Santos Hernandez, Alba, Lewis, Richard James, Malta, Grazia, Howe, Alexander, Morgan, David John, Hampton, Euan, Gaskin, Paul and Hutchings, Graham J. 2019. The direct synthesis of hydrogen peroxide over Au-Pd supported nanoparticles under ambient conditions. Industrial & Engineering Chemistry Research 58 (28), pp. 12623-12631. 10.1021/acs.iecr.9b02211

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
The direct synthesis of hydrogen peroxide over Au-Pd supported nanoparticles under ambient conditions.

[a]Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom.

[b]Dŵr Cymru Welsh Water, Pentwyn Road, Nelson, Treharris, CF46 6LY, United Kingdom.

* Hutch@cardiff.ac.uk
Abstract.

The direct synthesis of hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) from molecular H\textsubscript{2} and O\textsubscript{2} over Au-Pd / TiO\textsubscript{2} catalysts prepared using a modified impregnation methodology is studied. Initially we investigated the role of Au: Pd ratio on the catalytic activity towards H\textsubscript{2}O\textsubscript{2} formation and its subsequent degradation under conditions that have previously been found to be optimal for the formation of H\textsubscript{2}O\textsubscript{2} using high pressure reactants and low temperatures. Subsequently, we have conducted a detailed study of H\textsubscript{2}O\textsubscript{2} synthesis under ambient conditions which are both more challenging for achieving high yields of H\textsubscript{2}O\textsubscript{2} and are more likely to be used for future industrial applications.
Introduction.

Hydrogen peroxide (H₂O₂) is a highly versatile, environmentally friendly oxidant, with the only by-product of its application being water. The primary application of H₂O₂ is found in the paper and textile industries,[1, 2] where it is used as a bleaching agent and in the production of bulk chemicals, with typical applications found in the integrated hydrogen peroxide to propylene oxide (HPPO) process,[3, 4] the ammoximation of cyclohexanone to the corresponding oxime, a key intermediate in the production of Nylon-6[5-7], and the production of KA oil, a mix of cyclohexanone and cyclohexanol, from cyclohexane.[8, 9] Furthermore, H₂O₂ is finding increasing application in water treatment, superseding chlorine containing oxidants, primarily due to increasing environmental protection legislation.[10, 11] The ability of H₂O₂ to destroy chemicals found in waste streams such as thiocyanate, nitrate and hypochlorite is well known.[12, 13] In recent years increasing focus has been placed on the treatment of organic pollutants from wastewater streams with numerous studies reporting the efficacy of H₂O₂ used in conjunction with Fenton’s reagent,[14-18] with the photo-Fenton process, in particular, representing an interesting alternative approach.[19-21]

Annual global production of H₂O₂ is growing at a rate of approximately 4 % year on year with demand forecast to exceed 5 million tons per annum by 2020.[22] Currently, production of H₂O₂ on an industrial scale is dominated by the well-established anthraquinone oxidation (AO), also known as in-direct process, which accounts for more than 95 % of the global H₂O₂ production. Although the AO process is highly efficient, there are some concerns regarding its carbon efficiency, with the unselective hydrogenation of the anthraquinone H₂-carrier molecule requiring its continual replacement.

The direct synthesis of H₂O₂ from molecular H₂ and O₂ represents an attractive alternative to the AO process, offering a more atomically efficient route to H₂O₂ and allowing for the potential production of H₂O₂ at the point of final use. Although supported Pd catalyst are highly active towards the direct synthesis of H₂O₂, they often display poor selectivity, with high rates of H₂O₂ degradation, through hydrogenation and decomposition pathways. To inhibit these sequential, undesirable, reactions, halide and acidic stabilisers are often utilised,[23-26] which lead to additional costs associated with reactor corrosion and the removal of these stabilising agents downstream. However, it has been well reported that through combining Au with Pd it is possible to significantly enhance catalytic activity and selectivity towards H₂O₂ in the absence of strong acid and halide stabilising agents.[27, 28] The synergistic enhancement achieved through the addition of Au to Pd, although still not fully understood, has been well reported in the literature [29-31] since it was first observed by Landon et al.[32] There is wide debate over the cause of this synergistic enhancement, with electronic, structural and isolation effects, or a combination of these, all potential causes for the enhanced selectivity of Au-Pd catalysts. It
is likely that in many cases the observed synergy is a combination of these factors. To date these supported AuPd catalysts have most often been studied using low reaction temperatures with high pressure gases and a water/alcohol co-solvent mixture. Typically CO$_2$ has been the diluent of choice to ensure mixtures of H$_2$ and O$_2$ do not enter the explosive region, with the explosive region of H$_2$/O$_2$ mixtures known to be much narrower when using CO$_2$ as a diluent compared to other inert gases. Furthermore the use of CO$_2$ provides the additional benefit of increasing H$_2$O$_2$ stability through the formation of carbonic acid in-situ. However, the use of other diluent gases, such as argon and nitrogen, are also common, with nitrogen in particular often used due to lower associated costs. [12] Although these conditions are ideal for the direct synthesis of H$_2$O$_2$ they are likely to be undesirable on an industrial scale due to the associated increased financial costs. As such, we have investigated the effect of key reaction parameters on catalytic activity and selectivity towards H$_2$O$_2$ over a series of 1 \%AuPd/TiO$_2$ catalysts, prepared via a modified impregnation methodology, starting with those conditions previously optimised and moving towards those more likely to be more suitable for future industrial application. Sankar et al.[33] have previously extensively studied a modified impregnation methodology for the preparation of AuPd/TiO$_2$ catalysts demonstrating an enhanced catalytic performance in the direct synthesis of H$_2$O$_2$, with H$_2$O$_2$ synthesis rates found to be four times greater than an analogous catalyst prepared by a conventional impregnation methodology. This enhancement has been ascribed to a significant decrease in mean particle size and improved Au dispersion and formation of AuPd alloyed nanoparticles. With such excellent rates of H$_2$O$_2$ synthesis compared to conventional impregnation analogues we believe they are an appropriate choice for further study.

