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Abstract 

Cardiorespiratory fitness is thought to have beneficial effects on systemic vascular 

health, in part, by decreasing arterial stiffness. However, in the absence of non-

invasive methods, it remains unknown whether this effect extends to the 

cerebrovasculature. The present study uses a novel pulsed arterial spin labelling 

(pASL) technique to explore the relationship between cardiorespiratory fitness and 

arterial compliance of the middle cerebral arteries (MCAC). Other markers of 

cerebrovascular health, including resting cerebral blood flow (CBF) and 

cerebrovascular reactivity to CO2 (CVRCO2) were also investigated.  Eleven healthy 

males aged 21±2 years with varying levels of cardiorespiratory fitness (maximal 

oxygen uptake (�̇�O2MAX) 38-76 ml/min/kg) underwent MRI scanning at 3 Tesla. Higher 

�̇�O2MAX was associated with greater MCAC (R2=0.64, p<0.01) and lower resting grey 

matter CBF (R2=0.75, p<0.01). However, �̇�O2MAX was not predictive of global grey 

matter BOLD-based CVR (R2=0.47, p=0.17) or CBF-based CVR (R2=0.19, p=0.21). The 

current experiment builds upon the established benefits of exercise on arterial 

compliance in the systemic vasculature, by showing that increased cardiorespiratory 

fitness is associated with greater cerebral arterial compliance in early adulthood. 

 

Keywords: arterial compliance; ASL; CBF; CVR; fitness 
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Introduction 

 

Physical exercise is well known for its cardiovascular benefits1, yet the challenge 

remains of identifying how exercise is beneficial to the brain.  Although studies using 

ultrasound methods have reported increases in resting cerebral blood flow velocity2 

and cerebrovascular reactivity3 associated with cardiorespiratory fitness, these 

methods often lack spatial specificity, reliability and consistency across individuals4.  

More recently, advances in arterial spin labelling (ASL) magnetic resonance imaging 

(MRI) have started to offer non-invasive measures of cerebrovascular function with 

enhanced spatial sensitivity for quantifying individual differences in cerebral dynamics 

compared to ultrasound methods5.  

 Cerebral arterial compliance (AC) permits the arteries and arterioles to buffer 

pressure pulsations that arise from the heart, smoothing blood flow to the capillaries.  

Cerebrovascular reactivity (CVR) refers to dilation or constriction of vessels to control 

cerebral blood flow (CBF), relying on complex signalling processes. In the healthy 

brain, compliance and reactivity work together to regulate local blood flow, protect 

against fluctuations in blood pressure and preserve autoregulation6. Formation of 

arterial plaques or vessel stiffening, which occur naturally in ageing and disease7, can 

disrupt these vascular mechanisms thereby putting the downstream microvasculature 

at risk; a potential contributor to small vessel disease8 and cognitive decline9.  

Ultrasound imaging with simultaneous arterial applanation tonometry of the 

arterial waveform, has shown that central arterial stiffness is reduced in those who 

exercise regularly10,11. Due to a limited ability to assess diameters of intracranial 

arteries, however, ultrasound techniques are currently restricted to providing 



�̇�O2MAX predicts MCA compliance and baseline CBF 

HV Furby et al. 

 4 

information about blood velocity and not volume or flow. One ultrasound method, 

transcranial Doppler (TCD) sonography, is only able to inform us about compliance of 

a distal vascular bed and not the local stiffness profile of the larger cerebral vessels 

themselves12.  Optical imaging methods have also demonstrated a relationship 

between cardiorespiratory fitness and cerebral AC, as well as a regional 

correspondence with age and cognitive function13.  This method has the advantage, 

over TCD, of extracting cerebral pulsatile waveform measurements from the arteries 

over which they are placed14 yet despite this spatial advantage, the limited 

penetration of optical imaging precludes examination of the deeper vasculature.  

Due to the added spatial resolution, MRI methods therefore allow more 

precise quantification of the local arterial wall properties rather than those distal to 

the site of measurement.  ASL MRI is primarily used to map CBF.  However, using novel 

ASL methods that measure changes in arterial blood volume (aBV) within cerebral 

arteries throughout the cardiac cycle15,16, it is possible to estimate AC in the major 

cerebral arteries.  

The present study examined the association between cardiorespiratory fitness 

(�̇� O2MAX) and middle cerebral AC in a cohort of healthy young males. Evidence, 

although indirect, of the systemic vasculature has demonstrated a greater vessel 

compliance in fitter young adults17 and greater AC in fronto-parietal regions has been 

associated with increased fitness using optical imaging methods across ages13.  We 

hypothesised that greater cardiorespiratory fitness would predict higher AC using the 

ASL MRI method18 and that those with higher aerobic fitness (�̇�O2MAX) would show 

elevated baseline CBF, as has been seen previously in ASL studies of children19, older 
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adults20 and patients21.  Using a breath-hold stimulus, we also probed the relationship 

between �̇�O2MAX and MRI measures of both BOLD- and CBF-based CVR22.  

