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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

In a community Microgrid where peer to peer (P2P) energy trading is carried out, many prosumers have conflicting interests. It is 
difficult for individual prosumers to capture the conflicting interests in the decision-making process (e.g. control of individual 
batteries). It is also difficult to motivate prosumers to cooperate for achieving the goals of P2P trading. This work proposed a P2P 
trading mechanism and modeled the decision-making process using the game theoretic approach and Shapley value. The game 
theoretic approach delivered distributed energy management solutions for individuals in the trading process considering both 
optimality and fairness among prosumers. The trading mechanism using Shapley value was compared with previous algorithms for 
P2P energy trading, e.g. bill sharing (BS), mid-market rate (MMR) and supply demand ratio (SDR). Simulation results illustrated 
the effectiveness of the proposed method. Optimality and fairness for P2P energy trading were significantly improved. 
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1. Introduction 

The integration of distributed generators (DGs) into electrical power systems is being widely promoted by countries 
in the world [1]. Many energy consumers are now becoming prosumers, i.e. both producers and consumers of 
electricity. Peer-to-peer (P2P) energy trading is being considered as an effective method to manage the distributed 
energy resources (DERs) in community Microgrids, and provide regional market solutions. P2P energy trading 
describes energy trade between prosumers, or between prosumers and consumers, where the excess electricity from 
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prosumers is shared among neighbors [2]-[5]. 
In a community Microgrid where P2P energy trading is carried out, there are many prosumers with conflicting 

interests. It is difficult for individual prosumers to capture the conflicting interests in the decision-making process 
(e.g. control of individual batteries). It is also difficult to motivate prosumer to cooperate for achieving the goals for 
P2P trading. In this context, many studies worked on designing mechanisms for P2P energy trading [6]-[14]. 

The P2P trading mechanisms are divided into three categories: auction model (e.g. [6], [7]), multi-agent model 
(e.g. [4], [8]), and analytical model (e.g. [9]-[14]). For example, an auction based local energy market was proposed 
in [6] to allow prosumers to trade their energy with each other in a grid-connected Microgrid. A learning mechanism 
based on 1-D recursive least squares was used to estimate the spot price and demand level for the energy bidding or 
offering in the auction platform. A multiagent-based model was used in [8]. A competitive local market was created, 
where the lumped load was supplied with the lowest price due to the competitive behaviour of the DER owners. An 
analytical model refers to pricing the electricity from DERs in a local market based on certain rules, calculation 
methods or game theoretic approaches. For example, a supply demand ratio (SDR) method was used to define the 
internal pricing in a Mircogrid in [9]. This allows prosumers to carry out an internal price-based demand response. A 
mid-market rate (MMR) based P2P energy sharing models was proposed in [10], but the flexibility in DERs were not 
considered. The game theoretic approach was also adopted for P2P energy sharing in [11]-[14]. 

Many of these studies in [6]-[14] were either not able to ensure individual prosumers be better off, or not fair to 
prosumers for their contributions to the community (e.g. contribution to energy cost savings). Therefore, it is required 
to model the decision-making process of each participant with considerations of both optimality and fairness. In this 
work, the game theory and Shapley value is used to model the trading mechanism and the decision making process of 
prosumers. This delivered a distributed energy management solution for individuals in the P2P trading process 
considering both optimality and fairness among prosumers. 

2. P2P energy trading 

With the traditional peer-to-grid (P2G) energy trading, a photovoltaic (PV) battery system in a premises is managed 
from an individual prosumer’s perspective, through maximizing the self-consumption of the prosumer’s own 
generation. This is because the retail supplier normally offers a lower export tariff than the supplier charges for buying 
electricity. At the time when there is insufficient energy from the PV battery system, the prosumer buys energy from 
the supplier, and when there is excess energy, the surplus is sold to the same supplier. 

In a community Microgrid several customers share the connection to the main grid. The combined load is subject 
to random coincidence of the individual loads, which averages stochastic fluctuations [15]-[17]. This means that 
surplus PV power from a customer can be consumed by another customer with excess consumption. If a group of 
prosumers cooperate with each other, it is possible to minimize the total group energy cost. Therefore, P2P energy 
trading provides options for prosumers to trade energy within the neighborhood through local buying and selling, 
allowing local funds to remain within the local economy [18]. 