Experimental.

Catalyst Preparation.

1 \%Au, Pd and Au-Pd/TiO$_2$ catalysts have been prepared (on a weight basis) by a modified impregnation procedure, based on methodology previously reported in the literature[33] and have been shown to result in enhanced dispersion of Au in particular when compared to conventional impregnation procedures. The procedure to produce 0.5\%Au–0.5\%Pd/TiO$_2$ (2 g) is outlined below, with a similar methodology utilised for mono- and bi-metallic catalysts, of varying Au: Pd ratio.

Aqueous acidified PdCl$_2$ solution (1.667 mL, 0.58 M HCl, 6 mg mL$^{-1}$, Sigma Aldrich) and aqueous HAuCl$_4$.3H$_2$O solution (0.8263 mL, 12.25 mg mL$^{-1}$, Strem Chemicals) were mixed in a 50 mL round bottom flask and heated to 60 °C with stirring (1000 rpm) in an thermostatically controlled oil bath, with total volume fixed to 16 mL using H$_2$O (HPLC grade). Upon reaching
65 °C, TiO₂ (1.98 g, Degussa, P25) was added over the course of 5 minutes with constant stirring. The resulting slurry was stirred at 60 °C for a further 15 min, following this the temperature was raised to 95 °C for 16 h to allow for complete evaporation of water. The resulting solid was ground prior to heat treatment in a reductive atmosphere (flowing 5 % H₂ / Ar, 400 °C, 4h, 10 °C min⁻¹).

Direct synthesis of H₂O₂.

Hydrogen peroxide synthesis was evaluated using a Parr Instruments stainless steel autoclave with a nominal volume of 100 mL, equipped with a PTFE liner so that total volume is reduced to 66 mL, and a maximum working pressure of 14 MPa. To test each catalyst for H₂O₂ synthesis, the autoclave liner was charged with catalyst (0.01 g) and solvent (5.6 g methanol and 2.9 g H₂O). The charged autoclave was then purged three times with 5% H₂ / CO₂ (0.7 MPa) before filling with 5% H₂ / CO₂ to a pressure of 2.9 MPa, followed by the addition of 25 % O₂ / CO₂ (1.1 MPa). Pressure of 5% H₂ / CO₂ and 25 % O₂ / CO₂ are given as gauge pressures. The reaction was conducted at a temperature of 2 °C, for 0.5 h with stirring (1200 rpm). The above reaction parameters are based on optimum conditions we have previously used for the synthesis of H₂O₂.[34] H₂O₂ productivity was determined by titrating aliquots of the final solution after reaction with acidified Ce(SO₄)₂ (0.0085 M) in the presence of ferroin indicator. Catalyst productivities are reported as mol H₂O₂ kg⁻¹ cat⁻¹ h⁻¹.

Catalyst activity towards H₂O₂ synthesis was also evaluated under conditions considered more unfavourable towards H₂O₂ formation. These conditions were identical to those outlined above but using water as reaction medium, N₂ as diluent for H₂ (5% H₂/N₂) and O₂ (25% O₂/N₂) and a reaction temperature of 25 °C. Reactor temperature was controlled using a HAAKE K50 bath/circulator using an appropriate coolant.

Catalytic conversion of H₂ and selectivity towards H₂O₂ were determined using a Varian 3800 GC fitted with TCD and equipped with a Porapak Q column.

H₂ conversion (Equation 1) and H₂O₂ selectivity (Equation 2) are defined as follows:

\[
\text{H}_2 \text{ Conversion (\%)} = \frac{\text{mmol}_{\text{H}_2}(t(0)) - \text{mmol}_{\text{H}_2}(t(1))}{\text{mmol}_{\text{H}_2}(t(0))} \times 100 \ (eq\ 1)
\]

\[
\text{H}_2 \text{O}_2 \text{ Selectivity (\%)} = \frac{\text{H}_2 \text{O}_2 \text{ detected (mmol)}}{\text{H}_2 \text{ consumed (mmol)}} \times 100 \ (eq\ 2)
\]
Total autoclave capacity was determined via water displacement to allow for accurate determination of H₂ conversion and H₂O₂ selectivity. When equipped with PTFE liner (reducing nominal volume to 66 mL) the total volume of an unfilled autoclave was determined to be 93 mL, which includes all available gaseous space within the autoclave.

Degradation of H₂O₂.

