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Abstract

Hepatitis C is responsible for causing chronic infections in over 170 million people all

over the world who are at a risk of developing into liver cirrhosis and hepatocellular car-

cinoma, locating HCV in a major public health burden. Until recently, the standard-of-

care treatment consisted of Interferon-alpha and ribavirin, in addition to non-structural

protein 3/4 (NS3) protease inhibitors, but due to the undesired side-effects, researchers

developed more efficient therapies. Nowadays, small molecules targeting non-structural

viral proteins: NS3/4 protease, NS5A D1 and NS5B polymerase activities can clear the

infection in 98% of the cases. These direct acting antivirals (DAAs) are widely used,

however, despite advances in recently approved potent DAAs the world-wide applica-

tion of these therapies remains limited due to the expensive cost and potential drug

resistance. NS5A is a nonstructural multifunctional protein. Mainly composed by an

amphipatic helix, which is the major membrane anchor, Domain I, which is involved

in RNA binding and assembly, and Domain II and III which are intrinsically unfolded

domains and are known to interact with host factors. DAA targeting NS5A DI, Da-

clatasvir (DCV), has a picomolar range activity and it is used in combination therapy

to combat HCV infection. Given the enormous medical relevance of NS5A inhibitors,

the aim of this study was to decipher the mode of action of Daclatasvir, together with

more insights to the role of NS5A structural elements. In the present study, experiments

showed that DCV can block the envelopment of viral particles. Furthermore, targeting

the assembly of HCV particles, this fact serve as evidence of the dual mode of action

of DCV. Furthermore, we investigated the role of very conserved Proline residues in the

structure of NS5A, identifying key Proline residues which are critically involved in RNA

replication, and have an impact in HCV infection. This fact, also suggests that the some

of these Prolines might be essential for the DCV binding, as we prove that they have

a direct role in keeping the binding site of DCV. Lastly, we set up a molecular model

which includes the intracellular membrane giving the full picture of how DCV works in

the context of an intracellular membrane and its important interactions. Together our

data, prove the dual mode of action of DCV targeting HCV replication and assembly.

And importantly, we constructed a molecular model that can be use in the future to

study structure-function of developing NS5A inhibitors.
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Chapter 1

Hepatitis C Virus identification

and classification

Hepatitis is an inflammation of the liver, this can be self-limiting or can continue to

develop fibrosis, cirrhosis or liver cancer. According to the World Health Organization

(WHO), hepatitis viruses are the common cause of hepatitis, together with toxic sub-

stances (e.g. alcohol, drugs) and autoimmune diseases which can also cause hepatitis.

There are 5 main hepatitis viruses, A, B, C, D and E. Typically A and E are caused by

contaminated food or water, while B, C, and D usually as a result of parental contact

with infected body fluids as blood or contaminated medical equipment such as needles,

sexual contact or in case of hepatitis B, from mother to baby at birth [2].

In the early 1960s, hepatitis types A and B were recognized and the treatment was

corticosteroid treatment. Shortly after the discovery of hepatitis B, research of drug

treatments began, among these interferon (IFN) appeared as most effective. In the

1970s a non-A non-B hepatitis was discovered too. Originally, it was not considered

to contribute to cirrhosis or cancer. Non-A non-B hepatitis was formerly identified as

putative viral hepatitis occurring after transfusion of blood or intravenous drug use.

The evidence that non-A non-B hepatitis could lead to persistent infection in a high

number of patients lead to discover that indeed it can progress into chronic liver disease,

cirrhosis and hepatocellular carcinoma (HCC) [3]. Hepatitis C virus was discovered to

be the cause of non-A non-B hepatitis in 1989 and now is still one of the main causes of

chronic liver diseases [4].

Hepatitis C has been classified in the genus Hepacivirus within the family Flaviviridae.

The Flaviviridae family including three genera: flavivirus, pestivirus and hepacivirus,

mostly infecting mammals and birds. Many flaviviruses are host-specific and pathogenic,

such as hepatitis C virus [5]. Flaviviruses include hepatitis C, yellow fever virus, dengue

2
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fever virus, Japansese encephalitis virus and tick-borne encephalitis virus. The ma-

jority of known members in the genus Flavivirus are arthropod borne, and many are

important human and veterinary pathogens [6]. Members of this family share a number

of basic structural and virological characteristics, enveloped in a lipid bilayer, which

is surrounded by a nucleocapsid, mainly composed by the core (C) protein and inside

it contains the RNA genome [7] However, HCV differs in a number of virological and

epidemiological aspects, as the fact that HCV has a narrow host specificity and tissue

tropism. It can be only transmitted by blood-to-blood contact between humans, instead

of mosquitoes or ticks.

There are 7 HCV genotypes currently classified and each of them are divided into several

subtypes (a,b,c, etc.) according to the geographical distribution. According to literature

genotype 1 is the prevalent worldwide, continued by genotype 3, comprising 83.4 million

cases (46.2% of all HCV cases) and 54.3 million (30.1%) approximately one-third of

which are in East Asia. Genotypes 2, 4, and 6 are responsible for a total 22.8% of

all cases; genotype 5 comprises the remaining less than 1%. While genotypes 1 and 3

dominate in most countries irrespective of economic status, the largest proportions of

genotypes 4 and 5 are in lower-income countries [8].

Figure 1.1: HCV global distribution and genome types

An estimated 130 to 170 million people have HCV infection. HCV prevalence is
highest in Egypt at >10% of the general population and China has the most people
with HCV (29.8 million). Around 25% of patients with acute HCV infection undergo
spontaneous clearance, remaining 75% of patients progress to chronic HCV infection

and are subsequently at risk of progression to hepatic fibrosis, cirrhosis and
hepatocelullar carcinoma (HCC). Taken from [9].



Chapter 2

HCV genome and viral proteins

2.1 HCV genome

The HCV genome encodes 10 viral proteins, divided into two modules: assembly mod-

ule (core to NS2) and replication (NS3-NS5B) module (Figure 2.1). The HCV genome

is single-stranded RNA molecule that has a positive polarity and a length of 9600 nu-

cleotides. The open reading frame (ORF) is flanked by a 5’ and 3’ non-translated regions

(NTR) of 341 and 230 nucleotides length respectively, both containing conserved RNA

structures essential for translation and replication processes. The HCV internal ribo-

some entry site (IRES) is located in the 5’ NTR has the capacity to form a stable

pre-initiation complex by directly binding to the 40S ribosomal subunit without canon-

ical translation initiation factors. The IRES directs the cap-independent translation of

the single ORF [10]. Therefore, HCV exists in its hosts as a pool of genetically distinct

but closely related variants called quasispecies [11].

2.2 5’ and 3’ Non-translated region

The 5’ NTR of HCV contains 341 nucleotides upstream of the ORF translation initiation

codon and it is the most conserved region in the genome. This region contains 4 highly

conserved structural domains (I- IV) containing stem-loops and a pseudoknot [12]. The

domains II, III and IV together with the first 12-30 nucleotides conform the IRES.

The 3’ non translated region contains 225 nucleotides and it is divided in three regions a

variable region 30-40 nucleotides, a long poly(U)- poly(U/UC) tract and a very conserved

3’terminal stretch of about 98 nucleotides (3’X region). The 3’NTR interacts with NS5B,

RNA-dependent, RNA polymerase.

4
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Figure 2.1: HCV genome and protein structure

HCV genome and viral proteins. a) One single open reading frame (ORF) within the
viral RNA genome encodes for the HCV polyprotein it is flanked by the 3’ and 5’

non-translated regions (NTR). The genome is arrange into two modules, the
replication module, which contains the nonstructural (NS) proteins which are required
for the RNA replication and the assembly module, which contains the core (C) protein

and the two envelope glycoproteins (E1 and E2), p7 and NS2 which are required for
the assembly of the virus. The scissors indicate the polyprotein cleavage by the cellular
signal peptidase, this cleavage removes the carboxyl-terminal indicated by an asterisk
as the arrows are indicating the viral proteases cleavage. b) Membrane topologies and
major functions of HCV proteins. Each protein is tethered to intracellular membranes,

NS5A protein is anchored by amphipatic α-helices, also note NS5A is shown as a
dimer, but almost all proteins can form homo or heterodimers. Taken from [13].

2.3 HCV viral proteins

The ORF is encoding a single polyprotein, approximately of 3000 amino acid long, which

is co and post-translationally cleaved by cellular and viral proteases into 10 proteins from

the amino-terminal region. As previously mentioned, the structural module, includes

the structural proteins which help building the virus particle: core (C), envelope glyco-

proteins 1 (E1) and (E2), or support assembly but not being part of it: p7, a viroporin,
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ion channel crucial for viral production [14] and the non structural protein NS2. The

rest of the non structural proteins are the result of the polyprotein cleavage: NS3, NS4A,

NS4B, NS5A, NS5B [15], and can sustain viral RNA replication (Figure 2.1). In addition

the so-called ”F” protein which results from a frameshift in the core coding region. The

HCV viral proteins have been extensively studied and in the following sections the main

structure and function aspects are described.

2.4 Core

Core Protein, 21kDa (mature)

During the translation of the HCV polyprotein the polypeptide is targeted to the en-

doplasmic reticulum (ER) membrane for translocation of the Envelope glycoprotein 1

(E1) ectodomain into the ER lumen a process mediated by the internal signal sequence

between core and E1. The polyprotein cleavage yields the immature form of the core

protein which contains the E1 signals sequence at the carboxyl-terminal. Furthermore

this is recognized by the host peptidase giving rise to the mature core protein, most of

core protein is found in the cytosol, where is bound to the ER membranes and located

at the surface of lipid droplets (LD) [16–18].

The core protein is a highly basic RNA-binding protein that forms the viral capsid. It

exists in a precursor of 23kDa and it is release as a mature protein in 21kDa. Its length

is around 177 amino acids and is a dimeric membrane protein consisting of two domains

stabilized by disulfide bonds. The hydrophilic domain is within the first 120 N-terminal

amino acids of the protein, where there are several characteristics of unfolded proteins.

This conformation allows plasticity which is why core protein can interact with different

cellular partners. The C-terminal is hydrophobic, responsible for core association to lipid

droplets (LD) and it predicted to fold into α-helices rich in glycine which can attribute

to an oligomerization motif [18].

2.5 Envelopment proteins

Envelopment protein 1 (E1, 35kDa) and envelopment protein 2 (E2, 65kDa)

These proteins are both transmembrane proteins type I, where the ectodomain is in

the N-terminal 160 and 334 amino acids, it is located in the ER lumen where glycosi-

lation and folding processes take place. While the C-terminal contains the 30 amino

acids long transmembrane domain, this is the membrane anchor for ER retention [19].
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These proteins assemble in non-covalent heterodimers. The transmembrane domain is

composed of two short stretches of hydrophobic amino acids separated by a short polar

segment containing fully charged residues, the second one is acting as a signal peptide

for downstream protein [20]. E1 and E2 might also be involved in fusion between the

viral envelope and the host cell membrane.

2.6 Viroporin protein p7

p7, 63 amino acids

Small, intrinsic membrane protein p7, is composed by two transmembrane domains that

are connected via a cytoplasmic loop [14]. The N- and C-terminal are facing the ER

lumen, with predicted α-helices. The protein can undergo oligomerization and can also

be used as an ion channel. These structural and membrane-permeability properties

suggest that p7 belongs to the viroporin family [21].

2.7 Non-structural proteins

2.7.1 Non-structural protein 2 (NS2, 23kDa)

Non-structural protein 2 is an integral membrane protein, non-glycosylated that does

not seem essential for formation of the replication complex [22]. Its main role is in the

proteolytic cleavage at the NS2-NS3 junction of the HCV polyprotein and it is required

for the zinc-dependent NS2-NS3 proteinase function. However, NS2 is not necessary for

RNA replication but for infectious particles production in cell culture [23].

2.7.2 Non-structural protein 3 (NS3, 70kDa)

NS3 consists of two domains, the serine protease domain, 1-189 amino acids in the N-

terminal, while helicase-NTPase domain, 181-631 amino acids at the C-terminal. The

NS3 associates with the non-structural cofactor 4A of approx. 54 amino acids, which

gives stability to the protein as it activates it to perform the cleavage in 4A/4B, 4B/5A

and 5A/5B [18]. The N-terminal part appears to form a transmembrane structure which

might be important for its ER membrane localisation. The protease domain is being

targeted efficiently by antiviral drugs. The structure of NS3 composes a chymotrypsin-

like fold composed two six-stranded β-barrel subdomains. The catalytic triad is formed

by residues from the same loops of the two β-barrel. The helicase domain on the other
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hand has not been successfully targeted by any drugs. It contains two structurally re-

lated subdomains folded with β−α− β subdomain topology. In addition NS3 interacts

directly with NS5B, NS4B and NS5A via NS4A within the replication complex [24, 25]

(Figure 2.2).

Figure 2.2: NS3-4A protease and NS3 full length structure

NS3-4A protease and full length structure of NS3. Modified from [26]. As it is
described in the text the structure contains a protease domain together with the

cofactor 4A and the full NS3 is shown.

2.7.3 Non-structural protein 4A (NS4A, 16kDa)

As mentioned before, NS4A is a cofactor responsible for several cleavage sites. Because

of this interaction with other non-structural proteins, NS4A contributes to HCV RNA

replication and virus particles assembly. Additionally NS3/4 protease plays a key role

in blocking host antiviral signalling response (see Chapter 5), it is involved in the cleav-

age of CARDIF (caspase recruitment domain adaptor inducing IFN-β) [27] and TRIF

(Toll/interleukin-1 receptor domain containing adaptor inducing IFN-β) [28], this results

in the inhibition of RIG-I (Retinoic-acid inducible gene I) which is the main mediator

of antiviral signalling in the cell [29], more detailed information is given in Chapter 5.

2.7.4 Non-structural protein 4B (NS4B, 27kDa)

NS4B is a hydrophobic transmembrane protein that co-translationally associates with

the ER membrane [10]. Is predicted to be formed by an N-terminal amphipatic α-helix,

which is followed by transmembrane domains [30]. Further NS4B was found to induce the

formation of seemingly ER-derived membranous web that harbours all HCV structural

and non-structural proteins and also allows RNA replication[31]. Thus, NS4B function

provides a scaffold for the assembly of HCV replication complex (RC). In addition NS4B
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has been suggested as a key participant during viral assembly, as it interacts with other

proteins in the replication module [32].

2.7.5 Non-structural protein 5A, (NS5A, 56kDa)

NS5A is a multifunctional phosphoprotein associated to membranes. It is found to be

phosphorylated and hyperphosphorylated. It has been described extensively as it is now

one of the main targets for antiviral drugs. NS5A has been described to be involved

in membranous web formation, RNA replication, viral particle assembly and host cell

interactions. Thus NS5A is described extensively because it is the main protein of study.

2.7.5.1 NS5A organization

NS5A N-terminal contains three domains (D1, D2, and D3) and a very conserved am-

phipatic helix (AH) (Figure 2.3). The AH is located at the N-terminal and it is mainly

involved in targeting NS5A to the cytosolic leaflet of the ER membrane in an in-plane

manner [33]. DI (amino acid 36-214), Domain II (amino acid 250-342), implicated in

RNA replication, and Domain III (356-447) involved in core interactions and viral par-

ticle assembly [34]. The domains are separated by a two low complexity sequences (LCS

I and LCS II). The following paragraphs are dedicated to a more detailed description of

NS5A organization for the further understanding of the results.

Figure 2.3: NS5A organization

HCV non-structural protein 5A organization. AH, amphipathic helix, domain I (DI)
involved in RNA replication, domain II and III (DII and DIII) intrinsically unfolded
involved in interactions with host proteins. Low complexity sequence I and II (LCSI

and LCSII) are separating each domain. LCS regions are predicted to be interdomain
connecting loops. The region believed to comprise domain I (amino acids 1-213)

contains the N-terminal membrane-anchoring helix, as well as a potential metal ion
coordination motif. Modified from [34]
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Figure 2.4: NS5A domains

Ribbon diagram of a model of the full-length NS5A dimer associated with a
phospholipid membrane. Each subunit (lilac and cyan, respectively) consists of the

amino terminal amphipatic α-helix (PDB: 1R7G), the highly structured domain 1 (D1,
PDB: 1ZH1) which is shown in position relative to a

1-palmitoyl-2-oleoyl-3-snglycerol3phospholcholine membrane bilayer. In Domain II, in
stick representation, the binding site for Cyclophilin A (host factor that interacts with
NS5A protein) is shown. DII and DIII are intrinsically unfolded. Modified from[15].

2.7.5.2 Amphipatic helix

The AH is located at the N-terminal in 30 amino acid residues and it serves as a mem-

brane anchor for NS5A. This domain is completely necessary and sufficient to target

NS5A to the ER, which results in an integral membrane association; this association

can occur by a post-translational mechanism [35]. NS5A AH (1-31 aa) was determined

by NMR [33], and it is reported to form an in-plane amphipatic α-helix embedded in

the cytosolic leaflet of the membrane bilayer. Polar residues present in the membrane

surface provide a unique environment to allow protein-protein interactions which are

essential for the assembly of a functional HCV replication complex [26]. Despite the

apparent variability of some amino acids, there are several fully conserved and specific



11

charged amino acids with a hydrophatic character in most of HCV genotypes. For exam-

ple, secondary structure predictions have predicted a conserved and consensus α-helix

in the 3-26 amino acid segment. Amino acids from 29-32 including the very conserved

Pro-29, is predicted to form a turned conformation, and segment 36-48 is predicted as

extended [35]. In addition to other amino acid conservation, Prolines are very conserved

residues in the linker connecting the AH with Domain I, as Proline 29, 32 and 35, which

are studied in the present work and are shown in Figure 11.1.

Additionally, due to the natural conformation of AH it has a high propensity to bind

to lipids. However, protein-protein interactions between cytosolic domains within the

HCV replication complex might be weak when compared to membrane association of the

proteins, this will give flexibility to fulfill the polyprotein functions [33]. On the other

hand, the interactions among this proteins might be using the membrane domains within

the bilayer to interact. On this regard, there are still many open questions. Although

there is a NMR structure for AH, there is no information of the linker between the

AH and the Domain I, where most of the resistance mutations appear to be located.

The most prominent mutation affects Tyr 93, which is positioned on the dimer interface

in both X-ray crystallographic structures. Importantly, mutations at this site confer

cross-resistance to several NS5A inhibitors and, in the case of Daclatasvir genotype 1b

subgenomic replicons and approx. 1,800 fold for genotype 1a subgenomic replicons [36].

Furthermore, conserved amino acid sequences on each linker connecting the AH with

Domain I, linker connecting Domain I subdomain a and b, and finally linker connecting

Domain I to Domain II, which are key for NS5A activities, shown in Figure 11.1, which

are subject of the present study due to the importance in maintaining the functionality

of the protein.

Figure 2.5: Amphipatic helix

Amphipatic helix structure created in MOE. The NMR structure is taken from the
PDB entry: 1R7G. From [33]. Colour coded by secondary structure. The linker

connecting AH to Domain I is a Proline rich region, which has not been yet crystalised,
so in this case it has been predicted and shown as: 29-PKLPGLP-35 (prediction

made by collaborator Cristophe Combet, in white end), as also shown in Figure 11.1.
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Figure 2.6: Domain I of NS5A with linker connections

Amphipathic helix (AH), Domain I subdomains a and b. Sequences containing Proline
residues are also shown, in line with the linker structure dividing each part. Courtesy

by Critoph Combet. Linker sequences are also shown in 11.1

2.7.5.3 Domain I

The structure of domain I (DI) has been solved by three independent groups using X-

ray crystallography. These studies describe a four different dimeric forms of DI from

genotypes 1a and 1b with the same monomeric unit, but different dimeric arrangement

[37–39], when compared by primary sequence, DI of NS5A shares a high sequence ho-

mology to the hepaciviruses, suggesting that it has been well conserved and its critical

functions are common to hepaciviruses, whereas the functions of the other two domains

(domain II and III) maybe specific to each virus. In this regard, generally, DI mainly

functions exclusively for genome replication [37]. Finally, it was recently published that

domain I also plays a key role in assembly of infectious viral particles, identification of

key sites might be important for the production of infectious virus. Additionally, this

publication also describes mutations on P35A, V67A and P145A to be important for

the recruitment of NS5A to lipid droplets (LD), which they also impair dimerisation of

the DI and enhance the binding of DI to the HCV 3’UTR RNA, revealing a role of these

NS5A in assembly of viral particles [29].

For a clearer explanation regarding the differences in the structure of DI, Tellinghuisen

et al, described the Domain I subdomains A and B. The subdomain A, is at the N-

terminal loop, next to a three-stranded anti-parallel β-sheet, and an α-helix at the C-

terminus of the third β-strand. All together, form the scaffold for a four-cysteine zinc

atom coordination. This zinc atom has a structural role in the maintenance of NS5A

fold. To connect subdomain A and B there is a Proline-rich region. Subdomain B,
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contains four-strand anti-parallel β-sheet and other two small ones near the C-terminus

surrounded by coil structures [37]. The N-terminal subdomain A has a very basic surface

meanwhile in the subdomain B there is a more acidic character, this is a unusual charge

distribution and has an impact in the dimerisation of the protein. The crystal structure

of domain I region provided strong data for the study of NS5A. The crystal structure

described by Tellinghuisen et al, Figure 2.7 is known as the ”claw-like” structure PDB

entry 1ZH1 [37].

The anchoring helix AH previously described in section 2.7.5.2, is only five residues

from the N-terminal of DI, suggesting it is very close to the membrane [37]. The basic

surface close to the anchor is consistent and it makes it probable that the protein is in

close contact with the negative charged head groups of the membrane, where it could

interact with RNA. As mentioned before NS5A interacts with RNA via domain I via an

RNA-binding groove located at DI [40]. Additionally, the conjunction between AH and

DI is involved in lipid droplet (LD) targeting.

The second crystal structure described by Love et al, describes the association signifi-

cantly different from the ”claw-like” structure Figure 2.7. The crystal structure which

PDB entry is 3FQM and it is known as ”back-to-back”. This describes the long axes

of the monomers are nearly parallel, with numerous interactions along the entire side of

each one of the monomers, which makes a cylinder appearance. The two N-termini are

found on the same end of the dimer, implying that the two AH are colocalizing, which is

a common feature with the Tellinghuisen structure. There is no overlap between the sur-

faces of the monomers, this tells that the monomers have no simple rearrangement, but

rather undergo a transformation that requires a complete separation of the monomers

and translocation of one monomer to the other side of its initial partner and then it is

followed by a slight tilt of each monomer long the axis [38].

The last crystal structure described by Lambert et al, describes a very similar struc-

ture as the one from Love et al, where the monomers are related by a two fold axis

perpendicular to their length. Additionally, it is shown that the binding cleft between

the head-to-head dimer could accommodate NS5A inhibitor (Daclatasvir, DCV) in a

such a fashion that the key resistance mutations (M28, L31, P58, and Y93, as shown in

Figure 2.7), which are shown in close proximity to the inhibitor [39]. NS5A inhibitors

confer resistance, mainly on the sites mentioned and shown in Figure 2.7, however the

resistance continues to be a main problem when developing new antivirals, which is one

of the reasons studying in detail the mechanism of action of DCV, can elucidate a way

of avoiding resistance to new NS5A inhibitors.

More recently, it was proposed that domain I of NS5A plays multiple roles in assembly,

binding nascent genomic RNA and transporting it to lipid droplets where it is transferred
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to Core. Domain I also contributes to a change in lipid droplet morphology, increasing

their size [42].

Figure 2.7: NS5A dimer conformations

NS5A dimer structures from two different PDB entries: The ”claw-like”, belonging to
the 1ZH1 and the ”back-to-back” structure to the 3FQM. In coloured boxes, the

resistance mutations that confer resistance to NS5A inhibitors. Note that the position
of the amphipathic α-helix relative to DI is arbitrary and assumes that resistance

mutations observed in DI and the amphipathic α-helix would be close to each other.
Also note the supposed membrane-proximal positions of the resistance mutations in

both dimer structures. Mutation of Pro58 has been associated with secondary
resistance to DCV but does not confer resistance by itself, this residue is shown to

highlight the alternative orientations of the monomers in the different dimer structures
[41]. Daclatasvir molecule is also shown in stick representation. Modified from[15]
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2.7.5.4 Domain II and domain III

Domain II is required for RNA replication [26] and interactions with host and viral pro-

teins [43]. Domain II plays a key role in HCV genome replication but has no impact on

assembly or release of viral particles [7]. Domain II has a very conserved sequence and

a large segment within DII can be deleted with no significant effect on RNA replication

and virus production in cultured cell lines. Unlike it, domain III is essential for the

assembly of infectious viral particles. These domains are less conserved than domain

I. The DII and DIII of NS5A are both intrinsically unfolded monomers and because of

this the exact position relative to DI is unclear, see Figure 2.4. The structural flexibil-

ity allows different interactions with cellular proteins [44]. However, just Cylophylin A

(CYPA) and Phosphatidylinositol 4-kinase IIIα (PI4KIIIα) [45, 46] have been shown to

be essential for HCV replication and have been also targeted as antiviral drugs. CYPA

probably interacts directly with NS5A to exert its effect, through its peptidyl-prolyl

isomerase activity, on maintaining the proper structure and function of the HCV repli-

case. The major proline substrates are located in DII of NS5A, centered around a DY

dipeptide motif that regulates CYPA dependence and Cyclosporine A (CsA) resistance.

Importantly, Cyclosporine A derivatives that lack immunosuppressive function efficiently

block the CyPA-NS5A interaction and inhibit HCV in cell culture, an animal model,

and human trials [47].

2.7.5.5 NS5A phosphorylation

There are two phosphorylated forms of NS5A, p56 and p58, phosphorylated and hyper-

phosphorylated protein respectively [48]. Basal phosphorylation results in expression of

the protein at 56kDa and when hyperphosphorylated it results in 58kDa and it depends

on sequences from the C-terminal region of the LCSI up to the end of NS5A. The phos-

phorylation sites are mainly in serines [49] located at the C-terminal and to a less extend

threonines and tyrosines. Phosphorylation is a very well conserved feature among other

viruses related to HCV, such as Bovine Viral Diarrhoea Virus (BVDV) and Yellow Fever

Virus (YFV), which suggests it is a critical step for the Flavivirus life cycle. The enzymes

that are involved in the phosphorylation have not been completely identified, regardless

some include: casein kinase I and II (CKI and CKII)[50–52], mitogen-activated protein

kinases (MAPKs) [53], polo-like kinase 1 (PIK1) [54] and glycogen synthase kinase 3

(GSK-3).
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2.7.5.6 NS5A functions

As mentioned already, as a multifunctional protein NS5A has a role during RNA repli-

cation and assembly of the viral particles. NS5A interacts with other non-structural

proteins such as NS5B, this is key for RNA replication. In order to trigger replica-

tion and switch on HCV life cycle, NS5A binds to the 3’UTR of positive and negative

strands of HCV RNA (preferentially on U/G rich single stranded RNA regions), which

is absolutely required [55].

The structure of NS5A previously described gives an overview of what are the func-

tions of NS5A. Additional interactions with other host factors such as protein kinase

R (PKR), p53, TATA-binding protein (TBP), Snf2 related CREBBP activator protein

SRCAP protein, vesicle associated membrane protein (VAPA) have been described [56–

59]. Phosphorylation of the protein also modulates the functions of it, for instance,

VAPA can bridge NS5A p56 with NS5B favouring replication complex formation, mean-

while hypherphosphorilation of NS5A interrupts the interaction allowing viral particle

assembly [60].

Perhaps the multifunctionality of NS5A is also due to the dimerization and further

multimerization of the protein, that can give rise to different conformations.

2.7.5.7 NS5A oligomerization

Domain I of NS5A indeed can form dimers and it is critical for this process. However,

detection of high molecular forms of NS5A is whether representing a nonspecific aggre-

gation complex or these are true higher order NS5A complexes [61]. Importantly, Love

et al, observed an oligomeric state of NS5A and modelled possible NS5A oligomers based

on the crystal structure known [38]. These studies strongly suggest the oligomerisation

state of NS5A. On the other hand, dimeric structures are important for the antiviral ac-

tivities of NS5A inhibitors. Binding experiments have shown that these inhibitors bind

to NS5A directly and that mutations conferring resistance are mapped in the N-terminal

region. Interestingly, when tested NS5A inhibitor DCV also known as BMS-790052, did

not affect NS5A dimerisation, but the blockage of disulphide bridge forming cysteines

in DI can reduced interaction upon treatment [61].