 

Materials and Methods 

Participants 

Eleven healthy males, aged 21±2 years old, provided informed consent under 

ethical approval from the University of South Wales and Cardiff University School of 

Psychology Ethics Committees. All experiments were performed in accordance with 

the guidelines stated in the Cardiff University Research Framework (version 4.0, 2010).  

We specifically chose to exclude females as oestrogen levels (during the menstrual 

cycle, menopause, and hormone replacement therapy) have been associated with 

intracranial vasodilatation and increased CBF23. In order to recruit a wide fitness 

range, participants who engaged in >150 minutes per week of self-reported 

moderate-to-vigorous intensity recreational aerobic activity were recruited from 

running and cycling clubs, while general University wide advertisement and word of 

mouth was used to recruit more sedentary participants.  Clubs that involved higher 

impact sports e.g. rugby, were excluded in this study to avoid complications that may 

arise from a history of concussion.  

Subjects underwent a detailed clinical examination that included 12-lead 

functional diagnostic exercise electrocardiography (ECG) and were excluded if they 

showed signs of, or reported, any cardiovascular, cerebrovascular or respiratory 

disease. Participants were also screened by self-report for any neurological or 

psychiatric illnesses, regular smoking or prescribed medication. Individual differences 

in haematrocrit (Hct) were assessed by sampling capillary blood from the middle 
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finger.  Samples were centrifuged for 10-min via ultracentrifugation and a micro-

haematocrit reader (Hawksley and Sons Ltd, Sussex, England) used to quantify Hct. 

Three samples were acquired and mean Hct reported. 

 

Study Design  

All participants took part in two separate testing sessions.  Participants first 

underwent cardiorespiratory fitness testing at the University of South Wales and were 

then followed up for a second visit at Cardiff University Brain Research Imaging Centre, 

where they underwent 3T MRI. Prior to each visit, participants were asked to refrain 

from drinking caffeinated drinks, taking any recreational drugs or engaging in any 

exhaustive exercise that may elevate heart rate and subsequently confound CBF 

measurements.  

 

Cardiorespiratory Fitness Testing  

The �̇� O2MAX test is a test of maximal oxygen uptake and is an established 24 of 

cardiorespiratory fitness, where �̇�O2MAX refers to the highest rate at which oxygen can 

be taken up and consumed by the body during intense exercise.  

 

Online respiratory gas analysis (Medgraphics, MA, USA) was performed during an 

incremental cycling exercise test to volitional exhaustion on an electronically braked, 

semi-recumbent cycle ergometer (Lode Corival, Cranlea & Company, UK) for the 

specific determination of ventilation, �̇�O2 and �̇�CO2.  The test began with 2 minutes 

of rest, followed by 5 minutes of unloaded pedalling (0W) and increased by 5W every 
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10s thereafter.  Participants were required to maintain a cadence of ~70 revolutions 

per minute (RPM).  Maximum exertion and corresponding �̇�O2MAX was confirmed 

when at least two of the following established criteria were met: 1) Failure to increase 

�̇� O2 with increasing exercise load 2) a respiratory exchange ratio (RER; the ratio 

between �̇�CO2 and �̇� O2 during cycling) of >1.15, or 3) a heart rate within 10 beats of 

an age-predicted maximum (i.e. 220 – age in years) (e.g. Barnes et al., 2013). 

 

MRI data acquisition 

All scanning was carried out using a 3T GE HDx scanner (GE Healthcare, Milwaukee, 

WI, USA) equipped with an 8-channel receive-only head coil. All participants 

underwent whole-brain T1-weighted structural scans (3D FSPGR, 1x1x1 mm3 voxels, 

TI= 450ms, TR =7.8ms, TE = 3 ms) for registration purposes.   