Catalytic activity towards H₂O₂ degradation was determined in a similar manner to the direct synthesis activity of a catalyst. The autoclave liner was charged with methanol (5.6 g), H₂O₂ (50 wt. % 0.69 g), HPLC standard H₂O (2.21 g) and catalyst (0.01 g), with the solvent composition equivalent to a 4 wt. % H₂O₂ solution. From the solution 2 aliquots of 0.05 g were removed and titrated with acidified Ce(SO₄)₂ solution using ferroin as an indicator to determine an accurate concentration of H₂O₂ at the start of the reaction. The autoclave was pressurised with 2.9 MPa 5 % H₂/CO₂ (gauge pressure). The reaction was conducted at a temperature of 2 °C, for 0.5 h with stirring (1200 rpm). After the reaction was complete the catalyst was removed from the reaction mixture and two aliquots of 0.05 g were titrated against the acidified Ce(SO₄)₂ solution using ferroin as an indicator. The degradation activity is reported as mol H₂O₂ kg⁻¹cat⁻¹ h⁻¹.

Catalyst activity towards H₂O₂ degradation was also evaluated under reaction conditions considered more unfavourable towards H₂O₂ formation. These conditions were identical to those outlined above but using only water as reaction medium, N₂ as diluent for H₂ (5 % H₂/N₂) and a reaction temperature of 25 °C.

Catalyst Characterisation.

X-ray photoelectron spectroscopy (XPS) analyses were made on a Kratos Axis Ultra DLD spectrometer. Samples were mounted using double-sided adhesive tape and binding energies were referenced to the C (1s) binding energy of adventitious carbon contamination that was taken to be 284.7 eV. Monochromatic AlKα radiation was used for all measurements; an analyser pass energy of 160 eV was used for survey scans while 40 eV was employed for detailed regional scans. The intensities of the Au (4f) and Pd (3d) features were used to derive the Au : Pd and Pd(II) : Pd(0) surface ratios.

The bulk structure of the catalysts was determined by powder X-ray diffraction using a (θ-θ) PANalytical X’pert Pro powder diffractometer using a Cu Kα radiation source, operating at 40 KeV and 40mA. Standard analysis was carried out using a 40 min run with a back filled sample, between 2θ values of 10 – 80°. Phase identification was carried out using the International Centre for Diffraction Data (ICDD).
Transmission electron microscopy (TEM) was performed on a JEOL JEM-2100 operating at 200 kV. Samples were prepared by dispersion in ethanol by sonication and deposited on 300 mesh copper grids coated with holey carbon film. Energy dispersive X-ray analysis (EDX) was performed using an Oxford Instruments X-MaxN 80 detector and the data analysed using the Aztec software.

Total metal loading and metal leaching from catalyst supported was quantified using microwave plasma - atomic emission spectroscopy (MP-AES). Fresh catalysts were digested (25 mg catalyst, 2.5 ml aqua-regia, 24 h) prior to analysis using an Agilent 4100 MP-AES, while post reaction solutions were also analysed after filtration of the solid material. Metal concentrations were determined by response at two characteristic emissions wavelengths for Au (242.8 nm, 267.6 nm) and Pd (340.5 nm, 363.5 nm) and the resultant concentrations averaged. The concentration response of Au and Pd were calibrated using commercial reference standards (Agilent), in all cases $r^2 > 0.999$.

Results and Discussion.

Our initial studies, under conditions previously optimised for H$_2$O$_2$ synthesis,[35] investigated the effect of Au: Pd ratio (comparison of theoretical and actual metal loadings see in Table S.1) on catalytic activity towards both the synthesis of H$_2$O$_2$ and its subsequent degradation over catalysts prepared using a modified impregnation methodology (Figure 1). We observe that an enhancement in catalytic activity can be achieved through the combination of Au and Pd with H$_2$O$_2$ synthesis rates of the 0.75 %Au-0.25 %Pd / TiO$_2$ catalyst (89 mol$_{H_2O_2}$/Kg$_{cat}$·h$^{-1}$) greater than that of either monometallic 1 %Au/TiO$_2$ (4 mol$_{H_2O_2}$/Kg$_{cat}$·h$^{-1}$) or 1 %Pd/TiO$_2$ (80 mol$_{H_2O_2}$/Kg$_{cat}$·h$^{-1}$) catalysts. These findings are consistent with our previous investigations into the effect of Au: Pd ratio over catalysts produced via sol-immobilisation, suggesting that the synergistic effect between Au and Pd is independent of preparation method.[36] Further addition of Pd yields minimal variation in the rates of H$_2$O$_2$ synthesis relative to that of the 0.75 %Au-0.25 %Pd / TiO$_2$ catalyst but rates of H$_2$O$_2$ degradation increases significantly, with H$_2$O$_2$ degradation activity of the 0.25 %Au-0.75 %Pd / TiO$_2$ catalyst in excess of ten times that observed for the 0.75 %Au-0.25 %Pd / TiO$_2$ catalyst.

