Infante, 
Alvelos, 
Bastos, 
Carrilho, & 
Lemos, 2016) 

Hemiz
ygote 

No 86.5→8
1.1 

9.7→N
S 

1.0→
NS 

4.4→
NS 

Dombrock 
null allele 

ART
4 

c.144+
2T>C 

(Rios, Storry, 
Hue-Roye, 
Chung, & 
Reid, 2002) 

Homoz
ygote 

No 81.8→7
9.9 

7.8→N
S 

0.9→
NS 

4.1→
NS 

Menkes 
syndrome 

ATP
7A 

c.1946
+2T>C 

(Das et al., 
1994) 

Hemiz
ygote 

No 78.6→7
5.5 

9.5→N
S 

1.0→
NS 

3.8→
NS 

Meckel 
syndrome 

B9D
1 

c.341+
2T>C 

(Hopp et al., 
2011) 

Hemiz
ygote 

No 81.0→7
8.7 

9.4→N
S 

1.0→
NS 

8.2→
NS 

Agammaglob
ulinaemia 

BTK c.588+
2T>C 

(Haire et al., 
1997) 

Hemiz
ygote 

No 71.9→N
S 

7.5→N
S 

0.8→
NS 

4.0→
NS 

Cone-rod 
dystrophy 

C8or
f37 

c.155+
2T>C 

(Rahner, 
Nuernberg, 
Finis, 
Nuernberg, & 

Homoz
ygote 

No 72.2→N
S 

1.6→N
S 

0.6→
NS 

2.1→
NS 
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Royer-Pokora, 
2016) 

Autosomal 
recessive 
limb girdle 
muscular 
dystrophy 

CAV
3 

c.114+
2T>C 

(Muller et al., 
2006) 

Homoz
ygote 

Yes 83.8→8
1.8 

10.1→
NS 

1.0→
NS 

10.1
→NS 

Immunodefic
iency 

CD3
E 

c.520+
2T>C 

(Soudais et al., 
1993) 

Compo
und 
heteroz
ygote 

Yes (1-
5%) 

83.0→7
8.1 

8.1→N
S 

1.0→
NS 

2.9→
NS 

Hyper-IgM 
syndrome 

CD4
0LG 

c.346+
2T>C 

(Seyama et al., 
1998) 

Hemiz
ygote 

Yes 
(15%) 

89.6→9
0.0 

10.3→
NS 

1.0→
NS 

1.6→
NS 

Dent disease CLC
N5 

c.205+
2T>C 

(Tosetto et al., 
2006) 

Hemiz
ygote 

No 84.8→8
2.1 

10.0→
NS 

1.0→
NS 

NS 

Ehlers-
Danlos 
syndrome/Os
teogenesis 
imperfecta 

COL
1A2 

c.3105
+2T>C 

(Nicholls, 
Valler, Wallis, 
& Pope, 2001) 

Homoz
ygote 

No 75.4→7
2.8 

8.6→N
S 

0.9→
NS 

1.1→
NS 

Congenital 
diarrhoeal 
disorder 

DGA
T1 

c.751+
2T>C 

(Haas et al., 
2012) 

Homoz
ygote 

No 78.6→N
S 

7.9→N
S 

1.0→
NS 

11.9
→NS 

Becker 
muscular 
dystrophy 

DM
D 

c.8027
+2T>C 

(Bartolo et al., 
1996) 

Hemiz
ygote 

Yes 
(10%) 

84.2→8
1.5 

9.1→N
S 

1.0→
NS 

1.7→
NS 

Duchenne 
muscular 
dystrophy 

DM
D 

c.9649
+2T>C 

(Wibawa et 
al., 2000) 

Hemiz
ygote 

No 84.3→8
4.4 

9.1→N
S 

1.0→
NS 

NS 

Mirror 
movements 
(congenital) 

DNA
L4 

c.153+
2T>C 

(Ahmed et al., 
2014) 

Homoz
ygote 

No NS 7.4→N
S 

0.8→
NS 

9.7→
NS 

Glycogen 
storage 
disease 2 

GAA c.2331
+2T>C 

(Hermans, van 
Leenen, 
Kroos, & 
Reuser, 1997) 

Homoz
ygote 

No 86.4→7
6.7 

11.5→
NS 

1.0→
NS 

13.6
→NS 

Pituitary 
aplasia 

HES
X1 

c.357+
2T>C 

(Sobrier et al., 
2006) 

Homoz
ygote 

No 80.2→7
0.6 

6.7→N
S 

0.8→
NS 

NS 
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Ulcerative 
colitis 

IL10
RA 

c.688+
2T>C 

(Moran et al., 
2013) 

Homoz
ygote 

No 73.8→N
S 

7.0→N
S 

0.8→
NS 

2.7→
NS 

Renal 
hypodysplasi
a 

ITG
A8 

c.2982
+2T>C 

(Humbert et 
al., 2014) 