 

Middle Cerebral Artery Compliance and Grey Matter CBF  

A multi-inversion time (MTI) pulsed ASL acquisition was performed at rest. A Proximal 

Inversion with Control of Off-Resonance Effects (PICORE) ASL sequence was used to 

improve the profile of the labelling slice. A QUIPSS II (quantitative imaging of perfusion 

using a single subtraction) cut-off was also applied at 700ms26 to reduce the sensitivity 

of the arterial transit time. Ten inversion times (TI’s) were acquired, whereby short 

(TI’s = 250, 350, 450, 550, 650ms) medium (TI’s = 750, 850) and long TI’s (TI’s = 1,000, 

1,500, 2000ms) were acquired as separate scans in which the label (width=200mm) 

was applied 10mm below the most proximal slice. Images were acquired with similar 

parameters to those described elsewhere18 using a spiral readout single shot gradient 
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echo sequence (TE=2.7ms) with the following acquisition parameters: a variable 

repetition time (1,000ms to 3,400ms), eight control–tag pairs per TI, 12 slices, slice 

gap=1mm, voxel size=3x3x7mm3. Total acquisition time was ~18 minutes. For 

quantification of perfusion, a (M0) calibration scan was acquired without labelling in 

which the same acquisition parameters were applied as above, but with a long TR.  

 

Cerebrovascular reactivity 

A breath-hold paradigm was carried out as described elsewhere27.  Participants were 

instructed to complete five end-expiration breath-holds (15s each) interleaved with 

30s periods of paced breathing at a rate of 12 breaths per minute28. After each breath-

hold the subject was cued to exhale first to obtain a measure of peak end-tidal CO2. 

Total scan duration was approximately four minutes during which quantitative arterial 

spin labelling (pASL) and BOLD-weighted images were acquired with a single-shot 

PICORE QUIPSS II (Wong et al., 1998) pulse sequence (TR=2.2 s, TI1=700ms, 

TI2=1500ms, 20-cm tag width, and a 1-cm gap between the distal end of the tag and 

the most proximal imaging slice) with a dual-echo gradient echo (GRE) readout29 and 

spiral acquisition of k-space (TE1=2.7ms, TE2= 29ms, flip angle=90°, field of view 

(FOV)=22 cm, 64×64 matrix).  Twelve slices of 7mm thickness were imaged, with an 

inter-slice gap of 1mm.  

 

Physiological Monitoring 

Throughout scanning, the cardiac pulse was recorded using a finger plethysmograph 

and a pneumatic belt just below the ribcage was used to measure the respiratory 

cycle. Expired gas content was monitored continuously via a nasal cannula whereby 
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end-tidal O2 and CO2 data were recorded using a rapidly responding gas analyser (AEI 

Technologies, PA, USA) to provide representative measures of arterial partial 

pressures of both gases at the prevailing barometric pressure. Brachial artery blood 

pressure (BP) was measured at three time-points across the scan session using an MRI-

compatible BP cuff (OMRON, Tokyo, Japan).  

 

MRI Data analysis 

Physiological Noise Correction. Physiological noise correction was carried out on the 

raw data using a modified RETROICOR pipeline30.  For the raw CBF data, the 1st and 

2nd harmonics of the cardiac and respiratory cycles (and the interaction term) were 

calculated, as well as variance related to end-tidal CO2, end-tidal O2, heart rate, and 

respiration volume per time (RVT; Birn et al., 2009) using a general linear model 

framework and subsequently regressed from the raw CBF signal.  For the MCAC data, 

only respiratory noise correction was performed. 

 

MCAC Quantification. Arterial compliance measurements were carried out using the 

methods described by18 (equation 1).  Arterial blood volume (aBV) within the bilateral 

middle cerebral arteries (MCA) was assessed in systole and diastole. Brachial artery 

blood pressure cuff recordings were averaged over three time points to calculate 

average systolic and diastolic BP for each subject.  Only data from short TI’s (250-

850ms) were necessary for deriving aBV to ensure that signal being measured was 

originating from the arteries rather than the tissue.  To determine systole and diastole, 

the cardiac cycle was divided into 5 phases using the finger plethysmography trace. 

The short TI images were retrospectively organized into the 5 cardiac phases and an 
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arterial input function was fitted voxel-wise for each of the 5 phases. The cardiac 

phases with the maximum and minimum blood volumes, averaged over both MCAs, 

were used as systole and diastole, respectively.   

 

Equation (1) was used to calculate AC (%/mmHg).  Voxel-wise differences between 

aBVSys and aBVDia were calculated, normalised for the aBV in diastole to produce AC 

values of percentage change in aBV/mmHg (%/mm Hg). Masks of the bilateral MCA 

were obtained at the level of the M1 segments, branching from the circle of Willis, by 

thresholding the aBV images (aBV > 0.1 % of the voxel) and masking out the anterior 

and posterior arteries.  

