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Abstract

Lexical relation classification is the task of
predicting whether a certain relation holds be-
tween a given pair of words. In this pa-
per, we explore to which extent the current
distributional landscape based on word em-
beddings provides a suitable basis for classi-
fication of collocations, i.e., pairs of words
between which idiosyncratic lexical relations
hold. First, we introduce a novel dataset with
collocations categorized according to lexical
functions. Second, we conduct experiments
on a subset of this benchmark, comparing it in
particular to the well known DiffVec dataset.
In these experiments, in addition to simple
word vector arithmetic operations, we also in-
vestigate the role of unsupervised relation vec-
tors as a complementary input. While these
relation vectors indeed help, we also show that
lexical function classification poses a greater
challenge than the syntactic and semantic rela-
tions that are typically used for benchmarks in
the literature.

1 Introduction

Relation classification is the task of predicting
whether between a given pair of words or phrases,
a certain lexical, semantic or morphosyntactic re-
lation holds. This task has direct impact in down-
stream NLP tasks such as machine translation,
paraphrase identification (Etzioni et al., 2005),
named entity recognition (Socher et al., 2012), or
knowledge base completion (Socher et al., 2013).
The currently standard approach to relation classi-
fication is to combine the embeddings correspond-
ing to the arguments of a given relation into a
meaningful representation, which is then passed
to a classifier. As for which relations have been
targeted so far, the landscape is considerably more
varied, although we may safely group them into
morphosyntactic and semantic relations.

Morphosyntactic relations have been the focus
of work on unsupervised relational similarity, as
it has been shown that verb conjugation or nomi-
nalization patterns are relatively well preserved in
vector spaces (Mikolov et al., 2013; Pennington
et al., 2014a). Semantic relations pose a greater
challenge (Vylomova et al., 2016), however. In
fact, as of today, it is unclear which operation per-
forms best (and why) for the recognition of indi-
vidual lexico-semantic relations (e.g., hyperonymy
or meronymy, as opposed to cause, location or ac-
tion). Still, a number of works address this chal-
lenge. For instance, hypernymy has been modeled
using vector concatenation (Baroni et al., 2012),
vector difference and component-wise squared
difference (Roller et al., 2014) as input to linear
regression models (Fu et al., 2014; Espinosa-Anke
et al., 2016); cf. also a sizable number of neu-
ral approaches (Shwartz et al., 2016; Anh et al.,
2016). Furthermore, several high quality semantic
relation datasets are available, ranging from well-
known resources such as WordNet (Miller, 1995),
Yago (Suchanek et al., 2007), BLESS (Baroni
and Lenci, 2011), several SemEval datasets (Jur-
gens et al., 2012; Camacho-Collados et al., 2018)
or DiffVec (Vylomova et al., 2016). But there
is a surprising gap regarding collocation model-
ing. Collocations, which are semi-compositional
in their nature in that they are situated between
fixed multiword expressions (MWEs) and free (se-
mantic) word combinations, are of relevance to
second language (henceforth, L2) learners and
NLP applications alike. In what follows, we inves-
tigate whether collocations can be modeled along
the same lines as semantic relations between pairs
of words. For this purpose, we introduce Lex-
FunC, a newly created dataset, in which colloca-
tions are annotated with respect to the semantic ty-
pology of lexical functions (LFs) (Mel’čuk, 1996).
We use LexFunC to train linear SVMs on top of



different word and relation embedding composi-
tion. We show that the recognition of the seman-
tics of a collocation, i.e., its classification with re-
spect to the LF-typology, is a more challenging
problem than the recognition of standard lexico-
semantic relations, although incorporating distri-
butional relational information brings a significant
increase in performance.

