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Abstract. Epistemic graphs are a recent proposal for probabilistic ar-
gumentation that allows for modelling an agent’s degree of belief in an
argument and how belief in one argument may influence the belief in
other arguments. These beliefs are represented by probability distribu-
tions and how they affect each other is represented by logical constraints
on these distributions. Within the full language of epistemic constraints,
we distinguish a restricted class which offers computational benefits while
still being powerful enough to allow for handling of many other argumen-
tation formalisms and that can be used in applications that, for instance,
rely on Likert scales. In this paper, we propose a model-based theorem
prover for reasoning with the restricted epistemic language.

Keywords: Probabilistic argumentation · Epistemic argumentation ·

Abstract argumentation.

1 Introduction

Both the constellations approach [14,9,11,5,16,4,6] and the epistemic approach
[19,10,3,13,18,20] to probabilistic argumentation offer a valuable way to represent
and reason with various aspects of uncertainty arising in argumentation. The
epistemic uncertainty is seen as the degree to which an argument is believed
or disbelieved, thus providing a more fine–grained alternative to the standard
Dung’s approaches when it comes to determining the status of a given argument.
Following the results of an empirical study with participants [17], epistemic
graphs have been introduced as a generalization of the epistemic approach to
probabilistic argumentation [8,12].

In this approach, the graph is augmented with a set of epistemic constraints
that can restrict the belief we have in an argument with a varying degree of
specificity and state how beliefs in arguments influence each other. This is illus-
trated in Example 1. The graphs can therefore model both attack and support
as well as relations that are neither positive nor negative. The flexibility of this
approach allows us to both model the rationale behind the existing semantics
as well as completely deviate from them when required. The fact that we can
specify the rules under which arguments should be evaluated and that we can
include constraints between unrelated arguments permits the framework to be
more context–sensitive. It also allows for better modelling of imperfect agents,
which can be important in multi–agent applications.
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A = The train will arrive at 2pm because it is timetabled for a 2pm arrival.

B = Normally this
train service ar-
rives a bit late.

C = The train ap-
pears to be travelling
slower than normal.

D = The live travel
info app lists it as
arriving on time.

− − +

Fig. 1. Example of an epistemic graph. The + (resp. -) label denote support (resp.
attack) relations. These are specified via the constraints given in Example 1.

Example 1. Consider the graph in Figure 1, and let us assume that if D is strongly
believed, and B or C is strongly disbelieved, then A is strongly believed, whereas
if D is believed, and B or C is disbelieved, then A is believed. Furthermore, if B
or C is believed, then A is disbelieved. These constraints could be reflected by
the following formulae: ϕ1 ∶ p(D) > 0.8 ∧ p(B ∨ C) < 0.2 ⇒ p(A) > 0.8; ϕ2 ∶ p(D) >
0.5 ∧ p(B ∨ C) ≤ 0.5⇒ p(A) > 0.5; and ϕ3 ∶ p(B ∧ C) > 0.5⇒ p(A) < 0.5.

Epistemic graphs are therefore a flexible and valuable tool for argumentation,
and [12] has already provided methods for harnessing them in user modelling
for persuasion dialogues. However, reasoning with the full epistemic language
is non-trivial as the size of a probability distribution (i.e. the number of sets of
arguments needing an assignment) is exponential w.r.t. the number of arguments,
and there can potentially be infinitely many distributions satisfying a given set
of constraints. As presented in [8], for certain applications a restricted form of
logical constraint can be used, i.e. one where the probability values appearing
in constraints and distributions come from a finite, restricted set of values. This
may be appropriate if we want to represent beliefs in arguments as in a Likert
scale [15],or we want to use epistemic graphs as a medium for existing extension-
based or labeling-based methods. It also has the benefit of always producing a
finite set of answers.