 

𝐴𝐶 =
𝑎𝐵𝑉𝑆𝑦𝑠 − 𝑎𝐵𝑉𝐷𝑖𝑎

𝑎𝐵𝑉𝐷𝑖𝑎 ∗ (𝐵𝑃𝑆𝑦𝑠 − 𝐵𝑃𝐷𝑖𝑎)
∗ 100% 

 

Grey Matter CBF Quantification. The full MTI time series was used for quantification 

of resting CBF.  Signal within the ventricles (M0 CSF) was used to estimate M0,blood
32

 and 

subsequently modelled to calculate whole-brain perfusion maps based on the entire 

MTI dataset using FSL BASIL toolbox (FMRIB Software Library, Oxford, UK). Due to the 

inherently low SNR in ASL imaging, an ROI approach was chosen, a priori, in favour of 

a voxel-wise CBF analysis. Grey matter ROIs were computed by performing whole 

brain automated segmentation of the T1-weighted structural image using the FSL FAST 

toolbox (Zhang et al., 2001). Segmented grey matter masks were spatially down-

sampled into functional space, and binarised to produce an individual grey matter 

(Equation 1) 
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specific mask for each subject. Whole-brain GM masks were applied to CBF maps to 

produce a median GM CBF estimate. 

 

CVR Quantification.   Simultaneously acquired CBF and BOLD time-series images were 

corrected for head motion with MCFLIRT34, brain-extracted35 and spatially smoothed 

with a Gaussian kernel of 6 mm using SUSAN36. BOLD images were calculated from the 

second echo data using interpolated surround averaging of the tag and control images 

to yield a BOLD weighted time-series, as described previously37.  The first echo data 

were used to calculate a subtraction time-series38 from which CBF was quantified 

using the standard single-compartment CBF model26.   BOLD and CBF time-series data 

were converted to percentage change in the signal relative to the baseline (mean) of 

the time-series to produce a %ΔBOLD and %ΔCBF time-series respectively.  Signal was 

averaged across whole-brain grey matter. A regression analysis was performed to 

measure %ΔBOLD and %ΔCBF per mmHg change in absolute end-tidal CO2 with a 3rd 

order polynomial included to remove slow signal drift.  Temporal lag-fitting (time-shift 

steps of 0.1s) was also carried out, to account for the delay between end-tidal CO2 

increase in response to breath-holding and the subsequent blood flow response27. 

CVR was thus defined as the beta-weight from the regression model, where BOLD and 

CBF were measured in units of %BOLD/mmHg or %CBF/mmHg respectively.   

 

Statistical Analysis 

Pearson’s correlation was used to assess the relationship between cardiorespiratory 

fitness (�̇�O2MAX) and physiological measures (Table 1).  Linear regression was used to 

assess the predictive effect of cardiorespiratory fitness on MRI metrics across whole 
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brain grey matter and their relationship with heart rate and Hct. Pearson correlation 

coefficients were used to assess the relationships between MCAC, CVR and CBF.  

Bootstrapped confidence intervals (95%) were computed unless otherwise stated, 

whereby analyses were bootstrapped to 1000 samples.  Bias corrected and 

accelerated confidence intervals (CIs) are reported. Analysis was performed in SPSS 

version 20 (IBM). 
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Results 

Physiological Measures 

�̇�O2MAX ranged from 38 to 76ml/min/kg (57.3 ± 12.7 ml/kg/min). Body mass was 76.6 

± 8.3kg, systolic BP was 122 ± 4 mm/Hg and diastolic BP was 72 ± 9 mm/Hg. �̇�O2MAX 

was positively associated with time-to-exhaustion (R2 = 0.59, F (1, 9) =12.74, p<0.01, 

95% CI [3.02, 13.49]) and a visual inspection suggested greater endurance (time to 

exhaustion) in those recruited from cycling and running clubs compared to other 

participants (figure 1). �̇�O2MAX was not associated with any other physiological metric 

(Table 1).    

 

Resting heart rate was not predictive of MCAC (R2 = 1.00, F (1, 7) =0.75, =-0.006, 

p=0.42, 95% CI [-0.02, 0.01]), global GM CBF (R2 = 0.001, F (1, 6) =0.006, =0.23, 

p=0.94, 95% CI [-0.70, 0.74]) or CVR measures (BOLD R2 = 0.01, F (1, 8) =0.10, p=0.76, 

95% CI [-0.001, 0.009]); CBF R2 = 0.06, F (1, 8) =0.53, p=0.49, 95% CI [-0.18, 0.09]). Hct 

was not correlated with any of the MRI measures (MCAC (r (7) =-0.15, p=0.71); global 

GM CBF (r (6) = 0.07, p=0.87); CBF CVR (r (8) = 0.41, p=0.24); BOLD CVR (r (8) = 0.35, 

p=0.33). 