Homoz
ygote 

No 71.9→N
S 

5.8→N
S 

0.9→
NS 

NS 

Isovaleric 
acidaemia 

IVD c.465+
2T>C 

(Vockley et 
al., 2000) 

Homoz
ygote 

No 90.3→8
0.5 

9.2→N
S 

1.0→
NS 

4.5→
NS 

Immunodefic
iency (severe 
combined) 

JAK
3 

c.2350
+2T>C 

(Villa et al., 
1996)  

Homoz
ygote 

No NS 5.8→N
S 

NS 6.8→
NS 

Muscular 
dystrophy 
(merosin 
deficient) 

LAM
A2 

c.3924
+2T>C 

(Allamand et 
al., 1997) 

Homoz
ygote 

No 79.8→7
7.0 

8.3→N
S 

0.8→
NS 

3.4→
NS 

Factor V and 
factor VIII 
deficiency 
(combined) 

LMA
N1 

c.1149
+2T>C 

(Nichols et al., 
1998) 

Homoz
ygote 

No 79.8→7
0.6 

8.1→N
S 

NS NS 

Primary 
amenorrhea 
& short 
stature 

MC
M9 

c.1732
+2T>C 

(Wood-
Trageser et al., 
2014) 

Homoz
ygote 

No NS 1.7→N
S 

NS NS 

Torg-
Winchester 
syndrome 

MM
P2 

c.658+
2T>C 

(Gok et al., 
2010) 

Homoz
ygote 

No 90.0→8
0.1 

8.7→N
S 

1.0→
NS 

10.9
→NS 

Microcephaly NCA
PD2 

c.4120
+2T>C 

(Martin et al., 
2016) 

Homoz
ygote 

No 84.2→8
1.5 

9.1→N
S 

0.9→
NS 

7.1→
NS 

Chronic 
granulomatou
s disease 

NCF
2 

c.257+
2T>C 

(Tanugi-
Cholley et al., 
1995) 

Homoz
ygote 

No 84.8→8
4.7 

9.8→N
S 

1.0→
NS 

5.3→
NS 

Mental 
retardation 
syndrome 
(X-linked) 

OPH
N1 

c.154+
2T>C 

(Zanni et al., 
2005) 

Hemiz
ygote 

No 84.8→8
4.7 

9.8→N
S 

1.0→
NS 

7.9→
NS 

Ornithine 
carbamoyltra
nsferase 

OTC c.540+
2T>C 

(Matsuura et 
al., 1995)  

Hemiz
ygote  

No 80.0→7
8.2 

8.1→N
S 

0.6→
NS 

NS 
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deficiency 

Propionic 
acidaemia 

PCC
B 

c.183+
2T>C 

(Desviat et al., 
2006) 

Homoz
ygote 

No 74.5→N
S 

8.5→N
S 

0.9→
NS 

9.7→
NS 

Propionic 
acidaemia 

PCC
B 

c.1498
+2T>C 

(Desviat et al., 
2006) 

Homoz
ygote 

No 81.8→7
9.9 

7.8→N
S 

0.7→
NS 

5.0→
NS 

Zellweger 
syndrome 

PEX
16 

c.952+
2T>C 

(Shimozawa et 
al., 2002) 

Homoz
ygote 

No 82.1→7
9.0 

7.5→N
S 

1.0→
NS 

5.2→
NS 

Spastic 
tetraparesis/p
araparesis 

PLP
1 

c.622+
2T>C 

(Biancheri et 
al., 2014) 

Hemiz
ygote 

No 86.8→7
7.2 

10.1→
NS 

1.0→
NS 

6.2→
NS 

Pelizaeus-
Merzbacher 
disease 

PLP
1 

c.696+
2T>C 

(Aoyagi et al., 
1999) 

Hemiz
ygote 

Yes 92.6→8
5.9 

10.0→
NS 

1.0→
NS 

6.5→
NS 

Neutral lipid 
storage 
disease with 
myopathy 

PNP
LA2 

c.757+
2T>C 

(Lin et al., 
2012) 

Compo
und 
heteroz
ygote 

No NS 8.7→N
S 

NS 8.3→
NS 

Brittle cornea 
syndrome 

PRD
M5 

c.93+2
T>C 

(Aldahmesh, 
Mohamed, & 
Alkuraya, 
2012) 

Homoz
ygote 

No 85.3→7
8.5 

8.2→N
S 

0.9→
NS 

10.6
→NS 

Diabetes 
(neonatal, 
with 
intestinal 
atresia) 

RFX
6 

c.380+
2T>C 

(Smith et al., 
2010) 

Homoz
ygote 

No 78.7→N
S 

5.5→N
S 

0.6→
NS 

2.9→
NS 

Oro-facio-
digital 
syndrome 
type IX 

SCL
T1 

c.290+
2T>C 

(Adly, 
Alhashem, 
Ammari, & 
Alkuraya, 
2014) 

Homoz
ygote 

No 87.5→8
7.1 

8.9→N
S 

1.0→
NS 

NS 

Lymphoproli
ferative 
syndrome 
(X-linked) 