In order to reason with constraints based on a restricted set of values, we
present a model-based theorem prover in this paper which can be used to check
(1) whether constraints are consistent; (2) if one constraint entails another; and
(3) find satisfying distributions. Our aim in this paper is to present a simple
baseline system that can be implemented easily and used for small examples.
This will help us understand some of the underlying issues in developing theorem
provers for this formalism, and serve as a comparison for future systems.

We proceed as follows: Section 2 reviews epistemic graphs from [8]; Section 3
introduces a method for identifying the models for a constraint and Section 4 an
algorithm for model-based reasoning (see [1] for proofs); and Section 5 discusses
the contributions.

2 Epistemic Language

This section reviews the necessary basic definitions from [8]. We assume a di-
rected graph G = (V,R), where each node in V denotes an argument (as illus-
trated by Figure 1), an edge in R denotes a relation between arguments and a
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labeling L ∶ R → 2{+,−,∗} ∖ {∅} tells us whether it is positive (+), negative (−),
or neither (∗). We use Nodes(G) and Arcs(G) to denote V and R respectively.
Epistemic graphs are simply labelled directed graphs equipped with a set of
epistemic constraints (defined next) for capturing the influences between argu-
ments. Both the labelled graph and the constraints provide information about
the argumentation. In this paper, we focus on the constraints rather than on the
full power of the graphs, and refer the readers to [8] for further details.

Like previously stated, the restricted epistemic language only allows values
from a certain, finite set to appear in the formulae. However, in order for the
approach to be coherent, this set should meet certain basic requirements. We
thus use the notion of a (reasonable) restricted value set, which has to be closed
under addition and subtraction (assuming the resulting value is still in the [0,1]
interval) and contain value 1.

Definition 1. A finite set of rational numbers from the unit interval Π is a
reasonable restricted value set iff 1 ∈Π and for any x, y ∈Π it holds that if
x + y ≤ 1, then x + y ∈Π, and if x − y ≥ 0, then x − y ∈Π.

We can also create subsets of this set according to a given inequality and
threshold value as well as sequences of values that can be seen as satisfying a
given arithmetical formula, which will become useful in the next sections:

Definition 2. With Πx
# = {y ∈ Π ∣ y#x} we denote the subset of Π obtained

according to the value x and relationship # ∈ {=,≠,≥,≤,>,<}. The combination
set for Π and a sequence of arithmetic operations (∗1, . . . ,∗k) where ∗i ∈ {+,−}
and k ≥ 0 is defined as:

Π
x,(∗1,...,∗k)

# = {(v) ∣ v ∈Πx
#} k = 0

{(v1, . . . , vk+1) ∣ vi ∈Π, v1 ∗1 . . . ∗k vk+1#x} otherwise

Example 2. Let Π1 = {0,0.5,0.75,1}. We can observe that it is not a restricted
value set, since 0.75 − 0.5 = 0.25 is missing from Π1. Its modification, Π2 =
{0,0.25,0.5,0.75,1}, is a restricted value set. The subsets of Π2 for x = 0.25
under various inequalities are as follows: Π2

x
> = {0.5,0.75,1}, Π2

x
< = {0}, Π2

x
≥ =

{0.25,0.5,0.75,1}, Π2
x
≤ = {0,0.25}, Π2

x
≠ = {0,0.5,0.75,1}, and Π2

x
= = {0.25}.

Assume we have a reasonable restricted value set Π3 = {0,0.5,1}, a sequence
of operations (+,−), an operator = and a value x = 1. In order to find an appro-
priate combination set, we are simply looking for triples of values (τ1, τ2, τ3) s.t.

x+y−z = 1. This produces six possible value sequences, i.e. Π2
1,(+,−)
= = {(0,1,0),

(0.5,0.5,0), (0.5,1,0.5), (1,0,0), (1,0.5,0.5), (1,1,1)}.