However, experiments measuring ratio of NS5A to NS5A inhibitor DCV present in cells,

suggest that a small amount of inhibitor molecules can impact the function of a large

number of NS5A protein molecules, based on these observations Sun et al developed a

working model for NS5A inhibitors action, in which NS5A proteins interact with each

other and a single bound inhibitor perturbs the function of an NS5A oligomer, thus,
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resulting in the disruption of replication complex formation or NS5A normal function and

this in turn, results in an amplified inhibitory effect. Together with the crystallographic

data of DI and the NMR structure of amphipathic helix, hypothetically assembling in

a polymer network alternating the interfaces, they built up a working model. Under

this structure, DCV is docked across the dimer interface as previously reported [37].

Thereafter, when Sun et al, added a second inhibitor to determine whether it could,

compete with DCV for binding and have no impact or to bind adjacent to NS5A inducing

a conformational change by DCV binding and resulting in enhancement of its potency

[62] see Figure 2.8. The complementary effect of DCV and the second inhibitor called

SYN-395, after its synergistic effect, requires communication within the binding sites,

more detail information on the MOA of the syn compounds is in section 6. However in

this case, the polymer model proposed would suggest that the induced inhibition affects

the NS5A dimer in which DCV is bound and it is also transmitted to the proteins along

the helical axis through P29-P35 loop interactions (which as mentioned before, includes

very conserved Proline residues 29, 32 and 35 and it is located in the linker connecting

the AH to DI) to inhibit multiple NS5A proteins [62]. This study highlights not only the

importance to investigate further the role of Proline residues in the structure of NS5A,

but additionally NS5A oligomer formation. Thus, due to the high conservation of these

Proline residues, we decided to look into their role in HCV infection and DCV binding,

as shown in the Results section III and we also investigated on the oligomerization

process of NS5A protein. For more information given on NS5A inhibitors and other

HCV inhibitors, see section 6.

The results in this publication by Sun et al, suggested a formation of an extended mul-

timeric network of NS5A that may occur through the different dimer interfaces. The

combination of two genotype 1b NS5A-D1 dimers allowed the formation of a superhelical

array which can give support to a model for the oligomerization of NS5A and NS5A-D1

constructs observed in vitro shown by Lambert et al [39]. However, the formation of

these higher order oligomer complexes into a non-planar, superhelical array precludes its

association with a lipid bilayer [38]. Different conformations of DI dimers can suggest

an array of NS5A molecules that form an extended network that could interact with the

membranous web. The NMR data also shows that the protein can aggregate reversibly

in a concentration dependent manner, possibly into ordered oligomeric states [39]. How-

ever, more studies are needed to determine the oligomerization state of NS5A, favouring

monomeric, dimeric or oligomer. In the present study we try to address this problem

and investigate further to determine the oligomerization state of NS5A protein.
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Figure 2.8: NS5A oligomer model

NS5A oligomer model where Daclatasvir (DCV) and Syn-395 are bound to NS5A
dimer and polymer. a, DCV is docked across the NS5A dimer interface stick

representation shown in green, the amphipatic helix shown in red. Some of resistance
mutations to DCV are pointed (L28, L31, Y93), as well as the highly conserved Proline

residues in the AH-DI linker P29, and P35. b, NS5A helical hexamer is composed of
three PDB: 1ZH1, (same colour) and two PDB 3FQM dimer (alternate colours). c,
Graphical representation of conformational changes that can affect inhibition and

further recovery of inhibition by the synergistic effec of SYN-395 compound. Modified
from [62]

2.7.6 Non-structural protein 5B (NS5B, 68kDa)

NS5B, is the RNA-dependent RNA polymerase (RdRp). It is a phosphoprotein anchored

to the membrane via its C-terminal 21 amino acids. As a RdRp has a typical shape:

palm, finger and thumb subdomain structure and the hallmark GDD sequence as it is

shown in Figure 2.9. It forms the catalytic center of HCV replication machinery and is

responsible for synthesis of negative-strand RNA intermediate from the positive-strand

viral genome see next section 3.

The active site is highly conserved and located in the palm subdomain. The catalytic site

domain contains a C-terminal membrane insertion sequence which is essential for RNA
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Figure 2.9: NS5B

NS5B structure, containing palm, fingers and thumb. Taken from [15]. Ribbon
diagram of full-length NS5B (Protein Data Bank (PDB: 1GX6) and the association
with the membrane via the NS5B carboxy-terminal transmembrane tail. The finger,

thumb and palm subdomains are indicated, and the so-called β-loop is shown in
orange. The C-terminal linker sequence (grey) connects the core of the enzyme with
the membrane insertion sequence (magenta). The structure indicates the proposed
membrane topology of NS5B in the so-called closed conformation, on the basis of
available X-ray crystallographic structures, and this is believed to represent the
initiation state of the polymerase. The active site is highlighted by two priming

nucleotides (yellow). In this conformation, the RNA-binding groove is hidden by the
NS5B ectodomain that stacks to the membrane. Modified from [13].

replication in cell culture and for in vitro enzymatic activity. When compared to other

RdRp, NS5B has a closed conformation of the active center, where the C-terminal linker

folds back into the active center involved in RNA synthesis [63–65]. Starting of initiation

is represented by the polymerase closed conformation, after this, the enzyme undergoes

a big conformational change that allows the opening of the structure to generate a

cavity capable of binding the double stranded RNA [13]. NS5B is one of the main

targets for direct acting antivirals (DAAs) together with NS3/4B and NS5A. Many

other polymerases have been target of antiviral therapy and this will be discussed in

section 6.



Chapter 3

HCV replication cycle

Replication of HCV RNA is a multi-step process that is orchestrated by synchronized

action of viral and cellular proteins. Structural arrangements are necessary to origi-

nate the sites where HCV replication takes place. Once HCV has infected an hepato-

cyte (main cellular target), it associates to low-density lipoproteins (LDL), to very-low-

density lipoproteins (VLDL) and to apolipoproteins: E, B, C1, C2 and C3 to form a

complex lipoviroparticle [66, 67], this is process is followed attachment, entry and fusion.

The attachment requires the receptor of E2 glycoprotein, facilitated by heparan sulfate

proteoglycans present on the hepatocyte’s surface. The LDL and VLDL receptors can

bind HCV and promote its entry. The main cellular receptors and entry factors for

HCV are scavenger receptor class B type I (SRBI), [68], CD81 [69] as well as some tight

junction proteins such as claudin-1 (CLDN1) [70] and occludin (OCLN) [71, 72]. Among

other receptors recently identified which are also entry factors to mention: receptor ty-

rosine kinases (RTK), epidermal growth factor receptor (EGFR), ephrin receptor A2

(EphA2) and the Niemann-Pick C1 like cholesterol adsorption receptor (NPC1L1). All

together these receptors are key for attachment and entry which give the essential venue

for HCV to entry the cell and establish infection. At the fusion step, HCV enters the cell

via clathrin-mediated endocytosis and is internalized into target cell via pH-dependent

in the endosome which triggers the viral envelope and endosomal membrane to release

the nucleocapsid to the cytoplasm, where the RNA is released [73–75]. See Figure 3.1.

Once the RNA genome enters the cytoplasm, the HCV polyprotein is translated in

the rough ER with the positive strand as a template. Translation is initiated in a

cap-independent manner using the IRES at the 5’NTR. The HCV single polyprotein

precursor is then processed by cellular (signal peptidases) and viral proteases (NS2,

NS3/4A) to give rise to the 10 viral structural and non-structural proteins as previously

described on section 2.3 [76].
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Like other positive-strand RNA viruses, HCV can remodel intracellular membranes, gen-

erating organelle-like membranous structures, which can be called replication factories

or membranous web. The main functions of the replication factories (vRFs) are: in-

crease local concentration of factors required in RNA replication, spatial coordination in

the replication cycle process (RNA translation, replication and assembly), and protect

the viral proteins and RNA from antiviral defenses [13, 77].

There are two types of membrane rearrangements: invaginated vesicles or double mem-

brane vesicles (DMV) [78]. HCV non-structural proteins are associated with the mem-

branous web which includes DMVs containing nonstructural proteins, ER membranes,

HCV RNA, and lipid droplets. As mentioned before, this membranous web or replica-

tion factories are the sites where RNA replication takes place, viral RNA is amplified

by NS5B, (RdRp), together with most of the NS proteins and some host cell factors

such as cyplophilin A (which can modulate NS5B RNA-binding capacity and interact

with NS5A) [79] and PI4KIIIα (recruited to membranous web by NS5A and required

for HCV replication providing integrity to the membranous viral replication complex)

[46].

As the positive strand is copied into negative strand RNA via replicative form is used

for synthesis of excess amounts of positive strand RNAs viral replicative intermediate.

Starting of RNA synthesis requires highly structured RNA elements in the 3’NTR of

the template, the new synthesized RNA genomes are translated, then RNA replication

takes place, finalizing with the assembly of the virions [80].

The viral RNA is thought to be delivered to the replication sites to the core protein on

LDs by the viral replicase, alternatively, NS5A which can bind RNA may be released

from the replicase complex to move onto the LD surface. The capsids are finally budding

to the ER lumen in a process tightly linked to VLDL synthesis, which is why assembly

then is dependent on (V)LDL synthesis and requires several enzymes and apoE [15, 67,

77]. Infectious HCV particles are pleomorphic, lack discernible surface features and have

broad size range 40-80 nm diameter [81]. More recently, NS5A was identified as a major

determinant in HCV assembly. Domain III, was found to be a key element to ensure

the production of infectious viral particles [26].
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Figure 3.1: HCV replication cycle

HCV replication cycle starts when binding of HCV lipoparticle to the SRB1 and CD81
receptors, further interactions with CLDN1 and OCLN are necessary. Once the virus

enters the cell via receptor-mediated endocytosis (step 1), the positive-sense single
stranded viral RNA is released into the cytoplasm and translated at the rough ER,
giving rise to a single polyprotein cleaved in 10 mature proteins (step 2). Together

viral proteins and host ell factors induce the formation of the membranous web (MW)
located in close proximity to LD (step 3). RNA replication proceeds via negative-sense

copy which is the template for the production of excess amounts of positive-sense
RNAs (step 4). Assembly of HCV particles supposedly taking place close to the ER
and LDs, where core and vRNA accumulate. Viral envelope is acquired by budding
through the ER membrane (step 5). Finally HCV particles, are thought to leave via
constitutive secretory pathway (step 6). The blue boxes represent the viral and host

facotrs which are known or suspected to be essential for the viral life cycle, thus,
potential drug targets. (CYPA: cyclophilin A, PtdIns4KIIIα: phosphatidylinositol

4-kinase IIIα). Taken from [13].



Chapter 4

HCV experimental studies

This chapter is dedicated to describe the HCV experimental tools available for studying

HCV infection. Until 1989, the lack of a cell culture system and the small animal

models to propagate HCV was a major issue for HCV research. In 1997, the only model

to study HCV was the chimpanzees (Pan troglodytes), which could be injected with

HCV, this allowed to study HCV genome and its encoded proteins. However, bioethical

and high costs could not allow a certain number of experiments, other attempts involved

xenotransplantation system of human liver into mice (Mus musculus domesticus). Thus,

there was not much data regarding HCV molecular biology research, finally in 1999 a

major step for HCV investigation was made by the establishment of the subgenomic

system [82], see Figure 4.1. To generate this tool, a full-length clones consensus genome

of the genotype (called Con1); the region encoding p7 and NS2 proteins was replaced by

elements which do not belong to HCV, a selectable marker neomycin (neo) gene for drug

selection G418, the second is the IRES element of encephalomyocarditis virus (EMCV),

which ensures translation of HCV polyprotein NS3-5B. To ensure IRES full activity the

replicon contains 48 nucleotides of core coding sequence at the 3’ end of the HCV IRES.

Thus, this changes made a bicistronic construct that can replicate autonomously within

human hepatoma cell line Huh-7 upon transfection of in vitro transcribed RNA [82].

This tool was then used to generate replicon cell lines with high RNA replication level

that can be selected by treatment. Continuous analysis of these cell clones and replicons

showed increased replication capacity caused by adaptive mutations and increased host

cell permissiveness. Some of these mutations identified have been included to make

a highly adapted replicon, Con1/ET, containing two point mutations NS3 (E1202G,

T1280I) and one in NS4B (K1846T) [82–84].

The neo marker can be also substituted by firefly luciferase (FLuc) bicistronic, or renilla

luciferase (RLuc) monocistronic which can also work as a reporter, additionally other
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Figure 4.1: HCV subgenomic replicons

Structure of the HCV subgenomic replicons created by [82]. Indication of the cleavage
location products and the 5’ and 3’ NTRs. HCV-IRES selected for the construction
and a GDD active site of the NS5B. The selection of subgenomic repicons contain a
5’HCV-IRES, the neo gene, the EMCV-IRES and the HCV non-structural proteins

NS2or NS3 to the 3’ end δ is representing the deletion in the position of the 10-amino
acid in the NS5B polymerase. Normally, GDD stands for an NS5B

polymerase-defective replicon in which the critical GDD motif in the polymerase active
site is replaced by AAG (referred to as GDD). Modified from [82].

reporters have been inserted in the NS5A region such as green fluorescent protein (GFP),

to allow monitor cells by immunofluorescence or western blot [85, 86] as shown in Figure

4.2.

Figure 4.2: Structure of Jc1 based reporter genomes

Reporter genomes containing (blue) structural proteins, (green) non-structural HCV
proteins. Jc1FLuc, containing Firefly Luciferase and EMCV IRES. Jc1GFP containing

green fluorescent protein (GFP) before NS5B. Modified from doctoral thesis of
Margarita Zayas.

In the recent years, other breakthroughs have been made in HCV research, the cloning of

subgenomic replicon of the genotype 2a consensus genome from a Japanese patient with

fulminant hepatitis (JFH1) which has high levels of replication in Huh7 cells without

any cell culture adaptive mutations and also when JFH1 was discovered to be able to

produce infectious virus particles upon transfection of the full length genome in vitro

transcripts into Huh7 cells [87, 88].

Furthermore, the full-length JFH1 genome supports the production of culture-derived

particles (HCVcc), which are infectious in vitro and in vivo [88]. This particles are

around 60-75nm in diameter and spherical and are have high specificity infecting at

a peak buoyant density of approximately 1.10g/ml like serum produced particles. To

improve the system virus chimeras were generated consisting of the JFH1 replicase (NS3-

NS5B) fused to the core to NS2 region of different HCV isolates. Another tool to study
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HCV are HCV pseudo particles (HCVpp) system, this are retroviral nucleopcapsids

surrounded by lipid envelope which contains authentic HCV glycoprotein complexes

this system allowed a robust infection system in Huh7 cells and in primary human

hepatocytes to study the early stages of infection with HCV such as entry and receptor

binding [89, 90].

Nevertheless, the research continues to be improved by trying to develop small animal

models by humanized mice, which can be infected with HCVcc or HCV patient sera.

More reliable experimental set-ups with an authentic and physiological condition present

in the infection with HCV are yet to develop [91, 92]. The following Figure 4.3, contains

the most recent advances in animal models to study HCV infection [93].

Figure 4.3: Table including Animal model for studying HCV infection

Studies using animal models where the complete viral life cycle has been performed (or
parts), viremia levels, liver disease, DAA testing, passive inmunization, vaccine
development and availability are shown for each. Details on the advantages and

disadvanteges are reviwed in citation. Taken from [93].



Chapter 5

HCV and host immune response

As mentioned earlier, HCV can cause persistent infections, this can cause that the host

defenses initially sense HCV by the antiviral innate immune response which is triggered

by pattern recognition receptors (PRRs), these are responsible for a downstream signal-

ing that can activate immunity. Approximately 20-30% infected people can resolve the

infection but 70-80% develop a chronic infection. HCV is among the most successful of

persistent human viruses, it persists in 70% of those infected [94].

The innate immune response against RNA viruses is mainly composed by three classes

of PRRs: retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), toll-like receptors

(TLRs), the nucleotide oligomerization domain-like receptors (NLRs) [95] or double-

stranded RNA sensing proteins such as protein kinase R (PKR), which are in charge

of recognizing pathogen-associated molecular patterns (PAMPs) present during viral in-

fection. The HCV IRES is recognized by RNA-dependent PKR while the HCV 3’poly-

U/UC, 5’ triphosphate of the uncapped HCV RNA and the short double-stranded RNA

region sequences are recognized by the RIG-I. A sequence of downstream signaling pro-

ceeds to activate various genes and cytokines such as interferon I and III and IL-1β,

which in turn activate paracrine or autocirne pathways to establish full antiviral state.

The best described detector of HCV infection is RIG-I, which is a cytosolic RNA sensor

and together with MDA5 (melanoma differentiation-associated protein 5) and LGP2

(laboratory of genetics and physiology 2) can regulate HCV infection. These pathways

converge on the activation of the key transcription factors NF-κ B and the interferon

regulatory factor (IRF) 3 and 7. Activated IRF3 and NF-κB bind to response elements

in the promoters of type I and III IFN genes, which are essential for antiviral defence

[96].

26



27

Innate immune responses rely on interferons (IFNs) to activate and regulate the cellular

components for the antiviral response such as the natural killer (NK) cells. Type I IFN

compromising several IFN-α and one IFN-β and type III IFN-γ1, IFN-γ2 and IFN-

γ3 also called IL29, IL28A and IL28B which are produced by the infected cell and by

macrophages and dendritic cells (DCs). Type II IFN (IFN-γ) is produced by NK and

T cells from antigen specific T cells (CD4+ and CD8+ cytotoxic lymphocytes) [96].

Subsequent activation of IFNs induced transcription of multiple interferon-stimulated

genes (ISGs) through the activation of the JAK/STAT signaling pathway results in the

recruitment of effector immune cells that can trigger the adaptive immune response

[97, 98].

When adaptive immune responses fail to neutralize the infection, chronic infection is

established. Despite the global failure of the immune reaction against HCV, T cell

exhaustion and emergence of viral escape mutations are the main cause of T cell failure,

which causes the establishment of HCV life cycle [99].

Furthermore, HCV supports a reaction against the host cell immune responses. The

viral NS3-4A protease is central in the HCV host immune evasion strategy [100], it

can block RIG-I signaling, because in addition to proteolytically processing of the HCV

polyprotein it targets and cleaves mitochondrial antiviral-signaling protein (MAVS) from

intracellular membranes preventing the subsequent signaling transduction. The cleavage

prevents activation of RIG-I pathway and during acute infection abrogates IFN induction

which supports the progression to a chronic infection [101, 102]. In addition, HCV can

control PKR-mediated translation suppression of host mRNAs during HCV infection

and IFN therapy can inhibit translation of host factors require for HCV replication

(PKR works as an antiviral molecule) but it can also inhibit ISGs and IFN (PKR as

a proviral molecule) [98]. More recently, NS4B was found to degrade TRIF in order

to avoid the activation of TLR3 mediated interferon signaling pathway as part of HCV

host immune system evasion [29].

Further studies on how HCV evades the immune responses of the host can give more

insights into antiviral drug development.



Chapter 6

HCV antiviral therapy

An estimated of 130 million are vulnerable to chronic infections around the world whom

can develop liver cirrhosis (≈ 27%) and hepatocellular carcinoma (≈ 25%) as men-

tioned in section 1. This has made HCV infection a global medical problem which has

drawn the attention and efforts to develop drugs and new antiviral treatments. Un-

fortunately, prophylactic treatment for HCV has not been very successful, having no

vaccine development. Many limitations in HCV vaccine development as genomic vari-

ability and worldwide different genotype distribution see Figure 1.1, which causes poor

cross-genotype immunity [99].

The majority of infections are treated with a combination of pegylated interferon-α

(PEG-IFNα) and ribavirin, as many other viral infections are treated. In some of the

cases this therapy can eliminate HCV infection with this treatment but it depends on

the stage of the disease, genotype and some polymorphisms (for example IL28-B gene).

However, the rest of the cases are unresolved, in the recent years the development of

direct acting antivirals (DAAs) has lead to a big step in HCV antiviral development[13].

Every step of HCV life cycle can be a potential drug target for antiviral therapy, however

the successful inhibitors at the moment are just made for the non-structural proteins

NS3/4A, NS5A and NS5B, which are use in combination, and together they can clear

around 98% of infection, yet resistance mutations and high cost of this inhibitors pro-

motes new development of antiviral treatments. This chapter will describe the DAAs

available, a summary of the DAA inhibitors for the non-structural proteins of HCV are

described in Figure 6.1. We described more in detail NS5A inhibitors due to the purpose

of the present study, in the following subsection 6.1.3.
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Figure 6.1: Table including DAA inhibitors

Summary of FDA-approved antivirals against HCV infection. Table contains targeted
protein, name of the compound, EC50 values in nM for each of HCV genotypes and the

corresponding reference. Taken from [103].

6.1 Inhibitors

6.1.1 Protease NS3-4A inhibitors

NS3 is a multifunctional protein and together with NS4A cofactor constitute the serine-

type protease that HCV uses for cleavage of viral and cellular (MAVS, CARDIF, VISA

and IPS1) proteins while the C-terminal contains the NTPase activity, see section 2.7.2,

both activities have been pursued as drug targets. However, the NS3 protease was

the target for DAAs, by exploiting the fact that after NS3-4A mediated cleavage the

product derived from the N-terminal fragment remains bound to the active site and

thus blocks the enzyme, which gives this DAA a high potency [104–106], see Figure

6.2. These compounds belong to the first class of compounds and they bind to the

active site Serine, being called ’Ser-trap’. These inhibitors antagonize the enzyme by

forming enzyme-inhibitor adduct that dissociates with very slow kinetics. Three classes

of these compounds have been developed: first class linear peptidomimetics are forming a

covalent but reversible link, adducts with enzyme (telaprevir and boceprevir), the second

class are linear peptidomimetics and third class are macrocucylic inhibitors on the basis

of their structure. Unfortunately, these last ones do not target all the HCV genotypes

to the same extent. Furthermore, the barrier to select for resistance against these first-

generation inhibitors is low and cross-resistance has been identified [107]. Consequently,

overcoming these limitations are the goal of the second generation of NS3-4A inhibitors
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like MK-5172 and ACH2684 which are macrocyles that have a pan-genotypic activity

with improved resistance profiles [108, 109]. It is worth mentioning that the NS3/4A

inhibitor simeprevir, as shown in Figure 6.2, in the combination with the NS5B inhibitor

sofosbuvir (NS5B inhibitor, see Figure 6.3, is considered to efficiently inhibit different

stages of HCV life cycle [103].

Figure 6.2: NS3/4 protease structure and docked DAA simeprevir

Tertiary structure of HCV NS3/4A protease. The tertiary structure of NS3/4A
protease in complex with simeprevir (PDB codes: 3KEE and 4B76). HCV NS3 and
NS4A proteins are displayed in orange and pink, respectively [110]. Modified from

[111].

6.1.2 RNA-dependent RNA polymerase NS5B inhibitors

As already described in section 2.7.6, NS5B is a key enzyme for HCV life cycle, it medi-

ates RNA synthesis by using its catalytic core with a typical structure of a polymerase

(right hand: fingers, palm and thumb), see Figure 6.3 and 6.4. There are two groups

of drugs, according to their mode of action which target NS5B protein: nucleoside and

nucleotide inhibitors (NIs) and non-nucleoside inhibitors (NNIs). The first group of NIs,

mimic the natural substrates of the polymerase and act at the active site of the enzyme,

while the NNIs bind to different allosteric states and inhibit conformational changes in

the polymerase. Due to the high degree of conservation NIs are usually more effective

towards resistance than NNIs [112], examples are shown in Figure 6.3

NIs are derivatives of ribonucleosides or ribonucleotides and compete for the natural

active site of the polymerase, they require high intracellular concentrations. Usually

have a low-micromolar range and are typically delivered as prodrugs, where the non-

phosphorylated chemical modifications are cleaved off and the liberated nucleoside is

converted to 5’-triphosphate by cellular enzymes. Once phosphorylation occurs, the

active drug can compete for the natural site and incorporate into the growing RNA.
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Figure 6.3: NS5B structure and docked DAA sofosbuvir and beclabuvir

Tertiary structure of HCV NS5B and structural formulas of approved or experimental
nucleoside inhibitors. NS5B structure in complex with beclabuvir and sofosbuvir

diphosphate (PDB codes: 4NLD and 4WTG) is visualized on top. Modified from [111].

Figure 6.4: NS5B inhibitor, SOF chemical formula

Sofosbuvir chemical formula. The discovery of sofosbuvir undertaking path from
20-C-methylcytidine to 20-F, 20-C-methyluridine 5-phosphoramidate [113]. Modified

from [111].

Another way to inhibition NS5B is to use 3’-deoxy modified nucleosides that are clas-

sical chain terminators, but due to phosphorylation are poorly active in cell culture

[114]. Additionally another drawback from ribonucleoside analogues is their interfer-

ence with human mitochondrial RNA polymerase, which can inhibit mitochondrial gene

expression, which might be the explanation to the serious side effects of several drugs

(Valopicitabine, Balapiravir, and others). On the other hand, NNIs are commonly more

diverse and are grouped into 4-5 classes depending on their allosteric binding, even

though they can be highly active, resistance can be rapidly selected [115].
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Advanced nucleoside analogue, Mericitabine, has been shown to be active in genotype 1

and genotype 4, and the most advanced nucleotide analogue is Sofosbuvir (SOF) struc-

ture shown in Figure 6.4, which has high efficacy against genotypes 1-6 in combination

with PEG-IFNα and ribavirin [113, 116].

Furthermore, there are alternative viral drug targets which can interfere with HCV

life cycle, NS4B and p7 proteins are now under development as antiviral drugs. As an

alternative host cell target, cyclophilins and mir-122 have been extensively studied [103].

6.1.3 Non-structural protein 5A inhibitors

NS5A inhibitors have several effects on HCV life cycle. They might affect formation of

the replication complex at the ER and sequester NS5A in lipid droplets to inhibit virus

formation and release [1] or directly affect the assembly of viral particles [117]. Hence-

forth, the FDA has approved the following drugs: Daclatasvir (BMS-790052), ledipasvir

(GS-5885), ombitasvir (ABT-267), elbasvir (MK-8742), velpatasvir (GS-5816), and on

clinical tests: Pibrentasvir (ABT-530), ravidasvir (PPI-668), GSK2336805, ruzasvir

(MK-8408), EDP-239, samatasvir (IDX719). It is known, that NS5A inhibitors do not

affect stability or dimerisation of NS5A but block HCV RNA synthesis at the stage of

membranous web formation [118]. Recently, it was discovered that DCV, can impair

viral assembly by inhibiting the delivery of HCV genomes to the assembly sites [117].

NS5A inhibitors slowly inhibit HCV RNA synthesis when compared to HCV protease or

polymerase inhibitors [119]. Furthermore, NS5A inhibitors can enhance drug resistance

barrier and restore antiviral activity against NS5A resistance variants [62]. Notably, the

crystallographic structures have been very useful in the development of NS5A inhibitors

and further studies will elucidate the whole picture under the high potency, see Figure

6.5 and 6.6. In the following subsections we describe a more detailed information on

NS5A inhibitor, Daclatasvir (DCV), as main subject of the present study.

6.1.3.1 Daclatasvir

DCV inhibits NS5A at DI and it is a food and drug administration (FDA) approved for

the treatment of HCV infection, see Figures 6.5 and 6.6. DCV has been administered

together with PEG-IFN and RBV as well as IFN free options [120], it can be administered

together in combination with other DAAs including asunaprevir (NS3 protease inhibitor)

(ASV) and sofosbuvir (SOF) (NS5B inhibitor). Normally, DCV plus SOF is given for

12 weeks [121] to have a high treatment efficiency. DCV has high rates of sustained

virological response (SVR) >90%, which has a clinical relevance regarding the clearance

of HCV infection in most patients. Interestingly, studies with DCV in replicon cells
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showed that double or triple inhibitor combination of DAAs can produce resistance

which can be different from when using mono-therapy. Indeed, onset of resistance may

lead to cross-resistance among DAAs or to other NS5A inhibitors, while DCV-variants

remained completely sensitive to other classes of DAAs [122–124].