Fig. 1 shows the architecture of P2P energy trading. There are  prosumers in the P2P sharing community. Each 
prosumer has an individual PV battery system installed. 

 
Fig. 1. P2P energy sharing structure in a community Microgrid 
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3. System model 

The P2P energy trading in a community Microgrid is considered as a cooperative game using the game theory. Let 
� � ������� � � �� denote the set of prosumers (players) in the community, with an integer number � � � and � �
|�|. Let � � ������� � � �� denote the operation time period to be considered, with a time slot � � � and � � |�|. 
The time interval between two time steps is ��. We define the following vectors for each time slot �: 

 ��� is the net load of prosumer � without considering battery. ��� is positive for energy consumption, and 
negative for generation. [kWh] 

 ����� is electricity buy price (i.e. price of electricity bought from the supplier). [£/kWh] 
 ������ is electricity sell price (i.e. export tariff, price of electricity sold to the supplier). [£/kWh] 
 ��  is the electricity bill or income of prosumer �. ��  is positive for the amount of money to pay, and 

negative for the amount of money to be repaid (i.e. income to receive). [£] 
 �� is the energy from batteries of prosumer �. �� is positive for battery charge and negative for battery 

discharge. �� is the variable to be determined in the decision-making process under P2P trading. [kWh] 
The methodology is structured as follows (as seen in Fig. 2). Firstly, the value of energy coalition is calculated. 

This process evaluates all the financial benefits for all the possible coalitions (groups of prosumers). The net load of 
individual players (including the player’s batteries) and the electricity prices for trading with the supplier are the inputs 
for the calculation of the coalition. Then, the Shapley value is used to allocate the energy bill/income of individual 
prosumers. This process provides a fair distribution of the sharing benefits. In the sequence, a constrained nonlinear 
programming (CNLP) optimization is executed. This results in an optimal operation of individual batteries. Then, the 
whole process iterates until the results converge. Finally, an optimal operation of individual batteries is obtained. 

 
Fig. 2. Structure of the methodology 

3.1. Coalition and value of energy coalition 

For each coalition � � �, a value function is specified representing the value of �. The value of � is the energy 
payment or income of the coalitions � when the coalition trades with the supplier. The value function of energy 
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���  is the total net load of coalition �. For the first iteration (i.e. � � �), it is assumed that there is 

no energy provided by the batteries, i.e. ��� � �� |�| is the total number of prosumers in the coalition �. ����� is the 
electricity price for trading with the supplier, and ����� is presented by 
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3.2. Shapley value 

The Shapley value is considered as a fair method to allocate resources for a cooperative game. The Shapley value 
is used to allocate the energy bill or income of individual customers. This allocation is conducted by considering the 
marginal contributions of individual prosumers. Here, the Shapley value of a cooperative game is given by 

��� � 1
�! � |�|! �� � |�| � 1�! ���� � ����� � ������

���\���
 (3) 

where ��� is the energy bill or income of prosumer � at time slot �. � � �\��� is a coalition without prosumer �. �� �
���� is a coalition of � and prosumer �. Equation (3) represents the marginal contribution of prosumer �, i.e. the average 
of the difference in the values of coalition between coalitions of � with and without prosumer �. 

With the energy bill or income of each prosumer calculated by Equation (3), the average internal selling price 
(∅����� ) and buying price (∅���� ) between prosumers can be calculated by 

∅������ �
��
�
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���
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where � � ����� ���� ���� � � ����	 are the set of prosumers who are energy producers at time slot �. � � ���� � ��� � ��� � � � ���� 
are the set of prosumers who are energy consumers at time �. � and � are integer numbers. � is the total number of 
producer prosumers; � is the total number of consumers, and � � � � �.  