2.1 Syntax and Semantics

Based on a given graph and restricted value set, we can now define the epistemic
language. An epistemic formula can be seen as a propositional formula built
out of components stating how the sums and/or subtractions of probabilities of
argument terms should compare to values from Π.
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Definition 3. The restricted epistemic language based on G and a reason-
able restricted value set Π is defined as follows:

– a term is a Boolean combination of arguments. We use ∨, ∧ and ¬ as con-
nectives and can derive secondary connectives, such as →, as usual. Terms(G)
denotes all the terms that can be formed from the arguments in G.

– an operational formula is of the form p(αi) ∗1 . . . ∗k−1 p(αk) where all
αi ∈ Terms(G) and ∗j ∈ {+,−}. OForm(G) denotes the set of all possible
operational formulae of G and we read p(α) as the probability of α.

– an epistemic atom is of the form γ#x where # ∈ {=,≠,≥,≤,>,<}, x ∈ Π
and γ ∈ OForm(G).

– an epistemic formula is a Boolean combination of epistemic atoms. EForm(G)
denotes the set of all possible epistemic formulae of G.

The full, unrestricted language simply permits x to be a rational value in the
unit interval, hence we do not recall it here.

Example 3. Let Π = {0,0.5,1}. In the epistemic language restricted w.r.t. Π, we
can only have atoms of the form β#0, β#0.5, and β#1, where β ∈ OForm(G)
and # ∈ {=,≠,≥,≤,>,<}. From these atoms we compose epistemic formulae using
the Boolean connectives, such as p(A) + p(B) ≤ 0.5 ∧ p(C) = 0.

The semantics for constraints come in the form of belief distributions, which
assign probabilities to sets of arguments. Their restricted counterparts enforce
that the assigned probabilities come from a restricted value set:

Definition 4. A belief distribution on arguments is a function P ∶ 2Nodes(G) →
[0,1] s.t. ∑Γ⊆Nodes(G) P (Γ ) = 1. With Dist(G) we denote the set of all belief dis-
tributions on Nodes(G). P is restricted w.r.t.Π iff for every X ⊆ Nodes(G),
P (X) ∈Π3.With Dist(G,Π) we denote the set of restricted distributions of G.

From the probability distribution, we can derive the probability of a term and
therefore of an argument. Each Γ ⊆ Nodes(G) corresponds to an interpretation
of arguments. We say that Γ satisfies an argument A and write Γ ⊧ A iff A ∈ Γ .
Essentially ⊧ is a classical satisfaction relation and can be extended to complex
terms as usual. For instance, Γ ⊧ ¬α iff Γ /⊧ α and Γ ⊧ α∧β iff Γ ⊧ α and Γ ⊧ β.
With this, we can define the following:

Definition 5. The probability of a term is defined as the sum of the proba-
bilities (beliefs) of its models: P (α) = ∑Γ⊆Nodes(G) s.t. Γ⊧α P (Γ ).

We say that an agent believes a term α to some degree if P (α) > 0.5, disbe-
lieves α to some degree if P (α) < 0.5, and neither believes nor disbelieves α when
P (α) = 0.5. Please observe that in this notation, P (A) stands for the probability
of a simple term A (i.e. sum of probabilities of all sets containing A), which is
different from P ({A}), i.e. the probability assigned to set {A}.

Using this, we can finally produce (restricted) satisfying distributions of a
given atom, and therefore of a given formula:

3 We note that this is a simpler, but still equivalent version of the notion in [8].
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Definition 6. Let ϕ ∶ p(αi)⋆1 . . .⋆k−1p(αk)#b be an epistemic atom. The satis-
fying distributions, or equivalently models, of ϕ are defined as Sat(ϕ) = {P ′ ∈
Dist(G) ∣ P (αi) ⋆1 . . .⋆k−1 P (αk)#b}. The restricted satisfying distribution
of ϕ w.r.t. Π are defined as Sat(ψ,Π) = Sat(ψ) ∩Dist(G,Π).

