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We provide simulations to quantitatively describe the interaction between a dc SQUID and an integrated
doubly clamped cantilever. The simulations have been performed using the superconducting quantum in-
terference device (SQUID) equations described by the resistively- and capacitively-shunted junction model
coupled to the equation of motion of a damped harmonic oscillator. We have chosen to investigate an existing
experimental configuration and have explored the motion of the cantilever configuration and the reaction
of the SQUID as a function of the voltage-flux V (Φ) characteristics. We clearly observe the Lorentz force
back-action interaction and demonstrate how a sharp transition state drives the system into a nonlinear-like
regime, and modulates the cantilever displacement amplitude, simply by tuning the SQUID parameters.

I. INTRODUCTION

Theoretical and experimental studies1–7 of linear and
nonlinear micro and nanomechanical resonators are of
great interest as they can be used for sensitive force and
displacement measurements. The physical parameters of
the resonators can also be tuned to observe the transi-
tion from the classical to quantum regimes with relative
experimental ease, enabling observations of macroscopic
quantum systems.8 Significant experimental progress in
the detection of resonators as they enter the quantum
ground state has been achieved by capacitive coupling
to superconducting flux qubits,9 and quantum state con-
trol of a mechanical drum resonator in a superconduct-
ing resonant circuit has been achieved by phonon-photon
coupling.10,11 The state detection is an integral part of
any coupled resonator system as the coupling mechanism
is implicit in any experimental endeavour.

Considering a doubly clamped cantilever, it is obvious
that as the cantilever oscillates the displacement changes,
and the transduction technique will cause a back-action
that influences the cantilever position.12 The impact
of back-action can be positive in terms of cooling3 and
squeezing the resonator motion,13–15 and coupling and
synchronising multiple resonators.16,17 Depending on the
specific transduction technique, back-action can be due
to radiation pressure,18 electron tunnelling,19 or pho-
tothermal effects.20

Previous experiments have used a dc SQUID to detect
the motion of a suspended doubly clamped cantilever in-
tegrated directly into a SQUID loop,1,21 and for a tor-
sional SQUID cantilever.22 For this SQUID-based trans-
duction scheme, the back-action has a simple inductive
component caused by the Lorentz force due to the cir-
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FIG. 1. (a) scheme for the dc SQUID displacement detec-
tor in which the two Josephson junctions are labelled by J1

and J2. The cantilever displacement is out-of-plane, and the
applied magnetic field, B, is in-plane. (b) The voltage flux
(V (Φ)) characteristics for a dc SQUID with βL = 0.115 and
βC = 1.61. Four regimes are identified: (i) the simple os-
cillatory regime where the bias current, Ib = 2.0I0. When
Ib = 1.3I0, other regimes are identified, those are: (ii) the
rapidly changing regime (red), (iii) the zero voltage response
regime (blue), and (iv) the intermediate regime (green).

culating current.21–23 Experimentally, the Lorentz back-
action was shown to shift the mechanical cantilever reso-
nant frequency and quality factor by ∆f and ∆Q respec-
tively. To understand the effect of back-action on ∆f and
∆Q, two transfer functions were obtained,21 which are
coefficients for the average circulating current expanded
in the terms of the cantilever displacement, u, and veloc-
ity, u̇.

In previous work, however, it was not possible to obtain
the velocity-dependent transfer function in the frame of
the SQUID equations coupled to the equation of motion
of the doubly clamped cantilever. To simplify this issue,
Poot et al21 modulated the flux change in the SQUID
loop caused by the cantilever oscillation. Subsequently,
the total flux in the SQUID loop was assumed to be
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a function of the externally applied flux, Φext, and the
modulation of the flux due to the changing area of the
loop, Φ → Φext + Φmod cos(ωmodt). Such a modulation
can describe the influence of the back-action on ∆f and
∆Q of the cantilever when the SQUID displacement de-
tector is tuned within limited regions of the V (Φ) curve.21