Importantly, resistance-associated substitutions (RASs) in NS5A have a major impact

clinically. As previously mentioned, RASs at key positions (28, 30, 31, and 93) in

HCV genotype 1a result in broad cross-resistance to early generation NS5A inhibitors,

except L31M RAS on ombitasvir and of the M28V RAS on elbasvir or ledipasvir. Next-

generation NS5A inhibitors pibrentasvir (ABT-530) and ruzasvir (MK-8408) show a

retain activity against all of the key single-position NS5A RASs in HCV genotypes 1a

and 1b and, therefore, may retain activity despite resistance to current NS5A inhibitors

[125].

Alternatively, mathematical models have been proposed to study and predict the possi-

ble mode of action of the inhibitors [126], many other attempts in medicinal chemistry

are undergoing forward to develop new and better antiviral therapies. HCV resistant as-

sociated variants can occur naturally and usually after virological failure,, DCV resistant

variants tend to persist even after discontinuation of the treatment and cross-resistance

can be observed to all NS5A inhibitors. This remarks the importance of understanding

fully the mechanism of action of NS5A inhibitors can elucidate insights into new drug

development or improvement of existent drugs.

6.1.3.2 Discovery and development

At the beginning it was believed NS5A was not druggable mainly because of its lack of

enzymatic activities. But in 2009, a high throughput screening showed pico to nano an-

tiviral efficacy of leading compounds [36, 127]. One of these compounds was Daclatasvir,

which has been widely studied and available against HCV infection. DCV displayed a

therapeutic index (CC50/EC50) of at least 100,000 in vitro fold and works on genotype

1a, 1b, 2a and 3. Symmetry of this compound defined its antiviral activity having an

EC50 of 5 picomolar (pm) and 9 pm (for genotype 1a and 1b, respectively). Then, clin-

ical development increased towards NS5A inhibitors, initially mono-therapy was tried

using DCV single dose, which showed dropping on HCV plasma RNA levels and it

was well-tolerated treatment with few side-effects. Unfortunately, mono-therapy showed

rapid resistance mutation emergence, which is why nowadays is taken in combination

with other DAAs or traditional standard of care (SOC) therapy [36]. In general, HCV

drug development has advanced in several aspects: interferon-free regimens, genotype

specific drugs, therapies based upon one pill per day, drug potency increased, treatment
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duration were shortened, therapies can be administered orally, despite all, HCV drug

discovery challenges remain to identify and treat difficult-to-treat patients [111].

Figure 6.5: NS5A inhibitor, Daclatasvir in NS5A protein

Tertiary structure of HCV NS5A and structural formula of approved DCV docked into
the two units of an NS5A, shown as a dimer, which are coloured by pink and cyan,

respectively. Modified from [111].

Figure 6.6: Daclatasvir chemical formula

NS5A inhibitor Daclatasvir is also illustrated. FDA-approved compound Daclatasvir
[128]. Taken from [111].

6.1.3.3 Resistance mutations

The downside of using DCV as antiviral therapy is that it comes with selective mutation

resistance. Most of the mutations have been found in NS5A between the amphipatic

helix and domain I linker, specifically in amino acids 28-31 and around amino acid

93 of NS5A, which is one of the most described mutations, Y93H. The role of the

amino acids in linker AH-DI is crucial for NS5A protein to fulfill its functions. This

is one of the main reasons in the present study we aimed to understand the mode

of action of DCV in relation of the structure of the linkers present in NS5A protein.
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It has been identified in several genotypes, which points out a conserved inhibitor-

binding site [129]. Substitutions at L31 and Y93 have the greatest ability to confer

resistance to DCV. These substitutions can also confer resistance to first-generation

NS5A inhibitors, double or triple combinations of NS5A inhibitors with other DAAs,

can generate resistance in replicon systems [122], see Figure 2.7. Resistance mutations

at amino acids M28, L31, P58 and Y93, are also found in DI under DCV treatment [13].

Another relevant aspect of DCV resistance is the existence of HCV quasispecies, which

are variants that can replicate at low levels and usually cannot be detected by current

techniques. However, quasispecies can be selected if any NS5A inhibitor, including DCV

is administered and their expression levels can increase. Additionally, escape pattern can

also confer resistance whereby viral replication returns to pre-treatment levels and the

dominant virus harbours amino acid substitutions which can increase the drug resistance

without impairing the fitness of the virus [130].

6.1.3.4 Mechanism of action

Many questions remain unanswered about the molecular mechanism of action of NS5A

inhibitors, fortunately, some elucidating insights have described a major part of what

these inhibitors can be targeting. Due to NS5A critical role in replication and assembly,

NS5A is an attractive antiviral, which is why it has been widely studied. In HCV

replicon cells, inhibition of NS5A resulted in its redistribution form ER to LD, thus,

the targeting molecules have a dramatic effect on the phenotypic localization of NS5A

[131]. On the same study, kinetic compound analysis showed that the redistribution was

concomitant with the onset of inhibition [1]. As previously mentioned, NS5A inhibitors

were found to block HCV replication by preventing the formation of the MW, which

was not linked to an inhibition of PIP4KIIIα [118].

Recently, Boson et al, showed that short exposure of HCV-infected cells to DCV reduced

viral assembly and induced clustering of structural proteins with non-structural proteins

(Core, E2, NS4B and NS5A), where they appear to be inactive. Daclatasvir reduced

the delivery of viral genomes to these core clustered structures. However, when using

the resistant mutant, NS5A-Y93H, DCV showed no induced clustered structures nor

inhibition of HCV assembly, indicating that DCV targets a mutual specific function of

NS5A inhibiting both processes [117]. This dual mode of action described by Boson et

al, was also observed in our experiments, see section Results III, which conclude that

DCV indeed targets NS5A not only during HCV replication but has an additional effect

during assembly of the viral particles.
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Moreover when considering the sub-stoichiometric antiviral activity it was suggested

that not only DCV but all NS5A inhibitors might target one NS5A molecule which com-

municates using conformational changes to neighbouring NS5A molecules of an NS5A

oligomer [39, 62]. This hypothesis was supposed by Sun et al, where they discovered

the synergist compounds (Syn-395 and Syn-535), as already mentioned in section 2.7.5,

and in Figure 2.8. Syn compounds were found inactive alone against both wild-type

and resistant variants but can greatly enhance the potency of DCV against resistant

variants. Specifically, DCV exhibits an EC50 of 0.033 nM against wild type GT-1a, but

has no activity towards a GT-1a Y93N mutant (EC50 339 nM). The synergist Syn-395,

is inactive towards both wild type and Y93N (EC50 214 nM and 215 nM, respectively).

However, in the presence of Syn-395, the potency of DCV against the Y93N variant is

greatly enhanced. For example, no inhibition of Y93N was observed at 40 nM Syn-395,

but in the presence of 40 nM Syn-395 the potency of DCV against Y93N is enhanced

by approximately 2,600-fold, with the EC50 value shifting from 339 nM to 0.13 nM [62].

This study highlights the importance of determining the oligomerization state of NS5A

protein, which will clarify the conformational changes necessary for the mode of action

of DCV and further NS5A inhibitors.

Lastly it was suggested that indeed NS5A is only targeted at a spatially and temporally

restricted point with crucial role in the HCV RNA replication [131]. This might apply

only for a subset of NS5A molecules. However Guedj et al, hypothesized by using

a mathematical multiscale model that NS5A inhibitors not only inhibit HCV RNA

synthesis, but also virion assembly and/or secretion [126]. This hypothesis was the later

confirmed by Boson et al, as already mentioned. However the present study gives a

parallel importance of the dual mode of action of DCV.



Chapter 7

HCV and cellular membrane

interactions

HCV and many other Flaviviruses exploit cellular resources to facilitate viral propa-

gation, one of them is to manipulate cellular membranes. In HCV case, major rear-

rangements of the ER membranes take place during infection. RNA replication occurs

in tight association with the ER derived membranes which are recognized as replica-

tion organelles. As already mentioned, these organelles have defined architecture and

morphology but little is known about the viral or cellular factors involved in their bio-

genesis. The alteration of lipid composition of cellular membranes can serve as scaffold

for replication changes in the biophysical properties of the membrane such as curvature,

permeability and fluidity [132]. The understanding of the membrane interactions with

viral proteins could help in the development of broad-spectrum antiviral drugs.

Experimental studies have been performed trying to elucidate the role of non-structural

proteins of HCV in the membrane remodelling. Glycine zipper motifs within HCV

NS4B transmembrane segments were found to be crucial for the protein’s self-interaction.

Moreover, glycine residues within NS4B transmembrane helices critically contribute to

the biogenesis of functional replication organelles and, thus, efficient viral RNA replica-

tion. These results reveal how glycine zipper motifs in NS4B contribute to structural

and functional integrity of the HCV replication organelles and in viral RNA replication

[133]. Structural importance of NS4B has also being described through the role of a

second amphipathic helix at the N-terminal (AH2), which revealed to have a key role

in the remodelling events that NS4B performs in cellular membranes. The role of AH2

is to cluster negatively charged lipids within the lipid bilayer, thus reducing the strain

within the bilayer and facilitates the its remodelling. Additionally, the same study de-

scribes that this negatively charged lipids are important to promote dissociation of AH2

37



38

oligomers which might be key for lipid recruitment of NS regulating protein interactions

[134]. Other studies remark the importance of amphipathic helix formations in NS4B,

as disrupting its nature results in abolished RNA replication as well as mislocalisation.

This suggests that amphipathic helices might have a key role in membrane-targeting

domain within the NS proteins [135].

Moreover, studies have revealed that not only NS4B has a structural link to membranes,

NS4A, also forms a detergent-stable complex with NS4B-5A polyprotein substrate [136],

which might be the reason of the requirement of 4A to the cleavage of 4B/5A.

Additional studies on NS3 have shown that it can bind spontaneously and penetrate

to an ER complex membrane containing phosphatidylinositol 4,5-bisphosphate (PIP2),

where an amphipathic helix has an anchoring role to keep the protein on the membrane

surface. Residue R161, was found to be crucial to ensure proper orientation. PIP2-

interaction determines the protein orientation at the membrane while both hydrophobic

interplay and PIP2 interaction can stabilize the NS3-membrane complex [137].

Finally, NS5A, as already mentioned, contains a three dimensional structure of the

membrane anchor domain, the alpha helix anchor which includes amino acid 5 to 25,

which was exhibited a hydrophobic tryptophan rich side embedded in detergent micelles,

while the polar charged side was opposed to the solvent side. The amphipatic helix is

embedded in the cytosolic leaflet of the membrane bilayer. Importantly, mutations in this

position might affect RNA replication without interfering with membrane association of

NS5A [33].

Regarding NS5A and its association to membranes, it comes to one key element, the am-

phipatic helix, as mentioned several times, the AH is key for the membrane localisation,

as it is also essential in the binding to cell-derived membranes. The mechanism of bind-

ing for AH on artificial pure lipid bilayers is different from cell-derived membranes. The

difference observed is the rate of association, were in more complex cell-derived mem-

brane bilayer more time is required for NS5A AH to fully interact with partner ligands

as suggested in [138]. Cho et al, suggest that a cellular membrane protein component

contributes to the association, which would explain how NS5A proteins are localised in

ER or Golgi derived membranes, including lipid droplets but not plasma membranes or

subcellular membranes as others have described [65, 139–141]. Finally, genetic disrup-

tion of AH-mediated membrane association of NS5A has been found to abrogate HCV

RNA replication [142], suggesting that such a structural motif is indeed important for

some essential aspect of the HCV life cycle. The relocalisation of NS5A to the nucleus

after disruption of the amphipathic nature of its N-terminal helix and the strict preser-

vation of this motif in all known HCV isolates, which suggests that disruption of the

AH may have signicant consequences for HCV RNA replication [142].
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7.1 Molecular Dynamics as a tool for membrane studies

x By definition, Molecular dynamics is a method for simulating macromolecular motions

based on an empirical force field that describes the energetics of interactions between

the constituent atoms [143]. This can include atomistic simulations provide us with a

detailed observation of membrane lipid-protein interactions [143–145]. Computer simu-

lations, specifically molecular dynamics are very detailed studies on structural biology,

providing key information from a crystal to a bilayer and monitor its dynamic behaviour

within its native environment. Molecular dynamics is a very powerful tool to understand

and characterize interactions of membrane-protein in order to elucidate mechanisms of

action or conformational changes that might be key for the development of cellular

processes.

In fact, most of membrane protein structures are studied without a lipid bilayer environ-

ment and at best reveal only a small number of bound lipid or detergent molecules, often

incompletely resolved. Importantly, several studies have indicated that lipid molecules

play active roles in modulating membrane protein structure and function [146]. Evi-

dently, there is a need to obtain a better understanding of membrane protein interac-

tions within a bilayer. Ultimately, there has been a growing development in refinement

of computational tools to achieve this purpose. Recently, new methods can predict

bilayer-spanning region of a membrane protein structure, this can already be semi auto-

matic and are available (for example: OPM; http://opm.phar.umich.edu/). However,

for the relevance of the present study we will use the predictions of MD to correlate

experimental data.

http:// opm.phar.umich.edu/
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Objectives of the study

The main aim of the present study is to contribute to the studies on NS5A inhibitors

and elucidate the molecular mechanism of action by some specific objectives:

1. Analysis of NS5A domain I structural linkers in vitro and in silico to understand

the importance of conserved Proline residues within linker structure and their

impact in HCV life cycle.

2. Investigate the role of Proline residues in the interaction with NS5A inhibitor,

DCV.

3. Role of NS5A inhibitor DCV in assembly of HCV viral particles.

4. NS5A amphipatic helix role in membrane interaction and DCV interaction.

Together the present data will give experimental approaches in the recently discovered

dual mode of action of NS5A inhibitor, DCV. Its participation during the inhibition of

NS5A protein during HCV replication and assembly of the viral particles. Additional

computational tools were used to understand in silico the mechanism of action involving

specific conserved Proline residues in the linker structures of NS5A and their role in HCV

life cycle. These key Proline residues were analyzed in silico to evaluate DCV binding

site. Finally, we built up a comprehensive model in which NS5A inhibitors can be

located in the context of membrane interaction and can be used to evaluate and test

new antiviral drugs against NS5A protein.
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Chapter 9

Materials

9.1 Antibodies and dyes

The following table (Table 9.1) contains the primary antibodies, secondary antibodies

used during the present study. The only dye used in the study was: 4’, 6’- diamidino-2-

phenylindole (DAPI).

Table 9.1: Antibodies

Antibody Generated in Manufacturer Dilution/Method

Primary

α-NS5A Mouse monoclonal Austral Biologicals 1:200 IF

α-52 Rabbit polyclonal In house 1:2000 WB

α-NS5A-9E10 Mouse monoclonal gift from C.Rice 1:100 IF, 1:10,000 WB

α-Core C-380 Rabbit polyclonal In house 1:200 IF, 1:2000 WB

α-β actin Mouse monoclonal Sigma 1:20,000 WB

α-Flag M2 Mouse monoclonal Sigma 1:20,000 WB

Secondary

α-mouse IgG AlexaFluor488 Goat polyclonal Molecular Probes 1:1000 IF

α-rabbit IgG AlexaFluor546 Goat polyclonal Molecular Probles 1:1000 IF

α-mouse IgG AlexaFLuor647 Goat polyclonal Molecular Probes 1:1000 IF

α-mouse HRP Goat polyclonal Sigma 1:10,000 WB

α-mouse HRP Goat polyclonal Sigma 1:200 TCID50

9.1.1 Bacteria and cell culture

Bacteria

E.coli DH5α: derived from construct F’end A1 hsR17A (rkmk) supE44 thi-recA1 gyrA

(Nalr) relA1δ (lac ZYA-argF) U169deoR (φ80 dlacδ(lacZ) M15.
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Eukaryotic cells

293 MCB cells: are derived from human embryonic kidney cells and later transformed

with large t antigen of Simian Vacolating Virus 40 (SV40) [147], (a gift from Birke

Bartosch).

Huh7 cells: are derived from a human hepatoma cell line, [148]

Huh7 Lunet: this cells are a subclone of Huh7 cells that was generated by curing a

stable replicon cell line; they support high level of RNA replication.

Huh7 Lunet T7: Huh7-Lunet cells expressing T7 RNA polymerase under selection

with 2 g/ml puromycin [84].

Huh7.5: highly infectable Huh7 cell clone. This cell line was generated by curing a

stable replicon cell line and has high level expression of CD81 [83].

9.1.2 Media

Bacteria:

LB:10g/l tryptone, 5g/l yeast extract, 5g/l NaCl: 1.5% agar-agar were added for solid

media; ampicilin or carbenicilin were added at 100g/ml and kanamycin at 30g/ml for

selection media.

Eukaryotic cells:

DMEM complete R©: cell lines were grown in Dulbecco’s modified eagle medium (In-

vitrogen R©) supplemented with 2mM L-glutamine, non-essential amino acids, 100U/ml

penicilin, 100mg/ml streptomycin, 10% fetal calf serum (FCS; seromed, inactivaded at

56◦C for 30 minutes). For selections antibiotics were added in the already mentioned

concentratios.

OptiMEM: modification of DMEM with reduced serum (Invitrogen R©).

9.1.3 Compounds

The following compounds were used for various experiments (Table 9.2). Titration of

the compounds for the present study is described in the Results section III. Strucutre

of Daclatasvir can be found in Figure 6.6

Table 9.2: Compounds

Compounds

Name Class Source
Daclatasvir (DCV) NS5A inhibitors Bristol-Meyers
Sofosbuvir (SOF) NS5B polymerase inhibitors Gilead Sciences
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9.1.4 Plasmid constructs

Vectors for viral constructs:

pFK: low copy plasmid used as template for in vitro RNA transcription of viral con-

structs. Transcription is driven for T7 polymerase.

pTM: high copy plasmid containing T7 promoter that allows the transcription of viral

RNA transcripts in cells stably expressing the T7 polymerase.

Consensus genomes

HCV wild type and chimeric constructs used in this study are bases on the following

sequence genomes:

Con1: genotype 1b, accession number GeneBank AJ238799.

JFH1: genotype 2a, accession number GeneBank AB047639.

All the viral constructs used and generated in the present study are listed here.

Con1 constructs:

pFK-Con1wt : full length Con1 wild type sequence.

pFK-Con1/S2204R: contains a mutation S2204R in NS5A [149].

pFK-Con1ET : contains mutations E1202G, T1280I and K1846T in NS3 and NS4B.

pFK-Con1/NS5A: contains a mutation in S2197P and two silent nucleotide changes

(C6842T and C6926T)[150].

pFK-I389Luc/NS3-3/Con1/wt: bicistronic subgenomic replicon; the FLuc gene is

expressed under the control of the Con1-IRES; the Con1 NS3 to NS5B region is ex-

pressed under the control of the EMCV- IRES. From [151].

pFK-I389Luc/NS3-3/Con1/GND: contains a deletion of previous construct [151].

JFH1 constructs:

pFK-JFH1wt-dg (JFH1wt): full length JFH1 wild type sequence [88].

pTM-NS3-3-JFH1wt (sgJFH1wt): plasmid for T7 promoter-driven expression of

the NS3-3 portion of wild type JFH1 [79].

Chimeric constructs:

pFK-JFH1/J6/C-846-dg (Jc1): full length virus chimera consisting of the 5NTR of

JFH1, the region encoding core to the first putative TMS in NS2 of J6 and the remaining

sequence of JFH1 [152].

pFK-Luc-Jc1 (Jc1FLuc): bicistronic full length reporter virus; it carries the FLuc

gene in the first cistron driven by the JFH1-IRES and the Jc1 polyprotein driven by the

EMCV-IRES in the second cistron. [86].

pFK-RLuc-2A-core-Jc1 (JcR-2A): monocistronic full length reporter virus; RLuc
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is fused in-frame to the N-terminal 16 aa of the core protein with the foot-and-Mouth

Disease Virus (FMDV) 2A peptide between the luciferase and the following complete

Jc1 open reading (from M Poenish).

pFKi389-Luc-NS3-3’-NS5A-HA-Y93H-dg-JFH1: containing a HA tag in the re-

sistance mutation number 93 of NS5A.

Generated plasmid constructs for BRET

Constructs taken from Dr. Berger and new constructs developed using the following

ones (Table 9.3), we use several in combination.

Table 9.3: BRET constructs for each one of NS5A linkers

pcDNA RLucF1 NS5A Linker 1 Thr-Gly-Gly-Ser-Asp-Ile

pcDNA RLucF2 NS5A Linker 1 Thr-Gly-Gly-Ser-Asp-Ile

pcDNA YFPF1 NS5A Linker 1 Thr-Gly-Gly-Ser-Asp-Ile

pcDNA YFPF2 NS5A Linker 1 Thr-Gly-Gly-Ser-Asp-Ile

pcDNA RLucF1 NS5A Linker 2 Thr-Gly-Pro-Ala-Pro-Ala-Pro-Gly-Gly-Ser-Asp-Ile

pcDNA RLucF2 NS5A Linker 2 Thr-Gly-Pro-Ala-Pro-Ala-Pro-Gly-Gly-Ser-Asp-Ile

pcDNA YFPF1 NS5A Linker 2 Thr-Gly-Pro-Ala-Pro-Ala-Pro-Gly-Gly-Ser-Asp-Ile

pcDNA YFPF2 NS5A Linker 2 Thr-Gly-Pro-Ala-Pro-Ala-Pro-Gly-Gly-Ser-Asp-Ile

pcDNA RLucF1 NS5A Linker 3 Thr-[Gly-Gly-Gly-Gly-Ser]3-Asp-Ile

pcDNA RLucF2 NS5A Linker 3 Thr-[Gly-Gly-Gly-Gly-Ser]3-Asp-Ile

pcDNA YFPF1 NS5A Linker 3 Thr-[Gly-Gly-Gly-Gly-Ser]3-Asp-Ile

pcDNA YFPF2 NS5A Linker 3 Thr-[Gly-Gly-Gly-Gly-Ser]3-Asp-Ile

pcDNA RLucF1 NS5A Linker 4 Thr-Gly-Ala-[Glu-Ala-Ala-Ala-Lys]2-Ala-Gly-Gly-Ser-Asp-Ile

pcDNA RLucF2 NS5A Linker 4 Thr-Gly-Ala-[Glu-Ala-Ala-Ala-Lys]2-Ala-Gly-Gly-Ser-Asp-Ile

pcDNA YFPF1 NS5A Linker 4 Thr-Gly-Ala-[Glu-Ala-Ala-Ala-Lys]2-Ala-Gly-Gly-Ser-Asp-Ile

pcDNA YFPF2 NS5A Linker 4 Thr-Gly-Ala-[Glu-Ala-Ala-Ala-Lys]2-Ala-Gly-Gly-Ser-Asp-Ile
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9.1.5 DNA oligonucleotides

Aliquots were made and saved at -20. The following table shows the DNA oligonu-

cleotides used to perform experiments and its respective sequences (Table 9.4).

Table 9.4: Primer sequences

Primer Sequence primer (5’-3’)
S/2A/6978 TCCTCAGTGAGCCAGCTATCAGCA
S/2A/6767 CATAGGTTTGCACCCACACCAAAG
S/2A/7139 GAGCCCTCAATACCATCGGAGTG
S/2A/7194 CCAGGAGCGGGTTTCCACGGGCCT
S/2A/7380 CCATATCAGAAGCCCTCCAGCAA
A/2A/3089 CGTCAGAGCTCACGCTCTGATAAG
A/24/7759 GCCTGGAGATCCGGACCTGGAGTCTG
A/2A/7839 GTCATAATGGGCGTCGAGCACTTG

9.1.6 Chemicals and manufacturers

The following Table shows the chemicals that were used and the manufacturer which

provided them, see Table 9.5. All chemicals are stored under label conditions and in the

chemical room where temperature is regulated.

9.1.7 Buffers and solutions

The following Figure is a list which describes the buffers and solutions used in the present

study (Figure 9.1). Conditions were all established previously in the laboratory, were

most of the buffers and solutions are freshly made and distributed. All buffers and

solutions are stored at the correct temperature and conditions indicated.
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Chemical Manufacturer

2-Mercaptoethanol Roth, Karlsruhe
35 S methionine/cysteine Perkin Elmer, Rodgau
Agarose Invitrogen, Karlsruhe
Albumin, from bovine serum (BSA) Sigma-Aldrich, Steinheim
Ampicillin Roche, Mannheim
Benzonase Merck, Darmstadt
Calf Intestinal Phosphatase (CIP) New England Biolabs, Frankfurt/Main
Coelenterazine (native-CTZ) PJK, Kleinblittersdorf
Complete protease inhibitor cocktail Roche, Mannheim
CytoTox 96 Non-Radioactive Cytotoxicity Assay Promega, Mannheim
DAPI Molecular Probes, Karlsruhe
Digitonin Sigma-Aldrich, Steinheim
D-Luciferin PJK, Kleinblittersdorf
DMSO Roth, Karlsruhe
DNaseI Promega, Mannheim
dNTPs Roche, Mannheim
ECL Plus Western Blot Detection System Amersham/Perkin-Elmer
Expand Long Template PCR Kit Roche, Mannheim
Expand Reverse Transcriptase System Roche, Mannheim
FCS Invitrogen, Karlsruhe; PAA, Clbe
Geneticin (G418) Invitrogen, Karlsruhe
Glycerol Roth, Karlsruhe
Kanamycin sulfate Serva, Heidelberg
L-Glutamine for cell culture Invitrogen, Karlsruhe
Lipofectamin 2000 Invitrogen, Karlsruhe
Mirus TransIT Transfection Reagent Mirus Bio, LLC, Madison, WI
Nucleobond PC100 Macherey-Nagel, Dren
Nucleospin Extract II Macherey-Nagel, Dren
Nucleospin Plasmid Macherey-Nagel, Dren
Nucleospin RNA II Macherey-Nagel, Dren
OptiMEM Gibco, Invitrogen
PEG-8000 Applichem, Darmstadt
Penicillin Invitrogen, Karlsruhe
PhosphoStop phosphatase inhibitor cocktail Roche, Mannheim
Polyacrylamide : Bisacrylamide Mix (29:1) Applichem, Darmstadt
Protein A/G sepharose beads Biorad, Mnchen
Puromycin Sigma-Aldrich, Steinheim
PVDF Western Blot membrane Perkin Elmer, USA
RNasin Promega, Mannheim
rNTPs Roche, Mannheim
Sodium dodecylsulfate Applichem, Darmstadt
Streptomycin Invitrogen, Karlsruhe
Sucrose USB, Europe
Superscript III Reverse transcriptase Invitrogen, Karlsruhe
T4 DNA-Ligase Fermentas, St. Leon-Rot
T7 polymerase Promega, Mannheim
T7 RNA polymerase Promega, Mannheim
TEMED Applichem, Darmstadt
Triton X- 100 Merck, Darmstadt
Tween-20 Roth, Karlsruhe

Table 9.5
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Buffer/Solution Composition  

Ampicilin 100mg/ml ampicilin in H2Odd, filter sterilized and stored 
at -20°C  

Blasticidin stock 

solution 

5mg/ml in H2O, sterile filtered  

Bradford reagent 100mg coomassie g250 is dissolved in 50ml 100% ethanol 

and added to 100ml 85% phosphoric acid (final volume 1), 

filtered and stored at 4°C 

Colenterazine 5mg colenterazine in 11.6ml methanol, store at -80°C 

Cytomix 120mM Kcl, 0.15mM CaCl2, 10mM potassium phosphate 

buffer (pH7.6), 25mM HEPES (pH7.6), 2mM EGTA, 

5mM MgCl2, adjust the pH to 7.6 using KOH, freshly add 
2mM ATP (pH 7.6 adjusted with KOH), 5mM glutathione 

and 1.25% DMSO 

DMEM complete Dulbecco’s modifies minimal essential medium (GIBCO, 

Invitrogen) containing 2mM L-glutamine (GIBCO, 
Invitrogen, 1x nonessential aminoacids (GIBCO, 

Invitrogen), 100U/ml streptomycin (GIBCO, Invitrogen) 

and 10% (v/v) fetal calf serum (heat inactivated at 56°C 

for 20 min).  