The set of satisfying distributions for a given epistemic formula is as follows
where φ and ψ are epistemic formulae: Sat(φ∧ψ) = Sat(φ)∩Sat(ψ); Sat(φ∨ψ) =
Sat(φ) ∪ Sat(ψ); and Sat(¬φ) = Sat(⊺) ∖ Sat(φ). For a set of epistemic formulae
Φ = {φ1, . . . , φn}, the set of satisfying distributions is Sat(Φ) = Sat(φ1) ∩ . . . ∩
Sat(φn). The same holds for the restricted scenario.

Example 4. Let us assume we have a formula ψ ∶ p(A) + p(B) ≤ 0.5 on a graph
s.t. {A,B} = Nodes(G). There can be infinitely many satisfying distributions of
this formula, including P1 s.t. P1(∅) = 1, P2 s.t. P2(∅) = P2({A}) = 0.5, P3 s.t.
P3(∅) = P3({B}) = 0.5, or P4 s.t. P4(∅) = 0.68, P4({A}) = 0.13 and P4({B}) =
0.19 (omitted sets are assigned 0). In contrast, a probability distribution P5 s.t.
P5({A,B}) = 0.3 and P5(∅) = 0.7 would not be satisfying. If we considered a
restricted value set Π = {0,0.5,1}, then we could observe that P1 to P3 would
be the all and only restricted satisfying distributions of ψ.

2.2 Epistemic Entailment Relation

In order to reason with the restricted epistemic language, we can use the con-
sequence or the entailment relation. Given the focus of this paper, we will now
recall the latter. From now on, unless stated otherwise, we will assume that the
argumentation framework we are dealing with is finite and nonempty (i.e. the
set of arguments in the graph is finite and nonempty).

Definition 7. Let Π be a reasonable restricted value set, ψ ∈ EForm(G,Π) an
epistemic formula and {φ1, . . . , φn} ⊆ EForm(G,Π) a set of epistemic formu-
lae. The restricted epistemic entailment relation w.r.t. Π, denoted ⊫Π , is
defined as follows.

{φ1, . . . , φn} ⊫Π ψ iff Sat({φ1, . . . , φn},Π) ⊆ Sat(ψ,Π)

Example 5. Consider Π = {0,0.25,0.5,0.75,1} and restricted epistemic formulae
p(A) + p(¬B) ≤ 1 and p(A) + p(¬B) ≤ 0.75. It holds that

{p(A) + p(¬B) ≤ 0.75} ⊫Π p(A) + p(¬B) ≤ 1

It is worth noting how changing the restricted valued set affects the entail-
ment. We can observe that a less restricted entailment (i.e. one with Π permit-
ting more values) implies a more restricted one, but not necessarily the other
way around, as seen in Example 6.

Proposition 1. (From [8]) Let Π1 ⊆ Π2 be reasonable restricted value sets.
For a set of epistemic formulae Φ ⊆ EForm(G,Π1), and an epistemic formula
ψ ∈ EForm(G), if Φ⊫Π2 ψ, then Φ⊫Π1 ψ.
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Example 6. Consider two formulae ϕ1 ∶ p(A) ≠ 0.5 and ϕ2 ∶ p(A) = 0 ∨ p(A) = 1
and a reasonable restricted set Π = {0,0.5,1}. We can observe that Sat(ϕ1,Π) =
Sat(ϕ2,Π) and therefore {ϕ1} ⊫Π ϕ2. However, if we had set such as Π ′ =
{0,0.25,0.5,0.75,1}, we could then consider a probability distribution P s.t.
P (A) = 0.75 in order to show that Sat(ϕ1) ⊈ Sat(ϕ2).

3 Model-based Reasoning

A simple route to theorem proving is to use the definition of entailment. This
involves identifying the models of the formulae by decomposing them to find the
models of their subformulae, and then composing these sets of models to identify
the models of the orignal formulae. We first define decomposition rules to split
the formulae (Definition 8). These rules are used to reduce an epistemic formula
to epistemic atoms of the form p(α) = v (if possible), and then finally to a set
of models that satisfy the epistemic atom. Once we have decomposed a formula,
we use the model propagation function (Definition 10) to combine the models of
the epistemic atoms into models of the original formula.