Previous work by Edwards et al. has shown that for catalysts prepared by a conventional wet-impregnation methodology, H$_2$O$_2$ synthesis rates are greatest when prepared with a Au :Pd ratio of 1 : 1 by weight, with either Pd-rich or lean compositions resulting in significantly decreased H$_2$O$_2$ yields.[34] In comparison, the catalysts prepared by modified impregnation as shown in Figure 1 exhibit minimal variation in H$_2$O$_2$ synthesis activity between a Pd content of 25 and 75 % of total metal loading, suggesting that the relationship between catalyst composition and activity is sensitive to catalyst preparation parameters.
Catalytic activity of 1%AuPd/TiO₂ towards H₂O₂ synthesis and its subsequent degradation as a function of Pd content at 2 °C.

H₂O₂ direct synthesis reaction conditions: Catalyst (0.01 g), H₂O (2.9 g), MeOH (5.6 g), 5% H₂ / CO₂ (420 psi), 25% O₂ / CO₂ (160 psi), 0.5 h, 2 °C 1200 rpm.

H₂O₂ degradation reaction conditions: Catalyst (0.01 g), H₂O₂ (50 wt.% 0.68 g) H₂O (2.22 g), MeOH (5.6 g), 5% H₂ / CO₂ (420 psi), 0.5 h, 2 °C 1200 rpm.

The majority of research into AuPd supported catalysts for the direct synthesis of H₂O₂ has focussed on the use of sub-ambient temperatures, known to both promote H₂O₂ stability through inhibition of the undesirable decomposition pathway. However, the costs associated with the use of sub-ambient temperatures are likely to prohibit its application in the direct synthesis of H₂O₂ on an industrial scale. As such, we next chose to investigate the effect of the Au: Pd ratio on catalytic activity towards H₂O₂ synthesis and subsequent degradation at a temperature of 25 °C (Figure 2). As expected, given the low stability of H₂O₂ even at mild temperatures, rates of H₂O₂ degradation increase significantly for all catalysts, with the exception of the 1%Au/TiO₂ catalyst which was observed to offer rates of H₂O₂ synthesis (3 molH₂O₂kg⁻¹cat⁻¹h⁻¹) and degradation (24 molH₂O₂kg⁻¹cat⁻¹h⁻¹) near identical to that observed at sub-ambient temperatures. Again, as under our standard reaction conditions, rates of H₂O₂ degradation correlate well with Pd content, with degradation rates of 1 %Pd / TiO₂ (743 molH₂O₂kg⁻¹cat⁻¹h⁻¹) over twice that of the 0.75 %Au-0.25 %Pd / TiO₂ catalyst (297 molH₂O₂kg⁻¹cat⁻¹h⁻¹). Interestingly H₂O₂ synthesis rates of 0.75 %Au-0.25 %Pd / TiO₂ (69 molH₂O₂kg⁻¹cat⁻¹h⁻¹) and 0.5 %Au-0.5 %Pd / TiO₂ (75 molH₂O₂kg⁻¹cat⁻¹h⁻¹) bimetallic catalysts are similar to those observed...
under sub-ambient reaction temperatures, despite the significant increase in \(\text{H}_2\text{O}_2 \) degradation rates, indicating that these catalysts are tolerant to the use of ambient reaction temperature. The observation that rates of \(\text{H}_2\text{O}_2 \) synthesis are maintained to a greater extent over Au-rich catalysts highlights the key role Au plays in achieving high catalytic performance.

Figure 2. Catalytic activity of 1\%AuPd/TiO\(_2\) towards \(\text{H}_2\text{O}_2 \) synthesis and its subsequent degradation as a function of Pd content at 25 °C, in a water/methanol reaction medium.