However, a full description of the SQUID-cantilever in-
teraction requires a comprehensive model to provide in-
formation not only about the influence of back-action
in all regions of V (Φ), but also about the amplitude,
width, line shape, and responsivity, dV

du , which must be
calculated by linking the cantilever displacement to the
SQUID voltage. Thus, the need for quantitative treat-
ments of the unscaled SQUID equations coupled explic-
itly to the equation of motion for the integrated beam
becomes important. Though such treatments are com-
plicated and challenging,24 they can be performed nu-
merically with improving computational capabilities.

In this paper, we simulate the interaction between a
dc SQUID and an embedded micromechanical doubly
clamped cantilever as experimentally demonstrated by
Etaki et al1 and shown schematically in Fig. 1(a). The
SQUID-cantilever interaction is analysed in different re-
gions of the V (Φ) curve, as shown in Fig. 1(b). Within
this framework, we have explored some regions of the
V (Φ) curve, where the SQUID-cantilever response is ap-
parently strongly nonlinear. Futhermore, the back-action
and the subsequent response of the SQUID is linked to
the cantilever displacement. The effect of changing the
SQUID operating point is discussed in depth, and it is
demonstrated that the SQUID itself can be used to con-
trol the cantilever response by simple modification of the
controllable SQUID parameters.

II. THE MODEL

The model we present is based on the experimental pa-
rameters of Etaki et al1 to allow for experimental verifica-
tion of the results. Thus, we use the equation of motion
of a damped harmonic oscillator given in21 to describe
the displacement, u(t), of the mechanical cantilever:

mü+
mω0

Q0
u̇+mω2

0u = Fd(t) + FL(t), (1)

where m is the beam mass, ω0 = 2πf0 is the intrinsic
frequency, Q0 is the quality factor, Fd = F0 cos(ω0t) is
the driving force, and FL(t) is the Lorentz force FL(t) =
aB`(Ib/2+J). Here, B is the in-plane magnetic field, ` is
the length of the cantilever, J is the circulating current,
and a = 0.911 is a geometrical factor that depends on the
mode shape. Eq. (1) is coupled to the dc SQUID equa-
tions given by the resistively- and capacitively-shunted
junction (RCSJ) model 25:

Φ0

2π
Cδ̈1 +

Φ0

2π

1

R
δ̇1 + I0 sin(δ1) =

1

2
Ib + J, (2)

2.001 2.002 2.003
0.0

0.2

0.4

0.6

0.8

1.0

Frequency (MHz)

V
(µ
V
)

(a) Φext/Φ0=
0.1
0.25
0.40
0.55

2.001 2.002 2.003
0

5

10

15

20

u(
pm
)

Frequency (MHz)

(c) Φext/Φ0=
0.1
0.25
0.40
0.55

Φext/Φ0=
 0.10
 0.25
 0.40
 0.55

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

V
(µ
V
)

u (pm)

(e)

2.001 2.002 2.003

0.12

0.38

0.62

0.88

0.25

0.50

0.75

(b)

Φ
ex
t/Φ

0

Frequency (MHz)

0.0

0.12

0.24

0.35

0.47

0.59

0.71

0.83

0.94
V(µV)

2.001 2.002 2.003

0.12

0.38

0.62

0.88

0.25

0.50

0.75

(d)

Frequency (MHz)

Φ
ex
t/Φ

0

0.450

2.81

5.16

7.52

9.88

12.2

14.6

16.9

19.3
u(pm)

(f)

0.1 0.3 0.5 0.7 0.90.2 0.4 0.6 0.8

0.01

0.02

0.03

0.04

0.05

Ib=2.0I0

Φext/Φ0

dV
/d
u(
nV
. fm

-1
)

FIG. 2. Line shapes for (a) SQUID voltage (V) and (c)
cantilever displacement (u) calculated as a function of Φext

for Ib = 2.0I0. (b) and (d) density plots for SQUID volt-
ages and cantilever displacement respectively. (e) the linear
displacement-voltage trace as extracted by linking (b) and
(d) via the frequency. (f) the responsivity (dV

du
) as calculated

from the slopes of the displacement-voltage lines.