Definition 8. The decomposition rules are as follows where for each rule,
the condition is an epistemic formula, and where Π is a reasonable restricted
value set and # ∈ {=,≠,≥,≤,>,<}.

– The propositional rules are as follows where x∣y denotes that x is the left
child and y is the right child, and from left to right, they are the conjunc-
tion, disjunction, implication, and negation rules.

φ ∧ ψ φ ∨ ψ φ→ ψ ¬φ
φ ∣ ψ φ ∣ ψ ¬φ ∣ ψ φ

– The operational rules are defined as follows, where either n > 0 or # is
different from =.

p(α1) ∗1 . . . ∗n p(αn+1)#x
⋁
(v1,...,vn+1)∈Π

x,(∗1,...,∗n)
#

(p(α1) = v1 ∧ . . . ∧ p(αk) = vn+1) if Πx
# ≠ ∅

p(α1) ∗1 . . . ∗n p(αn+1)#x
∅ otherwise

– The term rule is defined as follows.

p(α) = v
{P ∈ Dist(G,Π) ∣ (∑X⊆Nodes(G) s.t. X⊧α P (X)) = v}

The decomposition of an epistemic formula using the above decomposition
rules can be represented by a decomposition tree which we define next. For this,
we assume that for a node n in a tree T , Children(n) is the set of children of n.
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Definition 9. A decomposition tree for an epistemic formula φ ∈ EForm(G)
is a tree where (1) the root is labelled with φ; (2) each non-leaf node is labelled
with an epistemic formula ψ ∈ EForm(G); (3) each non-leaf node is associated
with a decomposition rule such that the epistemic formula labelling the node
satisfies the condition for the decomposition rule, and the child (or children in the
case of the proposition rules) are obtained by the application of the decomposition
rule; and (4) each leaf is a (possibly empty) set of models. Rule(n) denotes the
decomposition rule that was applied to a non-leaf node n.

Each decomposition tree is exhaustive, i.e. no further decomposition rules
can be applied without violating the conditions of it being a decomposition tree.
A possible decomposition tree can be seen in Figure 2 paired with Table 1.

P (A) > 0.5→ P (B) ≤ 0.5

¬(P (A) > 0.5) P (B) ≤ 0.5

P (A) > 0.5 (P (B) = 0) ∨ (P (B) = 0.5)

{P1, P3, P8} P (B) = 0 P (B) = 0.5

{P0, P1, P4} {P5, P6, P7, P8}

Fig. 2. A decomposition tree. Let P0 to P9 be defined as in Table 1. For the root, the
set of models is {P0, P1, P2, P4, P5, P6, P7, P8, P9}.

Table 1. Models for Figure 2 where Π = {0,0.5,1} and Nodes(G) = {A,B}

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

∅ 1 0 0 0 0.5 0.5 0.5 0 0 0
{A} 0 1 0 0 0.5 0 0 0.5 0.5 0
{B} 0 0 1 0 0 0.5 0 0.5 0 0.5
{A,B} 0 0 0 1 0 0 0.5 0 0.5 0.5

Each leaf of a decomposition tree is a, possibly empty, set of models (i.e. a set
of probability distributions) that satisfy the epistemic formula at its parent node.
In other words, the models of the leaf can be used to determine the models of its
parent. Furthermore, for each non-leaf node, its models can be used to determine
the models of its parent. So in general, for any non-leaf node, its models are a
function of the models of its children, as we specify next.

Definition 10. For a decomposition tree T , the model propagation function
for T, denoted Models, is defined a follows,
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1. If Rule(n) is the conjunction rule, and Children(n) = {n1, n2}, then Models(n)
= Models(n1) ∩Models(n2).

2. If Rule(n) is the disjunction or implication rule, and Children(n) = {n1, n2},
then Models(n) = Models(n1) ∪Models(n2).