SH2
D1A 

c.137+
2T>C 

(Sumegi et al., 
2000) 

Hemiz
ygote 

No 71.1→N
S 

7.4→N
S 

0.4→
NS 

5.9→
NS 

Diastrophic 
dysplasia 

SLC
26A2 

c.-
26+2T
>C 

(Hastbacka et 
al., 1999) 

Homoz
ygote 

Yes 
(5%) 

87.3→7
7.7 

7.7→N
S 

1.0→
NS 

11.5
→NS 
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Chronic 
pancreatitis 

SPIN
K1 

c.194+
2T>C 

(Kume et al., 
2006) 

Homoz
ygote 

Yes  82.6→7
2.3 

11.1→
NS 

1.0→
NS 

4.0→
NS 

*See Supp. Table S1 for more information. 

aRelative expression level is indicated in parentheses wherever applicable. 

bPrediction was performed under default conditions. NS, no score.  

 

TABLE 2. Nature of the sequenced 12 aberrantly spliced transcripts* 

Gene Reference 
mRNA 
accession 
number 

Varianta Aberrant Transcripts 

DBI NM_00107986
2.2 

IVS1+2T>
C 

1. Activation of a cryptic 5'SS GT located 
152 bp downstream of the normal one, 
resulting in the retention of the first 154 bp 
of the intron 1 sequence. 

2. Activation of a cryptic 5'SS GT located 
28 bp downstream of the normal one, 
resulting in the retention of the first 30 bp 
of the intron 1 sequence. 

  IVS3+2T>
C 

Exon 3 skipping 

FABP7 NM_001446.4 IVS1+2T>
C 

Activation of a cryptic 5'SS GT located 2 
bp downstream of the normal one, resulting 
in the retention of the first 4 bp of the intron 
1 sequence. 

  IVS2+2T>
C 

Activation of a cryptic 5'SS GT located 3 
bp upstream of the normal one, resulting in 
the deletion of the last 5 bp of exon 2. 

HESX1 NM_003865.2 IVS2+2T>
C 

Exon 2 skipping 

  IVS3+2T> Exon 3 skipping 
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C 

IL10 NM_000572.3 IVS1+2T>
C 

Activation of a cryptic 5'SS GT located 2 
bp downstream of the normal one, resulting 
in the retention of the first 4 bp of the intron 
1 sequence. 

  IVS4+2T>
C 

Activation of a cryptic 5'SS GT located 19 
bp upstream of the normal one, resulting in 
the deletion of the last 21 bp of exon 4. 

PRSS2 NM_002770.3 IVS4+2T>
C 

Activation of a cryptic 5'SS GC located 15 
bp upstream of the normal one, resulting in 
the deletion of the last 17 bp of exon 4. 

SPINK
1 

NM_003122.3 IVS1+2T>
C 

Activation of a cryptic 5'SS GT located 138 
bp downstream of the normal one, resulting 
in the retention of the first 140 bp of the 
intron 1 sequence. 

UQCR
B 

NM_006294.4 IVS1+2T>
C 

Activation of a cryptic 5'SS GT located 10 
bp upstream of the normal one, resulting in 
the deletion of the last 12 bp of exon 1. 

*See Supplementary Figure S1 for the corresponding RT-PCR products. 

aIn accordance with the traditional IVS (InterVening Sequence; i.e., an intron) 
nomenclature. 

 

 

 

 

 

 

 

 



 

 

This article is protected by copyright. All rights reserved. 

A
cc

ep
te

d 
A

rt
ic

le
 

TABLE 3. Comparison of 5'SS GT>GC, >GA and >GG substitutions with respect to 
the generation (or not) of wild-type transcripts  

Gene Reference mRNA 
accession number 

Sitea GT>GCb GT>GAc GT>GGc 

DBI NM_001079862.2 IVS1+2T No No No 

IVS2+2T Yes No No 

IVS3+2T No No No 

FATE1 NM_033085.2 IVS2+2T No –d No 

FOLR3 NM_000804.3 IVS1+2T – No No 

IVS2+2T No No No 

IVS3+2T No No – 

IVS4+2T Yes No No 

HESX1 NM_003865.2 IVS1+2T Yes No No 

IL10 NM_000572.3 IVS1+2T No – No 

IVS2+2T No – No 

IVS3+2T Yes – No 

IVS4+2T No No No 

RPL11 NM_000975.5 IVS1+2T No No – 

IVS2+2T Yes – No 



 

 

This article is protected by copyright. All rights reserved. 

A
cc

ep
te

d 
A

rt
ic

le
 

IVS4+2T No No No 

IVS5+2T No No No 

SPINK1 NM_003122.3 IVS1+2T No No No 

IVS2+2T No No No 

IVS3+2T Yes No No 

aIn accordance with the traditional IVS (InterVening Sequence; i.e., an intron) 
nomenclature. 

bSee Supp. Figure S1 for original data. 

cSee Supp. Figure S4 for original data. 

dFailure in mutagenesis. 

 