Φ0

2π
Cδ̈2 +

Φ0

2π

1

R
δ̇2 + I0 sin(δ2) =

1

2
Ib − J, (3)

δ1 − δ2 = 2π · Φtot/Φ0, (4)

where δ1,2 are the phase differences of the junctions, Φ0 is
the flux quantum, Ib is the bias current, I0 is the critical
current. The total flux, Φtot, has three contributions: (i)
the external flux Φext, (ii) the flux due to the circulating
current, J , flowing through the inductance of the loop,
L, and (iii) the change in flux through the loop due to
the cantilever displacement, aB`u. Therefore, Φtot =
Φext + LJ + aB`u(t), and Eqs. (1-3) are coupled via the
circulating current as J = 1

L ( δ1−δ22π Φ0 − Φext − aB`u).
These coupled differential equations are numerically

solved without averaging the SQUID voltage and cir-
culating currents, or scaling the time. Therefore, the
time span Tmax must be large enough to be suitable
for the cantilever, while the time step dt must be small
enough to resolve the impact of the fast changes dom-
inated by the relatively high SQUID characteristic fre-
quency ωc = 2πRI0

Φ0
. Although this can be computation-

ally expensive for cantilevers with very low frequencies
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relative to ωc, the experimental results of Etaki et al1

allow their experiment to be modelled within a relatively
small time window.

Here, we solve a system for identical experimental con-
ditions demonstrated by Etaki et al 1 with f0 ' 2 MHz.

To calculate the time dependent voltage, V = Φ0
δ̇1+δ̇2

2π ,
the Runge-Kutta method (RK4) was used to numerically
integrate the equations presented above. The SQUID re-
sponse was then obtained in the frequency domain by
evaluating the Fourier transform of the SQUID voltage
and the cantilever displacement. Our calculations were
performed for I0 = 0.7 µA, R = 29.5 Ω, B = 111 mT,
C = 0.91 pF, and L = 170 pH. These values give a

McCumber-Stewart parameter βC = 2πI0R
2C

Φ0
= 1.61 and

a screening parameter βL = 2I0L
Φ0

= 0.115. The cantilever

has a length ` = 50 µm, a massm = 6×10−13 kg, and was
assumed to have a resonant frequency f0 = 2.0018 MHz
and a quality factor Q0 = 25000, giving a cantilever life-
time of τ0 = Q0

πf0
' 4 ms. The piezo drive which controls

Fd is used only to locate the eigenmodes and is turned off
during measurement22. Thus, at t = 0 the initial velocity
v0 = du

dt

∣∣
u=u0

= 0, where u0 is the initial displacement

amplitude. Here, u0 = 20 pm.

The time span chosen for these calculations was
Tmax = 25 ms, i.e. more than six times the lifetime
of the cantilever, and the optimised time step chosen
was dt = 0.0125 ns. This value of dt allows resolution
of the forces which are dominated by the SQUID fre-
quency fc = RI0

Φ0
' 10 GHz. The calculations were re-

peated at different values of normalised flux in the range
0.90Φ0 ≤ Φext ≤ 0.05Φ0, and bias currents in the range
2.0I0 ≤ Ib ≤ 1.10I0. In the frequency domain, we se-
lected frequency steps of df = 12.5 Hz. The units of the
response which were calculated directly from a Fourier
transform are V·s for the unnormalised SQUID voltage
and m · s for the unnormalised cantilever displacement.
To convert the units of the voltage-response from V·s to
V, the response was multiplied by 1

τ , where τ is the life-
time of the cantilever, which is related to the full width at
half maximum (FWHM) as 1

πτ = fFWHM. A similar pro-
cedure was used to convert the units of the displacement-
response from m·s to m.