A number of different solvents have been studied for the direct synthesis of \(\text{H}_2\text{O}_2 \), including water,\([37]\) ethanol\([38, 39]\) and methanol,\([40]\) Water is most often utilised due to its non-toxic, non-flammable nature, with the low solubility of reaction gases in water often overcome through the use of an alcohol co-solvent, resulting in improved mass transfer of reactants and in turn increased rates of \(\text{H}_2\text{O}_2 \) production.\([39, 41]\) With Paunovic et al. providing a comprehensive study on the choice of co-solvent.\([42]\) In particular, methanol has been widely studied as a co-solvent, due to increased reactant solubility but also as it results in the suppression of \(\text{H}_2\text{O}_2 \) decomposition.\([35]\) Furthermore, the key role of the solvent has been recently elucidated by Wilson and Flaherty, with the presence of protic solvents, such as water and methanol shown to be key to \(\text{H}_2\text{O}_2 \) production.\([43]\) Whilst the use of alcohol/water solvent mixtures has been shown to lead to increased \(\text{H}_2\text{O}_2 \) synthesis rates and indeed may be appropriate for a number of industrially relevant applications, most industrial applications require \(\text{H}_2\text{O}_2 \) solutions diluted in water. In particular, the use of \(\text{H}_2\text{O}_2 \) as a bleaching agent for pulp and textiles favours the use of \(\text{H}_2\text{O}_2 \) diluted in water, in part due to the additional costs
associated with the separation of methanol from the product streams. Therefore, we have investigated the effect of carrying out H$_2$O$_2$ synthesis and degradation reactions in H$_2$O-only at a temperature of 25 °C (Figure 3). As reported previously the 1 %Au/TiO$_2$ catalyst was observed to offer H$_2$O$_2$ synthesis and degradation activities almost identical to those observed under our standard reaction conditions, which are more conducive to H$_2$O$_2$ production. Despite the relative invariance of the 1 %Au/TiO$_2$ catalyst towards changes in reaction conditions, the H$_2$O$_2$ synthesis productivity of the monometallic catalyst is an order of magnitude lower than the bimetallic Au-Pd catalysts, highlighting the benefit combining Au with Pd. For all other catalysts, H$_2$O$_2$ synthesis rates were significantly lower under these conditions compared to those observed using a H$_2$O/methanol solvent system at the same reaction temperature and this can be attributed to a combination of decreased solubility of H$_2$ in water and the ability of methanol to enhance H$_2$O$_2$ stability. Interestingly, under these conditions H$_2$O$_2$ degradation rates of the 0.75 %Au-0.25 %Pd / TiO$_2$ catalyst (326 mol$_{H_2O_2}$kg$_{cat}^{-1}$h$^{-1}$) are comparable to that observed in the presence of a water/methanol solvent (297 mol$_{H_2O_2}$kg$_{cat}^{-1}$h$^{-1}$) again clearly highlighting the importance of Au in maintaining catalytic selectivity towards H$_2$O$_2$. It should be noted that under these reaction conditions all Pd containing catalysts offer H$_2$O$_2$ synthesis rates significantly greater than that previously reported for the nitric acid washed 2.5%Au-2.5%Pd / C catalyst (4 mol$_{H_2O_2}$kg$_{cat}^{-1}$h$^{-1}$)[37] which we have observed to be completely selective towards H$_2$O$_2$ under our standard reaction conditions.[44] Indeed, the H$_2$O$_2$ synthesis activity of the 0.5%Au-0.5 %Pd/TiO$_2$ catalyst (28 mol$_{H_2O_2}$kg$_{cat}^{-1}$h$^{-1}$) is seven times that of the nitric acid washed 2.5%Au-2.5%Pd/C catalyst, despite a much lower metal loading.
Figure 3. Catalytic activity of 1%AuPd/TiO$_2$ towards H$_2$O$_2$ synthesis and its subsequent degradation as a function of Pd content, at 25 °C in a water only reaction medium.

H$_2$O$_2$ direct synthesis reaction conditions: Catalyst (0.01g), H$_2$O (8.5g), 5% H$_2$ / CO$_2$ (420 psi), 25% O$_2$ / CO$_2$ (160 psi), 0.5 h, 25 °C 1200 rpm.

H$_2$O$_2$ degradation reaction conditions: Catalyst (0.01g), H$_2$O$_2$ (50 wt.% 0.68 g) H$_2$O (7.82g), 5% H$_2$ / CO$_2$ (420 psi), 0.5 h, 25 °C 1200 rpm.

Such unfavourable reactions conditions have been previously explored by Crole et al., who report that a 2.5%Au-2.5%Pd/TiO$_2$ catalyst prepared by conventional impregnation exhibited a H$_2$O$_2$ synthesis activity of 24 mol H$_2$O$_2$kg$_{cat}$h$^{-1}$.[45] The analogous modified impregnation prepared catalyst with equal amount of Au and Pd (on a weight basis) presented in this work show comparable H$_2$O$_2$ synthesis activity (28 mol H$_2$O$_2$kg$_{cat}$h$^{-1}$) despite containing significantly less metal, and as a result, are considerably more active on a per metal basis.

The wide range over which H$_2$/O$_2$ gas mixture is explosive (5-95 v/v% for H$_2$ in O$_2$) necessitate the use of ‘inert’ diluent gases to operate below the lower explosive limit. Often CO$_2$ has been chosen as a diluent for H$_2$/O$_2$ gas mixtures due in part to the acidification effect of CO$_2$ on the reaction solvent, forming carbonic acid in-situ. It is well known that H$_2$O$_2$ stability is improved through the use of acidic conditions, through inhibition of the H$_2$O$_2$ decomposition pathway.[46, 47] Furthermore, the presence of CO$_2$ has been shown to lead to an increase in H$_2$ solubility in a range of organic solvents including methanol.[48] However, a similar enhancement is not observed in water only systems.[49] The increased costs associated with using CO$_2$ as a gaseous diluent is, however, likely to preclude its application on an industrial scale. We therefore investigated the effect of replacing the CO$_2$ with a less expensive diluent, N$_2$, for the direct synthesis of H$_2$O$_2$ and its subsequent degradation (Figure 4). As expected, catalytic selectivity towards H$_2$O$_2$ decreases, while the degradation rates greatly increase. In
particular, the degradation activity of the 0.5%Au-0.5%Pd/TiO₂ catalyst (1019 mol H₂O₂ kg⁻¹ cat⁻¹ h⁻¹) doubled with the use of N₂ in comparison to that observed in the presence of CO₂ (517 mol H₂O₂ kg⁻¹ cat⁻¹ h⁻¹), which was accompanied by a corresponding decrease in H₂O₂ synthesis rates (13 mol H₂O₂ kg⁻¹ cat⁻¹ h⁻¹). As for the other reaction conditions presented in this work the presence of high Au content to maintain catalytic performance under such unfavourable conditions, with the 0.75%Au-0.25%Pd/TiO₂ catalyst observed to offer the greatest rates of H₂O₂ synthesis (16 mol H₂O₂ kg⁻¹ cat⁻¹ h⁻¹) when using H₂O as the solvent and N₂ as reaction gas diluent.