DNA loading dye 

orange (10x) 

45ml 50% glycerol, 1ml TAE(50x), 0.5ml EDTA (0.1M, 
pH 8.0),0.13g Orange G, H2Odd to 50ml 

Firefly Luciferase 

assay 

buffer25mM glycine-glycine (pH7.8), 15mM potassium 

phosphate buffer (pH7.8), 15mM MgSO4, 4mM EGTA, 

freshly add 1mM DTT and 2mM ATP just before use 

IF blocking buffer 3-5% (w/v) BSA in PBS 

LB-Agar 10g Bacto-Trypton, 5g yeast extract, 2.5g NaCl, 20g Agar 

in 1l H2Odd, autoclaved 

Luciferase lysis 

buffer 

1% (w/v) triton x-100, 10% glycerol, 25mM glycine-

glycine (pH7.8), 15mM MgSO4, 4mM EGTA, keep at 

4°C, freshly add 1mM DTT just before use 

Luciferin solution 1mM luciferine in 25mM glycyl-glycyl, store at -80°C 

Luria Broth (LB) 

medium 

10g Bacto-Trypton, 5g yeast extract, 2.5g NaCl, 20g Agar 

in 1l H2Odd, autoclaved 

NEB buffer 1 10mM Bis Tris Propane Hcl, 10mM MgCl2, 50mM 

NACl, 1mM DTT (pH7.9 at 25°C)  

NEB buffer 2 10mM Tris-HCl, 10mM MgCl2, 50mM NaCl, 1mM DTT 

(pH 7.9 at 25 °C) 

NEB buffer 3 50mM Tris-HCl, 10mM MgCl2, 100mM NaCl, 1mM 

DTT (pH 7.9 at 25 °C) 

Paraformaledhyde 

4% 

4g paraformaldehyde dissolved stirring at 60°C in 100 ml 
PBS 

PBS (10X) 400 g NaCl, 10 gKCl, 12 g KH2O4, 89g Na2HPO4 x 

2H2O, add 5l H2O 
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Buffer/Solution Composition  

Protein sample buffer 

(6x) 

375mM Tris-HCl (pH 6.8), 60% Glycerol, 6% (w/v) SDS, 
0.1% (w/v), Bromphenol Blue, 9% (v/v) b-

Mercaptoethanol 

Puromycin stock 

solution 

1mg/mg in H2O, sterile filtered 

Renilla Luciferase 

assay 

25mM glycine-glycine (pH 7.8), 15mM potassium 

phosphate, buffer (pH 7.8), 15mM MgSO4 , 4mM EGTA 

Resolving gel buffer 1.5 M Tris-HCl, pH 8.8, 0.4% (w/v) SDS 

Semi-dry blotting 

buffer 

48mM Tris, 39mM Glycine, 0.00375 (w/v) SDS, 20% 

(v/v) Methanol in dH2O 

Sodium acetate (pH 

4.5) 3M 

3M Sodium Acetate, pH adjusted to 4.5 with Glacial 
Acetic acid 

Sodium acetate (pH 

6.8) 2M 

2M Sodium Acetate, pH adjusted to 4.5 with Glacial 

Acetic acid 

Stacking gel buffer 1M Tris-HCl (pH 6.8), 0.8% (w/v) SDS 

TAE (50x) 2M Tris, 2M Acetic Acid, and 50mM EDTA, pH 8.3 

TCID 50 detection 

substrate - solution II 

75ml 0.5M NaAcetate, 30ml 0.5M acetic acid, 945ml 

dH2O (store at 4°C) 

TCID 50 detection 

substrate solution I 

0.4g 3-amino-9-ethyl carbazolein in 125ml N,N 

dimethylformamide (store at 4 °C in the dark; use within 3 
months) 

TGS 150mM Tris, 1,92M Glycine, 1% (w/v) SDS 

Transcription buffer 

RRL (5x) 

400mM Hepes (pH 7.5), 60mM MgCl 2, 10mM 

spermidine, 200mM DTT 

Trypsin solution 0.05% trypsin; 0.02% EDTA 

Western Blot 

blocking buffer 

0.5% (w/v) of Tween-20, 5% Protease free Milk Powder 

in PBS 

Western Blot washing 

buffer (PBS-T) 

0.5% (w/v) Tween-20 in PBS 

 

Figure 9.1: Buffers, solutions and composition



Chapter 10

Methods

All centrifugation steps in Eppendorf tubes R© were performed in table top centrifuges,

Biofuge pico (Heraeus instruments R©) or 5417R (Eppendorf R©) for RT or 4◦C, respec-

tively. Fifty ml polypropylene conical tubes (Falcon R©) were centrifuged in a Sorvall

Centrifuge RC5C Plus d with a F15-S FiberLite rotor R©. Cell suspensions were cen-

trifuged in a Multifuge 3 S-R, rotor 75006441 (M&S Laborgerte R©). All centrifugation

steps were performed at RT, if not stated otherwise. Experiments with infectious HCV

were done in a BSL3 laboratory.

10.1 Preparation of plasmid DNA from E. coli cultures

Small scale preparation of plasmid DNA (miniprep) Minipreps of plasmid DNA

were performed with 2 ml o/n E. coli culture which were centrifuged in 2 ml Eppendorf

tubes step wise for 30 s at 11,000 g. Plasmid DNA purification was obtained by using the

NucleoSpin R©Plasmid Kit according to the manufacturer’s protocol. The kit provides

all buffers for an alkaline based cell lysis and uses a silica membrane based spin column

to further purify the plasmid DNA. The DNA was eluted in either 50µl H2O or 5mM

Tris-HCl (pH 7.5).

Middle scale preparation of plasmid DNA (midiprep) For larger plasmid prepa-

rations of low copy vectors 100 ml o/n E. coli cultures were pelleted in 50 ml tubes. For

plasmid preparation the NucleoSpin R© Plasmid Kit was used with all buffer amounts

multiplied by 16. The DNA plasmid elution was divided onto four columns in 75µl H2O

or 5mM Tris-HCl (pH 7.5) per column.

50
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10.2 Digestion of DNA with restriction enzymes

Separation of linear DNA fragments by their length was done using agarose gel elec-

trophoresis. The percentage of the gel depended on the size of the DNA fragment.

Typically a 1% (w/v) gel was used to separate DNA fragments with a size between 700

and 8,000 bp. For higher fragments a 0.8% and for smaller fragments a 1.2% gel was used,

respectively. The agarose was dissolved and boiled in 1X TAE buffer. Ethidium bromide

was added to a final concentration of 1µg/ml. DNA samples with 10% DNA loading

buffer as well as a molecular weight marker (λ-DNA digested with Eco130I/Sty1I) were

loaded on the agarose gel which was run horizontally in 1X TAE buffer at 100-200 V

for 15 to 45 min. DNA was visualized by UV light and the DNA band of interest was

cut out of the gel. Agarose extraction and DNA purification from the band was done

by using the NucleoSpin R© Extract II Kit according to the manufacturer’s protocol.

Usually DNA was eluted in 30µl H2O or 5mM Tris-HCl (pH 7.5).

10.3 Ligation of DNA fragments

For ligation reactions the linearised and dephosphorylated plasmid as well as one or two

DNA fragments of interest (either a plasmid-derived DNA fragment or a PCR product)

were mixed in a ratio of 1:1 with 5U T4 DNA ligase and 1/10 ligase buffer in a total

reaction volume of 10µl. After incubation for 2h at RT or o/n at 16◦C the complete

reaction was used to transform competent bacteria.

10.4 Generation and transformation of competent bacteria

Competent bacteria DH5α were generated by using the CaCl2 method. Bacteria of an

overnight culture were diluted 1:50 with LB-medium and incubated at 37◦C until the

bacterial growth reached its logarithmic phase (OD 600 of 0.8 to 1). The culture was

centrifuged at 4◦C for 10 min at 6000 rpm and the pellet was resuspended in ice-cold

0.1M CaCl2 and kept for 30 min on ice. After centrifugation at 4◦C for 5 min at 6000

rpm the pellet was resuspended in a ratio of 1:10 in 0.1M CaCl2 with 15% glycerol,

aliquoted, frozen in liquid nitrogen and stored at -70◦C. For transformation, 100µl of

competent bacteria and 10µl ligation reaction (or approx. 0.1µg plasmid DNA) were

mixed and incubated for 20 min on ice. After a heat shock at 42◦C for 2 min the reaction

was incubated for 5 min on ice, supplemented with 800µl of LB medium and incubated

for 30 min at 37◦C in a shaker. Finally, bacteria were pelleted (2 min, 6000 rpm) and the

supernatant was discarded except for approx. 50µl. The pellet was resuspended in the
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remaining medium and plated on LB agar plates containing the appropriate antibiotic

(ampicillin, 100µg/ml; kanamycin, 30µg/ml). Colonies were grown o/n at 37◦C.

10.5 Sequence analysis of DNA

For sequencing, an ABI 310 sequencer (Applied Biosystems R©) was used according to

the manufacturer’s instruction with slight modifications. Approx. 300ng of plasmid

DNA were mixed with 2µl big dye (containing buffer, polymerase, deoxy- and dideoxy-

nucleotides), 1µl primer (5 pmol/µl), 1µl 5X sequencing buffer and water to a final

volume of 10µl. The following program was used for the cycle sequencing reaction:

1. 95 ◦C for 10 sec

2. 55 ◦C for 30 sec

3. 60 ◦C for 4 min (30 cycles step 1. 3.)

4. 10 ◦C until stop

PCR sample was denatured by addition of 2% SDS in a total volume of 100µl and incu-

bation at 98◦C for 5 min. After cooling down to RT, DNA fragments were precipitated

with 1/10 vol 3M sodium acetate and 2.5 vol ethanol by centrifugation for 20 min at

13000 rpm. Finally, the pellet was washed once with freshly prepared 70% ethanol (3

min, 13,000 rpm), air-dried briefly, dissolved in 20µl Hi-Di-formamide and sequenced

with the ABI PRISM 31.

10.5.1 PCR and site directed mutagenesis

PCR was performed to selectively amplify a defined DNA sequence from a DNA template

using Taq (thermostable DNA polymerase named after the thermophilic bacterium Ther-

mus aquaticus) as polymerase according to the manufacturer’s protocol. Two oligonu-

cleotide primers that are complementary to approx. 25 bp upstream and downstream

(sense, S and antisense, A) of the region of interest had to be designed. Depending on

the following cloning strategy, restriction enzyme recognition sites were added to the

primer sequences. A PCR contained the following reagents:
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Table 10.1: PCR ingredients

Reagent Volume

10x PCV buffer 5µl

dNTPs mix (10mM each) 1µl

sense primer (100pmol/µl 0.5µl

antisense primer (100pmol/l 0.5µl

DNA template <500ng

Taq (5U/µl) 0.25µl

water add 50µl

PCR was performed with the standard program:

1. 95 ◦C for 1 min

2. 55 ◦C for 30 sec (denaturation)

3. 50 ◦C for 1 min (annealing)

4. 68 ◦C for 1 min (elongation, 8 cycles)

5. 68 ◦C for 5 min

6. 4 ◦C until stop

For the site-directed mutagenesis PCR was performed. Two overlapping mutagenesis

primers (sense and antisense) were designed to anneal to the mutation target and have

at least 18 nucleotide overlap. The flanking primers (forward and reverse) are designed

to carry restriction sites for cloning. The products generated from the two first round

PCR involving each flanking primer along with matching fusion primer are purified and

used as template in the subsequent PCR reaction, where the priming is done with the

flanking primers. The products generated are treated with restriction endonucleases

and cloned into target plasmid. For mutagenesis PCR generally a non-proofreading Taq

polymerase was used.

10.6 In vitro transcription and RNA purification

Ten µg of DNA was linearized to prepare run off transcripts of the correct length.

Constructs carrying the genomic ribozyme of hepatitis δ (δg) downstream of the 5’

end of the RNA were additionally digested with MluI, which cuts directly after the

ribozyme sequence, in a reaction volume of 100µl. All full-length Con1 constructs had

to be linearized with AseI and subsequently with ScaI. For purification, plasmid DNA

was mixed with 20µl 3M sodium acetate (pH 6.0) in a total volume of 200µl extracted
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twice with 200µl TE saturated phenol and once with 200µl chloroform. At each step,

the sample was first mixed with a vortex and then centrifuged (5 min, 13,000 rpm) for

proper separation of the organic and aqueous phases and the upper aqueous phase was

transferred to a new Eppendorf tube. To precipitate the DNA, 2.5 vol 100% ethanol

were added and the sample was left at -20◦C for at least 30 min. After centrifugation

for 20 min at 13,000 rpm at 4◦C, the pellet was washed once with 200µl 70% ethanol (3

min, 13,000 rpm), air-dried briefly and dissolved in 60µl RNase-free H2O. For in vitro

transcription, 20µl 5 x RRL transcription buffer, 12.5µl 25 mM rNTPs, 2.5µl RNasin

(40 U/µl) and 4µl T7 RNA polymerase (19 U/µl) were added to the purified DNA.

After incubation for 2 h at 37◦C, again 2µl of T7 RNA polymerase were added, followed

by another 2 h incubation at 37◦C. Transcription was terminated by addition of 6µl of

RNase-free DNase (1 U/ml)) for 30 min at 37 ◦C. For purification of the RNA, 60µl

(1/10) 2 M sodium acetate (pH 4.5), 440µl H20 and 400µl water-saturated phenol were

added. The sample was mixed with a vortex, left on ice for 10 min and centrifuged at 4

◦C for 10 min at 13,000 rpm. The upper phase was transferred to a new Eppendorf tube

and extracted again with 1 vol chloroform (vortex, 5 min at 13,000 rpm). RNA was

subsequently precipitated with 0.7 vol isopropanol (15 min at 13,000 rpm), washed once

with 70% ethanol (3 min at 13,000 rpm) and dissolved in 50µl RNase-free H2O. Agarose

gel electrophoresis was used to determine the RNA integrity and the concentration was

calculated by measurement of the optical at 260 nm.

10.7 Cell culture and virological methods

10.7.1 Culture of cell lines

All cell lines used in this work were cultured as monolayers on cell culture dishes or

flasks, using DMEM complete and the respective selection drug, if needed (see Materials

section 9). In general, cells were split twice a week 1:4 to 1:6, depending on the cell

line and the momentary growth. To this end, cells were washed with PBS, detached

by incubation in trypsin solution (2 min at 37◦C), sheared by pipetting up and down

through a 1000µl tip to yield a single cell suspension and a fraction of the cells was

transferred to a new dish. For long-term storage cells were frozen in liquid nitrogen.

Therefore, usually cells of a confluent 15 cm dish were washed with PBS, trypsinized,

resuspended in 10ml DMEM complete and centrifuged for 5 min at 700 rpm. Cells

were then resuspended in 9 ml ice-cold DMEM supplemented with 20% FCS and 10%

DMSO and frozen in five 1.8 ml aliquots in pre-chilled tubes for 24 or 48 h at -70◦C

before storage in liquid nitrogen. For thawing, cells of one aliquot were incubated at

37◦C, washed with 10 ml DMEM complete (5 min at 700 rpm), resuspended in 5ml
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and seeded into a T25 flask. Selection marker(s) were added immediately or 24 h after

seeding.

10.7.2 Cell line for trans-complementation assay

Huh-7 cells were cotransfected by electroporation as previously described with 5µg of a

neo-replicon as helper RNA and 1µg of a replication-deficient luciferase reporter repli-

con. After addition of 12ml of complete DMEM, 1ml aliquots of the cell suspension were

seeded into a 10 cm2 culture dish and harvested at the time points given in Results.

For determination of luciferase activity, cells were washed three times with phosphate-

buffered saline and scraped off the plate into 350µl of ice-cold lysis buffer (1% Triton

X-100, 25mM glycylglycine, 15mM MgSO4, 4mM EGTA, and 1mM DTT). One hun-

dred microliters of lysate was mixed with 360µl of assay buffer (25mM glycylglycine,

15mM MgSO4, 4mM EGTA, 1mM DTT, 2mM ATP, and 15mM K2PO4 [pH 7.8]) and,

after addition of 200µl of a 200µM luciferin stock solution, measured in a luminometer

(Lumat LB9507; Berthold, Freiburg, Germany) for 20 seconds. Values obtained with

cells harvested 4h after electroporation were used to determine the transfection efficiency.

(2)
pWPI_NS3-5A_Y93H_BLR

(1)
pWPI_NS3-5A_BLR

Figure 10.1: Cell Line

Western Blot showing NS5A for the cell line generated. (1) Assembly mutant:
pWPI-NS3-5A-BLR and (2) Resistant mutant: pWPI-NS3-5A-Y93H-BLR.

10.7.3 Lentivurs transduction of cells for new cell line production

293T cells 6X(1.2X106) were seeded in a 6 cm dish in a volume of 4 ml DMEM complete,

24 h after seeding cells were replaced with 4 ml of fresh medium and transfected with

the CalPhos mammalian transfection kit (Becton Dickinson R©). All transfection solu-

tions were calibrated at RT. For transfection, 6.4µg packaging plasmid (psPAX2), 6.4µg

transfer vector encoding the respective shRNAmir and puromycin resistance (pAPM)

and 2.1µg VSV envelope glycoprotein (pMD2.G) were mixed and diluted to a final vol-

ume of 438µl in H2O. Then, 62µl 2 M CaCl 2 and 500µl 2X HBS buffer were added and

mixed well by pipetting up and down. The mixture was immediately added to the cell

culture dish in a drop-wise fashion and the plate was gently swirled to evenly distribute
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the transfection mix. After 3 to 4 h, a fine precipitate formed which could be easily

confirmed under the microscope. After 6 to 24 h, the trasnfection mix was replaced 5

by 5 ml of fresh complete DMEM. On the next day, 2X106 of Huh7.5 target cells were

seeded in a 6-well plate. Twenty-four hours later (48 h post transfection), the lentiviral

particles containing supernatant from the 293T cells were harvested and replaced by

another 4 ml fresh DMEM complete. The supernatant was filtered through a 0.45µm

filter and 1.5 ml was used to infect the target cells. After 12 h, fresh 1.5 ml infectious

supernatant was used to infect the target cells a second time. On the next day, the

medium from the 293T cells was harvested and filtered a second time and pooled with

the infectious supernatant from the previous day. Target cells were infected a third

time with 1.5 ml of infectious supernatant for 4 to 6 h and were then supplied with

fresh DMEM complete containing 0.4µg/ml puromycin. As soon as possible, cells were

expanded to a T25 flask and 1µg/ml puromycin was added. Cells were expanded and

amount of selection antibiotic was increased up to 2-5µg/ml puromycin.

10.7.4 Electroporation

Monolayer of cells were washed once with PBS, trypsinized and sheared by pipetting

up and down through a 1 ml tip to get single-cell suspensions. After washing once with

DMEM complete (5 min at 7, 700 rpm) and once with 50 ml PBS (5 min at 700 rpm)

Huh7-Lunet cells were resuspended at 1X107 cells per ml in cytomix, whereas Huh7.5

cells were resuspended at 1.5X106 cells per ml. Unless otherwise stated, 5-10 µg of in

vitro transcribed RNA were mixed with 400µl cell suspension and electroporated with

a Gene Pulser system (Bio-Rad R©, Munich) in a cuvette with a gap width of 0.4 cm

(Bio-Rad) at 960 µF and 270 V. Cells were immediately transferred to DMEM complete

and seeded as required for the indicated experiment.

10.7.5 TCDI50 by VIRAPUR (Virus Purification)

The procedure is performed to determine the infectious titer of any virus which can

cause cytopathic effects (CPE) in tissue culture over a reasonable period of 5 to 20 days

while cells in culture remain viable. This procedure is performed to quantify how much

infectious virus is in a preparation by visual inspection of cell morphology or cytophatic

effect (CPE). Not all virus types cause CPE in tissue culture, and the cell line and

virus must be carefully matched in order to see a cytopathic effect. The TCDI50 is

determined in replicate cultures of serial dilutions of the virus sample. The titer of

the virus stock is expressed as the TCDI50 which can be calculated using a statistical

Excel program and is more accurate than a negative end-point. Previous to infection,
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prepare 48-well dishes by seeding each well with 7104 cells in 0.5ml DMEM plus 7.5%

fetal bovine serum, 4mM glutamine, antibiotics. Alternatively another cell density may

be required, based on the cell line required for viral growth. On the day of infection,

make dilutions of virus sample in PBS. Make a series of dilutions at 1:10 of the original

virus sample. Fill first tube in series with 2 ml of PBS, fill the remaining 6 tubes in

series with 1.8 ml of PBS. Vortex virus sample, transfer 20µl of virus to first tube,

vortex, discard tip. With a new tip, transfer 200µl of first dilution to next tube. Vortex,

discard tip. Repeat series of dilutions through the last tube. Calculate the TCID50 titer

using the Excel spreadsheet available for download from Yale School of Medicine at the

following url: www.med.yale.edu/micropath/pdf/Infectivity%20calculator.xls or

in our case use Excel file by Dr. Marco Binder available for laboratory users.

10.7.6 Determination of virus titres in cell culture supernatants and

cell lysates

Virus titers in cell culture supernatants were determined as described in a publication of

Lindenbach and coworkers [5] with slight modifications. Huh7.5 target cells were seeded

at a density of 1.1104 cells/well in 96-well-plate in a total volume of 200µl DMEM

complete. Twenty-four hours later, serial dilutions of virus supernatant were added

with 8 wells per dilution. Three days later, cells were washed with PBS, fixed for 20 min

with ice-cold methanol at -20◦C, washed once with PBS. After three washes with PBS,

NS3 was detected with 30µl/96-well of a 1:100 dilution of antibody 2E3 or NS3-49 1:1000

in PBS for 1 h at RT or o/n at 4◦C. Cells were washed three times with PBS and bound

primary antibodies were detected by incubation with 30µl/96-well peroxidase conjugated

anti-mouse or rabbit antibody diluted 1:200/500 in PBS. After 1 h incubation at RT

cells were washed three times with PBS and peroxidase activity was detected by using

30µl/96-well of a home made TCID50 see 10.7.5 detection substrate (1.5 ml solution 1

plus 5 ml solution 2 and 20µl H2O2; see Chemicals Table at section 9). Virus titers

(50% tissue culture infective dose [TCID50/ml]) were calculated based on the method

of Spearman and Kärber. Intracellular infectivity assays as determined with freeze-

thaw lysates of transfected cells were at 48 h post transfection. Huh7-Lunet cells were

extensively washed with PBS, scraped off the plate and centrifuged for 5 min at 700xg.

Cell pellets were resuspended in 1 ml of DMEM containing 5% FCS and subjected to

three cycles of freezing and thawing using liquid nitrogen and a thermo block set to 37

◦C. Samples were then centrifuged at 10,000Xg for 10 min at 4 ◦C to remove cell debris,

and cell-associated infectivity was determined by TCID50 assay. Culture supernatants

from transfected cells were treated in the same way and infectivity was determined in

parallel. Importantly, establishment of 4 h post electroporation comes as a result of

www.med.yale.edu/micropath/pdf/Infectivity%20calculator.xls
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translation of transfected RNA and indicates transfection efficiency. This is why 4 h

time point is used in the present study as a threshold for transfection efficiency.

10.7.7 Luciferase viral reporter assays

Quantification of luciferase reporter activity (Firefly or Renillla-Luciferase) was used to

determine transient HCV RNA replication of subgenomic or full-length virus constructs.

Transfected or infected cells were harvested at the appropriate time points (see individ-

ual experiment description) by washing once with PBS and addition of ice-cold luciferase

lysis buffer (350µl per 6-well, 200µl per 12-well and 100µl per 24-well).

(A) Firefly-Luciferase assay. For measurement of cells out of 6 or 12-wells 150 or

50µl lysate were mixed with 360µl luciferase assay buffer and, after addition of 200µl

of luciferin substrate solution, measured for 20 sec in a luminometer (Lumat LB9507 R©;

Berthold, Freiburg, Germany).

(B) Renilla-Luciferase assay. For measurement of cells out of 12 or 24-wells 20µl

lysate were mixed with 100µl Renilla-Luciferase substrate solution and measured for 10

sec in a luminometer (Lumat LB9507 R©; Berthold, Freiburg, Germany). Cells in 24-well

plates measured after addition of 400µl Renilla-Luciferase substrate solution for 10 sec

in a plate luminometer (Mithras LB 940 R©, Berthold Technologies, Freiburg, Germany).

Each well was measured in duplicates. Kinetics of replication were determined by nor-

malizing the relative light units (RLU) of the different time points to the respective 4 h

value. Established 4 h post electroporation is the threshold for HCV infection to be sta-

bilized in the cells, this is why we use 4 h post-electroporation as the normalizing value

for every assay containing HCV electroporation. If replication of viral constructs was

compared in cells treated with different siRNAs then replication was normalized to cells

treated with the negative control siRNA, or with Hiperfect R©(unique blend of cationic

and neutral lipids that enables effective siRNA uptake and efficient release of siRNA in-

side cells, resulting in high gene knockdown even when using low siRNA concentrations)

from QIAGEN R©.

10.7.8 Transcomplementation assay

Huh7-Lunet cells were co-transfected with 5µg of Jc1 genomes and 0.5µg of helper RNAs

containing a Renilla luciferase (RLuc) reporter gene (corresponding to a 1:0.1 molar ra-

tio, respectively). Electroporated cells were resuspended in 20 ml culture medium. Two

ml aliquots were seeded per well of a 6-well plate and replication was determined by

measuring luciferase activity at 4, 24, 48 and 72 h post-electroporation. Transient repli-

cation of helper RNAs was determined by luciferase assay at 4, 24, 48 and 72 h after
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electroporation. Values obtained 4 h post electroporation were used to determine the

transfection efficiency. Supernatants were harvested 24, 48 and 72 h after electropora-

tion and concentrated three times by using Amicon columns (Millipore R©, Schwalbach)

according to the instructions of the manufacturer. Release of infectious particles from

co-transfected cells was determined by TCID50 assay by using the concentrated culture

supernatants. Replication of trans-packaged subgenomic helper RNA was determined

by luciferase assay performed with lysates of Huh 7.5 cells that had been inoculated

with the concentrated culture supernatants of co-transfected cells. See generated cell

line 10.7.2 and Figure 10.1.

10.8 Drug addition experiments

10.8.1 Dose-response assay using stable replicon cell lines and JCR2a

reporter virus

For dose-response LucUbiNeo Con1ET, using stable replicon cells, LucUbiNeo JFH1,

were seeded into a 12-well plate at a density of 4X104 cells/well. One day later, Sofos-

buvir (SOF) or BMS-790052) (DCV) was added at different concentrations. As mock

control, DMSO was added according to the highest inhibitor concentration used in the

assay. After 72h of treatment, cells were washed, lysed and analyzed by luciferase activ-

ity using Luminometer measurement. EC50 and EC90 values were calculated by using

GraphPad Prism R©(version 5.03). For dose-response assays using reporter virus JcR2a,

Huh7 cells were seeded one day prior to infection in a 12-well culture dish at a density of

4X104 cells/well. Eight hours post infection (five TCID50/cell) cells were incubated with

indicated concentrations. As mock control, DMSO was added according to the highest

inhibitor concentration used in the assay. After 72h of treatment, cells were washed,

lysed and analyzed by luciferase activity assay, EC50 and EC90 were calculated.

10.8.2 Full-length reporter virus JCR2a kinetics after DCV or SOF

treatment

Huh7 cells transfected by electroporation with in vitro transcribed RNA of HCV JCR2a

full-length reporter virus were seeded in 12-well culture plates. Two days later DMSO,

SOF or DCV was added at a concentration of 5X EC90 . Cell lysates were harvested

after 0, 10, 24 and 48h of treatment and analyzed by luciferase activity assay. Huh7.5

FLuc cells were seeded in a 12-well culture plate at a density of 1X105 cells/well. One

day later they were infected with JCR2a virus (1 TCID50/ml) for 48h before DMSO,
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SOF or DCV was added at a concentration of 5XEC50 . After 6, 12, 24 and 48h cell

lysates were harvested and used for luciferase activity assay. Note that in this case

Renilla Luciferase activity as well as firefly luciferase activity was determined to study

virus replication and cell growth, respectively.