With the βL and βC values presented earlier, the V (Φ)
characteristics of an overdamped dc SQUID are shown in
Fig. 1(b) to demonstrate the possible operating points of
a SQUID displacement detector. The V (Φ) curves are
calculated using the time-scaled SQUID equations de-
scribed by the RCSJ model. In Fig. 1(b), four differ-
ent regimes in the SQUID V (Φ) response are defined:
(i) the simple oscillatory regime where the bias current,
Ib = 2.0I0. The other regimes are (ii) the rapidly chang-
ing regime (red), (iii) the zero voltage response regime
(blue), and (iv) the intermediate regime (green). Our
analysis covers the interaction between a dc SQUID and
an integrated cantilever when the system is tuned to op-
erating points within these defined regimes, and the re-
sulting effect on the cantilever-SQUID dynamics.
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FIG. 3. Calculations for the range 0.75Φ0 ≤ Φext ≤ 0.25Φ0

and 2.0I0 ≤ Ib ≤ 1.55I0 for (a) the frequency shift, ∆f , (c)
FWHM and (e) the maximum SQUID voltage, Vmax. The
corresponding density plots are shown in (b), (d), and (f)
respectively.

III. RESULTS

A. The simple oscillatory regime

As experimentally demonstrated1, the voltage re-
sponses exhibit Lorentzian distributions and for Φext =
0.25Φ0, i.e. the highest SQUID sensitivity for Ib = 2.0I0
shown in Fig. 1(b), there was no relative experimental
shift in ∆f of the cantilever. Changing the operating
point of the SQUID by changing Φext within the sim-
ple oscillatory region shown in Fig. 1(b) affects ∆f , and
the operating point clearly affects the sensitivity to the
SQUID voltage as clearly shown in Fig. 2(a) and (b).
Moreover the subsequent cantilever displacement is also
affected (Fig. 2(c) and (d)). These results clearly demon-
strate the influence of the Lorentz back-action on the res-
onator from the SQUID displacement detector, and the
expected magnitude of change in the experimental vari-
ables.

The cantilever displacement and SQUID voltage are
explicitly linked in the frequency domain, i.e., the dis-
placement u(f) is parametrically linked to the voltage
V (f). The subsequent analysis was performed at Ib =
2.0I0 and 0.05Φ0 ≤ Φext ≤ 0.95Φ0, and the displacement-
voltage trace is plotted in Fig. 2(e). The traces show a
linear dependence of voltage on displacement, which al-
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lows determination of the cantilever position in a respon-
sivity specified by the slope of the displacement-voltage
lines. Consequently, the responsivity (dV

du ) was calculated
at Ib = 2.0I0 for different Φext values, with the result
shown in Fig. 2(f). The figure shows a sinusoidal be-
haviour for dV

du which varies from 4.7×10−2 nV · fm−1 at

Φext = 0.25Φ0 to 0.5× 10−2 nV · fm−1 at Φext = 0.50Φ0.
Importantly, Fig. 2 shows an appropriate representa-
tion of the experimental results by Etaki et al1, thereby
demonstrating a good computational model.

B. The intermediate regime

Further calculations were performed through the V (Φ)
curve identified in Fig. 1(b) to examine the SQUID-
cantilever coupling and explore the system response as
the coupling/back-action is modified. Fig. 3(a)-(f) shows
∆f , the FWHM, and the SQUID voltage as the bias
current and Φext are tuned. The largest frequency shift
corresponds to the smallest gradient (dV

dΦ ) of the work-
ing point. This can clearly be understood by Eq. (1),
where the frequency of the cantilever is controlled by the
displacement coefficient. As the cantilever frequency is
shifted by changing Φext and Ib, a modification in this
coefficient emerges due to the circulating current depen-
dence on u. Such a dependence was previously anal-
ysed by expanding the circulating current in terms of
the displacement, u21. In this way, the new displace-
ment coefficient, which arises from the back-action of the
SQUID current on the cantilever, modifies the frequency
and causes a slight or significant shift depending on Φext

and Ib.
The Lorentz back-action also affects the cantilever

quality factor; FWHMs of simulated line shapes are ex-
tracted and presented as a function of Φext for various
values of Ib in Fig. 3(c) and (d). The variation of the
FWHM can be interpreted in an identical way to that of
∆f , where the only difference being that FWHM = ω0