Figure 4. Catalytic activity of 1%AuPd/TiO₂ towards H₂O₂ synthesis and its subsequent degradation as a function of Au:Pd ratio, at 20 °C, water only reaction medium and N₂ as reaction gas diluent.

Comparison of catalytic selectivity towards H₂O₂ and H₂ conversion for the 0.5%Au-0.5%Pd/TiO₂ catalyst during the H₂O₂ synthesis reactions, reveals how the choice of conditions, namely solvent, temperature and gas diluent can influence the catalytic performance (Table 1).

Perhaps most interesting is the significant increase in H₂ conversion observed with the increase in reaction temperature, with this increasing from 40 % under sub-ambient a reaction temperature of 2 °C to 56% for the analogous reaction carried out at 25 °C. This can be related to the increased solubility of H₂ in methanol with increasing temperature. The significant decrease in selectivity towards H₂O₂ upon increasing reaction temperature, from 44 % at a...
reaction temperature of 2 ºC to 14 % at 25 ºC is attributed to the increased rate of H₂O₂ degradation as well as the low stability of H₂O₂.

Furthermore, the role of the gaseous diluent is clearly highlighted, with catalytic selectivity towards H₂O₂ and H₂O₂ concentration decreasing significantly with the replacement of the gaseous diluent from CO₂ (8 %, 0.06 wt.% H₂O₂) to N₂ (3 %, 0.02 wt.% H₂O₂), although the rate of H₂ conversion remains similar. It should be noted that, even under ideal reaction conditions, H₂O₂ concentrations are significantly lower than those typically produced via the current industrial means of production. This highly efficient process is able to produce H₂O₂ concentrations of approximately 0.6-1.8 wt.%,[50] which is then raised through numerous distillation steps to exceed 70 wt.% prior to shipping. However, typical applications utilise much lower final concentrations of H₂O₂, requiring dilution by the end user prior to use.

Table 1. The role of reaction conditions on H₂ conversion and H₂O₂ selectivity over 0.5%Au-0.5%Pd / TiO₂.

<table>
<thead>
<tr>
<th>Reaction Conditions (temp / solvent / gas diluent)</th>
<th>H₂ Conversion / %</th>
<th>H₂O₂ Selectivity / %</th>
<th>Productivity / mol H₂O₂ kg⁻¹cat⁻¹ h⁻¹</th>
<th>H₂O₂ concentration / wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2⁰ C, H₂O/MeOH, CO₂</td>
<td>40</td>
<td>44</td>
<td>93</td>
<td>0.20</td>
</tr>
<tr>
<td>25⁰ C, H₂O/MeOH, CO₂</td>
<td>56</td>
<td>14</td>
<td>75</td>
<td>0.15</td>
</tr>
<tr>
<td>25⁰ C, H₂O, CO₂</td>
<td>29</td>
<td>8</td>
<td>28</td>
<td>0.06</td>
</tr>
<tr>
<td>25⁰ C, H₂O, N₂</td>
<td>22</td>
<td>3</td>
<td>13</td>
<td>0.02</td>
</tr>
</tbody>
</table>

H₂O₂ direct synthesis reaction conditions: Catalyst (0.01g), solvent (8.5g), 5% H₂ / (N₂ / CO₂) (420 psi), 25% O₂ / (N₂ / CO₂) (160 psi), 0.5 h, 2-25 ºC 1200 rpm.

Further comparison of catalytic activity of the 0.5%Au-0.5%Pd/TiO₂ catalyst towards H₂O₂ formation under ideal (2⁰C, H₂O/MeOH, CO₂) and non-ideal (25⁰C, H₂O, N₂) conditions can be seen in Figure 5. It is possible to observe that under both sets of reaction conditions H₂O₂ yield tends away from a linear relationship with reaction time, with this in part due to the activity of the catalyst towards H₂O₂ degradation, in particular under non-ideal reaction conditions. It is noteworthy that under both sets of reaction conditions H₂O₂ concentration continues to increase throughout the course of the reaction time studied. However, H₂O₂ concentrations produced using our optimised conditions (0.02 wt. %) are an order of magnitude greater than that observed when using non-ideal conditions (0.002 wt. %) clearly demonstrating the key role reaction conditions play in determining catalytic activity.
Figure 5. Reaction time profile for 0.5%Au-0.5%Pd/TiO\textsubscript{2} under (a) conditions optimised for H\textsubscript{2}O\textsubscript{2} formation and (b) those more likely to be industrially applicable.

(a) H\textsubscript{2}O\textsubscript{2} direct synthesis reaction conditions: Catalyst (0.01g), H\textsubscript{2}O (2.9g), MeOH (5.6g), 5% H\textsubscript{2} / CO\textsubscript{2} (420 psi), 25% O\textsubscript{2} / CO\textsubscript{2} (160 psi), 0.5 h, 2 \textdegree C 1200 rpm.