2 Collocations and LexFunC

We first introduce the notion of collocation and LF
and then present the LexFunC dataset.1

2.1 The phenomenon of collocation
Collocations such as make [a] suggestion, attend
[a] lecture, heavy rain, deep thought or strong tea,
to name a few, are described by Kilgarriff (2006)
as restricted lexical co-occurrences of two syntac-
tically bound lexical items. Due to their idiosyn-
crasy, collocations tend to be language-specific.
For instance, in English or Norwegian we take
[a] nap, whereas in Spanish we throw it, and in
French, Catalan, German and Italian we make it.
However, they are compositionally less rigid than
some other types of multiword expressions such
as, e.g., idioms (as, e.g., [to] kick the bucket) or
multiword lexical units (as, e.g., President of the
United States or chief inspector). Specifically,
they are formed by a freely chosen word (the
base), which restricts the selection of its collocate
(e.g., rain restricts us to use heavy in English to
express intensity).2

Recovery of collocations from corpora plays a
major role in improving L2 resources, in addition
to obvious advantages in NLP applications such
as natural language analysis and generation, text
paraphrasing / simplification, or machine transla-
tion (Hausmann, 1984; Bahns and Eldaw, 1993;
Granger, 1998; Lewis and Conzett, 2000; Nessel-
hauf, 2005; Alonso Ramos et al., 2010).

Starting with the seminal work by Church and
Hanks (1989), an extensive body of work has
been produced on the detection of collocations in

1Data and code are available at bitbucket.org/
luisespinosa/lexfunc. LexFunC is a continuously grow-
ing project. At the time of publication, the full set (available
at https://www.upf.edu/web/taln/resources) con-
tains around 10,000 collocations collected and manually cat-
egorized in terms of lexical functions by I. Mel’čuk.

2In our interpretation of the notion of collocation, we
thus follow the lexicographic tradition Benson (1989); Cowie
(1994); Mel’čuk (1995); Binon and Verlinde (2013), which
differs from a purely statistical interpretation based exclu-
sively on relative co-occurrence frequency measures.

text corpora; cf., e.g., (Evert and Kermes, 2013;
Evert, 2007; Pecina, 2008; Bouma, 2010; Garcia
et al., 2017), as well as the Shared Task of the
PARSEME European Cost Action on automatic
recognition of verbal MWEs.3 However, mere
lists of collocations are often insufficient for both
L2 acquisition and NLP. Thus, a language learner
may not know the difference between, e.g., come
to fruition and bring to fruition or between have
[an] approach and take [an] approach, etc. Se-
mantic labeling is required. The failure to iden-
tify the semantics of collocations also led, e.g., in
earlier machine translation systems, to the neces-
sity of the definition of collocation-specific cross-
language transfer rules (Dorr, 1994; Orliac and
Dillinger, 2003). The above motivates us to con-
sider in this paper collocations and their classifi-
cation in terms of LFs (Mel’čuk, 1996), their most
fine-grained semantic typology (see Section 2.2).
Especially because, so far, this is only discussed
in a reduced number of works, and typically on a
smaller scale (Wanner et al., 2006; Gelbukh and
Kolesnikova., 2012).

2.2 LFs and the LexFunc dataset

An LF can be viewed as a function f (·) that as-
sociates, with a given base L (which is the argu-
ment or keyword of f ), a set of (more or less)
“synonymous collocates that are selected contin-
gent on L to manifest the meaning correspond-
ing to f ” (Mel’čuk, 1996). The name of an LF
is a Latin abbreviation of this meaning. For ex-
ample, Oper for operāri (‘do’, ‘carry out’), Magn
for magnus (‘great’, ‘intense’), and so forth. The
LexFunc dataset consists of collocations catego-
rized in terms of LFs. Table 1 lists the ten LFs
used in this paper, along with a definition, example
and frequency. The LFs have been selected so as
to cover the most prominent syntactic patterns of
collocations (verb+direct object, adjective+noun,
and noun+noun).