2πQ0

is given in terms of velocity coefficient in Eq. 1. Thus,
the FWHM is modified if J is assumed to have a de-
pendence on the velocity in addition to the displacement
which modifies the frequency21. The corresponding peak
voltage, Vmax, dependence on Φext and Ib is shown in
Fig. 3(e) and (f). The behaviour of Vmax as a function of
Φext is consistent with dV/dΦext of the SQUID V (Φext)
curve shown in Fig. 1(b).

C. The rapidly changing regime

Now we turn to a different regime from Fig 1(b), where
the largest effect of back-action on the cantilever is ob-
served, and the SQUID response is apparently nonlinear.
To examine the effect of back-action on the cantilever
motion, a point in such region was selected as shown in
the inset of Fig. 4(a). Subsequently, at Φext = 0.30Φ0
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FIG. 4. (a) unnormalised displacement and (b) corresponding
unnormalised SQUID voltage when the SQUID displacement
detector is tuned (Φext = 0.30Φ0 and Ib = 1.20I0) to the
working point shown in the inset of (a). The initial cantilever
amplitudes are u0 = 20 pm (blue), u0 = 10 pm (red), and
u0 = 5 pm (black), which correspond to a change of flux in the
SQUID loop of 0.05Φ0, 0.025Φ0, and 0.0125Φ0 respectively.
The colour coding is identical for both graphs.

and Ib = 1.20I0, the unnormalised cantilever displace-
ment and corresponding unnormalised SQUID voltage
response for various displacement amplitudes u0, are ob-
tained and plotted in Fig. 4(a) and Fig. 4(b). When
u0 = 20 pm, the cantilever appears to have a nonlinear
behaviour as demonstrated by the modified line shape
of the cantilever and the SQUID response. Specifically,
as the displacement is reduced from u0 = 20 pm to
u0 = 10 pm to u0 = 5pm, the change in the flux through
the loop aB`u0 is 0.05, 0.025 and 0.0125Φ0 respectively.
This drives the cantilever to experience regions of dif-
ferent flux responsivity, the closest regions to the point
(0.30Φ0, 1.20I0) are: (i) the intermediate region, and (ii)
the zero voltage response region (see Fig. 1(b)). Since
the Lorentz force interacts with these two regions via the
circulating current J , i.e., FL(t) = aB`(Ib/2 + J), two
alternate and successive Lorentz forces of different driv-
ing modes emerge due to the back-action interaction. As
a consequence of these irregular Lorentz forces, a tem-
porary non-equilibrium state emerges, which causes a
nonlinear like behaviour such as that shown in Fig. 4.
Higher u0, or more specifically higher aB`u0, drives the
cantilever to be influenced by a changing V (Φ) region
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FIG. 5. (a) Snapshot for the time array of cantilever displace-
ments at (a) Φext = 0.25Φ0 and Ib = 2.0I0 (a point in the sim-
ple oscillatory regime) versus (b) a point Φext = 0.30Φ0 and
Ib = 1.20I0 in the rapidly changing regime in which a sharp
transition state emerges until the cantilever enters the normal
state at u = uN. (c) calculations for the normal state posi-
tions of specific lines around Φext = 0.30Φ0 and Ib = 1.20I0,
and (d) the yellow-blue islands in the density plot indicate
a shift in the normal state positions that starts emerging at
t = tN and u = uN. The opaque regions in (a) and (b) show
the fast oscillations, which are unresolved due to time window
plotted.

where the responsivity (dV
dΦ ) becomes more significant.