 

MCAC 

Nine participants contributed to the MCAC analysis as two were removed due to 

severe head movement, observed during visual inspection of MR images, that could 

not be rectified by volume removal. Averaged over all participants, we calculated 

bilateral MCAC to be 0.41 ± 0.16 %/mmHg.  Linear regression revealed a significant 
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relationship between V̇ O2MAX and MCAC, whereby fitter individuals showed the 

hypothesised greater compliance of the middle cerebral arteries (figure 2a) and this 

relationship was significant (R2 = 0.64, =0.01, F (1,8) =12.6, p=0.009, 95% CI [0.003, 

0.018]).  These values indicate that arterial compliance in the MCA increased by 

0.01%/mmHg for each ml/min/kg increase in V̇O2MAX. 

 

Retrospective synchronisation of images across the cardiac cycle was inspected to 

ensure that there was not a bias between the number of tag and control images for a 

particular TI or cardiac phase.  A repeated-measures ANOVA revealed that the number 

of tag and control images did not differ significantly between TI (F (6,48) =1.3, p=0.30, 

n.s.) or cardiac phase (F (1,8) =0.7, p=0.43, n.s.), nor was there an interaction between 

the number of images within each cardiac phase at each TI (F (6,48) =0.54, p=0.78, 

n.s.). On average, for a single TI there were 6 tag and 7 control images in diastole, and 

6 tag and 6 control images in systole. 

 

Grey Matter CBF 

Whole-brain GM averaged CBF values ranged from 53.8 to 73.1 ml/100g/min (59.4 ± 

6.7). Eight participants contributed to baseline CBF analysis (3 were excluded due to 

severe head motion). Linear regression revealed a significant inverse relationship 

between �̇�O2MAX and resting whole-brain GM CBF (R2 = 0.75, =-0.47, F (1,7) = 18.3, 

p= 0.005, 95% CI [-0.73, -0.20]; figure 2b).  Whole-brain grey matter CBF decreased 

0.47 ml/100g/min for each ml/min/kg increase in �̇�O2MAX.  An inverse relationship was 
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observed within each cortical ROI, however, none of these was significant (p-

values>0.05).  

 

CVR 

Cerebrovascular reactivity data was excluded for one participant because the subject 

was unable to breathe through his nose, so that 10 subjects contributed to the CVR 

analysis. BOLD data demonstrated better signal-to-noise (SNR) than CBF 

measurements in response to breath-holding (see figure 3a). However, CBF CVR was 

positively correlated with the BOLD CVR measurements across whole-brain GM (R²= 

0.52, F (1,9) =8.8, p=0.01, 95% CI [0.034, 0.078; see figure 3b].  Both measurements 

showed a decline in CVR with increasing �̇� O2MAX within whole-brain grey matter 

(figure 3c). However, linear regression did not find this to be significant for either the 

BOLD (R2 = 0.47, =-0.004, F (1,9) = 2.27, p= 0.17, 95% CI [-0.009, 0.002] or CBF (R2 = 

0.19, =-0.05, F (1,9) = 1.88, p= 0.21, 95% CI [-0.15, -0.04] CVR.  

 

Relationship between MCAC, whole-brain CBF and CVR 

MCAC was not correlated with either BOLD CVR (r (7) =-0.20, p=0.68, 95% CI [-0.89, 

0.44]), CBF CVR (r (7) =-0.14, p=0.78, 95% CI [-0.54, 0.39]), nor with resting grey matter 

perfusion (r (7) =-0.45, p=0.30, 95% CI [-0.73, -0.33]). There was, however, a significant 

correlation between resting grey matter perfusion with both CBF CVR (r (7) =0.76, 

p<0.05, 95% CI [0.04, 0.95] and BOLD CVR (r (7) =0.78, p<0.05, 95% CI [-0.35, 0.97]). 
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Discussion 

 

Whilst the benefits of physical activity on cognition and mental health are well 

recognised, the physiological mechanisms by which exercise exerts its beneficial 

effects on the brain remain poorly understood.  In this study, we demonstrate that 

ASL MRI is a useful tool for understanding how fitness may influence vascular function, 

in particular, cerebral arterial compliance.    

 

MCAC 

The present study utilised a novel, non-invasive, measure of MCAC based on pASL MRI 

to demonstrate the link between cardiorespiratory fitness and cerebral arterial 

compliance in a sample of young males spanning a range of VO2MAX values from fair 

(36.5-42.2 ml/kg/min) to higher (52.4 ml/kg/min) for adults aged 20-29 years39.  We 

showed that MCAC was higher in individuals with higher �̇�O2MAX, a finding consistent 

with non-MRI methods in other major arteries throughout the body10,11,13.  The 

present study is the first to use MRI to measure fitness related changes in MCAC and 

provides promising evidence towards the cerebrovascular benefits of physical activity, 

as well as insight into the potential mechanisms at play.   