3 Experimental Setup

In our experiments, we want to assess whether
different LFs (i.e., semantically different collo-
cational relations) can be captured using stan-
dard relation classification models, despite the ac-
knowledged idiosyncratic and language-specific

3https://typo.uni-konstanz.de/parseme/index.php/2-
general/202-parseme-shared-task-on-automatic-
identification-of-verbal-mwes-edition-1-1

bitbucket.org/luisespinosa/lexfunc
bitbucket.org/luisespinosa/lexfunc
https://www.upf.edu/web/taln/resources


LF definition example freq.

magn ‘very’, ‘intense’ strong accent 2,491

oper1 ‘do’, ‘carry out’, ‘participate’ engage [in an] activity 1,036

real1 ‘realize’, ‘accomplish’, ‘apply according to purpose’ drop [a] bomb 316

antimagn ‘weak’, ‘little intense’ imperceptible accent 301

antibon ‘negative’, ‘not as expected’ lame attempt 201

causfunc0 ‘cause sth to be materialized / to function’ lay [an] egg 150

bon ‘positive’, ‘as expected’ impressive figure 142

liqufunc0 ‘eliminate’, ‘make sth. not function’ resolve ambiguity 118

sing ‘single item or quantum of a collection or a mass’ clove [of ] garlic 72

mult ‘multitude or collection of a given item or quantum’ bunch [of ] keys 56

total 4,914

Table 1: Statistics, definitions and examples of the LexFunc dataset. The indices indicate the argument structure
of the LF: ‘1‘stands for “first actant is the grammatical subject”; ‘0’ for “the base is the grammatical subject”.

(but still semi-compositional) “collocationality”
between a collocation’s base and collocate. To this
end, we benchmark standard relation classification
baselines in the task of LF classification. Further-
more, we also explore an explicit encoding of rela-
tional properties by distributional relation vectors
(see Section 3.2).

Moreover, to contrast the LF categories in our
LexFunc dataset with others typically found in the
relation classification literature, we use ten cate-
gories from DiffVec (Vylomova et al., 2016), a
dataset which was particularly designed to explore
the role of vector difference in supervised relation
classification. The rationale for this being that, by
subtraction, the features that are common to both
words are known to be “cancelled out”. For in-
stance, for madrid − spain, this operation can be
expected to capture that the first word is a capi-
tal city and the second word is a country, and “re-
move” the fact that both words are related to Spain
(Levy et al., 2014).

Both for DiffVec and LexFunc, we run exper-
iments on those categories for which we have at
least 99 instances. We cast the relation classi-
fication task as a multi-class classification prob-
lem and use a stratified 2

3 portion of the data for
training and the rest for evaluation. We consider
each of the datasets in isolation, as well as a con-
catenation of both (referred to in Table 2 as Diff-
Vec+LexFunc). The model we use is a Linear
SVM,4, trained on a suite of vector composition

4Implemented in scikit-learn (http://scikit-learn.

operations (Section 3.1).

3.1 Modeling relations using word vectors

Let w1 and w2 be the vector representations of two
words w1 and w2. We experiment with the follow-
ing word-level operations: diff (w2 − w1), concat
(w1 ⊕ w2), sum (w1 + w2), mult (w1 ◦ w2)), and
leftw (w1), the latter operation being included to
explore the degree to which the data can be lexi-
cally memorized (Levy et al., 2015)5.

3.2 Relation vectors

Because word embeddings are limited in the
amount of relational information they can cap-
ture, a number of complementary approaches have
emerged which directly learn vectors that cap-
ture the relation between concepts, typically using
distributional statistics from sentences mention-
ing both words (Espinosa-Anke and Schockaert,
2018; Washio and Kato, 2018; Joshi et al., 2018;
Jameel et al., 2018). Below we explore the poten-
tial of such relation vectors for semantic relation
classification. Specifically, we trained them for all
word pairs from DiffVec and LexFunc using two
different variants of the SeVeN model (Espinosa-
Anke and Schockaert, 2018). The corpus for train-
ing these vectors is a Wikipedia dump from Jan-

org.
5In fact, prototypicality may be a strong indicator for cap-

turing some LFs. Heavy, for instance, may be considered as a
prototypical collocate of ‘magn’. However, ‘heavy rain’ is a
more restricted English combination than ‘heavy laptop’, for
example, but less frozen than ‘heavy artillery’.