Thus, the variation in the unnormalised SQUID response
becomes larger as can be clearly seen in Fig. 4(b). It
should be noted, however, that as the cantilever returns
to its dynamical equilibrium position, the response be-
comes more Lorentzian as expected.

The effect of the SQUID-cantilever interaction on the
cantilever motion can be more clearly observed by com-
paring the time evolution of the cantilever displacement
for two different bias and flux values. The time depen-
dent displacement for Φext = 0.25Φ0 and Ib = 2.0I0
is plotted in Fig. 5(a), and for Φext = 0.30Φ0 and
Ib = 1.20I0 in Fig. 5(b). Clearly if the SQUID operating
point is in the rapidly changing regime (Fig. 5b) there is a
sharp transition state as the cantilever returns to its equi-
librium position. Naively if the SQUID bias is switched
when the cantilever motion is large, there is an instanta-
neous damping which can be used to modify the motion
of the cantilever. Normal state positions, uN, for specific
lines around Φext = 0.30Φ0 and Ib = 1.20I0 are shown
in Fig. 5(c). These positions are extracted when the
cantilever enters the normal state that accounts for the
Lorentzian profile in the frequency domain, and when the
amplitude starts decaying exponentially at time t = tN,
as shown in Fig. 5(b). A more comprehensive analy-
sis is presented in the density plot shown in Fig. 5(d).
The plot given in Fig. 5(c) exhibits details for one of the
yellow-blue islands in the density plot. The islands cor-

respond to the intermediate regimes in the V (Φ) curves.
Its anticipated that such effect could be employed to pre-
cisely and rapidly control the amplitude of the cantilever
displacement below its initial amplitude which can be
set by a piezo drive used to locate the eigenmodes of the
cantilever. In other words, putting the system in such re-
gions enables modulating the cantilever amplitude after
isolating the system from the external actuator.

IV. CONCLUSION AND FUTURE RESEARCH

In conclusion, we have shown how the tuning of
the SQUID device affects the back-action between the
SQUID and the doubly clamped cantilever. Specifically,
we have quantified the line shapes expected from the
SQUID response and the corresponding cantilever dis-
placement. The effect can be quantitatively analysed via
the shift in the cantilever frequency, the line width, inten-
sity, and shift in the position of the normal state. Direct
solutions for the unscaled dc SQUID equations coupled
to the equations of motion of an integrated cantilever
allow determination of voltage-displacement traces of a
displacement detector. For a SQUID displacement de-
tector tuned to a working point in the rapidly changing
region, a sharp transition state emerges and a nonlinear-
like response due to the emergence of such state is ob-
served. This state could be used to employ the system as
a self modulator for the displacement amplitude of the
cantilever.

Finally it should be noted that the effect of thermal
fluctuations were not investigated in the current work,
and the system studied here is for SQUID devices with
a typical Josephson junction behaviour, i.e, a sinusoidal
current phase relationship (CPR). In general, the thermal
noise can be estimated using the Langevin equation25–27,
where the noise η(t) is given by a correlation function as
〈η(t)η(t′)〉 = 2KBT

R δ(t − t′). However, the simulations
performed in this paper are suitable for devices: (i) with
junctions having dimensions (length L and/or width W)
shorter than the coherence length (ξ) of the supercon-
ducting film, and (ii) measured in a dilution fridge below
50 mK, where the influence of the thermal noise is gen-
erally small. Future work can be extended to modify the
differential equations given by RCSJ by adding a stochas-
tic current term to estimate the effect of the thermal
noise for higher temperatures devices and to implement
CPRs such as that analytically described in28, or those
obtained27,29,30 by numerically solving Ginzburg Landau
equations for nanobridges with dimensions greater than
ξ of the film.
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