It has been suggested that the ability of cerebral arteries to dampen changes 

in pulse pressure may prevent downstream tissue damage where vessels are 

vulnerable to deterioration8.  Higher MCAC, as measured here, can be thought to 

reflect healthy, more ‘elastic’ vessel walls than those with lower MCAC, a possible 

marker of better cerebrovascular health in those with high cardiorespiratory capacity.  

Damage to the microvasculature has been associated with poorer memory, processing 
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speed and executive function13,40,41. ‘Training’ the vessel, through increasing AC could 

give rise to some of the cognitive benefits that have been reported as a result of 

exercise, by preventing age-related arterial stiffening and reducing a down-stream 

deleterious effect of pulsatile flow on the microvasculature within the tissue bed. 

Our MRI results corroborate indirect evidence from the ultrasound literature 

that shows an increase in extracranial compliance with cardiorespiratory fitness42.  

Validation of this link using our ASL methods lends support for future interventional 

exercise studies, where the mechanisms underpinning MCAC can be explored in 

different ages, and with different types and modes of exercise. Resistance training has 

been found previously to reduce AC, or have no effect on, carotid artery compliance 

whereas aerobic training leads to increased AC43.  Similarly, high intensity interval 

training (HIIT) differs from continuous moderate intensity exercise on measures of 

arterial stiffness44–46. It has been proposed that a moderate or higher load of training 

may be required to influence endothelial function in healthy people47 where repeated 

shear stress stimulation is required to drive adaptation48 and arterial remodelling of 

endothelial and vascular smooth muscle cells that are located within the medial layer 

of the arterial wall49 and regulate vascular function6. Although our participants were 

recruited from cycling and running clubs to ensure a broad range of cardiorespiratory 

fitness, the volume, intensity duration and mode of training was not controlled for. 

Further research into the effects of specific types of exercise on AC in the brain using 

this novel MRI method is warranted to elucidate these potentially variable effects. 

Our cross-sectional design explored V̇O2MAX as a surrogate measure of physical 

fitness, but with this method, we are unable to elucidate the temporal dynamics of 
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arterial remodelling or its causal linkage to V̇O2MAX.  V̇O2MAX can decrease surprisingly 

quickly in the absence of any aerobic training and it would be of interest to measure 

the immediate effects of detraining on MCAC in a longitudinal design.  A previous 

study using aortic pulse wave velocity (PWV) as a measure of arterial distensibility, 

showed increased arterial distensibility after 8 weeks of cycling, that returned to 

baseline after just 4 weeks of detraining50. 

Average MCA compliance across participants in the present study was 0.41% 

± 0.16% per mmHg which is consistent, albeit slightly lower than reported previously 

in a sample of 5 participants (right MCAC = 0.57% ± 0.20%; left MCAC = 0.50% ± 0.30% 

per mmHg)18. The current findings demonstrate variation in cerebral AC in the MCA, 

however using MRI it is also possible to investigate the posterior and anterior cerebral 

arteries15,16,18. Unfortunately, due to the scan duration and sample size used in this 

study, SNR was too low to assess compliance in these smaller arteries.  

 

Grey Matter CBF 

This is the first study to assess resting cerebral blood flow using ASL in a cohort of 

young adults in the moderate-to-high fitness range. We report a reduction in resting 

CBF with increased fitness levels, a finding which contrasts with a handful of studies 

from the ultrasound literature, whereby fitness has been positively associated with 

cerebral blood velocity2,3,20 and flow in children19, older adults20 and patients with 

coronary artery disease21 .   

Across adulthood, age decreases cerebral metabolic rates of oxygen (CMRO2) 

and glucose by ~ 5% per decade, and reduced metabolic rate is coupled with lower 

CBF51,52. It has been proposed that exercise could ameliorate age-related cognitive 



�̇�O2MAX predicts MCA compliance and baseline CBF 

HV Furby et al. 

 19 

decline53,54 by enhancing vasodilatory signalling via nitrous oxide synthase activity, 

promoting endothelial repair mechanisms and angiogenesis to effectively meet the 

demands of the metabolising cerebral tissue55,56. It is widely assumed, but less well 

proven, that these mechanisms lead to a net increase in resting CBF in the healthy 

adult brain following exercise.  In this study, we find that CBF is lower in young males 

with higher cardiorespiratory fitness. 

