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detect similarities across patients we performed
dimensionality reduction using the t-distributed stochastic
neighborhood embedding (t-SNE) followed by a Gaussian
Mean Shift Clustering. ANOVA tests for each descriptor and
each cluster were performed to find statistically
significant differences. A repeated measurements model
was fitted at each cluster to evaluate within-cluster
trends for patients with and without toxicity (Fig. 1).
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Results

Two clusters with distinct shape characteristics comprised
85% of the patients while a third cluster (15%) included
outliers. Clusters remained similar when data from the
entire RT course was pooled in the t-SNE classification.
Significant differences between cases and controls were
observed at each cluster in seven descriptors (convexity
and elliptic variance along the three principal axes, and
compactness). In cluster 1 (small bladder volumes) more
convex and round bladders shapes were associated with
higher toxicity risk, while in cluster 2 (large bladder
volumes) more concave and elliptical shapes were
associated with higher risk of toxicity (Fig. 2).
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Figure 2. Fit to repeated measurements models using the data from each of the two
clusters identified in the tSNE classification (only first week of treatment). The model for
each cluster included the 7 shape descriptors not highly comrelated (Pearson Coeff. < 0.6)
and showing significant differences between patients presenting toxicity and those free
from toxicity. For each cluster a sketch of the population average and quartiles bladder
shape (at the central slice) are showed.

Conclusion
Bladder shape changes occurring during the first week of
treatment show potential to predict the risk of developing
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late GU toxicity after RT for prostate cancer. Patient-
specific changes in bladder shape might be related to the
exposure of the most radiosensitive areas of the bladder
to high doses.

PO-0963 A novel normalisation technique for voxel
size dependent radiomic features in oesophageal
cancer

P. Whybra', C. Parkinson', K. Foley?, J. Staffurth?, E.
Spezi'

'Cardiff University, School of Engineering, Cardiff,
United Kingdom ; *Cardiff University, School of
Medicine, Cardiff, United Kingdom

Purpose or Objective

In oncology, radiomic studies hope to identify quantitative
imaging features that predict survival and therapy
response. To be clinically useful, features need to be
robust. For 3D features that measure tumour
heterogeneity, isotropic voxels are advised to ensure no
directional bias [1]. Normally, PET/CT scans are not
isotropic and require interpolation. The voxel size chosen
is important; resampling a scan to smaller dimensions
increases the number of voxels in a region of interest
(ROI). An intrinsic dependency between common features
and number of voxels in a ROl has been found [2]. This
study evaluates methods to improve feature robustness
and introduces a novel normalisation technique for voxel
size dependent radiomic features in oesophageal cancer
(0C).

Material and Methods

18F-FDG PET images (scanned and segmented with the
same protocol) from 441 OC patients (training=353,
validation=88) were included [3]. Standardised and
validated [1] in-house feature extraction algorithms were
used. Voxel intensities were discretised with a fixed bin
width (0.5 SUV). Five selected features recommended for
voxel normalisation [2] were extracted from the original
scan dimension and 5 isotropic sizes. Patients were ranked
based on the feature result of the original dimension.
Surface models were generated on the training dataset to
normalise each feature using the voxel size and feature
value. A concordance correlation coefficient (CCC) was
used to determine reproducibility between features
extracted from the original dimension and a range of
interpolated voxel sizes.

Results

Fig.1 shows development of a surface model and results
for a selected feature, run length non-uniformity (RLNU).
Fig.2 is a feature heatmap of the CCC results for each
voxel dimension for the validation dataset. There are 3
versions of each feature; standard (CCC 0.16-0.96), voxel
number normalised (CCC 0.08-0.99), and surface model
normalised (CCC 0.95-0.99). Features normalised with a
surface model performed the best in each case.
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Fig.1: Results for RLNU (training). TOP: (left) feature
calculated at each voxel dimension against patient rank.
(right) Feature normalised by voxel number in
ROI. BOTTOM: (left) Surface model to calculate feature
change. (right) Surface model shifted result.
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Fig.2: CCC heatmap for each feature (validation dataset)
Conclusion

We developed, tested and validated a novel normalisation
technique for voxel size dependent radiomic features. On-
going work aims at validating the proposed approach on
other imaging modalities.
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Purpose or Objective

Radiomics aims at extracting quantitative features from
medical images. Several studies focussed on the potential
value of radiomic analysis in predicting tumour response
for oesophageal cancer (OC) patients using contrast
enhanced CT images. However, in clinical practice
contrast agents are not always administrable, making the
development of a new radiomic model necessary. In this
work, we investigated the usefulness of radiomic features
extracted from contrast and non-contrast enhanced CT
scans in the development of a prognostic model in OC.
Material and Methods

CT images and radiotherapy volumes of 213 patients from
a clinical trial in OC'were processed with the CERR
package?. Patients were divided into 3 groups: mixed
group (MG) with contrast and non-contrast enhanced CT
images (n=213), contrast group (CG) with contrast
enhanced CT scans (n=138) and non-contrast group (nCG)
with non-contrast enhanced CT data (n=75). Radiomic
features were automatically extracted in 2D and 3D in
compliance with the IBSI}, using in-house developed data
analytics software®. Stable features were selected as the
ones with similar intra-groups distributions (Kruskal-Wallis
test). Corresponding 2D and 3D stable features within each
group were evaluated for differences (Wilcoxon signed
rank test). Remaining filtered features and clinical
characteristics were used to develop a prognostic model
with the Cox regression method.

Results

A total of 119 2D and 3D features were computed from
each group. The Kruskal-Wallis test excluded 82, 3 and 6
unstable features obtained from MG, from CG and from
nCG, respectively (Fig. 1). Some stable features (6 for MG,
15 for CG and 17 for nCG) did not show a significant
difference if extracted considering 1 tumour layer at a
time or considering the whole tumour volume. Among
stable features, 4 features showed no difference if
obtained from 3D or 2D data and were stable in all the 3
groups. The Cox regression model, constructed with 8
clinical and radiomic variables, identified 1 feature
(GLDZM zone distance variance) associated with survival
(Table 1).
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Figure 1. Stable and unstable features extracted from the different groups.

Conclusion
The prognostic model has identified 1 texture significantly
and independently correlated with overall survival. This
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