10.8.3 Full-length reporter virus JCR2a kinetics and DCV pre-treatment

For replication kinetics of reporter virus JcR-2a (pFK i389RLuc2A Core-3-Jc1), Huh7.5

cells were seeded into a 12-well culture plate at a density of 1X104 cells/well. One

day later cells were infected with JCR2a with one TCID50/cell. After 48h inoculation,

medium was replaced by fresh medium. In case post-treatment, cells were subsequently

treated with DCV, SOF or DMSO (mock control). In case of pre-treatment, cells were

additionally incubated in DCV or SOF containing medium (50X EC90) for 2h prior

to inoculation with JCR2a. Directly prior to infection, medium was replaced by fresh

DMEM. Forty-eight hours post infection, inhibitor was added. After 6, 12, 24 and 48h

of treatment cells were washed, fixed and analyzed by luciferase activity assay.

10.9 Protein analysis

10.9.1 Proteinase K Protection Assay

Protease digestion assay. A membrane protection assay was performed as previously

indicated [153–155]. For analysis of proteins expressed in cells, transfected Huh 7.5

cells, transfected with JFH1 or Jc1 RNA. The post-nuclear supernatants or samples

obtained from in vitro synthesis were divided into three portions. One portion received

no treatment. The second portion was treated with Proteinase K 150µg/ml. The third

portion was solubilized with a final concentration of 1% Triton X-100 before Proteinase

K treatment. After incubation on ice for 1h, samples were analyzed by SDS-PAGE

followed by Western blotting.

10.9.2 SDS-Polyacrylamide-Gel-Electrophoresis (SDS-PAGE)

The cells were washed in PBS and lysed by addition of SDS-PAGE sample buffer. The

viscosity of the samples was reduced by sonication in a cup-horn Sonifier (Brandson

450 R©), which shears the genomic DNA. The sample was then heated to 95◦C for 3

min and cooled to RT. The polyacrylamide gels were prepared according to standard

protocols and gel electrophoresis was carried out at constant current of 200V for 3-4h
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(15x15cm gels). Pre-stained protein markers (New England Biolabs R©) were used as

molecular size marker.

10.9.3 Western Blot

Following gel electrophoresis the proteins were transferred to PVDF membranes using a

semidry blotter 2 (BioRad) for 90 min at a constant current of 1mA/cm . The membrane

was blocked with blocking buffer (5% milk powder in PBS 0.5% Tween20 (PBST)) for

1h at RT or overnight at 4 ◦C. The membrane was incubated with the primary antibody

diluted in blocking buffer for 1h at RT or overnight at 4 ◦C followed by three washes

for 10 min with PBST. Similarly the secondary antibody diluted in blocking buffer was

incubated for 60 minutes and washed thrice with PBST. The chemiluminescence signal

was revealed using ECL Home Made Kit R©according to the instructions and detected

by INTAS machine.

10.9.4 Paraformaldehyde oligomerization

Formaldehyde solution was obtained by dissolving 0.4% to 4% paraformaldehyde Fisher

Scientific in PBS for 2 h at 80 ◦C. The solution was filtered in 0.22 µm filters, stored in

the dark at RT and discarded after 4 weeks. For cross-linking, Lunet cells were pelleted

in a 50 ml reaction tube, resuspended in PBS and counted. Cells were centrifuged again

and resuspended to 1X 107 cells/ml in formaldehyde solution. Cells were incubated

with mild agitation for 7 min at RT and then pelleted at 1800xg and RT for 3 min,

resulting in 10 minutes exposure to formaldehyde. The supernatant was removed and the

reaction was quenched with 0.5 ml ice-cold 1.25 M glycine/ PBS. Cells were transferred

to a smaller tube, spun, washed once in 1.25 M glycine/PBS and lysed in 1 ml RIPA

buffer (50 mM Tris HCl, pH 8.0, 150 mM sodium chloride, 1% NP40, 0.5% sodium

deoxycholate, 0.1% SDS, 1 mM EDTA, protease inhibitors (Complete mini, EDTA-free,

Roche Diagnostics)) per 1X108 cells for 60 minute on ice. Incubation for 20 min at 65

◦C or 99◦C. Lysates were spun for 30 minutes at 20000 g and 4 ◦C to remove insoluble

debris. The supernatant was either used directly or stored at 80 ◦C. Control cells were

treated exactly the same way, except that they were resuspended in PBS instead of

formaldehyde solution. When platelets were used for cross-linking, 1.5X109 cells were

resuspended in 10 ml formaldehyde solution and lysed in 1 ml RIPA buffer. Protocol

taken from [156].
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10.9.5 BRET assay

293 T cells were seeded in a 24-well plate (1.5105 cells/well). Day after, transfected

with the YFP-construct (500ng) together with the Renilla Luc construct (500ng). Re-

move medium from cells, then added 500µl/well of fresh DMEM at least 30 min before

transfection, return cells to incubator. In the meanwhile prepare DNA mixtures: JetPEI

transfection reagent PolyPlus Transfection R©standard protocol was used. DNA/transfec-

tant mixture was added to a 150nM NaCl solution for a final volume of 50µl/transfection.

The mix was vortexed and incubated for 20 minutes, then added to the wells in a drop-

wise manner. The day after cells are checked for transfection efficiency (70-80% cells

expresses), the cells are washed with 1X PBS. The plate then is read by a spectrometer

for YFP expression before adding RLuc substrate (necessary for Saturation Curves).

Add 10µl/well of 1:20 dilution of Coelenterezine (1:200 final dilution), swirl plate gently,

check for absence of visible air bubbles. Incubate in the dark for 5 min to 40 min at

RT. Read the plate at Spectrometer (5 min to 40 min post-coelenterezine addition by

measuring YFP emission and RLuc emission (respectively 535 and 485 nm; 0.5” each

channel). Finally calculate data as follows in Figure 11.26, where long-wavelength is

YFP signal and short-wavelength is Rluc signal. The background is the same ratio

calculated in wells were only the Rluc-tagged protein at the same concentration was

trasfected.

Figure 10.2: BRET calculation method

Taken from [157].

10.10 Imaging

10.10.1 Immunofluorescence

Transfected Huh7-Lunet cells were seeded into 24 well-plates containing glass coverslips.

Seventy two hours after electroporation, cells were washed twice with PBS, fixed with 4%

PFA in 150 mM sodium cacodylate buffer [pH 7.5] for 15 min at RT and permeabalized

with digitonine (50µg/ml) for 5 min at RT. Permeabilzed cells were washed twice with

PBS and blocked with PBS containing 5% (w/v) bovine serum albumine for 30 min at

RT. Viral proteins were detected with specific primary antibodies see Table 9.1. After 1

h at RT, cells were washed three times with PBS and incubated with a 1:1,000 dilution
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of Alexa 488, 546 or 647- conjugated secondary antibody (Invitrogen R©, Molecular

Probes), shown in Antibodies Table 9.1 in PBS 5% BSA for 1 h in the dark.

10.11 Computational models and simulations

All proteins structures were downloaded from Protein Data Bank and completed with

MOE software R©. Maestro software R©was used for Protein Preparation, System Builder

and Molecular Dynamics (MD) (using Desmond tool). All proteins have energy min-

imised and analysis of its structure was performed previously to ensure analysis. For

NS5A protein, PDB number: 1ZH1, clam like structure taken from [38].

10.11.1 Proline analysis in NS5A structure

Analysis of Proline residues located in the linker structures of NS5A protein were anal-

ysed using MOE. The missing residues connecting linker AH-DI were added and energy

minimized with AMBER99 force field 0.001 gradient. This procedure was applied to all

the Proline residues present in the different linkers. Following analysis using MOE was

performed to measure and predict conformational changes in NS5A structure. See Table

11.1.

Linkers:

• AH-DI: 29-PKLPGLP-35

• DIa-DIb: 97-QCAPKPPT-104

• DI-DII: 189-PCEPEP-194

To explore the role of Proline residues in the linkers, we selected the residues and explore

the interactions within NS5A structure by visualization with MOE. Further, we wanted

to investigate whether they have a role in the binding of DCV or NS5A interactions

which might be important for the drug activity. Using MOE tool, DCV interacting

residues were analysed by visualisation.

10.11.2 Proline analysis in NS5A structure and DCV interaction

Prolines identified after site-directed mutagenesis of Proline residues in the linker con-

nection between amphipathic helix and domain Ia and domain Ib were situated in NS5A

structure from Nettles et al. 2014 [1]. Later, we mutated in silico to the corresponding
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amino acid and explore the different conformation of NS5A structure itself and inter-

action with DCV. We used Molecular Dynamics (conditions mentioned in 10.11.2), to

analyse in time, the conformational changes of DCV with the different Proline residues.

• Protein Preparation Wizard: for protein preparation

• System Builder:

a) Solvent model: TIP3P

b) Box shape: Cubic, different distances used to minimize volume for dynamics

(distances, very close to the membrane a=5; angles 90 degrees all).

c) Minimize volume: Force filed: OPLS 2005

• Molecular dynamics:

a) Simulation time: 300ns;

b)Frames: 625, Trajectory: 320

c) Energy: 16

Relaxation of model before simulation

Advanced: seed: random

10.11.2.1 Analysis of interaction with DCV

Docking with GLIDE R© The analysis was performed by re-docking DCV into NS5A

structure with the correspondent Proline mutation made 11.1. To select the best confor-

mation given by the docking program, i.e minimum energy of the protein-ligand complex

and maximum binding affinity should be selected for molecular dynamics study. Further-

more, MD was performed on selected poses to explore the stability of the conformation

and the possible changes in the DCV interaction sites.

Molecular Dynamics After docking DCV to the selected pose into the NS5A dimer

structure with the Proline mutations, we run Desmond MD, to explore the different

conformations DCV might take due to the Proline mutation. The MD conditions were

the same as established for all studies 10.11.2.

10.11.3 Amphipathic helix studies on POPE membrane

To start up with the analysis of the systems, protein preparation was performed using

Protein Wizard in Maestro (removal of water molecules and adding hydrogen missing

atoms). Considering a temperature of 300K a pH of 7 and salt concentration of 0.1M.



65

The energy was minimized and then proceeded with the System Builder in Maestro,

were the membrane was loaded from workspace. Membrane used was large POPE bi-

layer with 340 lipids downloaded from the following url: http://people.ucalgary.ca/

~tieleman/download.html.

10.11.4 Molecular dynamics on Amphipatic Helix (AH) and mem-

brane studies

The previous set up was used to run Desmond set up of the system, then, the output

file was used to run Desmond Molecular Dynamics. The structure of amphipatic helix

was manually placed either horizontally or vertically from the membrane, both confor-

mations were minimize at MOE, prepared by Protein Preparation Wizard and analysed

by molecular dynamics from Desmond in MAESTRO. The following parameters were

used:

• Protein Preparation Wizard: for protein preparation

• System Builder:

a) Solvent model: TIP3P

b) Box shape: Cubic, different distances used to minimize volume for dynamics

(distances, very close to the membrane a=1, b=1, c=1; angles 90 degrees all).

c) Minimize volume: Force filed: OPLS 2005

• Molecular dynamics:

a) Simulation time: 200 ns or 500 ns (horizontal)

b) Frames: 625, Trajectory: 320

c) Energy: 16

Relaxation of model before simulation

Advanced: seed: random

http://people.ucalgary.ca/~tieleman/download.html
http://people.ucalgary.ca/~tieleman/download.html
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Chapter 11

Experimental Results

Some of the big remaining questions regarding HCV field, are the precise mode of action

of the NS5A inhibitors, other types of DAAs have been widely studied and have now, a

well described mechanisms of action. However, NS5A is a multifunctional protein, that

is involved in many key points of HCV life cycle, as the full picture of all the activities

NS5A performs is not yet finished, the mechanism behind NS5A inhibitors is not fully

understood. In recent years, many and joint efforts have been made in getting a better

and clearer picture of the mode of action. The present study aims to contribute to the

full picture in a detail manner to elucidate the NS5A inhibitors mode of action by using

the best of two approaches to research, experimentally and computationally.

Furthermore, we wanted to focus on aspects that have not been fully studied on the

structure of NS5A, where important binding and interaction sites are located. Some

studies have looked into this aspect trying to reveal what are the key aspects on NS5A

structure that could explain the mechanism of action of the inhibitors [1, 117, 158].

First, we wanted to elucidate the importance of Proline residues located in the linker

structures of NS5A and their impact in HCV replication and infection. Additionally,

we evaluated the effect of this mutations in relation with DCV inhibitor in silico, see

Computational Results section 12. Second, we evaluated the role of DCV inhibitor

during the assembly process of HCV viral particles. Third, we look at the role of the

Amphipathic helix of NS5A in membrane interaction and thus, the impact of DCV-

membrane interaction in silico. We briefly look at the oligomerization state of NS5A

to look further into the multifunctionality of the protein. Lastly, we put together the

results to describe the mechanism of action of NS5A inhibitor DCV.

67
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The following chapter describes the experimental results and the next chapter describes

the computational results in section 12. Later in the discussion, these results are com-

mented and discussed as one topic itself, as the purpose of this study was to use both

tools to further elucidate and understand the mechanism of action of NS5A inhibitors.

11.1 Key role of NS5A Proline residues

To further understand the mode of action of DCV, we performed studies together with

collaborators (Cristoph Combet, at Lyon University) on the role of Proline residues

in the linker structures connecting the different domains of NS5A, see Appendix A.1.

The amphipatic helix is connected to Domain I via a Proline rich linker (linker AH-

DI), which promotes membrane association through an interaction of the AH with the

membrane. This linker might be key, not only for the binding of NS5A protein to the

cellular membrane but additionally the binding of DCV. Because as mentioned in the

introduction, it contains most of the resistance mutations and we do not have structural

data on this linker. Thus, we decided to study Proline residues in this linker which confer

conformational changes that will allow us to know the key role of the Proline residues

maintaining the structure of such linker in a functional position. The next linker is the

one between Domain I subdomain a connecting to Domain I subdomain b, (DIa-DIb),

the Prolines contained in this linker will maintain the structure of Domain I in position

regarding the membrane and the inhibitor binding, which is why it was also chosen for

mutational analysis. Finally, Domain I linker connecting Domain II (DI-DII), this linker

was studied because of its relevant interactions with PKR, PI3K, as well as NS5B, which

might be of importance keeping NS5A structure and function see Figure 11.1.

Domain I of NS5A is required for RNA replication, protein and membrane interaction,

its crystal structure is solved by the PDB entry: 1ZH1 and 3FQQ see Figure 2.7. NMR

structure is also solved for AH is solved in PDB: 1R7G, see Figure 2.5. However there

is no information available for the linker connecting AH and DI, where most of the

resistance mutations are clustering and where NS5A associates to the membrane [60,

129, 130]. Therefore the first thing to perform was to directly target Proline residues in

the linkers via site-directed mutagenesis. The linker sequences are the following:

Linkers:

• AH-DI: 29-PKLPGLP-35

• DIa-DIb: 97-QCAPKPPT-104

• DI-DII: 189-PCEPEP-194
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11.1.1 Proline residues in linker structures are key for HCV replication

and infection

We performed site-directed mutagenesis to specific conserved Proline residues within the

linkers as you can see in the table 11.1. Cloning strategy in this fragment Nsil/SanDI

by double PCR was used to introduce the single point mutations in positions: P29, P32,

P35, P100, P102, P103. The next cloning strategy was using a digest vector to generate

2 fragments vector Luc-JcR2A, together with 1) Nsil/BsiWI and 2) SanDI/BsiWI, bind

together by a triple ligation, this method was used for Proline residues P189, 192,

and 194; for further details see section 10. Later, the RNA from these mutants was

electroporated into Lunet cells and collected at different timepoints. Furthermore the

supernatant was used to infect Huh 7.5 cells and the read out was Renilla Luciferase

(RLuc) as the constructs contain the reporter gene, as negative control we used ∆GDD,

which is deficient in the nucleotidyl transfer reaction during HCV translation. As a

positive control of transfection efficiency we used the 4 h normalization value. The

following table contains the mutations made for each Proline residue within the linker

structures.

Table 11.1: Site directed mutagenesis of conserved Prolines to Alanine (Ala), Glycine
(Gly) or a Valine (Val)

AH-DI linker

P29 Ala Gly Val
P32 Ala Gly Val
P35 Ala Gly Val

DIa-DIb

P100 Ala Gly Val
P102 Ala Gly Val
P103 Ala Gly Val

DI-DII

P189 Ala Gly Val
P192 Ala Gly Val
P194 Ala Gly Val

The site directed mutagenesis of conserved Prolines was performed to Glycine (G), to

mimic the different conformations of Proline (P) cis-trans isomer, which would in turn

have a deleterious effect that would indicate a strong structural role of that Proline

residue. Mutations to Alanine (A), to mimic the cis-trans isomer of Proline, which

if there is no cis-trans isomerisation would mean that such mutant is functional. At

last, mutations to Valine (V) has no effect, means the Proline residue has no essential
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role. The next Figure 11.1 contains the mutations made to each Proline residue in the

linkers, showing the structure of Domain I of NS5A protein as a monomer. The linker

connections are located in between AH-DI, DI-DII, and DII-DIII, with the correspondent

sequence, where each sequence is shown in colour coding according to the correspondent

linker structure dividing each of the segments in Domain I.

Figure 11.1: Domain I of NS5A with linker connections

Amphipathic helix (AH), Domain I subdomains a and b. Sequences containing Proline
residues are also shown, in line with the linker structure dividing each part. Courtesy

by Critoph Combet.

After transfecting the HCV RNA via electroporation into the Lunet cells, we harvested

the cells at 24, 48 and 72 hours post-infection (hpi), we collected the supernatant.

The following Figure 11.2 shows first read out by RLuc, of the replication results of the

Proline residues located at the linker AH-DI. In Figure 11.2 panel A, AH-DI linker shows

a complete inhibition of replication with the exception of P29G, P35G and P35V. No

inhibitory effect during replication was observed in P35A, as expected P35A mutation

has a comparable effect to JCR2a wt (genotype 2a wildtype), which was used as a HCV

replicon positive control. The supernatant collected from the replication samples was

used to further infect Huh 7.5 cells, then RLuc was measured. In the case of Figure panel

B 11.2, where the same linker is shown, where the mutations seem to have a defective

phenotype during assembly/release of viral particles.
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The same procedure was performed for the DIa-DIb linker and DI-DII. Where Lunet

cells were transfected with the following Proline mutations to Glycine, Alanine or Valine

accordingly. Mutations in linker DIa-DIb: P100A, P100G and P102A show complete

inhibition of the HCV replication, as compared to the negative control (∆GDD). As for

linker DI-DII, mutations did not show any effect, as the replication an infection was as

wt (JCR 2a, positive control). Mutations P194A and P194V, did not show replication

or particle production, resulting in essential Proline residue at the site to achieve NS5A

functionality. However, the rest of the mutations in both linkers were able to replicate

as the wt values. When infection was analyzed by using the supernatant and infecting

Huh 7.5 cells, the mutants showed the same pattern as HCV replication, with or without

any additional effect on the viral particle production as compared to the wt, see Figures

11.3 and 11.4.

Some of these Proline residues showed a critical role when mutated to another amino

acid (G, A or V), showing that their role in maintaining structure by cis-trans iso-

merisation or by changes in the conformation due to the different interaction pattern.

These results give a detail perspective on how the linkers on DI of NS5A are key for the

functionality of the whole protein. In addition, the changes in the conformation due to

the cis-trans isomerisation can be critical to HCV life cycle as shown in the deleterious

effect on replication and infection of viral particles. Moreover, the linker structures are

known to be essential for NS5A inhibitors binding site, which makes these results key

to understand how Proline residues can affect NS5A and thus, the mechanism of action

of NS5A inhibitors.

Along the same lines, Proline mutations were shown to affect each of the linker structures,

due to the change in the amino acid conformation and interaction pattern. In the

following Figures, each linker is shown with the correspondent Proline mutations. Renilla

Luciferase (RLuc) was normalized to 4 hpi in the replication assay, positive control

JCR2a (wildtype HCV virus) and as negative control ∆GDD, which is the motif of

HCV NS5B RNA-dependent RNA polymerase. Luciferase activity at 4 hours after

electroporation correlates with the translation of input transcripts prior to onset of

replication and subsequent time points were normalized to 4hpe signal to account for

electroporation efficiency.
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Figure 11.2: Proline mutations on linker AH-DI effects on HCV life cycle

P29-35V showed complete inhibition of replication, as compared to the negative

control (∆GDD, which is the motif of HCV NS5B RNA-dependent RNA polymerase).

Mutations P29G, P35G, and P35V were able to replicate however their replication was

strongly reduced as compared to WT. No inhibitory effect during replication was

observed for P35A mutant. As expected P35A mutation had a comparable replication

and particle production kinetics to WT, panels A and B, respectively. Marked with *,

samples that are below detection.
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Figure 11.3: Proline mutations on linker DIa-DIb effects on HCV life cycle

Mutations at P100A, P100G and P102A, showed complete inhibition of replication, as

compared to the negative control. Whereas the rest of the mutants in this linker were

able to replicate as WT. The rest of the mutants did not show any additional effect on

particle production when compared to WT. Marked with *, samples that are below

detection.
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Figure 11.4: Proline mutations on linker DI-DII effects on HCV life cycle

Mutations within this linker did not show any effect on replication and particle

production, except for P194A and P194V mutants, which did not replicate and

therefore there was no particle production, when compared to negative control ∆GDD.
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Results of this experiment show that in each of the 3 linkers at least one Proline is crucial

for replication (P29 P32, P100 P102 and P194). Moreover, the crucial Proline residues

seem to be involved in cis-trans isomerisation. Together, these data indicate that NS5A

domain 1 changes conformation, which is needed to acquire precise conformation to be

activated by isomerisation to achieve its function, the crystal structures of domain 1 are

only one picture of the changes in the conformation. Other conformational changes can

be taking place in:

• between AH and domain 1, which could be the most crucial, taking into account

the membrane proximity, reinforced by location of resistant mutations.

• between subdomains 1a and 1b, which might involve the opening of D1a-D1b

probably by domain swapping in dimers.

• between domain 1 and 2, which might be crucial for host interactions.

This leads to the involvement of cis-trans Proline isomerase as many have shown before

[159, 160]. Hence, these results show the role of key Proline residues in the linker

structures of NS5A, which might have a role maintaining not only in HCV replication

or infection, but additionally the binding or interaction site with DCV. Computational

studies to explore and visualize the conformational changes of the NS5A protein and

the DCV binding site could elucidate the role of this key Proline residues, to further

improve or develop new antiviral agents. In the section 12, we explore this possibilities

and analyse the Molecular Dynamics of NS5A inhibitor DCV interactions with NS5A

dimer structure.

Furthermore, inhibitors targeting NS5A affect HCV replication by inhibiting conforma-

tional changes in NS5A protein or protein complex formation that occur in the context of

HCV polyprotein expression and in the replication compartment formation [161]. Oth-

ers have observed the effect of DCV, blocking HCV replication by preventing formation

of the membranous web, which was not linked to an inhibition of phosphatidylinositol-4

kinase IIIα [118].

However NS5A protein has a key role during the assembly process. As it is proposed by

Zayas et al [162], where a highly conserved basic cluster (BC) of Domain III was found

to play a key role during the assembly of viral particles. During the assembly process of

HCV, NS5A plays several key roles [163, 164]:

• it interacts with core protein via NS5A DIII [26, 165].

• NS5A is recruited to cLDs where core protein accumulates [26, 165, 166].
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• assembly requires the phosphorylation of a serine residue in NS5A DIII by casein

kinase IIα [51].

• NS5A facilitates the association of core protein with the viral RNA genome [165].

• NS5A interacts with the p7-NS2 complex that is required for the envelopment of

the HCV particles [167].

• NS5A also interacts with apolipoprotein E that is incorporated into the virion and

with Annexin A2, which is a host cell membrane sorting protein enhancing HCV

assembly [20, 43, 168–171].

Consequently, assembly of HCV particles requires a spatio-temporally coordinated as-

sociation of the replicase, NS3 helicase and NS5A together with the Core protein allow

packaging of the RNA genome into the virion. To determine whether DCV, NS5A in-

hibitor has an effect at some point during the assembly process we first wanted to ruled

out the specific effect on assembly by using another inhibitor of NS5B protein, Sofos-

buvir. The results from the experiment will show the specific effect of NS5A inhibitor

during assembly as an inhibition of NS5A protein activity.

11.2 Effect of Sofosbuvir and Daclatasvir treatment

We started with the titration of both drugs DCV and SOF, in order to have both EC50s

that could correlate to each other and have the precise drug concentration at which

both drugs inhibit HCV infection. We first electroporated HCV RNA from the JCR2a

(wt) genotype in Lunet cells and as a control included untransfected cells (MK cells).

The drugs were added 12 hours post electroporation (hpe) and 24 hpe. We recover the

supernatant at 24, 48 and 72 hours post infection (hpi), this means when we infected

the cells using the supernatant of the eletroporated cells, for more details see diagram

on Appendix A.2. We lysed the plates and store them at -20 ◦C, this plate was further

used to perform a Renilla Luciferase (RLuc) assay. The supernatant was used to infect

Huh7.5 cells where we also included MK cells. After 72 hpi, we harvested the cells

and perform RLuc assay. The results of the plate reader were all normalised to 24 hpi.

Results gave us the optimal concentration to use of SOF with comparable effect to DCV

for further experiments, see Figure 11.5 and 11.6.

Figure 11.5 shows the EC50 values for DCV are extremely low, which gives NS5A in-

hibitor its high antiviral potency. A decline in viral protein upon treatment was observed

for replication and reinfection measurements, in comparison to the mock cells. When
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using SOF Figure 11.6, we observed a faster effect of the drug upon infection and repli-

cation compared to Mock cells and DCV treatment. In the corresponding tables we

have the data needed to calculate the IC50 , which is the concentration of an inhibitor

where the response (or binding) is reduced by half. We continue taking the IC50 as

EC50 , because EC50 is the concentration of a drug that gives half-maximal response, in

this case both concepts give the same number. This result gave us the exact number by

which both drugs act effectively on HCV infection.

Figure 11.5: Established EC50 values for NS5A inhibitor, Daclatasvir (DCV)

Logarithmic inhibitor vs response in a variable slope graphic showing EC50 values for

DCV titration. Table above shows logarithmic calculation of EC50 data on time points

24, 48 and 72 hpe.

11.3 Daclatasvir and Sofosbuvir kinetics

Once we found the EC50 values for both drugs, we use this to formulate a kinetic ex-

periment with different time points of drug addition. The goal was to find the optimal

concentration by which both drugs inhibit HCV replication at the same time post-

infection. For this purpose we use the same conditions of previous experiment, but in

a dose-response set-up. We achieved this by adding a range of concentrations around

the optimal EC50 value, as shown in Figure 11.5 and 11.6. Thus, SOF and DCV were

added to Lunet cells 12hpe and 24hpe, and the supernantants (SN) were recovered and

used for infection of new Huh 7.5 cells, measuring RLU at points of 24, 48 and 72 hpi

(as described in Appendix A.2). In the following, Figures 11.7 and 11.8, we show the

last experiment data (n=1), where the concentration is related to the the percentage

of untreated cells (RLU normalisation to 4hpi was set to 100% or 1%). Where we use
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Figure 11.6: Established EC50 values for NS5B inhibitor, Sofosbuvir (SOF)

Logarithmic inhibitor vs response in a variable slope graphic showing EC50 values for
SOF titration.Table above shows logarithmic calculation of EC50 data on time points

24, 48 and 72 hpe.

some concentrations around the EC50 values (DCV 0.0062nM and SOF 56.56nM) to

determine the concentration at which both drugs have and effect on HCV infection, ob-

served by calculating the ratios between replication and reinfection (infection with SN).

An early inhibition with a lower concentration of 0.097nM DCV can inhibit replication,

an effect in assembly is shown when the EC50 value is reached at 0.0062nM as shown

in Figure 11.7. This concentration was then use to further evaluate the effect of DCV

on assembly process, as this experiment pointed that its effect could be in addition to

its effect in HCV replication. In Figure 11.8, the results of the last experiment (n=1),

showed that Sofosbuvir has an effect just on replication (as expected because is a NS5B

inhibitor), using its EC50 concentration of 56.56nM, which is why this drug was used as

a positive control of solely replication inhibition.