3. If Rule(n) is the negation rule, and Children(n) = {n1}, then Models(n) =
Sat(⊺,Π) ∖Models(n1).

4. If Rule(n) is the term rule or the operational rule, and Children(n) = {n1},
then Models(n) = Models(n1).

For any given epistemic formula, the decomposition trees for the epistemic
formula have the same set of leaves where Leaves(T ) is the set of leaves in T .

Proposition 2. If T1 and T2 are decomposition trees for φ, then Leaves(T1) =
Leaves(T2).

Furthermore, the model propagation function ensures that the decomposi-
tions trees for an epistemic formula have the same set of models at the root.

Proposition 3. If T1 and T2 are decomposition trees for φ, and the root of T1
(respectively T2) is n1 (respectively n2), then Models(n1) = Models(n2).

For each decomposition rule, the models of the epistemic formula in the
condition of the rule are a function of the models in the consequent of the rule.
For the conjunction (respectively disjunction) propositional decomposition rule,
with condition φ, and consequent ψ1 ∣ ψ2, P ∈ Sat(φ,Π) iff P ∈ Sat(ψ1,Π) and
(respectively or) P ∈ Sat(ψ2,Π). For the negation propositional decomposition
rule, with condition φ, and consequent ψ, P ∈ Sat(φ,Π) iff P /∈ Sat(ψ,Π).
For the term rule or the operational rule, the models of the condition of the
rule are the models of the consequent. Hence, given a decomposition tree for
an epistemic formula, the models of that formula are the models returned by
backwards induction.

Proposition 4. If T is a decomposition tree for epistemic formula φ, and the
root of the tree is node n, then Sat(φ,Π) =Models(n).

So constructing a decomposition tree is a method that is guaranteed to return
exactly the models for the epistemic formula at the root.

4 Model-based Theorem Proving

Our proposal for model based theorem proving is based on the Entailment

method given in Algorithm 1 which is defined in terms of the GetModels. The
advantage of the algorithm is that it is straightforward to implement.

Proposition 5. Algorithm 1 terminates.



A Model-based Theorem Prover for Epistemic Graphs for Argumentation 9

Entailment(φ,ψ)
return GetModels(φ) ⊆ GetModels(ψ)

GetModels(φ);
if φ = ψ1 ∧ ψ2 for some ψ1, ψ2

return GetModels(ψ1) ∩ GetModels(ψ2)
else if φ = ψ1 ∨ ψ2 for some ψ1, ψ2

return GetModels(ψ1) ∪ GetModels(ψ2)
else if φ = ψ1 → ψ2 for some ψ1, ψ2

return GetModels(¬ψ1) ∪ GetModels(ψ2)
else if φ = ¬ψ for some ψ

return Dist(G,Π) ∖ GetModels(ψ)
else if φ = p(α) = v for some α

return {P ∈ Dist(G,Π) ∣ (∑X⊆Nodes(G) s.t. X⊧α P (X)) = v}
else if φ = p(α1) ∗1 . . . ∗n p(αn+1)#x for some α1, . . . , αn+1

if Π
x,(∗1,...,∗n)
# = ∅
return ∅

else return ⋃
(v1,...,vn+1)∈Π

x,(∗1,...,∗n)
#

(⋂1≤i≤n+1 GetModels(p(αi) = vi))

Algorithm 1: Entailment which if the entailment holds, returns true,
otherwise returns false.

However, the disadvantage of this algorithm is that it is computationally
naive, and does not scale well, because it considers the potentially large number
of probability distributions. In order to investigate the algorithm in practice, we
implemented it in Python (see [2] for code), and ran an evaluation on a Windows
10 HP Pavilion Laptop (with AMD A10 2GHz processor and 8GB RAM) on a
number of examples taken from [8]. For instance, for the following formulae, we
obtained the results in Table 2 for time taken for entailment.