(b) H\textsubscript{2}O\textsubscript{2} direct synthesis reaction conditions: Catalyst (0.01g), H\textsubscript{2}O (8.5g), 5% H\textsubscript{2} / N\textsubscript{2} (420 psi), 25% O\textsubscript{2} / N\textsubscript{2} (160 psi), 0.5 h, 25 \textdegree C 1200 rpm.

These observations, when coupled with the variation in H\textsubscript{2} conversion between reaction conditions optimised for H\textsubscript{2}O\textsubscript{2} synthesis and those more likely to be adopted on an industrial scale (Table 1) suggest that catalytic performance is likely governed by gas solubility. In order to establish the extent that H\textsubscript{2} availability dictates H\textsubscript{2}O\textsubscript{2} formation rate we varied H\textsubscript{2}: O\textsubscript{2} ratio while maintaining total pressure, under conditions previously optimised for H\textsubscript{2}O\textsubscript{2} synthesis (Figure 6). As expected we observe a clear variation in H\textsubscript{2}O\textsubscript{2} synthesis activity, with the optimal H\textsubscript{2}:O\textsubscript{2} ratio found to be 0.69 resulting in a marginal increase in catalytic activity (105 mol\textsubscript{H2O2}kg\textsubscript{cat}-1h-1) over that observed under our standard reaction conditions where H\textsubscript{2}: O\textsubscript{2} is equal to 0.52 (93 mol\textsubscript{H2O2}kg\textsubscript{cat}-1h-1). As H\textsubscript{2}:O\textsubscript{2} ratios diverge significantly from a value of 0.69 we observe a considerable decrease in H\textsubscript{2}O\textsubscript{2} synthesis activity, with this attributed to a combination of limited reagent availability and an increase in H\textsubscript{2}O\textsubscript{2} degradation, with the hydrogenation of H\textsubscript{2}O\textsubscript{2} in particular likely responsible for H\textsubscript{2}O\textsubscript{2} consumption at increased H\textsubscript{2}:O\textsubscript{2} ratios. Finally it should be noted that there is little variation in CO\textsubscript{2} content regardless of H\textsubscript{2}:O\textsubscript{2} ratio, with the formation of carbonic acid in-situ known to stabilise H\textsubscript{2}O\textsubscript{2}.[41] In fact the CO\textsubscript{2} content of the gas mixture varies by only approximately 12 % on moving from a H\textsubscript{2}: O\textsubscript{2} ratio of 0.12 to 2.12. As such it is reasonable to assume that the significant loss in activity is not related to lower CO\textsubscript{2} content.
Figure 6. The effect of H$_2$: O$_2$ ratio on H$_2$O$_2$ concentration over 0.5%Au-0.5%Pd/TiO$_2$ under optimal reaction conditions.

H$_2$O$_2$ direct synthesis reaction conditions: Catalyst (0.01g), H$_2$O (2.9g), MeOH (5.6g), 5% H$_2$/CO$_2$ (420 psi), 25% O$_2$/CO$_2$ (160 psi), 0.5 h, 2 $^\circ$C 1200 rpm.

Catalyst Characterisation.

In order to determine if a change in mean nanoparticle size or metal dispersion can account for the difference in catalytic selectivity towards H$_2$O$_2$, we investigated the bi- and mono-metallic AuPd catalysts by both XRD (Figure S.1) and TEM (Table 2, Figure S.2). Analysis by XRD reveals that upon impregnation of Au and Pd and after exposure to a reductive heat treatment at 400 $^\circ$C no reflections associated with Au or Pd could be observed, indicating the highly dispersed nature of metal nanoparticles. The high metal dispersion is further corroborated by TEM analysis which shows a relatively tight particle size distribution, which is often difficult to achieve for AuPd catalysts prepared by conventional wet impregnation methods.[51] However, the presence of some larger nanoparticles (>10 nm) is observed, with these likely to be Au dominant in composition, as previously reported in the literature.[51-53]

It is observed that upon addition of Pd, mean particle size decreases significantly from 8.4 nm for the 1%Au / TiO$_2$ catalyst to 2.8 nm for the 0.5%Au-0.5%Pd/TiO$_2$ catalyst, which is in agreement with our previous studies.[33]. The bimetallic catalysts of varying metal composition show similar activity towards the direct synthesis of H$_2$O$_2$ under all conditions investigated despite exhibiting a discrepancy in mean particle size, which suggests that particle size alone is not responsible for the activity of the catalysts. Previous investigations
revealed that the catalytic performance of mono-metallic Pd catalysts remains unchanged when particle size is increased beyond 2.5 nm, which is also in agreement with our findings. It should be noted that although the presence of Pd in the 1%Pd/TiO$_2$ catalyst has been established by EDX analysis (Figure S.3) we are unable to determine mean nanoparticle size via TEM, due to issues associated with resolution limits. As previously reported by Sankar et al., analysis by EDX reveals the highly dispersed nature of Pd on the support and as such we ascribe the inability to observe Pd via TEM to be a result of small nanoparticle size, rather than the poor dispersion of Pd.

| Table 2. Particle Size of 1%AuPd/TiO$_2$ catalysts as determined by TEM. |
|-----------------|-----------------|-----------------|
| Catalyst | Mean Particle Size / nm (Standard Deviation) |
| 1%Au / TiO$_2$ | 8.4 (3.0) |
| 0.75%Au-0.25%Pd/TiO$_2$ | 4.8 (5.2) |
| 0.5%Au-0.5%Pd/TiO$_2$ | 2.8 (0.7) |
| 0.25%Au-0.75%Pd/TiO$_2$ | 4.9 (1.4) |
| 1%Pd / TiO$_2$ | n.d |

All catalysts exposed to a reductive heat treatment (4 h, 400 °C, 10 °C min$^{-1}$, 5%H$_2$/Ar). n.d: unable to determine.