Additionally, we wanted to establish the time of drug addition, to rule out any other

effect on HCV cycle, but assembly. For this we use the values obtained in the experiment

and did a logarithmic graph, were the shift in plotting replication or reinfection could

be interpreted as a drug-related effect 11.9, as for SOF, 11.10; (see Appendix A.5, for

details on n=3 of the drug titrations). We then use 24 hours post electroporation to

add the drug and 24 after drug addition we electroporated the cells with HCV genome

JCR2a. Together this experiments gave us the exact concentration and time, at which

both drugs inhibit HCV infection, but more important, the ratios showed already an

effect of DCV on assembly steps, which we continue to investigate.
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Figure 11.7: Daclatasvir dose-response effects on HCV life cycle

Different concentrations of DCV were chosen and normalized to untreated cells

(uninfected, no electroporated HCV RNA). DCV effects on HCV replication and

reinfection are shown. In addition, the ratio between the replication and the

reinfection values is shown to underline DCV effect. The line shows the 100% of

inhibition. Readout by RLuc measurement (n=1). All samples were treated to RLU %

to untreated cells.
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Figure 11.8: Sofosbuvir dose-response effects on HCV life cycle

Different concentrations of SOF were chosen and normalized to untreated cells

(uninfected, no electroporated HCV RNA). SOF effects on HCV replication and

reinfection effects are shown. In addition, the ratio between the replication and the

reinfection values are shown to underline SOF effect. The line shows the 100% of

inhibition. Readout by RLU measurement (n=1). All samples were treated to RLU %

to untreated cells.
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Figure 11.9: DCV drug addition at different time points

Drug addition 24hpe and harvesting time points 24, 48 and 72hpi with different DCV

concentrations for HCV replication (rep) and reinfection (rei) are shown. Normalized

to 4hrs of untreated cells. Readout by RLU measurement(n=1). All samples were

treated to RLU % to untreated cells. (see Appendix A.5, for details on n=3 of the

drug titrations).
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Figure 11.10: SOF Drug addition at different time points

Drug addition 24hpe and harvesting time points 24, 48 and 72hpi with different SOF

concentrations for HCV replication (rep) and reinfection (rei) are shown. Normalized

to 4hrs of untreated cells. Readout by RLuc measurement (n=1). All samples were

treated to RLU % to untreated cells. (see Appendix A.5, for details on n=3 of the

drug titrations).
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11.4 Daclatasvir has an inhibitory effect on envelopment

of viral particles

Until the moment of the present experiments, direct-acting antiviral DCV mode of action

was not fully understood and strong evidence from various groups have shown that this

drug might have an effect in assembly of the virus [26, 126, 165].

Nonetheless, NS5A participates in various ways during assembly. It is known it regulates

the coordinated packaging which is required for viral RNA to get into the nucelocapsid.

Also, during assembly of infectious virus particles, NS5A appears to be colocalising

with core protein in lipid droplets which seem to be required [26]. Finally, it has been

suggested that NS5A is regulating the switch between replication of the viral RNA

and its packaging into virions [162]. All together these experiments pointed into NS5A

activities also being inhibited by NS5A inhibitor, DCV. However, the role of DCV in

assembly of HCV viral particles remained unclear. To investigate further on the role of

DCV in assembly and decipher the MOA, we performed the following experiments.

We use then the established conditions in the previous experiments. Lunet cell culture

was treated with DCV or SOF after 24h post electroporation of JCR2a HCV genome.

We added the established EC50 values: 0.06nM and 56.56nM, respectively. As we can

see in Figure 11.11, the effect was observed only in the cells treated with DCV compared

to SOF treated cells, which main target is NS5B and has no effect on the assembly of

the viral particles. This was the first evidence that was indeed affecting the assembly

process and not only the replication of HCV viral particles, as shown in Figure 11.11.

This Figure represents the ratio calculated between replication values and reinfection

values when samples were treated with both drugs SOF and DCV. As shown in Figure

11.9, by one time experiment, the shift was observed when samples were treated 24

after drug addition, so this effect was also observed when the ratios where calculated for

reinfection values at 24 hours post drug addition.

Once we observed the effect of DCV treatment in HCV assembly, we continued to

investigate at which step of the assembly process DCV is inhibiting NS5A activities.

The assembly process is divided into distinct steps such as core trafficking to the lipid

droplets, core oligomerization, capsid formation and finally envelopment. We first look

into the envelopment of the viral particles and if it was interrupted by the drug. For

this purpose, we used the same conditions in which we electroporated Lunet cells with

HCV RNA, after 24 hpe, we added the different treatment of drug SOF or DCV, using

EC50 values and use control cells as untreated without a drug. After 24, 48 and 72 hpi,

we harvested the cells collecting the supernantant and the debris.
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Figure 11.11: SOF and DCV effect on replication and reinfection processes

DCV and SOF ratios and the effect of the drug addition after 24hpi. Underneath each
drug treatment the EC50 value selected for treatment at 24 hpe is shown. Then the

cells were harvested at 24, 48 and 72 hpi. Replication and reinfection values are shown.
All the values were normalised to the untreated cells. Results are shown in percentage.

11.4.1 Proteinase K Assay

First, we assessed if core protein was protected against the proteolytic digestion with

proteinase K, to ensure the envelopment of the protein into membranes as the assembly

of HCV viral particles. The residual core protein was quantified by Western blot and

the data was normalized to the amount of core protein in the untreated sample. As a

control, cell lysates were preteated with Triton X-100 to solubilize all membranes before

proteinase K digestion. Under these latter circumstances, all core proteins are expected

to be sensitive to proteolytic digestion, ensuring that the proteinase K concentration

was not limiting in the assay. The core amount detected under these conditions was

used for background subtraction. A representative immunoblot stained for HCV core is

shown in Figure 11.12. This method is also described in 10 as it was published by [162].

Accordingly, in samples treated with SOF, quantification of signal intensities revealed

that all of intracellular core protein was resistant to protease digestion and thus, had

already acquired a membrane envelope and proceeded to a post-budding step see Figure

11.12. In contrast, samples under the treatment with DCV showed a highly significant

reduction in amount of protected core, indicating that most core species present were

digested shown in Figure 11.12, the quantification shows the more evident reduction on

the envelopment of viral particles. Together, these data suggest that treatment with

DCV confer a defect in infectious particle production occurring at, or prior to, core

envelopment. As already mentioned, assembly of infectious HCV particles requires the

acquisition of a lipid membrane containing the envelope glycoproteins and as previously

reported [162], this process can be monitored in a time-resolved manner by determining

the sedimentation profile of core protein using rate zonal centrifugation [155].
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Figure 11.12: Envelopment assay experiment

Jc1 cell lysates were subjected to a proteolytic digestion protection assay as follows:
Lysates were separated into three aliquots which received different treatments: (i) left
untreated (-), (ii) treated with 150 g/ml proteinase K (PK) for 1 h on ice, or (iii) lysed
in 1% Triton X-100 prior to PK treatment (condition used for background correction).

The amount of protease-resistant core was determined by Western Blot both blots
stained for HCV core.

Western Blot signal intensities were quantified with LabImage 1D and values obtained
for the proteinase K-treated sample were background-corrected and normalized to

untreated control. Mean values and standard deviations of 3 independent experiments
are shown.

11.4.2 Rate Zonal Centrifugation Assay

Secondly, we use rate zonal centrifugation which separates particles by size, using dif-

ferent concentrations of sucrose in different densities (gradients). Larger particles to the

bottom (more viscous) and small on the top (not enough mass to go through gradient).

To this end, we prepared lysates of the Lunet cells at 24h after electroporation of JC1

HCV genome into Lunet cells and 24h after drug addition (SOF and DCV) as previously.

Post nuclear supernatants were loaded on top of a linear sucrose gradient (0-30%) and

separated by rate zonal centrifugation [155]. Gradients were fractionated and core pro-

tein amount in each fraction was determined by CMIA (Chemiluminescent microparticle

immunoassay). Fractions are collected after centrifugation, see Figure 11.13.
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Figure 11.13: DCV treatment gradients show no Core envelopment particles

Rate zonal centrifugation. Post-nuclear supernatants of cell lysates obtained by
repetitive cycles of freeze and thaw 48 h post-transfection were layered on top of a

preformed continuous 0 to 30% sucrose density gradient and subjected to rate zonal
centrifugation for 1h at 270,000xg. Core content was measured along the gradient by
ELISA and normalized to the total core amount in the lysate. Experiment 1, shows
one repetition and the average data come from 3 independent experiments where we
performed separation by 030% linear sucrose gradient, the collected 11 fractions are

shown.

At 48hrs post transfection we observed all complexes are sedimented slower in SOF

treated samples than in DCV treated samples. The samples under DCV treatment

showed the first peak at fraction 4-5, and a second one between 7-9, this shows the dual

mode of action. Hereby, DCV shows an inhibition of the envelopment of viral particles,

shown by the first peak, which refers to its effect at slow sedimenting fractions 4-5. In

contrast, SOF treated samples were a large proportion of core protein has assembled into

fast-sedimenting complexes that accumulated in fractions 6-9, which have no effect on

the envelopment of HCV viral particles. Therefore, this experiment shows that samples

treated with SOF had the Core protein fully enveloped by 48hrs after transfection mainly

because the samples pass through the gradient showing highest peak at fraction 6-9. In

contrast, samples with DCV, did not pass rapidly though the gradient and accumulated

in first fractions 3 to 5 having a significant peak at fraction 8 to 9. This last point

shows that in samples treated with DCV the Core protein appears not to be enveloped

as shown in Figure 11.13. We suggest then, that DCV treatment can block the assembly

at the envelopment stage.

However further experiments using different time points could be useful to determine

if the process of envelopment is blocked prior to assembly of the HCV viral particle.

Thus, performing the experiments prior to the 24hpe and 24 post drug addition of our

settings, could elucidate this question (for example, 12h as previously reported in [162]).
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11.4.3 Immunofluorescence Assay

NS5A inhibitors interfere with the assembly of infectious virions and at the same time

block the membrane rearrangements that are essential to build up the viral replica-

tion factory [126]. Accordingly, we wanted to analyse the same samples by confocal

microscope to determine the co-sedimentation of core protein with the HCV envelope

glycoproteins, which could show a relevant effect of DCV on membrane rearrangements

or on NS5A sub-cellular location. We found that HCV Core colocalizes with NS5A, this

is because core protein is directed to LDs whereas RNA replication most likely is medi-

ated by a replicase complex associated with ER or ER-derived membranes as previously

reported [162].

Moreover, during virus assembly the RNA genome is transferred from the replicase

complex to the core protein. This process will require the action of NS5A to mediate

the interaction between the core protein and the replicase complex, giving NS5A a

clear role during assembly. Using microscopy data we analysed the co-localization of

core and NS5A in Huh7-Lunet cells transfected with HCV JCR2a and then treated the

samples with DCV or SOF. As shown in Figure 11.14 and Figure 11.16, we observed

co-localization between NS5A and core proteins and glycoprotein E2. Moreover, the

ring-like staining pattern of NS5A indicates that this protein also associates with LDs.

The drug treatment with SOF or DCV, did not alter the colocalisation with glycoprotein

E2 or to LDs see Figure 11.15 and Figure 11.17.

This results could suggest that the differences in core-NS5A (replicase complex) inter-

actions are not detectable for the different level of virus production. Moreover the drug

addition treatment apparently did not affect the localisation of HCV Core protein or

E2 glycoprotein. When treated with DCV samples show the same pattern as SOF and

NS5A colocalization with LDs suggests no additional relocalisation of the proteins due

to the drug treatment. Anyhow, additional time points could help elucidating the effect

of the drug on this step of the assembly, because the effect of the drug might be in the

early or late steps of the assembly process.
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Figure 11.14: NS5A and E2 localisation

NS5A localisation in relation to glycoprotein E2 in samples treated with DCV. JCR2a
genome was transfected into Huh7-Lunet cells which then were fixed after 48h and
subjected to immunofluorescence staining of E2 (AP33, 1:300 mouse monoclonal

antibody, green) and core (C830 1:200 rabbit polyclonal antibody, red). Nuclei were
counterstained with DAPI (blue), not shown. Representative transfected cells were

counted for each construct. To the right, a quantification of samples performed by R
pearson in ImageJ.

Figure 11.15: NS5A and E2 localisation

NS5A localisation in relation to glycoprotein E2 in samples treated with SOF. JCR2a
genome was transfected into Huh7-Lunet cells which then were fixed after 48h and
subjected to immunofluorescence staining of core (C830) 1:200 rabbit polyclonal

antibody, red) and E2 (AP33, 1:300 mouse monoclonal antibody, green). Nuclei were
counterstained with DAPI (blue), not shown. Representative transfected cells were

counted for each construct. To the right, a quantification of samples performed by R
pearson in ImageJ.
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Figure 11.16: NS5A and Core protein localisation

NS5A localisation and Core protein in samples treated with DCV. JCR2a genome was
transfected into Huh7-Lunet cells which then were fixed after 48 h and subjected to

immunofluorescence staining of core (C830 1:200 rabbit polyclonal antibody, red) and
NS5A (9E10 1:1000, mouse monoclonal antibody, green). Nuclei were counterstained
with DAPI (blue), not shown. Representative transfected cells were counted for each

construct. To the right, a quantification of samples performed by R pearson in ImageJ.

Figure 11.17: NS5A and Core protein localisation

NS5A localisation and Core protein in samples trated with SOF. JCR2a genome was
transfected into Huh7-Lunet cells which then were fixed after 48h and subjected to

immunofluorescence staining of core (C830 1:200 rabbit polyclonal antibody, red) and
NS5A (9E10 1:1000, mouse monoclonal antibody, green). Nuclei were counterstained
with DAPI (blue), not shown. Representative transfected cells were counted for each

construct. To the right, a quantification of samples performed by R pearson in ImageJ.
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11.4.4 Transcomplementation Assay

Moreover, replication-incompetent NS5A mutants could be rescued by transcomplemen-

tation assay [26], knowing now that NS5A inhibitors could interfere with the assembly

of viral particles, we were interested whether this NS5A function can also be restored

by trans-complementation and/or if NS5A inhibitors could interfere with the rescue

of assembly. To this end we established a trans-complementation assay based on the

co-transfection of a JCR2a genome carrying the deletion in domain III of NS5A (∆2328-

2435), with or without a resistant mutant Y93H and an HA-tag, into two different cell

lines containing a subgenomic luciferase-helper RNA that lacks the region encoding core

to the C-terminus of NS2 and in case of the resistant mutant, contains the mutation on

Y93H, as shown in Figure 11.18. Replication of this helper RNA was determined by

luciferase assay. The final aim of the transcomplementation assay was to uncouple the

assembly function of NS5A by deleting its DIII and treatment with or without drugs

to rescue its function by transcomplementation assay. This assay utilizes the transfec-

tion of selectable replication-deficient HCV replicons into cells that harbour replicons

expressing the trans-complement. We transfected the following helper RNA constructs,

see 11.18 into Huh7-Lunet NS3-NS5A (wildtype) and Y93H (resistant mutant) cell lines

previously prepared as described previously in section 10.7.2.

JcR2a DDIII NS5A-HA JcR2a Y93H DDIII NS5A-HA

(1) (2)

(A) (B)

(1) (2)

Figure 11.18: Trans-complementation constructs and cell lines

Constructs used for the trans-complementation assay. Cell lines (1)
pWPI-NS3-5A-BLR. (2) pWPI-NS3-5A-Y93H-BLR (yellow star marking the drug

resistant mutantion on NS5A). Right side panel shows the cell lines detection by WB:
(1) pWPI-NS3-5A-BLR and (2) pWPI-NS3-5A-Y93H-BLR, respectively. Constructs
containing JCr2a HCV genome used for assay were (A) JCR2a ∆DIII NS5A-HA and

(B) JCR2a Y93H ∆DIII NS5A-HA.

Depending on the particular combination of the constructs, different outcomes were

possible. Upon transfection of cells with the helper RNA constructs we expected different

rescue patterns as shown in Figure 11.19. The first (A) JCR2a construct was used as

a marker for assembly blockage -assembly mutant- and the second, (B) construct was

used to evaluate the effect of the drug in the resistant mutation Y93H -resistant mutant-.

Treatment with DCV or SOF will help or not in the recovery of the assembly of viral
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JcR2a DDIII NS5A-HA 
Rescue assembly

JcR2a DDIII NS5A-HA 

+

DCV

NO rescue assembly

Rescue assembly

SOF JcR2a  Y93H DDIII NS5A-HA 

JcR2a  Y93H DDIII NS5A-HA 

JcR2a DDIII NS5A-HA Rescue assembly

JcR2a  Y93H DDIII NS5A-HA 

NO rescue assembly

+

+

Figure 11.19: Transcomplementation assay hypothetical results

Expected results from different combinations of constructs and cell lines, to observe
the recover effect of each trans-complementation. DCV or SOF treatment in each

combination is crucial for the recovery or not of assembly.

particles. We expected that combination of both cell lines and both constructs under

the treatment of SOF, would recover the assembly, because SOF treatment will not

interfere with the assembly process. In contrast, using the assembly mutant construct

together with either of the cell lines will result in no rescue of the assembly, due to the

effect of DCV on assembly of the viral particles. However, when using the cell line with

the resistant mutant (2) and constructs (A) or (B), assembly will be recover, due to the

resistance phenotype, as shown in Figure 11.19.

However the experiment did not show exactly the results as we expected. The combi-

nations of constructs (JCR2a wt, JCR2a∆III and JCR2a∆III-Y93H) are shown in the

y axis together with cell line types: Lunet, Lunet wt (pWPI-NS3-5A-BLR), and Lunet

Y93H (pWPI-NS3-5A-Y93H-BLR), on the x axis, RLuc measurement normalized to

4hrs hpe, as shown in Figure 11.20. Instead, the combinations showed the following:

• When using JCR2a (wt) construct and the three different cell lines, HCV repli-

cation showed a normal infection curve where we have 1.0X104 RLuc counts after

24hrs for HCV replication time-point, as this was used as positive control.
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Figure 11.20: Trans-complementation of constructs on time line.

Combinations of three different constructs (JCR2a wildtype, JCR2a∆III and
JCR2a∆IIIY93H and three different cell lines: Lunet, Lunet (wildtype:

pWPI-NS3-5A-BLR) and Lunet Y93H (resistant mutant: pWPI-NS3-5A-Y93H-BLR).
RLuc measurement at different time points of HCV replication, normalized to 4hrs.

• When using JCR2a∆III construct and the three different cell lines, resulted in a

lower HCV replication. And in when using the Lunet wt cells (1) pWPI-NS3-5A-

BLR, showed no detectable counts at 4hpi, which we could not develop further.

When using Lunet Y93H cell line, at 24hpi, HCV replication was not yet estab-

lished, but at 48hpi, HCV replication was observed, but not as wildtype.

• When using JCR2a∆III-Y93H construct with Lunet cells, we did not detect any

RLuc counts on the plates, which we account for a defect on the trans comple-

mentation assay. When using Lunet wt cells, we observed a reduction on HCV

replication after 4hr infection, which showed that trans-complementation was not

established and when using Lunet Y93H cell line, the construct JCR2a∆III Y93H,

the HCV replication RLuc counts could not be enough to use this combination for

a established trans-complementation assay.

Unfortunately, we could not use this combination set-up as expected due to the non

recovery of the trans-complementation assay between constructs and cell lines. The

future plan was to recover the supernatant and infect new Huh7.5 cells with it, then

further treat with DCV or SOF. Nonetheless, we could improve the set-up by addition of

double mutants, addition of a antibiotic resistance, or different helper RNA constructs

to have a precise cis or trans complementation of each part of the assay, as further

discussed in section 13. Regardless, the results were conclusive to build the cell lines and
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constructs needed for such experiments and improvements can be taken from previous

reported transcomplementation assays in other studies [172–174].

11.5 NS5A oligomerization state

Among other unsolved questions regarding the multifunctionality of NS5A is the oligomer-

ization state of the protein. Controversially, it has been reported that NS5A forms a

dimer [37–39], but even these studies suggest the formation of high oligomer formation

during NS5A functions. A more recent report suggests there is a higher oligomer forma-

tion [62], which is crucial for NS5A multifunctionality and so for the inhibition by NS5A

drugs. It has been hypothesized that the oligomer must be present for the inhibitor to

attach to the binding site. Moreover, high resolution structural studies of NS5A protein

reveal that the protein forms a dimer via contacts near the N-terminus, and the Y93H

resistant mutation lies at the interface between two NS5A proteins [37], which is why

we used both constructs (wildtype and resistant mutant Y93H). Although other reports

claim that drug treatment does not seem to affect dimerization process [161]. In the end

we wanted first, to investigate whether NS5A forms high oligomers during HCV infec-

tion. Second, to investigate if this can be disrupted by the addition of NS5A inhibitors.

And lastly, to see if the oligomerization state affects the efficacy and efficiency of NS5A

inhibitors. To approach this matter and study the presence of higher oligomer formation

of NS5A, we used PFA (Paraformaldehyde) cross-linking assay [156]) and using BRET

(Bioluminescence Resonance Energy Transfer) assay [118]. This last assay results are

undergoing which is why results are not all shown in the present study.

11.5.1 PFA cross-linking

In order to confirm the detection of PFA cross-linked complexes. Lysates were incubated

at 65◦C and 99◦C, respectively and analyzed by western blot using the antibody against

NS5A protein (9E10), as described in 10.9.4. As seen in Figure 11.21, the assay’s prin-

ciple is that at 65◦C, the oligomer would continue in a oligomer conformation, whereas

at 99◦C, the oligomer would loose its conformation, thus, being able to detect different

parts of it.

We use the following constructs to transfect Lunet-T7-puromycin cells:

• pTM-NS3-3’ JFH1

• pTM-NS3-3’-NS5A-gfp Y93H-JFH1
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• pTM-NS3-3’-NS5A-gfp ∆DI-JFH1 (aa28-213) (data not shown)

Later, we prepared formaldehyde as cross-linking reagent at different concentrations

0.4% to 4%, then Lunet cells were suspended under the different PFA concentrations

and incubated at different temperatures 65◦C or 99◦C and then lysed with RIPA buffer

for later analysis by western blot, as shown in 11.22 and 11.23.

Figure 11.21: PFA cross-linking assay principle

Schematic model. Formaldehyde derived cross-links are preserved, if samples are only
incubated at 65◦C, whereas most of the cross-links are reversed at 99◦C. Proteins are
depicted as oval shapes, formaldehyde cross-links as black triangles. Taken from [156]

Under this circumstances we could recognize a higher molecular weight complex (a

smear) containing NS5A, in samples treated for 5 min at 65◦C and 99◦C. In Figure

11.22, samples showed a clear band at 56 kDa using both constructs (wt and Y93H

resistant mutant). PFA concentration 0.4, 0.8 and 2%, in samples including the wt con-

struct, showed a smear and a band at around 75 kDa, which can correlate to a higher

molecular weight NS5A oligomer formation. In contrast to samples with Y93H resistant

mutant, a smear was lightly detected at 0.4-0.8% PFA concentration, but a clear band

was detected at 2% PFA concentration. This suggested that using 2% of PFA concen-

tration we could detect an cross-linked complex containing non-structural protein 5A.

In Figure 11.23, NS5A was detected at 58 kDa using 0.2, 0.4, 0.8 and 1% PFA for the wt

construct. Additionally, at 0.8, 1 and 2% PFA, we could detect three different molecular

weight bands, at approx 70, 90 and 130 kDa, indicating that using 99◦C, can separate

the oligomer in separate molecular weight protein parts, as shown in Figure 11.21. As

for the resistant mutant, we could detect NS5A at 58 kDa using 0.2, 0.4, 0.8% PFA

concentration. Additional bands were observed at 70, 90 and using 1.8 and 2% bands

detected at 130 kDa, indicating that the resistant mutation does not seem to affect the

oligomer formation of NS5A.
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Figure 11.22: NS5A oligomerization state detected at 2% PFA concentration

Samples incubated at 65◦C for 5 minutes under different PFA concentrations. Different
molecular weights are shown. Western Blot for NS5A (using 9E10 antibody).

Figure 11.23: NS5A oligomerization state detected at 2% PFA concentration

Samples incubated at 99◦C for 5 minutes under different PFA concentrations. Different

molecular weights are shown. Western Blot for NS5A (using 9E10 antibody).

However, NS5A was also found in the monomeric form at approximately 58 kDa after

incubation at 65◦C, as shown in Figure 11.22, which was detectable at different PFA

concentrations treating the samples at the higher temperature, which correlates with

what we were expecting from this assay. This could be due to incomplete cross-linking,

as the conditions applied during formaldehyde cross-linking do not lead to a high extent

of protein cross-linking, leaving a large fraction of NS5A non cross-linked. Alternatively,
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incubation at 65◦C may lead to partial reversal of formaldehyde cross-links and release

of NS5A even at a lower temperature. Moreover, samples at 99◦C show less smear than

the samples treated at 65◦C, this could also suggest the presence of a high oligomer

formation, as shown in Figures 11.22 and 11.23. Interestingly the resistant mutant

construct did not show significant differences at 99◦C but at 65◦C boiling temperature,

samples showed a decreased in the smear, which suggests that it is less likely to form

oligomers of higher molecular weight. Ultimately, repetitions of this experiment must

be performed to have more conclusive data. Regardless, this experiment shows evidence

for a higher order complex formation at an optimal PFA concentration for cross linking.

11.5.2 BRET assay

Another technical tool to detect oligomer formation is using BRET (Bioluminescence

Resonance Energy Transfer), previously used in the laboratory. Unfortunately, the re-

sults generated in the laboratory did not work due to the construct preparation, so

we improve the set constructs using RLuc or YFP label and generated newly designed

constructs as shown in as shown in section 9, we use different linker lengths for each

construct. Each of the constructs contain two fragments of each reporter protein (F1

or F2), that could complement each other and reconstitute the whole Renilla Luciferase

or full YFP NS5A labelled, respectively. The aim was to reconstitute the BRET signal,

which we could interpret as having several of this constructs in close proximity, which

could strongly suggest the formation of a higher oligomers.

First, we designed 16 constructs with different linker lengths as shown in section 9, that

contained as the following Figure 11.24:

Figure 11.24: BRET constructs containing RLuc or YFP

Constructs and method are in detailed described in sections 9 and 10. In green, are
RLuc containing constructs and in orange YFP containing constructs, that were
selected. Diagram of each construct is illustrated (taken from DR. Berger data).
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Second we use in combination all 16 constructs and try to combine all of them, and

see which combination works best. The assay works as seen in Figure 11.25, where two

dimers of NS5A, each expressing a RLuc fragment, and another expressing full YFP, we

hypothesized that when this complex is in close proximity, we could recover BRET sig-

nal, as an acceptor-donor interaction. Furthermore, when NS5A inhibitors are present

we would observe no BRET signal, if NS5A inhibitors are blocking the formation of a

high molecular weight oligomer.

Figure 11.25: Principle of BRET experiment

NS5A is represented as a dimer (magenta and cyan), each containing a representative
of RLuc fragments or YFP full-length. Two hypothetical scenarios are shown: left,
shows a scenario where BRET signal can be recover due to the expression of each
construct (RLucF1 or RLucF2 together with YFP) and thus, the formation of the

oligomer. Right, shows the scenario where NS5A inhibitors interfere with this oligomer
formation by a steric clash or a blockage in the interaction via the binding site. DCV

chemical structure is shown.

Figure 11.26: BRET combination of RLuc constructs

Letter code stand for each RLuc fragment needed in each combination for BRET. F1
or F2.1, stands for the linker number, although also shown. Each fragment linker

number and length are shown.
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Third, we transfected each construct in Huh7.5 cells, obtain and quantify protein for

each one of the constructs. Later, we use this quantification numbers, to use the exact

amounts of each construct using western blot (data not shown) and then protein quan-

tification method using LabImage R©. Once we calculated protein concentration we were

able to express all constructs with the same amount of protein; this improved the assay’s

accuracy. Lastly, we use selected constructs in combination RLucF1 or RLucF2, as a

test before performing BRET final assay which will include one of the RLuc fragments

together with full YFP. Figure 11.26, shows the constructs which showed a significant

RLuc measurement (above 4hrs post transfection normalization). The last is undergoing.