(1) p(A + B) ≤ 1 (2) p(A) > 0.5→ P (B) ≤ 0.5
(3) p(A) < 0.9 ∧ p(A) > 0.7 (4) p(A) > 0.7 ∧ ¬(p(A) ≥ 0.9)
(5) (p(B) < 0.5 ∧ p(C) > 0.5 ∧ p(D) > 0.5) → p(B) > 0.5
(6) (p(B) < 0.5 ∧ p(C ∧ D) > 0.5) → p(B) > 0.5
(7) p(A) ∨ p(B) ∨ p(C) ∨ p(D) > 0.5 (8) p(A ∨ B ∨ C ∨ D) > 0.5

Since the implementation is based on generating and manipulating sets of
models, the number of models is the dominant factor in the running time. To
illustrate this, we focus on the method in the implementation for generating the
methods. For example, for generating the models for ∣Π ∣ = 5, the running time
with ∣Nodes(G)∣ = 2 (respectively 3, 4, and 5) is 0.001 (respectively 0.032, 1.927,
and 59.12) seconds, and so the theoretical results (that are discussed below) are
reflected in the running time. Essentially, the implementation takes a brute-force
approach since it generates all the models for the given set of arguments in the
graph and the restricted value set, before decomposing the formulae and finding
the models of the subformulae.
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Table 2. Average running time in seconds for implementation of entailment on exam-
ples of formulae for each column where Π = {0,0.25,0.5,0.75,1}. Time is average of 10
runs for each pair. For each pair (x, y), x is the assumption and y is the conclusion of
the entailment. For all pairs, entailment holds, except for (6,5) and (8,7).

(1,2) (2,1) (3,4) (4,3) (5,6) (6,5) (7,8) (8,7)

Time (secs) 0.037 0.036 0.008 0.010 1.023 1.032 137.6 122.0

For comparison, we look at the number of models that are generated in
general. Given Π and Nodes(G), we can calculate the number of probability
distributions for any language for epistemic formulae. For this, we say that a set
of rational numbers Ξ is compatible with an integer n iff there is a bijection
f ∶ Ξ → {0,1, . . . , n} and a value k ∈ N such that for each x ∈ Ξ, f(x) = kx.
For example, Ξ = {0,0.5,1} is compatible with 2 and Ξ = {0,0.25,0.5,0.75,1} is
compatible with 4.

Lemma 1. If Π is a reasonable restricted value set, then there is an integer n
s.t. Π is compatible with n.

Proposition 6. Let Π be compatible with integer n. The cardinality of the set of
probability distributions for Π and G is given by the following binomial coefficient
(using the stars and bars method [7]) where k = 2∣Nodes(G)∣

(n + k − 1

n
) = (n + k − 1)!

(k − 1)!n!

So, for a set Π = {0,0.5,1} and ∣Nodes(G)∣ = 2, we have ∣Dist(G),Π ∣ = 10, for
Π = {0,0.25,0.5,0.75,1} and ∣Nodes(G)∣ = 2, we have ∣Dist(G,Π)∣ = 35, and for
Π = {0,0.25,0.5,0.75,1} and ∣Nodes(G)∣ = 5, we have ∣Dist(G,Π)∣ = 52,360.

5 Discussion

Epistemic graphs offer a rich formalism for modelling argumentation. There
is some resemblance with variants of abstract argumentation such as ranking
and weighted approaches, constrained argumentation frameworks, and weighted
ADFs. However, the conceptual differences between epistemic probabilities and
abstract weights lead to significant differences in modelling (see [8] for details).
Also see [8] for a discussion of differences with Bayesian networks. In [8], a
sound and complete proof theory is provided for constraints with restricted value
sets but no algorithmic method is provided. In this paper, we have addressed
this by giving a formal and transparent algorithmic method for reasoning with
constraints. It is a practical alternative (for small examples) to the probabilistic
optimization approach presented in [12]), and it can be used as a baseline system
for which new algorithms can be compared. In future work, we will improve the
efficiency of the algorithm (for example, by a lazy construction of models). We
will also move beyond this baseline system by rewriting the constraints into a
set of propositional clauses, and use a SAT solver.
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