3.3. Energy cost minimization 

The decision making process is modelled as a CNLP optimization. The control of individual batteries is considered 
as the decision variable. The optimization objective is to minimize the energy bill or to maximize the income of 
individual prosumers, and this is presented by 

���� � ��� �������	��
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where ���	�������  and ���	�������  are the maximum discharge and charge power of the converter of the battery at 
prosumer �. �����	��� and �����	��� are the minimum and maximum state of charge of the battery. ��� and ��� are 
the battery discharging and charging efficiencies. The techniques used in [19] and [3] were used there to discard the 
absolute value calculation in the objective function.  

3.4. Fairness index 

The fairness index measures the fairness of different trading mechanisms. When using the Shapley value to allocate 
the energy bill/income for prosumers, each user’s share of the cost is completely fair. The distance between normalized 
billing vector when using any trading mechanism and the normalized billing vector for the Shapley value ��∗ was 
considered as a fairness index, as presented in Equation (8). This method was previously adopted in reference [20].  
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programming (CNLP) optimization is executed. This results in an optimal operation of individual batteries. Then, the 
whole process iterates until the results converge. Finally, an optimal operation of individual batteries is obtained. 

 
Fig. 2. Structure of the methodology 

3.1. Coalition and value of energy coalition 

For each coalition � � �, a value function is specified representing the value of �. The value of � is the energy 
payment or income of the coalitions � when the coalition trades with the supplier. The value function of energy 
coalition � is calculated by 

����� � ������ ������� � ����
|�|

���
 (1) 

where ∑ ����� � ����|�|
���  is the total net load of coalition �. For the first iteration (i.e. � � �), it is assumed that there is 

no energy provided by the batteries, i.e. ��� � �� |�| is the total number of prosumers in the coalition �. ����� is the 
electricity price for trading with the supplier, and ����� is presented by 

������ �
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�
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3.2. Shapley value 

The Shapley value is considered as a fair method to allocate resources for a cooperative game. The Shapley value 
is used to allocate the energy bill or income of individual customers. This allocation is conducted by considering the 
marginal contributions of individual prosumers. Here, the Shapley value of a cooperative game is given by 

��� � 1
�! � |�|! �� � |�| � 1�! ���� � ����� � ������

���\���
 (3) 

where ��� is the energy bill or income of prosumer � at time slot �. � � �\��� is a coalition without prosumer �. �� �
���� is a coalition of � and prosumer �. Equation (3) represents the marginal contribution of prosumer �, i.e. the average 
of the difference in the values of coalition between coalitions of � with and without prosumer �. 

With the energy bill or income of each prosumer calculated by Equation (3), the average internal selling price 
(∅����� ) and buying price (∅���� ) between prosumers can be calculated by 

∅������ �
��
�
��∅����� � ∑ ��� ∗ |���|�

���
| ∑ ����

��� | 									� � �

∅���� � ∑ ��� ∗ �������
∑ �������

											� � �
 (4) 

where � � ����� ���� ���� � � ����	 are the set of prosumers who are energy producers at time slot �. � � ���� � ��� � ��� � � � ���� 
are the set of prosumers who are energy consumers at time �. � and � are integer numbers. � is the total number of 
producer prosumers; � is the total number of consumers, and � � � � �.  

3.3. Energy cost minimization 

The decision making process is modelled as a CNLP optimization. The control of individual batteries is considered 
as the decision variable. The optimization objective is to minimize the energy bill or to maximize the income of 
individual prosumers, and this is presented by 

���� � ��� �������	��
���|���� � ���| ∗ ∅������

�

���
� (5) 

s.t. 
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(6) 

where ���	�������  and ���	�������  are the maximum discharge and charge power of the converter of the battery at 
prosumer �. �����	��� and �����	��� are the minimum and maximum state of charge of the battery. ��� and ��� are 
the battery discharging and charging efficiencies. The techniques used in [19] and [3] were used there to discard the 
absolute value calculation in the objective function.  

3.4. Fairness index 

The fairness index measures the fairness of different trading mechanisms. When using the Shapley value to allocate 
the energy bill/income for prosumers, each user’s share of the cost is completely fair. The distance between normalized 
billing vector when using any trading mechanism and the normalized billing vector for the Shapley value ��∗ was 
considered as a fairness index, as presented in Equation (8). This method was previously adopted in reference [20].  
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where � is the fairness index. ��∗ is the customer bill or income of prosumer � when using the Shapley value. �� is the 
bill or income of prosumer � when using other trading mechanisms. The fairness index measures the fairness of any 
trading mechanism compared to the Shapley value. It is clear that a lower index � indicates a fairer billing mechanism. 