Chapter 12

Computational Results

The following section describes the computational experiments based on the experimen-

tal results in order to complement and fully understand the mechanism of action behind

NS5A inhibitors and NS5A multifunctionality. First, we decided to look at the same

Proline residues used in our experimental data, to compare with using a computational

approach. Second, we wanted to look into DCV properties in relation to NS5A. Lastly,

we wanted to elucidate the role of the NS5A amphipatic helix in the cellular membrane

and its role using NS5A inhibitors. Together all these results could give us a slight

picture of how the inhibitor is working and how key aspects of NS5A are relevant for

DCV mechanism of action.

12.1 Proline residues in linker structures are key for DCV

binding

As described in the experimental results, see 11.1, we use the Proline mutations on the

linkers, as in 11.1, to investigate the impact of Proline mutations in the interaction with

DCV. We use our experimental data to identify the effects of this Proline mutations

on the interaction site with DCV inhibitor. For this, we use the NS5A dimer structure

described in [1] and analyse each identified site-directed mutagenesis Proline residue in

the linker connection between the amphipatic helix and domain Ia and domain Ib. We

analyse each mutation on the overall structure of NS5A by visual analysis. Then we

re-docked DCV inhibitor in the NS5A structure including each Proline mutation and

run molecular dynamics, All together to fully understand the binding mechanism in the

interaction site in addition to understand how the Proline mutations affect or promote

this interaction.

99
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Using MOE we introduce the Proline substitutions for the mutations performed experi-

mentally, we compared the position to the wildtype Proline residue in one of the linkers

as an example we used Proline residue 29 and 35, as shown in 12.1. We then performed

this visual analysis with all the Proline mutations (data not shown). But to demon-

strate that the mutation is having an effect on the binding with NS5A inhibitor, DCV

we performed Molecular Dynamics to study this in detail.

Pr
o 

29
Pr

o 
35

Mutation AlaWildtype Pro Mutation ValMutation Gly

Figure 12.1: Example Proline 29 and 35 mutations

Site-directed mutagenesis to Proline residues mutations on linker structures of NS5A.
Visual analysis of position in comparison to wildtype in MOE. DCV is shown in

yellow, Pro29 and Pro35 shown in cyan as wildtype and each of the substitutions for
Ala, Gly or Val are shown in orange.

The location of the Proline residues is shown in 12.2, were each of the Proline residues

found in the experimental results are colour coded to the impact they had in the HCV life

cycle. The site-directed mutagenesis experiments resulted in the highlight of key Proline

residues that showed an impact on HCV replication and thus on HCV infection. This

Proline residues were mainly in the linker connection between subdomain Ia and Ib or

in the connection with the domain II. While, the Prolines showing a more wildtype-like

(shown in example Figure 12.1 in cyan) behaviour were located in the linker connecting

AH and domain Ia, this might be related to the high conservation of this Proline residues.

Thus, their activity might be key for the binding to the cellular membrane through their

interaction with the AH. This was further investigated with molecular dynamics results

in results section (see 12.3). Furthermore, as you can observe in Figure 12.2, the location

of the Proline residues as wt (shown in cyan), are in close proximity to the AH, and

located in the binding site of DCV, this interesting correlation might indicate that the

Proline residue might have a key role in maintaining the linker structure for further

stability of the protein. Hence, this conserved activity might be key for the mechanism

of action of DCV.

For the next step we use the same generated Proline substitutions and re-docked the

DCV inhibitor into the structure of NS5A taken from [1] as mentioned before. This

resulted in the selection of a re-docked poses of DCV that best fitted to the system,
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Figure 12.2: NS5A dimer with highlighted Proline residues

Proline residues in NS5A structure. Using the model from [1], we inserted the Proline
residues that were mutated and we analysed their structure relative to their effects

during replication and/or particle production. We added DCV to analyse the possible
effect during inhibition of NS5A. DCV is shown in yellow. Proline residues influencing

HCV replication or infection are shown in green and in cyan are shown the Proline
residues as the wildtype.

then the selected pose was prepared by MAESTRO and molecular dynamics were run in

MAESTRO by Desmond program. Thus, in the following Figures the data generated for

each MD is shown within the corresponding Proline mutation, docked DCV and NS5A

dimer, these key aspects of the MD are detailed described.

To analyse further each linker we looked at the previously explored Proline mutations. In

the following Figure we took some snapshots of the MD ran for the generated constructs.

The constructs include NS5A with the following predicted AH cited in [1] and each

Proline mutation with the re-docked inhibitor Daclatasvir. Each snapshot shows a key

movement of the key components (NS5A protein, Amphipathic helix, or the inhibitor

DCV). Each MD was run 300ns in total, snapshot were taken a different time points
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(as stated) and the major event was described in steps (bullet points). Additional MD

movies are further discussed in section 13. Each monomer is shown in a different colour.

We based our studies on the Proline mutation analysis of the AH-DI linker, which is of

major relevance.

12.1.1 P29A

The following sequence of snapshots describe the molecular dynamics for the system

containing NS5A, DCV and P29A mutation on AH-DI linker of NS5A structure. Figure

12.3 shows a representative snapshot. Molecular dynamics video is described in the

following steps.

• Step 1: beginning. The model with its starting position, were all components are

inserted as the previous re-docked position of DCV with NS5A.

• Step 2: 15ns, slight movement of the AH on one of NS5A dimers.

• Step 3: 30ns, the AH undergoes slight movements making DI on both dimers come

closer together.

• Step 4: 97ns, DCV looses contact with AH.

• Step 5: 135ns, DCV reconnects with AH.

• Step 6: 173ns, AH reconstitutes its original position, horizontally to where mem-

brane is located.

• Step 7: 202ns, AH and DCV are brought closer to NS5A via closed conformation

of linker.

• Step 8: 262ns, DCV changes configuration drastically, changing plane and location

of side chains.

• Step 9: 297ns, DCV changes conformation, in contact with AH and NS5A DI, and

has a closed conformation.

In conclusion, molecular dynamics on P29A showed major changes in the position of AH.

This might be due to the lack cellular membrane position, which stabilizes its position.

As a result of the AH movement we can see a movement in DI on each dimer, this might

also cause a disruption in important interactions between AH and DCV. In fact, this

observation can explain the experimental results, where we detect a reduction on HCV

replication as compared to wildtype. See Figure 11.2. In general, the structure of NS5A
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remains in same position while DCV changes conformation to fit into space between AH

and linker. This observation can predict that when P29A is mutated, DCV binding site

can change, thus, disrupting its activity.

Figure 12.3: P29A

. Representative snapshot is shown, where as described, AH undergoes changes that
provoke DI to rearrange. DCV fitting into interdomain region. Each monomer is

shown in cyan and green. DCV in orange. MD total time was 300ns.

12.1.2 P29G

The following sequence of snapshots describe the molecular dynamics for the system

containing NS5A, DCV and P29G mutation on AH-DI linker of NS5A structure. Figure

12.4 shows a representative snapshot. Molecular dynamics video is described in the

following steps.

• Step 1: starting position where DCV is re-docked to NS5A.

• Step 2: 7ns, AH comes closer to DCV.

• Step 3: 15ns, DCV almost gets to an overlapping position with AH.

• Step 4: 60ns, DCV core rings change plane (from horizontal to vertical), side

chains of DCV core are closer to the external amino acids chains of AH.

• Step 5: 109ns, AH looses contact with side chain of DCV, AH makes a turn.
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• Step 6:128ns, AH turns again facing DCV, which is closer to AH-DI linker, while

DCV core rings remain in the horizontal plane.

• Step 7: 148ns, AH last loop continues changing conformation while DCV changes

position relative to the AH-DI linker orientation (opening of the linker, by ex-

tension), provoking drastic conformational changes in the DI subdomains of both

NS5A dimers.

• Step 8: 168ns, AH last loop continues changing conformation together with DCV,

maintaining a tight interaction.

• Step 9: 273ns, AH looses last two loops, while DCV conformation changes accord-

ingly. AH-DI linker is in the closed position bringing closer interactions between

AH and DCV.

• Step 10: 291ns, AH without 2 of 5 loops, DCV changes conformation through the

last ns together with AH. Mainly changing last chain, the core remains in plane,

while the AH-DI linker opens and closes conformation bringing closer together the

AH to DCV which maintains the interaction.

Figure 12.4: P29G

Representative snapshot of molecular dynamics is showing the interesting position
DCV adapts after AH movement, as described. Each monomer is shown in cyan and

green. DCV in orange. MD total time was 300ns.

Consequently, the MD of P29G mutation showed a major movement of the AH which

impacts on the position of DCV. We observed drastic changes in the DCV position
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which relate to the experimental results which show that this mutation can still have

some replication at 72 hpe, in comparison to the other Proline 29 mutations, see Figure

11.2, where the values are not enough to reach wt. Additionally, the AH-DI linker main

function is to bring together the AH to the space in between two NS5A dimers where

the binding site of DCV is located, this happens when DCV is in a closed position, see

Figure 12.4.

12.1.3 P29V

As before, the following sequence of snapshots describe the molecular dynamics for sys-

tem the containing NS5A, DCV and P29V mutation on AH-DI linker of NS5A structure.

Figure 12.5 shows a representative snapshot. Molecular dynamics video is described in

the following steps.

• Step 1: beginning, starting position of DCV re-docked with NS5A.

• Step 2: 18ns, DCV structure is located in between the AH-DI linker and AH. Then

there is a conformational change and DCV moves into the interdomain space (this

term refers in this study to the area in between the DI of both NS5A dimers).

• Step 3: 28ns, DCV interacts with AH, this movement brings AH-DI linker to a

closed conformation and which in turn moves the AH closer to DCV.

• Step 4: 45ns, the last loop of AH looses its conformation. DCV interacts with AH

and the interdomain region, while AH-DI linker remains in a closed conformation.

• Step 5: 91ns, DCV changes conformation drastically and its position has almost

no interaction with AH or the interdomain region (where binding site is located).

• Step 6: 173ns, AH reconstitutes its original position, in a horizontal relation to

where cellular membrane is supposed to be located.

• Step 7: 202ns, AH plus DCV are brought closer to NS5A dimer via the closed

conformation of AH-DI linker.

• Step 8: 262ns, DCV changes configuration drastically, which makes a change in

its plane conformation and thus, in the location of the side chains.

• Step 9: 297ns, DCV changes conformation again, and it is in close contact with

AH. NS5A DI is in a closed conformation.
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Figure 12.5: P29V

Representative snapshot molecular dynamics of mutation at P29V, where we observe
DCV fitting into AH-DI linker and AH, as described. Each monomer is shown in cyan

and green. DCV in orange. MD total time was 300ns.

As can be seen, the results on P29V molecular dynamics showed that NS5A dimer struc-

ture remains in position while DCV changes conformation to fit into space between AH

and AH-DI linker. The connection with the AH changes through the MD, showing closer

interactions of the compound and DI, see Figure 12.5. When using the MD to explain

the experimental results, we found similarities with P29A, where both mutations showed

no HCV replication or infection (compared to wt), and MD showed drastic changes of

DCV, which correlates to the important role of this Proline residues in maintaining

NS5A functionality, see Figure 11.2.

12.1.4 P32A

To continue, the following sequence of snapshots describe the molecular dynamics for the

system containing NS5A, DCV and P32A mutation on AH-DI linker of NS5A structure.

Figure 12.6 shows a representative snapshot. Molecular dynamics video is described in

the following steps.

• Step 1: beginning DCV located in between linker and AH region.
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• Step 2: 6ns, DCV side chains and core moved to a closer proximity with AH, as

the AH-DI linker extends into an open conformation.

• Step 3: 20ns, DCV in close proximity to AH, AH-DI linker keeps extended position,

a side chain of DCV makes contact with the second AH (on the other NS5A

monomer).

• Step 4: 48ns, DCV in only in contact with AH, AH-DI linker is in a total open

conformation, full extension. AH looses the last loop conformation, and, thus, the

contact to second AH (on facing NS5A monomer) is lost.

• Step 5: 77ns, AH-DI linker is closer to AH, DCV remains in contact with AH.

• Step 6: 99ns, AH-DI linker in a full extension conformation, allows the opening of

the AH, which leads the side chains of DCV free into the interdomain region while

the core of DCV remain in contact with AH.

• Step 7: 123ns, DCV structure is in a conformation that allows the connection be-

tween the two AH located in both dimers. AH-DI linkers are completely extended

and both lost the last loop of the AH configuration, this movement brings the DI

of both subunits to collapse into each other.

• Step 8: 181ns, DCV undergoes an insertion into AH the AH-DI linker looses its

conformation into a complete extension. AH looses last loop and, thus, DCV lies

in AH horizontally but with no contact to the AH-DI linker.

• Step 9: 236ns, DCV core makes contact again with the AH-DI linker but continues

to lie in the AH in a horizontal position.

• Step 10: 273ns, DCV shifts to the interdomain region between AH-DI linker and

AH making contact with both structures. The last loop of AH is lost and the AH-

DI linker remains in an extended configuration. DI of both subunits are collapsing

into each other.

P32A mutation changes drastically the structure of the key components: AH, inter-

domain region and AH-DI linker, which stabilize DCV into the binding pocket. This

dramatic changes of the AH and the key components of the system lead to an over-

all change of the whole NS5A protein structure. When analyse in detail, the linker

seems to be several times in close contact with the interdomain region making the whole

structure shrink. This results correlate with the experimental data, where we observe

no HCV replication or infection (compared to wt), which might be explained by the

rearrangement of NS5A structure, see Figure 11.2.
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Figure 12.6: P32A

Representative snapshot of mutation at P32A, where we observe DCV in contact with
AH. AH looses loop structure. Additional changes in DI-DII linker of NS5A structure,
as described. Each monomer is shown in cyan and green. DCV in orange. MD total

time was 300ns.

12.1.5 P32G

In this section we have the sequence of snapshots which describe the molecular dynamics

for the system containing NS5A, DCV and P32G mutation on AH-DI linker of NS5A

structure. Figure 12.7 shows a representative snapshot. Molecular dynamics video is

described in the following steps.

• Step 1: beginning, DCV in the space between linker and AH.

• Step 2: 15ns, DCV structure is in contact with the AH-DI linker, into an extended

position where it interacts with the interdomain space.

• Step 3: 30ns, DCV is located in the interdomain region where it interacts with

AH-DI linker. There is no contact with AH.

• Step 4: 80ns, DCV is in close proximity with AH-DI linker located in the interdo-

main region, this opens DI structure on both subunits of NS5A. The AH-DI linker

is in a complete extension in an open conformation.
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• Step 5: 98ns, AH loops can change conformation and open into an extended con-

formation, this changes the location of DCV core which is interacting with AH-DI

linker and the interdomain region.

• Step 6: 142ns, DCV remains in contact with AH-linker and in the interdomain

region.

• Step 7: 168ns, DCV structure plane turns into a vertical position and interacts

with AH, the last loops of the AH are in a twisted position. DCV side chains are

located in the interdomain region.

• Step 8: 214ns, DCV returns to its starting position in between the AH-DI linker

and the AH. The last loop of AH looses its starting conformation.

• Step 9: 240ns, DCV interacts with the AH-DI linker, while the AH and the in-

terdomain region are all conforming the binding site for DCV. DCV in U-like

conformation, allowing interaction with all the key components of the binding

site.

• Step 10: 286ns, DCV remains in same position. AH twisted towards membrane

location.

Figure 12.7: P32G

Representative snapshot of mutation at P32G, showing the open conformation of
AH-DI linker, which can change the interacting points in the binding site of DCV.

Each monomer is shown in cyan and green. DCV in orange. MD total time was 300ns.
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Molecular Dynamics on P32G showed a rotational change on the AH which brings DCV

in close proximity to the interdomain region. This results in a opening of the AH-DI

linker. All together, this results correlate to the experimental results, see Figure 11.2,

because we can observe no HCV replication or infection due to the structure change of

NS5A or might be related to the overall mutation on the 32 position, as we observed

similar pattern with P32A mutation.

12.1.6 P32V

To continue, the following sequence of snapshots describe the molecular dynamics for the

system containing NS5A, DCV and P32V mutation on AH-DI linker of NS5A structure.

Figure 12.8 shows a representative snapshot. Molecular dynamics video is described in

the following steps.

• Step 1: beginning, DCV is located at the starting position.

• Step 2: 14ns, DCV structure moves into the interdomain region. The AH-DI linker

is in an extended configuration and the AH is interacting with DCV.

• Step 3: 34ns, DCV interacts with AH-DI linker in an open conformation, DCV is

located under the interdomain region, in the binding site.

• Step 4: 51ns, DCV remains in same position. AH looses the last loop on its

structure.

• Step 5: 72ns, DCV turns core structure into a vertical position and it shifts con-

figuration to interact with AH-DI linker, AH and the interdomain region, making

contact with all the key components on the binding site.

• Step 6: 100ns, DCV is in a cross position from AH where it remains through the

MD. The AH is in a twisted position interacting with the AH-DI linker and it is

located close to the interdomain region.

• Step 7: 120ns, DCV is closer to the AH. The AH-DI linker is in close position to

DCV, which remains close to the interdomain region.

• Step 8: 152ns, DCV is around the AH interacting with the AH-DI linker.

• Step 9: 213ns, AH-DI linker in U-like shape, this movement brings it closer to the

interdomain region where DCV locates in a crossed position.

• Step 10: an interesting insertion of AH into the interdomain region by AH-DI

linker movement. DVC interacts with AH-DI linker and remains located in the

interdomain region.
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Notably the AH-DI linker conformation is in an open or closed conformation, this move-

ment regulates the shift in the position of DCV. Additionally, both domains from dimers

are brought closer together or further apart from this movement. Together these move-

ments might influence the position of the AH in relation to the membrane location.

The MD showed that this movement of both AH-DI linkers is important for stabilizing

NS5A structure. Thus P32V mutation, as seen in the experimental data, has an impact

in HCV replication and HCV infection, which can be explained by the importance of

the dynamics in stabilizing NS5A protein.

Figure 12.8: P32V

Representative snapshot of mutation at P32V, open position of AH-DI linker, shifting
DCV position, as described. Each monomer is shown in cyan and green. DCV in

orange. MD total time was 300ns.

Overall what we observed with mutations on Proline 32, is that there is a direct impact

on HCV replication and infection as observed in experimental results. In addition, there

are extensive structure rearrangements which could be key to the mode of action of DCV.

This can be explained by the MD, as the binding pocket is located in close relation to

each of the key components in the system, the AH, inter domain region and AH-DI

linker positions respectively. Therefore, Proline 32 mutation is shown essential for HCV

NS5A protein.
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12.1.7 P35A

The following sequence of snapshots describe the molecular dynamics for the system

containing NS5A, DCV and P35A mutation on AH-DI linker of NS5A structure. Figure

12.9 shows a representative snapshot. Molecular dynamics video is described in the

following steps.

• Step 1: beginning, DCV is located in the binding pocket making contact with the

key elements of the pocket: the AH-DI linker, AH, and the interdomain region.

• Step 2: 30ns, DCV moves into a closer contact position with to AH.

• Step 3: 51ns, there is a side chain on DCV which is inserted into the interdomain

region, the rest remains in contact with AH and linker.

• Step 4: 92ns, DCV remains in a stable configuration in the binding pocket between

DI of each NS5A subunits.

• Step 5: 139ns, very stable configuration of key components, DCV remains in the

same position, in contact with all the key elements in the binding and affinity

pocket.

• Step 6: 185ns, slight movement of DCV structure which brings closer together the

side chains and the core.

• Step 7: 196ns, DCV moves accordingly to AH-DI linker in a closed position which

brings DCV to a compact configuration, retaining the contact with the AH, AH-DI

linker and the interdomain region.

• Step 8: 200ns, DCV core changes plane to horizontal, the contact with the 3 key

elements remains.

• Step 9: 244ns, DCV remains in a horizontal position, DCV overall structure main-

tains contact with key elements.

• Step 10: 279ns, AH-DI linker shifts into an extended position away from AH in

a horizontal manner, into a slightly more vertical position maintaining interaction

with the key elements of the binding pocket.

This mutation does not show drastic changes in the conformation, and more impor-

tantly shows that DCV maintains a stable position in the binding pocket which allows

a continuous interaction and/or contact with the key elements of the system. This fact

is what keeps DCV in the key position for its activity efficacy. Therefore, this mutation

could have an impact in the replication of the virus as on the efficiency of DCV activity.

This MD observations correlate to the experimental data seen in Figure 11.2.
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Figure 12.9: P35A

Representative snapshot of mutation at P35A, showing DCV in the precise binding
site, making connections to the key elements in the pocket, as described. Each

monomer is shown in cyan and green. DCV in orange. MD total time was 300ns.

12.1.8 P35G

The following sequence of snapshots describe the molecular dynamics for the system

containing NS5A, DCV and P35A mutation on AH-DI linker of NS5A structure. Figure

12.10 shows a representative snapshot. Molecular dynamics video is described in the

following steps.

• Step 1: beginning, DCV and key elements of the system remain in beginning

position.

• Step 2: 46ns, DCV remains in close contact to key elements in the binding pocket.

• Step 3: 74ns, movement of AH towards DI on one of the dimers shifts location of

DCV closer to interdomain region.

• Step 4: 123ns, key elements maintain the structure, DCV moves towards the AH-

DI linker.

• Step 5: 141ns, DCV side chains and core do not undergo major changes and key

components are stable. DI shifts location according to AH.
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• Step 6: 186ns, DCV moves slightly closer to the interdomain region maintaining

contact with AH.

• Step 7: 202ns, key components maintain DCV structure in binding site.

• Step 8: 230ns, DCV does not shift plane and remains in binding pocket. AH-DI

linker moves into an extended position.

• Step 9: 267ns, AH remains horizontal to the cellular membrane position, keeping

DCV in line. AH-DI linker extension provokes movement of DI of NS5A.

• Step 10: 284ns, AH-DI returns to a less extended position, where key elements

maintain the binding site where DCV is located.

Figure 12.10: P35G

Representative snapshot of mutation at P35G, a slight opening of the AH-DI linker.
DCV remains in binding pocket making contact with key elements, as described. Each

monomer is shown in cyan and green. DCV in orange. MD total time was 300ns.

P35G mutation did not show major NS5A structure rearrangements, maintaining sta-

ble the binding pocket of DCV, which correlates to the stability of the mutation on

experimental results. When P35G is mutated there is a decreased in normal (wt) HCV

replication and infection, but the virus can still have a detectable level of HCV replica-

tion and infection. Molecular Dynamics on this mutation show that Proline 35 might

not have an essential role on HCV life cycle, but it is essential for the maintenance of

DCV’s binding pocket.
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Snapshots on mutation P35V are not shown due to problems in the re-docking process

of DCV into the NS5A structure. Furthermore, the molecular dynamics could not be

performed. Improvements on some amino acid interactions can be done to perform a

re-docking of DCV.

To conclude we have observe that: mutations on P29X: showed stability in DCV struc-

ture. Although no major changes on the conformation of NS5A DI subdomains was

seen. P29G, showed that the AH looses the conformation of the AH loops. Addition-

ally, DCV was not in contact with the interdomain region which is the key component

of the binding pocket. Mutations on P32X: This mutation showed more drastic confor-

mational changes that would challenge the conformation of the DI subunits in the dimer

formation. The AH showed drastic changes in conformation that could suggest the in-

sertion of this into the cellular membrane. Finally, mutations on P35X: This mutation

does not alter the structure of NS5A, this might be due to the stability of DCV into

its binding pocket and the stability through the dynamics in the contact with the key

elements which maintain the molecule in the correct position for its activity.

Altogether, this experiments show that Proline mutations significantly change the posi-

tion of DCV as seen by molecular dynamics, implicating a different binding site of the

drug to the protein, which can have a direct effect on the efficiency and efficacy of the

binding of the drug. Interestingly, some of this mutations have a higher impact than

others, as already mentioned this might be due to the steric clashes of the amino acid

itself or other interactions.

Ultimately, with this experiments we want to show the potential mutations on essen-

tial Proline residues that might not only change the position of DCV in its binding

pocket, but that might also change its properties. Therefore, we studied DCV essential

properties and its impact on the overall structure of NS5A protein.

12.2 DCV structural properties

The following studies are focused on the inhibitor, DCV, and its interactions with Proline

residues in NS5A protein. DCV structure ligand interactions showing close proximity

and key role of identified Proline residues. These observations show that the effects on

essential Proline residues 29, 32 and 35 can potentially change the binding pocket. As

our previous results show, this mutations not only change the position of DCV in the

binding pocket but its further interactions with the amino acids in the binding pocket.

As seen in Figure 12.11, P29, P32 and P35 have a receptor exposure to the interacting

zone of DCV. Additionally as previously shown, this Proline residues, showed also a
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reduction in HCV replication when mutated, which might be due to its essential role in

the stability of the binding pocket.

Figure 12.11: Daclatasvir interaction map generated in MOE R©, showing important
interacting residues. Symbols are characterizing the properties of the amino acids in

the proximity of DCV.

12.2.1 DCV binding pocket

Linker AH-DI is the anchoring region which is involved not only in the membrane as-

sociation but apparently also in the proper docking of DCV. The studies on Proline

mutations suggest that AH-DI linker structure is key to ensure the binding pocket of

DCV as well as its interaction with the cellular membrane. Our Molecular Dynamics

studies were limited, but we did not observe a major conformation change when studying

the NS5A dimer or the amphipatic helix alone with the cellular membrane. Re-ensuring

that the AH is the main anchor to the cellular membrane giving NS5A stability and DCV

a binding pocket. Together with the data on previous experiments in this study (Sec-

tion 11.1), we can suggest that Daclatasvir binding pocket is stabilized by the proper

membrane association. Thus, the AH has a key role in the mode of action of NS5A

inhibitors. Therefore, we analyzed the conformation of Daclatasvir binding pocket in
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NS5A structure via visual inspection of the interacting amino acids and close contacts

in NS5A dimer. In Figure 12.12, we observe the position of docked DCV in relation to

the Proline mutations positions.

Figure 12.12: NS5A dimer plus DCV binding pocket. A. DCV molecule is in yellow,
its binding site is in green and NS5A dimer in magenta and orange. Proline mutations

are marked in cyan.

Figure 12.13: NS5A dimer plus DCV binding pocket. B. Different angle, DCV
molecule is in yellow, its binding site is in green and NS5A dimer in magenta and

orange. Proline mutations are marked in cyan.

Although together all the results we gathered in the Proline mutation studies, are

strongly suggesting that this Prolines have an essential role in the stability of the binding

pocket and in the structure of the linker connecting the amphipatic helix with NS5A;

the cellular membrane in this whole picture is not taken into account. And regarding

the importance of NS5A functions, the cellular membrane must be a point of study to

complete the overview of the effects on NS5A inhibitors. Therefore, we studied the NS5A

protein in a dimer form together with the cellular membrane. For this purpose we use
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computational methods to predict and formulate the structure of NS5A on the cellular

membrane. By visual inspection we observed that NS5A dimer is positioned on top of

the cellular membrane being the AH the anchor to it. The Molecular Dynamics studies

showed that the dimer moves through but does not detach from the cellular membrane.

The linkers give flexibility to the whole protein providing a bridge-like structure which

could be useful for the DCV molecule to access the binding pocket.

Unfortunately, this system is too unstable to analyse via MD, and it is to big to predict

further interactions and conformational changes. For this reason, we decided to reduce

the system into the analysis of just the AH in presence of the cellular membrane.

12.3 Amphipatic helix and membrane simulations

As computational tools can be powerful enough to get big systems to be studied by

molecular dynamics, it has its limitations. The bigger the system the more powerful the

computational tools and so the more time the studies take. For the purpose of the present

analysis in here, we narrow our study to focus on the interaction of the amphipatic helix

containing the Proline rich linker, which is the main anchoring part of NS5A to the

ER-like membrane, taken from https://www.ucalgary.ca/tieleman/publications.

Figure 12.14: NS5A dimer containing AH and linker on cellular membrane.

NS5A dimer built with AH and Proline-rich linker on top of POPE cellular ER
membrane-like. Solvent water.

https://www.ucalgary.ca/tieleman/publications
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12.3.1 Amphipatic helix orientation in cellular membrane

NS5A is tightly associated with the ER membrane and behaves as an integral mem-

brane protein, with a few more contacts besides the amphipathic helix. Likewise, the

hydrophobic and basic residues following the NS5A amphipathic alpha-helix could par-

ticipate in membrane association. Moreover, residues located downstream of amino acids

1 to 31 were determined to interact with the cellular membrane [175]. The amphipathic

helix is the main anchor, yet the region can be extended to ensure the membrane as-

sociation, creating a platform with hydrophilic resides and asymmetric distribution of

charged resides on the cytosolic side of the N- terminal [33].