http://scikit-learn.org
http://scikit-learn.org
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DiffVec DiffVec+LexFunc LexFunc
P R F A P R F A P R F A

diff 78.94 80.91 78.00 90.00 62.58 62.00 61.84 79.80 54.54 51.44 52.64 73.98
sum 63.34 60.80 61.77 84.74 57.70 55.01 55.64 77.78 56.11 56.92 56.37 75.00
mult 49.56 41.74 44.45 66.99 41.25 61.44 33.55 58.17 39.51 32.39 34.68 59.62
leftw 49.74 50.50 49.49 80.76 38.89 36.14 36.49 67.35 63.07 60.65 61.64 80.30
concat 81.70 84.89 83.11 93.34 71.07 71.10 70.89 87.12 64.68 62.39 63.20 80.54

diff+rvAE 82.58 85.35 83.71 94.78 68.25 67.24 67.18 86.43 52.38 50.85 51.49 74.27
diff+rvAvg6 84.07 85.20 84.42 94.44 67.62 67.64 67.16 85.55 59.52 59.83 59.45 77.92
sum+rvAE 73.14 70.60 71.49 90.25 65.56 60.67 62.82 84.67 61.54 57.31 59.13 78.21
sum+rvAvg6 71.62 69.06 70.15 90.64 67.27 65.02 65.58 85.28 61.63 59.83 60.58 78.71
mult+rvAE 65.27 53.57 57.59 82.95 53.86 44.42 47.15 75.28 44.43 37.22 39.36 68.22
mult+rvAvg6 69.72 57.84 62.18 85.94 55.23 50.02 52.10 79.04 54.21 49.16 51.07 71.94
leftw+rvAE 65.16 61.51 62.64 90.88 50.37 46.35 47.51 80.38 45.65 39.45 41.69 66.96
leftw+rvAvg6 72.30 65.23 67.62 91.34 57.14 54.23 55.21 83.02 62.71 59.42 60.84 79.84
concat+rvAE 86.23 87.78 86.58 95.79 72.12 72.51 72.08 89.33 64.43 60.14 61.84 80.83
concat+rvAvg6 88.09 88.27 88.09 95.89 73.65 74.26 73.73 89.88 67.23 68.30 67.70 81.92

Table 2: Experimental results of several baselines on different multiclass settings for relation classification.

uary 2018, with GloVe (Pennington et al., 2014b)
300d pre-trained embeddings.

The first variant, referred to as rvAvg6, is based
on averaging the words that appear in sentences
mentioning the two given target words. Since this
approach differentiates between words that appear
before the first word, after the second word, or
in between the two words, and takes into account
the order in which the words appear, it results
in relation vectors with a dimensionality which
is six times the dimensionality of the considered
word vectors. The second variant, referred to as
rvAE, starts from the same high-dimensional re-
lation vector, but then uses a conditional autoen-
coder to obtain a lower-dimensional and poten-
tially higher-quality 300d vector6.

4 Results

Table 2 shows the experimental results for Diff-
Vec, LexFunc and both datasets together. The first
five rows show the performance of word embed-
ding operations, whereas the configurations for re-
maining rows also include a relation vector.

4.1 Discussion
We highlight two major conclusions. First, de-
spite vector difference and component-wise mul-
tiplication being the most popular vector opera-
tions for encoding relations between words, also

6We used the code available at bitbucket.com/
luisespinosa/seven for obtaining both representations.

in more expensive neural architectures for relation
modeling (Washio and Kato, 2018; Joshi et al.,
2018), vector concatenation alone proves to be a
highly performing baseline. Moreover, the over-
all best method (concat+rvAvg6), obtains perfor-
mance gains when compared with the standard
diff method ranging from +5.89% in DiffVec to
+7.98% in LexFunc and +10.08% in the combined
dataset. This suggests that while vector differ-
ences may encode relational properties, important
information is lost when only this operation is con-
sidered.