4. Case study 

The proposed methodology was demonstrated on a residential community with PV battery systems. The 
community Microgrid has 10 prosumers, 5 of which have individual PV battery systems (i.e. � � ��). The other 5 
households do not have solar PV or batteries, and they are consumers. However, for simplicity we considered they 
are prosumers with PV and battery capacity of zero. Therefore, the proposed model for prosumers is applicable to all 
the players in the community. All the solar PV systems were 4 kWp. All the batteries were 4 kWh and the maximum 
charging and discharging power was 4 kW. Both the charging and discharging efficiencies were 90%. One day of 24 
hours with 15-minute resolution was considered. The price of the energy bought from the retail supplier was taken as 
0.15 £/kWh and the price at which energy is sold to the grid was 0.05 £/kWh [21]. 

Fig. 3 shows the daily electricity bill/income of individual prosumers when considering different P2P trading 
mechanisms, including bill sharing (BS), mid-market rate (MMR), supply demand ratio (SDR), and Shapley value. 
These trading mechanisms are compared with the P2G trading. It was found that the Shapley value method 
significantly reduced all the prosumers’ energy bill or increased the prosumers’ income compared to the P2G energy 
trading. It was also found that, the amount of billings allocated by using Shapley value is between that of using MMR 
and SDR methods. This is because that the internal buying and selling prices were found between these two methods, 
as shown in Fig. 4. 

The fairness indexes and the energy costs of the community were presented in Fig. 5. The Shapley value method 
not only provided a fair billing allocation, but also enabled an optimal control of individual control of batteries. 
Therefore, the total community energy cost when using Shapley value was relative low.  

  
(a) Without battery (b) Prosumer 1 to 5 each with a 4 kWh battery 

Fig. 3. Daily energy bill or income of individual prosumers (prosumer 1 to 5 each with a 4 kWp solar PV, positive value means electricity bill, 
and negative value means income) 

   
(a) MMR (b) SDR (c) Shapley value 

Fig. 4. Internal buying and selling price for every 15 minutes in a day, £/kWh 

‐0.40

‐0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 2 3 4 5 6 7 8 9 10

D
ai

ly
 e

le
ct

ric
ity

 b
ill

 o
r i

nc
om

e,
 £

 

Prosumer number

P2G Bill Sharing MMR SDR Shapley value

‐0.60
‐0.40
‐0.20
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

1 2 3 4 5 6 7 8 9 10

D
ai

ly
 e

le
ct

ric
ity

 b
ill

 o
r i

nc
om

e,
 £

 