It is well known that it is possible to tailor catalytic activity and selectivity through modification of Pd$^{2+}$:Pd0, with metallic Pd widely reported to be more active towards H$_2$O$_2$ synthesis than PdO. Indeed, there is growing support within the literature that Pd0 is the true active site for H$_2$O$_2$ synthesis. XPS analysis (Table 3) reveals that there is minimal change in Pd$^{2+}$:Pd0 ratio upon the incorporation of Au into a 1 %Pd / TiO$_2$ catalyst, which correlates well with H$_2$O$_2$ synthesis rates. Although it should be noted that it was not possible to determine Pd$^{2+}$:Pd0 ratio for the 0.75 %Au-0.25 %Pd/TiO$_2$ catalyst due to the low Pd content.

It is possible to correlate the maintenance of H$_2$O$_2$ synthesis rates of the bi-metallic AuPd catalysts with catalytic activity towards H$_2$O$_2$ degradation, which decreases significantly upon Au introduction. It is this enhancement in selectivity which is believed to be responsible for the minimal change in H$_2$O$_2$ synthesis rates observed over the supported AuPd catalysts regardless of Pd content. The ability of Au to enhance catalytic performance through incorporation into supported Pd catalysts is well known. Wilson et al. have recently observed that the greater catalytic performance of Au-rich, bi-metallic AuPd catalysts is as a result of significant electronic changes made to Pd by Au, with the activation enthalpies for both H$_2$O$_2$ formation and the hydrogenation of H$_2$O$_2$ to H$_2$O increasing with Au content. While it is also possible that with increasing Au content there is an inhibition in the formation of contiguous Pd ensembles which have previously been attributed to lead to increased cleavage of the O-O bond present in both H$_2$O$_2$ and O$_2$, leading to the formation of H$_2$O and a loss of catalytic selectivity. It is likely that both electronic and geometric modifications contribute
to the enhancement in catalytic performance observed with the addition of Au to a supported Pd catalyst.

Table 3. Elemental Surface Composition of 1%AuPd/TiO$_2$ catalysts as determined by XPS analysis.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Au: Pd</th>
<th>Pd$^{2+}$: Pd0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%Au / TiO$_2$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.75%Au-0.25%Pd/TiO$_2$</td>
<td>0.71</td>
<td>n.d.</td>
</tr>
<tr>
<td>0.5%Au-0.5%Pd/TiO$_2$</td>
<td>0.32</td>
<td>0.29</td>
</tr>
<tr>
<td>0.25%Au-0.75%Pd/TiO$_2$</td>
<td>0.15</td>
<td>0.30</td>
</tr>
<tr>
<td>1%Pd / TiO$_2$</td>
<td>-</td>
<td>0.29</td>
</tr>
</tbody>
</table>

All catalysts exposed to a reductive heat treatment (4 h, 400 °C, 10 $^\circ$Cmin$^{-1}$, 5%H$_2$/Ar).

n.d: unable to determine

Analysis of Au and Pd leaching after H$_2$O$_2$ synthesis via ICP (Table S. 2) reveals that under our standard reaction conditions and those considered to be the least conducive to H$_2$O$_2$ stability (water only solvent, 25 °C and N$_2$ diluent) leaching of Au and Pd is minimal. We observe no Au leaching under either set of reaction conditions, while leaching of Pd is minimal (0.2 %) and only observed under reaction conditions that are less favourable to H$_2$O$_2$ stability. The high stability of supported AuPd catalysts for the direct synthesis of H$_2$O$_2$ have been well reported in the literature when prepared by a conventional wet impregnation methodology [34, 55] and we can now report a similar high stability of catalysts produced via a modified impregnation procedure.

Conclusion.

In conclusion we have investigated the effect of key reaction conditions on the catalytic activity towards the direct synthesis and subsequent degradation of H$_2$O$_2$, over a series of stable 1%AuPd/TiO$_2$ catalysts prepared by a modified impregnation procedure, in a batch reactor. We highlight that the presence of Au is key in maintaining catalytic performance under conditions that are considered less conducive to H$_2$O$_2$ formation but more likely to be favoured on an industrial scale. However, selectivity is still a major concern and although we recognise the ability to better discern differences in catalytic performance under more realistic industrial conditions it is clear that further efforts on catalyst design are now required.

Acknowledgements.

The authors wish to acknowledge the financial support of and research discussion with Dŵr Cymru Welsh Water and the Cardiff University electron microscope facility for the transmission electron microscopy.

References

Table of Contents Graphic

Optimal Conditions

Real world application

Productivity / mol H$_2$O$_2$ kg$^{-1}$ cat h$^{-1}$

Degradation / mol H$_2$O$_2$ kg$^{-1}$ cat h$^{-1}$