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Definition 
Copper (Cu) has two isotopes: 63Cu and 65Cu. Both are stable, with natural 
abundances of 69.174% and 30.826%, respectively (Albarède 2004). The 
distribution of these Cu isotopes in nature is defined by the equation: 
δ65Cu = [(65Cu/63Cu)sample/(65Cu/63Cu)standard − 1] × 1000. 
 
Overview 
Cu is a transition metal that rarely occurs in its native form (Cu0) (Dekov et al. 
2013). It is, however, abundant in oxygen-poor environments as Cu+ and Cu2+ 
when conditions are partially to fully oxygenated (Chi Fru et al. 2011; Dekov et 
al. 2013; Moynier et al. 2017). The oxygen-driven transformation of Cu results 
in isotopic fractionation between precipitated minerals and the solutions from 
which they formed (Zhu et al. 2002; Ehrlich et al. 2004; Dekov et al. 2013; 
Moynier et al. 2017). Cu readily binds to sulfide, leading to Cu being hosted 
by sulfide minerals in differentiated magmas and volcanic rocks, but rarely in 
the silicate mineral phases that make up a bulk of volcanic rocks (Albarède 
2004).  

The Cu minerals in volcanic rocks weather as a function of oxygen 
availability to form soils and sediment minerals. This quantifiable relationship 
between rock Cu minerals and oxygen-driven weathering has been used to 
link Cu to the permanent rise of oxygen in Earth’s atmosphere during the so 
called Great Oxidation Event (GOE) that occurred ~2.45 billion years ago (Chi 
Fru et al. 2016). At this time, atmospheric oxygen rose from below 10-5 
present day levels and climbed to at least 10% of the modern value (Lyons et 
al. 2014). It is thought that the replacement of terrestrial detrital iron sulfide-
rich beds by iron (oxyhydr)oxide-rich layers after this time was a result of the 
progressive oxidation of the sulfide minerals as appreciable amounts of 
oxygen became a permanent fixture of the atmosphere (Holland 2006). The 
evidence shows that the oxygen weathered and transformed a major sulfide 
reservoir that had accumulated on the continents in the absence of oxygen in 
the atmosphere before 2.45 billion years ago (Canfield 1998; Konhauser et al. 
2011).  

As a corollary, the weathering of Cu sulfides on land discharges fluids 
enriched in heavy 65Cu (Moynier et al. 2017). This is consistent with the 
enrichment of 65Cu in modern, sulfate-rich seawater and sediments (Dekov et 
al. 2013; Takano et al. 2014; Moynier et al. 2017). In addition, the binding of 
Cu by iron (oxyhydr)oxide minerals precipitating from the water column 
removes heavy 65Cu from solution (Pokrovsky et al. 2008; Ballistrieri et al. 
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2008). It is, therefore, believed that a change in the isotopic signature of Cu in 
marine, organic carbon-rich sediments following the GOE was impacted by 
the weathering of continental sulfide minerals and the difference in the volume 
of banded iron formation (BIF) that was precipitated before and after the GOE 
(Fig. 1).   

Living cells incorporate light 63Cu into biomass (Zhu et al. 2002; 
Navarette et al. 2011). This has particular implications for biological 
complexes and enzymes that catalyse important biogeochemical processes, 
including aerobic methane-, iron- and ammonia-oxidation, the reduction of 
nitrate to nitrogen gas, and in some aspects of photosynthesis (Zahn et al. 
1996; Zumft 1997; Chi Fru et al. 2011, 2011; Ilbert and Bonnefoy 2013).  

Taken together, the conceptual model presented in Figure 1 suggests 
that the redox sensitivity of Cu makes it a robust biogeochemical tool for 
remotely identifying worlds with atmospheric compositions of the past, present 
and future that can sustain Earth-like life forms. This important criterion arises 
from the ability of Cu isotopes preserved over long geological timescale in 
rocks that interacted with the atmosphere and biosphere to differentiate the 
oxygenation state in which they formed. Because oxygenation is primarily a 
strong property of the Oxyphotobacteria that invented oxygen-producing 
photosynthesis, it is an expressed signature for Earth-like life conditions.  

Fig. 1. (A) Conceptual model for the fractionation of Cu isotopes in anoxic and 
oxic atmospheres linked to the weathering of continental sulfide minerals, 
adsorption by iron (oxyhydr)oxides and biological incorporation into biomass. 
(B) Cu isotope fractionation and preservation in organic carbon-rich sediments 
deposited under oxygen-poor and oxygen-rich atmospheres before and after 
2.5 billion years ago (Chi Fru et al. 2016).  
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