Second, despite being a well-studied topic, rec-
ognizing lexical functions emerges as a challeng-
ing problem. They seem difficult to classify, not
only between themselves, but also when coupled
with other lexical semantic relations. This may
be due to the fact that collocations are idiosyn-
cratic lexical co-occurrences which are syntacti-
cally bound. The base and collocate embeddings
should account for these properties, rather than
over-relying on the contexts in which they appear.
In the following section we present an analysis on
the main sources of confusion in the LexFunc and
DiffVec+LexFunc settings.

4.2 Problematic LFs

We aim to gain an understanding of recurrent
errors made both by the best performing model
(concat+rvAvg6) and diff. Figure 1 shows confu-
sion matrices for the two datasets involving LFs,

bitbucket.com/luisespinosa/seven
bitbucket.com/luisespinosa/seven


Figure 1: Confusion matrices on the best performing model (concat+rvAvg6): (1a) and (1b) show performance on
the LexFunc experiment, and (1c) and (1d) on DiffVec+LexFunc.

namely LexFunc and DiffVec+LexFunc. We are
particularly interested in pinpointing which LFs
are most difficult to classify, and whether there is
any particular label that agglutinates most predic-
tions. For example, in (Fig. 1a) we see a strong
source of confusion in the diff model between the
‘bon’ and ‘magn’ labels. Both are noun-adjective
combinations and both are used as intensifiers, but
they subtly differ in that only one enforces a per-
ceived degree of positiveness (e.g., resounding vs.
crushing victory). Thus, combining their vectors
produces clearly similar representations that con-
fuse the classifier, a scenario which is only partly
alleviated by the use of relation vectors (Fig. 1b).

The case of ‘oper1’ (perform) and ‘real1’ (ac-
complish) also proves problematic. The num-
ber of light verbs as collocates of these LFs is
notably high in the former, amounting to 48%;
‘real1’ is more semantic, with almost 11% light
verbs. Interestingly, however, these labels are al-
most never confused with the ‘event’ label from
DiffVec (Figs. 1c and 1d), even if it also contains
relations with light verbs such as break or pay.

Finally, one last source of confusion that war-
rants discussion involves ‘magn’ and ‘antimagn’,
two noun-advective collocations which are differ-
ent in that the former conveys a notion of inten-
sity, whereas the latter is about weakness (e.g.,
‘faint admiration’ or ‘slight advantage’). These
two LFs typically include antonymic collocates
(e.g., ‘weak’ and ‘strong’ as collocates for the base
‘argument’), and these are known to have similar
distributional vectors (Mrkšić et al., 2016; Nguyen
et al., 2016), which in high likelihood constitutes
a source of confusion.

5 Conclusions and Future Work

In this paper, we have discussed the task of distri-
butional collocation classification. We have used

a set of collocations categorized by lexical func-
tions, as introduced in the Meaning Text Theory
(Mel’čuk, 1996), and evaluated a wide range of
vector representations of relations. In addition,
we have used the DiffVec (Vylomova et al., 2016)
dataset to provide a frame of reference, as this
dataset has been extensively studied in the dis-
tributional semantics literature, mostly for eval-
uating the role of vector difference. We found
that, despite this operation being the go-to repre-
sentation for lexical relation modeling, concatena-
tion works as well or better, and clear improve-
ments can be obtained by incorporating explicitly
learned relation vectors. However, even with these
improvements, categorizing LFs proves to be a
difficult task.

In the future, we would like to experiment with
more data, so that enough training data can be
obtained for less frequent LFs. To this end, we
could benefit from the supervised approach pro-
posed in (Rodrı́guez-Fernández et al., 2016), and
then filter by pairwise correlation strength metrics
such as PMI. Another exciting avenue would in-
volve exploring cross-lingual transfer of LFs, tak-
ing advantage of recent development in unsuper-
vised cross-lingual embedding learning (Artetxe
et al., 2017; Conneau et al., 2017).
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