Interpretation should be made cautiously given the modest size of the present 

study, however there are a number of possible mechanisms that could drive the 

negative association between cardiorespiratory fitness and CBF.  These include 

reduction of arteriolar luminal diameter, changes in capillary density and an alteration 

of tissue oxygen extraction. The former seems unlikely, since exercise has been shown 

to decrease the intima media thickness (IMT) of the arterial wall, thereby increasing 

lumen diameter and allowing for an increase in blood flow through the artery 

(Sandrock et al., 2008). However, an increase in lumen diameter is not a consistent 

observation in young adults (Popovic et al., 2011) and has not been explored in the 

cerebral arteries, making it worthy of further investigation. It is unlikely that lower CBF 

in fitter subjects  is due to a reduction of capillary density, since a number of preclinical 

studies have provided evidence of increased vessel density in the rodent brain 

following exercise57–59. It is possible that such an increase in vessel surface area with 

increased capillary number could reduce the demand for CBF 59, where shorter 

diffusion distances mean nutrient extraction is facilitated.  This raises the possibility 

that fitter individuals have more efficient gas exchange from the capillary bed, 

permitting a reduction in the amount of flow needed to meet metabolic oxygen 

demand.  
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It has been shown that a reduction in CBF seen during exercise was 

accompanied by an increase in oxygen extraction, resulting in a maintained cerebral 

metabolic rate of oxygen consumption (CMRO2)60. Future research could use 

calibrated fMRI measures of oxygen extraction and CMRO2
61–64 in highly fit individuals, 

to assess whether efficiency of nutrient supply via the cerebral microvasculature can 

explain the inverse relationship between �̇� O2MAX and CBF.  Hct contributes to an 

individual’s O2 carrying capacity, and alongside CBF and the arterial oxyhaemoglobin 

saturation, dictates cerebral oxygen delivery65.  We explored the relationship between 

Hct and  CBF and,  Hct and �̇�O2MAX, but neither was significant in this sample. 

 

Cerebrovascular Reactivity 

To date, studies that have investigated the relationship between CVR and 

fitness have relied upon either ultrasound methods2,3 or BOLD measurements22,66 

which have found opposing results. Since the BOLD signal does not represent blood 

flow, BOLD CVR alone is not sufficient for understanding the mechanisms at play67.  

The current study used pulsed ASL methods that allowed simultaneous measurement 

of BOLD and CBF, to assess whether differences in BOLD previously reported are likely 

to be due to a change in blood flow.  In line with the BOLD MRI literature, whole-brain 

grey matter CVR showed an inverse trend with  �̇� O2MAX, for both BOLD and CBF 

metrics, although neither effect was statistically significant. 

Within the healthy brain, an increase in arterial CO2 is expected to produce a 

rapid vasodilatory response, yielding an elevation in CBF. This vascular reactivity is 

thought to be an adaptive physiological response, such that a decline in reactivity 
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could be considered maladaptive.  Nonetheless this, and previous studies, have found 

a negative trend whereby CVR is lower in fitter subjects. For example, BOLD CVR was 

found to decrease in a study of elderly masters athletes with increased �̇�O2MAX in 

response to a 5% CO2 hypercapnic challenge22.  A separate study found reductions in 

frontal BOLD CVR with increased �̇�O2MAX despite fitter subjects performing better at a 

frontal executive cognitive task 66.  Together with our results, it seems that the link 

between cardiorespiratory fitness and cerebrovascular health may be more complex 

than previously suggested. One proposed explanation is that chronic elevations in 

venous CO2 during prolonged periods of exercise over years of training may lead to 

desensitisation of the vasodilatory mechanisms such as the bioavailability of nitric 

oxide, that mediate the reactivity of the blood vessels and regulate blood flow47.  This 

same mechanism may also explain the negative relationship between fitness and 

resting CBF observed in our study.  

Hct levels are associated with variation in task-based BOLD estimates 65. We 

did not observe a significant relationship between Hct levels and BOLD-based or CBF-

based CVR in this study. However, we exercise caution when interpreting MRI 

measures in light of Hct since, blood and MRI measures were acquired on separate 

days.  

It is possible that the breath-hold paradigm used here may not have been 

sensitive enough to detect a significant difference in CVR in this sample.  Targeted gas 

challenges tend to provide a more robust measure of CVR, as CO2 is directly 

manipulated28 and comparable levels of hypercapnia can be achieved between 

subjects. However, breath-hold offers greater experimental convenience. It has been 
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previously shown that breath-holds are a reliable measure of BOLD CVR, even when 

breath-holding is poor27. SNR is inherently lower in CBF than BOLD data. Nevertheless, 

we observed a significant relationship between BOLD and CBF CVR measures. 