Prosumer number

P2G Bill Sharing MMR SDR Shapley value

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

00
:0

0
01

:0
0

02
:0

0
03

:0
0

04
:0

0
05

:0
0

06
:0

0
07

:0
0

08
:0

0
09

:0
0

10
:0

0
11

:0
0

12
:0

0
13

:0
0

14
:0

0
15

:0
0

16
:0

0
17

:0
0

18
:0

0
19

:0
0

20
:0

0
21

:0
0

22
:0

0
23

:0
0

00
:0

0

In
te

rn
al

 b
uy

in
g/

se
lli

ng
 p

ric
e,

 £
/k

W
h

Time of day, 15 min resolution

MMR Buy MMR Sell
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

00
:0

0
01

:0
0

02
:0

0
03

:0
0

04
:0

0
05

:0
0

06
:0

0
07

:0
0

08
:0

0
09

:0
0

10
:0

0
11

:0
0

12
:0

0
13

:0
0

14
:0

0
15

:0
0

16
:0

0
17

:0
0

18
:0

0
19

:0
0

20
:0

0
21

:0
0

22
:0

0
23

:0
0

00
:0

0In
te

rn
al

 b
uy

in
g/

se
lli

ng
 p

ric
e,

 £
/k

W
h

Time of day, 15 min resolution

SDR Buy SDR Sell
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

00
:0

0
01

:0
0

02
:0

0
03

:0
0

04
:0

0
05

:0
0

06
:0

0
07

:0
0

08
:0

0
09

:0
0

10
:0

0
11

:0
0

12
:0

0
13

:0
0

14
:0

0
15

:0
0

16
:0

0
17

:0
0

18
:0

0
19

:0
0

20
:0

0
21

:0
0

22
:0

0
23

:0
0

In
te

rn
al

 b
uy

in
g/

se
lli

ng
 p

ric
e,

 £
/k

W
h

Time of day, 15 min resolution

Shapley value Buy Shapley value Sell

6 Author name / Energy Procedia 00 (2018) 000–000 

   
Fig. 5. Fairness indexes (the smaller value, the fairer) and total daily energy cost of the community 

4. Conclusions 

To capture the conflicting interests between prosumers, and encourage prosumers to cooperate for P2P energy 
trading in a community Microgrid, this work proposed a P2P trading mechanism and modelled the decision-making 
process using the game theoretic approach and Shapley value. The optimization model for the control of individual 
batteries considered control actions of every other individuals. Therefore, the method provided both optimality and 
fairness for P2P energy trading. 
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where � is the fairness index. ��∗ is the customer bill or income of prosumer � when using the Shapley value. �� is the 
bill or income of prosumer � when using other trading mechanisms. The fairness index measures the fairness of any 
trading mechanism compared to the Shapley value. It is clear that a lower index � indicates a fairer billing mechanism. 

4. Case study 

The proposed methodology was demonstrated on a residential community with PV battery systems. The 
community Microgrid has 10 prosumers, 5 of which have individual PV battery systems (i.e. � � ��). The other 5 
households do not have solar PV or batteries, and they are consumers. However, for simplicity we considered they 
are prosumers with PV and battery capacity of zero. Therefore, the proposed model for prosumers is applicable to all 
the players in the community. All the solar PV systems were 4 kWp. All the batteries were 4 kWh and the maximum 
charging and discharging power was 4 kW. Both the charging and discharging efficiencies were 90%. One day of 24 
hours with 15-minute resolution was considered. The price of the energy bought from the retail supplier was taken as 
0.15 £/kWh and the price at which energy is sold to the grid was 0.05 £/kWh [21]. 

Fig. 3 shows the daily electricity bill/income of individual prosumers when considering different P2P trading 
mechanisms, including bill sharing (BS), mid-market rate (MMR), supply demand ratio (SDR), and Shapley value. 
These trading mechanisms are compared with the P2G trading. It was found that the Shapley value method 
significantly reduced all the prosumers’ energy bill or increased the prosumers’ income compared to the P2G energy 
trading. It was also found that, the amount of billings allocated by using Shapley value is between that of using MMR 
and SDR methods. This is because that the internal buying and selling prices were found between these two methods, 
as shown in Fig. 4. 

The fairness indexes and the energy costs of the community were presented in Fig. 5. The Shapley value method 
not only provided a fair billing allocation, but also enabled an optimal control of individual control of batteries. 
Therefore, the total community energy cost when using Shapley value was relative low.  

  
(a) Without battery (b) Prosumer 1 to 5 each with a 4 kWh battery 

Fig. 3. Daily energy bill or income of individual prosumers (prosumer 1 to 5 each with a 4 kWp solar PV, positive value means electricity bill, 
and negative value means income) 

   
(a) MMR (b) SDR (c) Shapley value 

Fig. 4. Internal buying and selling price for every 15 minutes in a day, £/kWh 
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Fig. 5. Fairness indexes (the smaller value, the fairer) and total daily energy cost of the community 

4. Conclusions 

To capture the conflicting interests between prosumers, and encourage prosumers to cooperate for P2P energy 
trading in a community Microgrid, this work proposed a P2P trading mechanism and modelled the decision-making 
process using the game theoretic approach and Shapley value. The optimization model for the control of individual 
batteries considered control actions of every other individuals. Therefore, the method provided both optimality and 
fairness for P2P energy trading. 
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