As mentioned before in section 2.7.5.2, at the N-terminal region of NS5A contains 30

amino acid residues which serve as a membrane anchor for NS5A, forming an in-plane

amphipathic helix embedded into the cytosolic leaflet of the cellular membrane bilayer.

Previous studies [15, 175] on NMR data showed that the anchoring helix is five residues

from the N- terminus of the D1 structure which suggests it is close to the membrane,

where it can possibly interact with RNA. In the same study [175], it is suggested that

the interaction might be through the DI dimer groove which is facing away from the

cellular membrane. Interestingly, this groove can act as an RNA-binding pocket because

it is a highly basic region, making an electrostatic contact with the basic region of the

groove [37].

Figure 12.15: NS5A dimer with Proline-rich linker. AH-linker homology based on
PxxPxxP. Taken from Nettles et al 2014, [1].

So for our studies we decided to have the amphipatic helix together with the Proline-

rich linker together with the cellular membrane for the molecular dynamics. As shown

in Figure 12.16, orientation of AH could be vertical or horizontal, although previous

data have shown that the AH is in-plane from the cellular membrane, we explore both

structures on molecular dynamics to determine the system’s limitations. As predicted

before, the amphipatic helix structure lies on top of the cellular membrane, we ruled out

the vertical position because the molecular dynamics showed no systematical pattern

that would make sense with previous and experimental data. Thus, we continue with

the horizontal model of AH and cellular membrane.
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a b

Figure 12.16: Amphipatic helix orientation

AH orientation with Proline-rich linker. a. Horizontal orientation and b. Vertical
orientation. Taken from [176].

12.3.2 Amphipatic helix and membrane association

The model was constructed manually including the AH in a horizontal position together

with the POPE cellular membrane (as described in 10.11.3). We ran molecular dynamics

with established conditions as shown in Methods section 10.11.3. The system looks like

in Figure 12.17, where the conditions were the same as set up for all the molecular

dynamics, to keep consistency.

Figure 12.17: Amphipatic helix and membrane

AH construct including Proline rich linker in starting position of built-up model in a
horizontal orientation from the POPE cellular membrane. This system was used as

set-up for Molecular Dynamics.
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The molecular dynamics ran by Desmond showed what others and us have predicted,

the amphipatic helix besides being the major anchor to the membrane it is flexible

and changes conformation during the 500ns of MD, Figures 12.17, 12.18, 12.19, and

12.20, where we can see that the AH-membrane association, undergoes several structure

changes. This changes are the basis to fulfill NS5A main functions, as the protein can

move to allow interactions and thus, open and close conformations that also allow the

binding of NS5A inhibitors, including DCV. Because of systems limitations we studied

only the association of AH to the membrane, but we can predict that the AH has a

flexibility that the linker provides, which can be crucial for the binding of DCV as seen

in the Proline-mutations molecular dynamics, following Figures. .

Figure 12.18: Molecular Dynamics of AH-Proline rich linker (AH-DI linker)

A. Snapshot taken at 72ns, showing AH on top of POPE cellular membrane. As
described in the text, AH is in close contact with the cellular membrane, amino acids
in loop are shown interacting with hydrophobic lipid groups on cellular membrane. B.

Snapshot taken at 244ns, where AH-DI linker (Proline-rich linker), is inserting in
cellular membrane.
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Figure 12.19: Molecular Dynamics of AH-Proline rich linker (AH-DI)

C. Representative snapshot taken at 331ns, where the majority of the AH is inserted in
the cellular membrane. D. Snapshot taken at 443ns, where AH is in contact with
cellular membrane via the Proline-rich linker (AH-DI), through the dynamics we

observe this movement of the AH.

However, molecular dynamics can just predict and model what we include in the system

and it might be that the whole protein undergoes several other conformational changes

which might also be the reason for the proteins functions. Regardless, our MD showed

that the linker plays a major role in maintaining the protein attached to the cellular

membrane via the AH. As mentioned previously, resistance mutations arise in this im-

portant part of the protein, the molecular dynamics show its relevant role in keeping

the membrane association, which has not been studied before. This results show that

the protein’s association to the membrane might be essential to the mode of action of

the inhibitor Daclatasvir.
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Figure 12.20: Molecular Dynamics of AH-Proline rich linker (AH-DI)

Representative snapshot taken at 481ns of molecular dynamics, where the amphipatic
helix sits on top of the membrane on a horizontal manner making contact with the

cellular membrane mostly via the Proline-rich linker (AH-DI).

Our studies generated a more precise model for the mechanism of action of NS5A in-

hibitor, Daclatasvir, where importantly Proline mutations showed an impact in HCV

life cycle. We could prove this by molecular dynamics where we followed each mutation

and by looking at HCV replication and infection. The correlation of these observations

suggest that some of the mutations might have an effect on HCV life cycle due to a

conformational change of the AH-DI linker. The mechanism behind this involves the

attachment of the AH to the cellular membrane, as seen from the AH and membrane

association results. Furthermore, we could follow this AH-membrane association via

molecular dynamics, where we could predict the importance of the Proline-rich linker

not only in the maintenance of NS5A structure but additionally in the binding of DCV

inhibitor, which can be use for the improvement of future antiviral development. More-

over, to our understanding and already proven by others [117], we observed the inhibitory

effect of DCV on the envelopment of HCV viral particles. In addition to the already

know efficacy of NS5A inhibitor, DCV, we could explain its high potency is due to the

major conformational changes that NS5A undergoes which are crucial for its mode of

action. Particularly, we reveal the importance of key elements (amphipatic helix, AH-DI

linker and the interdomain region) in the binding site, that could be target of future

antivirals against HCV. Altogether the present studies, result in a better understanding

of the mechanism of action of NS5A inhibitor DCV, plus expanding the knowledge on

the infection dynamics.



Chapter 13

Discussion

13.1 HCV assembly impaired by DCV activity

Chronic hepatitis C infection remains a major public health threat, requiring research

and development of more specific and effective inhibitors. The emergence of resistance

mutations and the divergence in HCV variant genotypes, makes this task significantly

difficult [60, 127, 177]. However, cell-based HCV replicon, and the discovery of highly

potent direct acting antivirals are now the best antiviral therapy for HCV infection [82].

The pico-molar activity of NS5A inhibitors was discovered in 2009, since then several

underlying mechanisms of action had been proposed. Mainly two hypothesis have now

been confirmed: first, the antiviral mechanism targets NS5A activities regarding HCV

replication [41, 127, 131], second, the mode of action targets only assembly of HCV

virus [118, 126]. Soon, the confirmation of the impairment of HCV replication by NS5A

inhibitors led to one open question: what is the effect of NS5A inhibitors on HCV

assembly of viral particles. Our group and other [117] tried to target this question and

elucidate the mechanism of action of NS5A inhibitor, DCV.

Therefore, we wanted to study the impact of DCV on HCV assembly process, whether

the effect of NS5A inhibitors was affecting only the assembly process. For this purpose

we use SOF as positive control on our titrations studies to make the effect of DCV

evident, since as already known, SOF is a drug targeting NS5B, thus, only inhibiting

HCV replication. We confirmed that SOF had an effect in HCV replication and does not

interfere with HCV viral particles assembly process. Furthermore, we established EC50

values for SOF and DCV in our HCV electroporation protocol, which we used to prove

that DCV does not only inhibit replication but also affects assembly of viral particles

by blocking their envelopment, which was confirmed at the same time by Boson et al, in

124
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2017. In addition, our titration experiments, showed that DCV and SOF achieved the

optimal concentrations that can be use in combination therapy [178, 179].

Additionally we showed that there is an evident peak of DCV inhibition at 24hrs post

transfection, where we can detect a decline on HCV replication and infection, coherent to

what described in literature [126, 131]. Finally, we showed that NS5A assembly functions

are blocked by DCV using several biochemical assays which confirmed that DCV had

an effect on HCV assembly, specifically on the envelopment of HCV viral particles.

Altogether, these experiments showed and support what others also proved [117], DCV

has a dual mode of action targeting NS5A protein activities. The mechanism of action

behind this dual mode of action was also described by Boson et al [117], where DCV

was shown to be inhibiting the envelopment of viral particles by blocking the transfer of

the viral genome to the assembly sites. The outcome of inhibiting both replication and

assembly of viral particles results in the clustering of HCV proteins because they cannot

exit. Therefore, this dual mode of action of DCV explains the efficacy of the drug.

The efficacy of DCV as an antiviral agent has been observed when using a single

ascending-dose in viral load 24h after drug administration in patients receiving a 100-

mg dose [36, 126]. This studies show that after in vivo administration of DCV, HCV

RNA declines with extreme rapidity, falling approximately 2 logs within the first 6h

post dosing, followed by a slower phase of decline [131]. These can be now explained

by our observations, since DCV can effectively block replication of viral HCV RNA and

virion assembly [127]. Likewise, we observed that time of drug addition affects DCV

inhibition of HCV infection. The envelopment of viral particles was disrupted already

at 24 hpi, were we see a slight decline of DCV effect. Hence, when virus assembly is

not blocked efficiently, there is a continued release of new viral particles, which is why

we see a delay after treatment. A more precise time of drug addition could target both

processes, replication and assembly, which can improve the dual action of the inhibitor.

Therapy using other DAA inhibitors can also be improved by the time of dosing DCV

in combination therapy.

A big remaining question regarding NS5A is its oligomerization state, as reported by

others [37, 38, 127], evidence of a higher oligomer formation of NS5A protein has been

hypothesized, however no prove of this oligomer has been made. Our results showed

evidence of the formation of high molecular weight oligomer of NS5A protein under PFA

treatment. We found that the optimal concentration of PFA is around 2% when treating

HCV wt genotype construct and 3% for the resistant mutant Y93H. The smear detected

in the experiments is an indication of oligomer formation, which are present in both

constructs at different PFA% concentrations. Moreover, when using 99 ◦C, the smear

disappeared into more defined bands, this suggested that there are several molecular
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weight NS5A protein detection [40, 48]. There were no evident features that the resistant

mutation on Y93H could affect the oligomer formation. However, the experiments were

not entirely conclusive and for future experiments PFA different concentrations and

temperatures can be used to define the molecular weight of the oligomer. Moreover,

addition of DCV treatment could answer whether or not NS5A forms an oligomer that

could be targeted by NS5A inhibitors. To achieve this, we propose biochemical BRET

assay, to determine the oligomerization state of NS5A and the effects of DCV on the

oligomer formation. In the present study we designed, improved and constructed the

necessary tools to perform such experiments in the future.

Another question that could be answer by using BRET assay as a tool, would be the

mode of action of synergistic compounds proposed by Sun et al, [62], where the formation

of a high oligomer has been supported by using additional drugs [62, 180], which can

enhance and restore the inhibition. This theory, is supported by the hypothesis that this

cooperative interaction between the compounds is due to NS5A protein communication

with each other, meaning, that one inhibitor binds to a resistant NS5A, which leads to

a conformational change that is transmitted to adjacent NS5As, resensitizing resistant

NS5A. This leads to restore the inhibition by the second inhibitor bound to the next

NS5A, which are together forming an oligomer [62]. Important to realize that the drug

sensitivity-determining residues are located away from dimerization which shows that

DCV does not interfere with dimerization, this does not rule out if the compound affects

other forms of oligomerization [181]. As future perspective, the baseline of our studies

can provide initial studies to elucidate the mechanism behind the synergistic effect.

The novel features discovered in our results together with recent research on NS5A

inhibitor, DCV [26, 117, 162, 182], can improve specific development of new inhibitors

by exploiting the dual mode of action. In addition to the understanding of the mechanism

of action of the synergistic compounds.

13.2 Proline mutations impact on HCV replication, infec-

tion and DCV binding

Furthermore, deciphering the MOA of NS5A inhibitors is important to understand how

antiviral therapy works, but improving the structural model of NS5A, can be used to

improve and develop new antivirals. Moreover, fortunately, amphipatic helix structure is

known by NMR studies [33] and domain I has been previously crystallized [37–39], their

functions are very well studied, as reviewed in the Introduction section I. Information

on the structure of NS5A components is key to fulfill gaps in the understanding how
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the virus-inhibitors work [1, 158]. Few studies focused on the analysis of the linker

connecting the AH to the domain I of NS5A protein. Hence, this information is crucial

since most of the resistant mutations are clustering in this area, located on the surface

of domain Ia and the unstructured linker region (amino acids 2635) that connects the

N-terminal AH with the core of DI [45, 62].

Additionally, exploring the structure of NS5A in detail, would explain recent experi-

mental data about DCV and synergistic compounds [62, 180], as already mentioned.

Some hypothesis include the involvement of conformational changes and/or the binding

of DCV to folding intermediate(s), for example, between AH and DI.

For this purpose we looked into AH-DI linker to find conserved residues that could be in-

volved in the stability of NS5A structure, thus important for DCV binding pocket. Our

collaborators (Cristoph Combet, Lyon) found very conserved Proline residues, which

are also present in the linker regions connecting DI subdomain a and b, and the linker

connecting DI-DII[183, 184], which were subjected to site-directed mutagenesis to study

the impact on HCV life cycle, experiments were performed in vitro and then studied

using Molecular Dynamics, to merge both branches of science and corroborate the re-

sults. The ultimate goal was to obtain a model in silico, which can be use to predict

new NS5A conformations in relation to new mutations when DCV is present.

In fact, in silico models have predicted conformations of full-length NS5A DI protein

receptor which were suitable for docking [1, 158]. Then, we integrated this model into

our studies were we mutated each Proline and docked DCV molecule. As observed in

the Molecular Dynamics, each mutation introduced a different arrangement which led

to a conformational change that could make the mutation as wildtype (such as: P35A,

P35G, P100V, P102G, P102V, P103A, P103G, P103V, P189A, P189G, P189V, P192A,

P192G, P192V and P194G) or inhibiting HCV replication and infection (such as: P29A,

P29V, P32A, P32G, P32V, P100A, P100G, P102A, P194A and P194V). Accordingly,

the MD showed why and how each Proline mutation impacted on NS5A conformation

and thus, on HCV life cycle. Additionally, we observed that the Prolines which behaved

as the wildtype HCV virus JCR2a, Prolines 29A, P29V, P32A, P32G and P32V on

AH-DI linker, P100A, 100G and 102A on DIa-DIb linker and P194A and 194V on linker

DI-DII, showed complete RNA replication inhibition, thus these residues showed also

a critical conformational changes on the binding site of DCV. The importance of the

amino acid substitution (Proline to Alanine, Glycine or Valine) could be due to clashes

or amino acid interactions, which made each mutation have a different effect on NS5A

structure, therefore changing the nature of DCV binding site. Key elements (AH, AH-DI

linker and the interdomain region) in the binding site showed different rearrangements

when conserved Proline residues were mutated.
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Notably, P29G, showed major changes in the AH conformation, which provokes lost

contact between DCV and the interdomain region of the binding pocket. Mutations on

Proline 32, to any other amino acid also showed drastic conformational changes that

led to the lost of contact between DCV and key elements in the binding pocket. In

addition to the slight change in AH conformation that showed an insertion into the

cellular membrane location, this changes led to a change in the binding site of DCV.

Coherent to our results, this year it was reported that deletion of Proline 32 results in

the virological failure in patients receiving NS5A inhibitors, glecaprevir and pobrentasvir

[185], which can be explained using our MD model, that shows this Proline mutations

having an impact in binding DCV. Finally, mutations on Proline 35, to any amino

acid did not alter the structure of NS5A, which gives the binding site the stability to

maintain DCV in its binding pocket. Importantly, we and others [182] recently showed

that P35A retained the ability to replicate but showed defects in virus assembly. P35A

exhibited a modest reduction in infectivity which explained why this mutation could be

crucial for HCV life cycle and DCV binding [182]. The binding pocket described for

DAAs has been suggested to contain residues located in the flexible linker region and

the amphipathic alpha-helix at the N-terminal to the structured cytosolic portion of

domain DI, in different computational models [1, 39, 158, 177]. In addition, several of

these conserved Proline residues have been found to be essential through the different

HCV genotypes [183, 184, 186].

Altogether, these results suggest that NS5A conserved Proline residues are important for

the conformation and/or self-interaction of NS5A protein. Importantly, the correlation

of the experimental results with our computational model, showed how each substitution

is changing the interaction partners and key elements on the activities of NS5A DI and

the binding pocket of DCV, plus as discussed in the next section, these Proline residues

also have an impact on membrane association and DCV binding.

Interestingly, it is known that Proline residues can undergo cis-trans isomerization,

which has been found to be very important for protein folding, cell signaling, auto-

inhibition and other cellular processes. In contrast to covalent modifications performed

by post-translational processes, Proline isomerization is an intrinsic conformational ex-

change process that has the potential to control protein activity without altering the

covalent structure of the protein [187]. It has been described that the isomerization pro-

cess has two distinct features, one is to introduce dramatic effects on protein structure

due to the difference between cis and trans conformations states of the dihedral angle

(ω) of the prolyl bond (X-P) that is large (180◦); the second one is, that the process

can be modulated by both intramolecular and intermolecular interactions [187]. At this

end, this could explain the MD observations on Proline mutations and the effects of

these mutations in the overall NS5A structure and therefore in DCV binding. Several
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other studies are looking to develop a new inhibitors using this approach; for exam-

ple, cyclophilins, a family of host peptidyl-prolyl cis-trans isomerases (PPIases), play

a pivotal role in the life cycles of many viruses and therefore represent an attractive

target for broad-spectrum antiviral development such as: small-molecule cyclophilin in-

hibitor (SMCypI), DEB025/Debio 025 (Alisporivir) [188, 189]. In our studies we observe

that when mutating Proline residues, cis-trans isomerization can be important for the

mechanism of action of NS5A inhibitors [159], as this modification introduces drastic

conformational changes that promote or not the binding to DCV. Our computational

model can be use in the future to predict the importance of Proline residues inside the

binding pocket.

Another interesting point is when we looked at residues 24, 30, and 35 all lie inside or

close to a potential double SH3 domain-binding motif P29-xx-P-xx-P35, (referred in the

present study as the AH-DI linker). Although interaction with host factors containing

SH3 domains has been reported for NS5A [190, 191], there has been no evidence reported

yet that this particular motif takes part in such interactions. On the other hand, a P-

xx-P-xx-P motif has been identified and structurally resolved in the sorting nexin 5

[1, 62, 192], where it plays a role in specific lipid binding. In NS5A, mutation P35A

has been shown to slightly reduce virus infectivity, induce defects of virus assembly

and not to have much effect on viral RNA replication, as already mentioned [182].

Taken together, the present experiments together with the recent reports, support the

existence of this conserved and potentially functional motif, as well as the presence of

compensating mutations in and around it, suggest that these regions of NS5A plays a

role in specific interactions with lipids or host factors. [186]

These results are merely limited by the absence of the cellular membrane which might

play a key role in NS5A and in DCV binding. This led us to study in detail then how

is the AH associated to the membrane and whether this is important for DCV binding.

13.3 AH and membrane dynamics

NS5A is tightly associated with the ER membrane and behaves as an integral membrane

protein. In fact, based on targeted mutagenesis and RNA replication analyses of polar

residues at the membrane surface, it has been define as a unique platform that is involved

in specific protein-protein interactions essential for the assembly of a functional HCV

replication complex [13, 45]. The amphipatic helix of NS5A exhibits a hydrophobic,

tryptophan-rich side embedded in the cytosolic leaflet of the membrane bilayer, whereas

the polar, charged side is exposed to the cytosol which is found to be highly conserved

among 280 HCV isolates of various genotypes [175]. Molecular dynamic studies have
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shown that when restraining the two α helices by the membrane lipid bilayer in the close

conformation, results in the stability of the homodimer interactions and reduction of its

flexibility [158]. Very clear differences were also observed by superimposing the two

models (claw-like and back-to-back), the differences rely on the hinge region connecting

the alpha-helix to the core of D1 for each monomer. This hinge region is important for

resistance mutations emergence to DCV treatment [158]. Importantly, the hydrophobic

and basic residues following the NS5A amphipathic alpha-helix could participate in

membrane association [33, 131]. Other residues or segments located downstream of

amino acids 131 were determined to interact with the membrane. Even though the N-

terminal amphipathic helix is the main anchor, the region can be extended to ensure the

membrane association, creating a platform with hydrophilic residues and asymmetric

distribution of charge resides on the cytosolic side of the N- terminal [33].

There is no consensus orientation of the α helix in the computational model attempts,

sometimes it can be modelled in parallel to each other in the two monomers with its

N-terminus pointing to the centre of the dimer [1], sometimes away from the dimer, and

in other analysis kinked and pointing sideways [158, 193]. Multiple models reported

the amphipathic helix, differing in their bending, based on the NMR data (PDB IDs

1R7C through 1R7G) [175, 176]. For this reason in our studies we wanted to determine

which is the optimal AH position and to build-up a model that could be use in the

future to study resistance mutations, NS5A inhibitors positioning and mode of action

of NS5A inhibitors. For this purpose first, we decided to perform MD on the position of

the AH on cellular membranes. Therefore, we included the Proline rich linker, and the

amphipatic helix structure (PDB: 1R7G) together with POPE cellular membrane. Our

results show that from the two potential conformations (horizontal or vertical) of the

AH in relation to the cellular membrane, it is very likely to be sitting horizontally on

top of the membrane and keeps associated with NS5A, which is consistent to previous

reports [175]. Moreover, our studies reveal that NS5A protein is linked to the membrane

using the AH in its horizontal position, and that this interaction changes through time

(MD: 500ns). This conformational changes are important for the protein dynamics in

relation to the cellular membrane and play key role in the binding site of DCV.

Second, we studied in detail the conformation of the AH-DI, Proline rich linker in as-

sociation with the cellular membrane, and we observed that the linker does not change

drastically its conformation staying in close proximity to the cellular membrane. This

could explain why NS5A remains attached to the cellular membrane via the AH, plus

the additional interactions from the AH-DI linker promote NS5A-membrane association.

Reports have described that HCV RNA replication is not impaired by membrane asso-

ciation of NS5A but of additional functions of the N-terminal [33], which is consistent to

our experimental and computational data. In addition to the fact that AH-DI linker has



131

been suggested to affect the association of NS5A to membranes and/or host proteins,

which can also be disrupted by NS5A inhibitor (DCV) binding [118].

The MD performed in the present study reveal the mechanism behind it, where the AH-

DI linker contains important residues (for example: Prolines to Alanie, Valine or Glycine)

that can insert or delete amino acid interactions which are critical for the maintenance

of NS5A functions. Berger et al, also hypothesized that NS5A inhibitors (DCV and

other BMS compounds) docked into the cleft at the dimer interface, suggesting that the

segment connecting AH and D1 might compete for the same binding site as inhibitors. In

our data, we can observe that the conformational changes might induce drastic changes

in AH-DI which can result in a modification of its interaction with the cellular membrane,

this could be totally explained when using the re-docking DCV molecule on the system.

Consistent to our data, DCV and NS5A showed mainly hydrophobic interactions without

possibilities for water molecules to mediate those interactions [193]. Additional changes

in DI-DII linkers were also observed this could further explain differences in RNA binding

or in the interaction with different host proteins. However, molecular dynamics studies

have certain limitations in the number of atoms to study, which is why our aim was to

build a model that can be use in the future to study amino acid substitutions during

inhibitors presence in relation to the cellular membrane.

Furthermore, our results indicated that AH of HCV NS5A protein can spontaneously

bind and penetrate to an endoplasmic reticulum complex membrane containing (POPE).

We observed that the AH shows its anchoring role in keeping the protein on the mem-

brane surface. Proper orientation of the AH at membrane surface was identified through

MD analysis. Remarkably, AH-DI linker was observed to be important to maintain the

protein structure stable. Simulated results provide us with a detailed characterization

of insertion, orientation and AH-interaction of NS5A amphipatic helix at membrane

environment, thus enhancing our understanding of structural functions and mechanism

for the association of HCV NS5A protein with respect to ER membranes. In conclusion,

Proline mutations seem to affect the conformation of AH or the AH-DI linker which

can possibly have an effect not only in the binding to DCV (as previously described)

but also on the cellular membrane interaction. Thus, our in silico model predictions

can be used to: elucidate interactions within DCV binding site key components; predict

mutations on the Proline rich linker that can affect DCV binding, and ultimately as a

build-up model to study protein-membrane association via an amphipatic helix.

Lastly, it has also been reported that the presence of amphipatic helices are one of

the most important classes of membrane curvature sensors found in a wide range of

proteins, including trafficking proteins, where they regulate, for example, protein coat

assembly. This fact was of interest in our study since our molecular dynamics showed an
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indication of membrane curvature when the amphipatic helix was present together with

the cellular membrane. The mechanism by which AHs can achieve membrane curvature

involves the AHs fold upon contact to membranes and insert their hydrophobic face

in the lipid bilayer often with the help of positively charged residues situated on the

polar face of the helix. The insertion process is thought to be facilitated by curvature-

induced defects in lipid packing that result in a higher affinity of AHs for positively

curved membranes [194]. In fact other viruses such as Influenza virus has been shown

to use membrane curvature process to promote assembly of the virus [195]. In addition,

experimental results by Schley et al, confirmed that viral protein is associated with

increased membrane curvature, where they used a mathematical model to show that

localized increases in curvature alone are sufficient to generate viral buds. The magnitude

of the protein-induced curvature is calculated from the size of the amphipathic region

hypothetically removed from the inner membrane as a result of translation, with a

change in membrane stiffness estimated from observed differences in virion deformation

as a result of protein depletion [196]. However more detailed studies and research on this

aspect using our model could elucidate the mechanism by which HCV is using membrane

curvature during infection.

In summary, our results showed that DCV inhibits envelopment of HCV viral particles,

thus, showing a dual mechanism of action. Furthermore, studies on Proline mutations,

showed that some of these residues are critical not only in stabilizing NS5A conformation

and self-interaction, but also in DCV binding process, shown by computational tools.

Additionally, we showed the importance of the cellular membrane when studying NS5A,

NS5A inhibitors and resistant mutations. Altogether we build-up a model which can

be use the future to study NS5A protein- membrane association, in presence of NS5A

inhibitors. Although there are many groups contributing to the studying of HCV life

cycle, there are still open questions that can be targeted by computational tools, working

together with experimental data, which can extend and clarify our understanding of

NS5A inhibitors and apply this knowledge to the improvement of antiviral development.
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tion and DCV binding
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Figure A.1: Conserved Proline residues

Analysis of conserved Proline residues in HCV genotype JFH-1, using Amphipatic

helix PDB: 1R7G and using NS5A PDB: 1ZH1.
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A.2 HCV assembly impaired by DCV activity

Figure A.2: Diagram of experimental design

This diagram represents the experimental design of all the experiments using SOF and

DCV. Details are also described in the Methods section 10.

A.3 Drug titration

Figure A.3: DCV and SOF titration

DCV and SOF titration data, replication and reinfection n=3. Details are also

described in the Methods section 10.
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Figure A.4: DCV titration

DCV titration data, replication and reinfection n=3. Details are also described in the

Methods section 10.
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Figure A.5: SOF titration

DCV titration data, replication and reinfection n=3. Details are also described in the

Methods section 10.
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Descamps, Yves Rouillé, Jean Dubuisson, and Czeslaw Wychowski. Identification

of basic amino acids at the n-terminal end of the core protein that are crucial for

hepatitis c virus infectivity. Journal of virology, 84(24):12515–12528, 2010.

[155] Juliane Gentzsch, Christiane Brohm, Eike Steinmann, Martina Friesland, Nicolas

Menzel, Gabrielle Vieyres, Paula Monteiro Perin, Anne Frentzen, Lars Kaderali,

and Thomas Pietschmann. Hepatitis c virus p7 is critical for capsid assembly and

envelopment. PLoS pathogens, 9(5):e1003355, 2013.

[156] Cordula Klockenbusch and Juergen Kast. Optimization of formaldehyde cross-

linking for protein interaction analysis of non-tagged integrin 1. BioMed Research

International, 2010, 2010.

[157] Johan Bacart, Caroline Corbel, Ralf Jockers, Stéphane Bach, and Cyril Couturier.
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