Unlike the multi inversion time arterial spin labelling scheme used for 

estimating baseline CBF, an inherent limitation of the PASL single inversion time 

approach used for measuring CVR is that it assumes all the labelled blood has flowed 

into the imaging slice. This acquisition scheme was chosen for time efficiency and 

because we were interested in the dual-echo (i.e. CBF and BOLD) readout. However, 

it is possible that bias in CVR estimates may be introduced where differing amounts 

of the labelled bolus arrive in the imaged slice during normo- and hyper-capnia. 

 

Limitations 

Care should be taken when generalizing these findings since the cohort used 

here was small. Our study design specifically recruited those across a range of 

moderate-high �̇�O2MAX to exacerbate any association with vascular MRI parameters. 

Due to the correlational design of this study, cause and effect cannot easily be 

determined and a randomized clinical trial (RCT) involving a specified mode, intensity, 

frequency and duration of exercise would address this issue.  

An inherent limitation of using �̇�O2MAX testing, is that performance may be 

biased by mode of exercise (e.g. treadmill vs. cycle ergometer).  We did not control 

for the amount of cycle training engaged in by each of our participants prior to testing, 

however, those recruited from cycling clubs did not differ convincingly from those 

recruited from running clubs. Future studies should take this bias into consideration.  
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We did not address potential genetic and other environmental factors that 

could mediate the relationship between fitness and vascular health. However, 

emerging evidence suggests that the process of arterial stiffening may have a genetic 

component68 that may be relevant when looking at individual differences in response 

to exercise.   

 

Conclusions and Future Research 

In conclusion, �̇�O2MAX was found to be associated with several cerebrovascular 

parameters, including an elevation in MCAC and a decline in resting CBF.  This is the 

first time an association has been reported between cardiorespiratory fitness and AC 

within the brain using this novel MRI technique18.  The relationship between fitness 

and MCA compliance in this group of healthy young males, provides promising clues 

towards the influence of exercise on cerebrovascular health early in life, before 

cognitive decline becomes evident, and sheds light on the possible mechanisms by 

which exercise impacts cerebrovascular health.  
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FIGURES 

Figure 1. Those recruited from cycling (circles) and running (triangles) clubs appeared to have higher 
VO2MAX and longer time to exhaustion than community controls. 
 

 
Figure 2.  Increased VO

2MAX 
is associated with (a) increased arterial compliance within the bilateral 

middle cerebral arteries (MCA)(p<0.01) (b) decreased GM CBF at rest (p<0.01) (c) decreased GM CBF 
CVR (p=0.21, n.s.). 
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Figure 3. (a) BOLD and (b) CBF responses to the breath-hold task within a grey matter mask.  Coloured 
lines represent individual subject data; black lines reflect the average response across participants.  
BOLD time-series showed better signal-to-noise than CBF.  (c) BOLD CVR (%ΔBOLD/mmHg PET CO2) and 
CBF CVR (%ΔCBF/mmHg PET CO2) were significantly correlated. 
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Table 1.  Anthropomorphic measures for all subjects. 

  VO
2MAX

 Age Height Weight BMI Total Body Fat 
Haematocrit 

 

Systolic Blood 

Pressure 

Diastolic Blood 

Pressure 

Resting Heart 

Rate 

Time to 

exhaustion 

Subject (ml/kg/min) (years) (cm) (Kg) (kg/m
2
) (%) (%) (mmHg) (mmHg) (bpm) (secs) 

1 56.3 23 1.87 85.9 25 10.7 48 128 70 62 810 

2 75.8 20 1.76 62.7 20 12.5 46 126 84 65 690 

3 58.5 21 1.76 65.5 21 10.4 46 116 60 71 680 

4 64 19 1.84 74.7 22 8.8 50 118 74 54 830 

5 63.1 22 1.82 77.1 23 9.1 45 120 74 55 830 

6 67.3 23 1.84 75.6 22 10.6 44 124 72 60 810 

7 61.5 21 1.79 69.5 22 14.9 48 124 50 54 650 

8 42.5 20 1.88 67.6 19 10 45 124 78 77 500 

9 40.8 19 1.67 64.3 23 18.6 42 126 76 79 480 

10 37.8 20 1.75 85.6 28.0 18.8 48 122 76 54 530 

11 45.2 19 1.76 84.6 27.3 16.2 48 118 78 72 620 

Mean (±SD) 56 (12) 21 (2) 1.79 (0.06) 74 (9) 23 (3) 13 (4) 46(2) 122 (4) 72 (9) 64 (10) 675 (133) 

Correlation (Pearson’s r)  0.13 0.29 -0.29 -0.49 -0.61 0.11 0.02 -0.14 -0.44 -0.77 

p-value (=0.05)  n.s n.s n.s n.s n.s n.s n.s n.s n.s <0.01 
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