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Abstract. Recent work has considered the problem of extending to the case of
iterated belief change the so-called ‘Harper Identity’ (HI), which defines single-
shot contraction in terms of single-shot revision. The present paper considers the
prospects of providing a similar extension of the Levi Identity (LI), in which the
direction of definition runs the other way. We restrict our attention here to the
three classic iterated revision operators–natural, restrained and lexicographic, for
which we provide here the first collective characterisation in the literature, under
the appellation of ‘elementary’ operators. We consider two prima facie plausible
ways of extending (LI). The first proposal involves the use of the rational closure
operator to offer a ‘reductive’ account of iterated revision in terms of iterated
contraction. The second, which doesn’t commit to reductionism, was put forward
some years ago by Nayak et al. We establish that, for elementary revision op-
erators and under mild assumptions regarding contraction, Nayak’s proposal is
equivalent to a new set of postulates formalising the claim that contraction by
¬A should be considered to be a kind of ‘mild’ revision by A. We then show that
these, in turn, under slightly weaker assumptions, jointly amount to the conjunc-
tion of a pair of constraints on the extension of (HI) that were recently proposed
in the literature. Finally, we consider the consequences of endorsing both sug-
gestions and show that this would yield an identification of rational revision with
natural revision. We close the paper by discussing the general prospects for defin-
ing iterated revision in terms of iterated contraction.

Keywords: belief revision · iterated belief change · Levi identity.

1 Introduction

The crucial question of iterated belief change–that is, the question of the rationality con-
straints that govern the beliefs resulting from a sequence of changes in view–remains
very much a live one.

In recent work [3], we have studied in some detail the problem of extending, to the
iterated case, a principle of single-step change known as the ‘Harper Identity’ (hence-
forth ‘(HI)’) [15]. This principle connects single-step contraction and revision, the two
main types of change found in the literature, in a manner that allows one to define the
former in terms of the latter. We presented a family of extensions of (HI) characterised
by the satisfaction of an intuitive pair of principles and showed how these postulates
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could be used to translate principles of iterated revision into principles of iterated con-
traction.

But (HI) also has a well known companion principle which reverses the direction
of definition, allowing one to define single-step revision in terms of single-step con-
traction: the Levi Identity (henceforth ‘(LI)’) [20]. To date, furthermore, the issue of
extending (LI) to the iterated case has barely been discussed. Two noteworthy excep-
tions are the short papers of Nayak et al [21] and of Konieczny & Pino Pérez [17].
The second paper argues that no reasonable extension of (LI) will enable us to reduce
iterated revision to iterated contraction. The first paper introduces a non-reductionist
extension of (LI) consonant with this claim.

The present contribution aims to provide a more comprehensive discussion of the
issue, carried out against the backdrop of the aforementioned recent work on (HI). The
plan of the paper is as follows. After a preliminary introduction of the formal frame-
work in Section 2, we provide, in Section 3, a novel result that is of general interest
in itself. We collectively characterise the three classic belief revision operators that are
the focus of the paper (natural, restrained and lexicographic) under the appellation of
‘elementary’ operators, showing that they are in fact the only operators satisfying a par-
ticular set of properties. Section 4 turns to the issue of extending (LI) to the iterated
case. We present, in Section 4.1, an extension of (LI) based on the concept of rational
closure, which would result in a reduction of two-step revision to two-step contraction.
Section 4.2 then discusses the non-reductive proposal of [21]. We first establish that, for
elementary revision operators and under mild assumptions regarding contraction, it is in
fact equivalent to a new set of postulates formalising the claim that contraction by ¬A
should be considered to be a kind of ‘mild’ revision by A. These, in turn, under slightly
weaker assumptions, are proven to jointly amount to the conjunction of the aforemen-
tioned constraints on the extension of (HI) that were proposed in [3]. In Section 4.3,
we consider the consequences of endorsing both suggestions and show that this would
yield an identification of rational revision with natural revision. In Section 5, we briefly
discuss the general prospects for defining iterated revision from iterated contraction,
critically assessing the central argument of [17]. We conclude, in Section 6, with some
remaining open questions.

Due to space limitations, only sketches of the more important proofs have been
provided. A version of the paper containing all proofs can be accessed online at https:
//arxiv.org/abs/1907.01224.

2 Preliminaries

The beliefs of an agent are represented by a belief state Ψ . The latter determines a
belief set [Ψ ], a deductively closed set of sentences, drawn from a finitely generated,
propositional, truth-functional language L. The set of classical logical consequences of
Γ ⊆ L will be denoted by Cn(Γ ). The set of propositional worlds or valuations will be
denoted by W , and the set of models of a given sentence A by [[A]].

We consider the three classic belief change operations mapping a prior state Ψ and
input sentence A in L onto a posterior state. The operation of revision ∗ returns the
posterior state Ψ ∗A that results from an adjustment of Ψ to accommodate the inclusion
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ofA, in such a way as to maintain consistency of the resulting belief set when¬A ∈ [Ψ ].
The operation of expansion + is similar, save that consistency of the resulting beliefs
needn’t be ensured. Finally, the operation of contraction ÷ returns the posterior state
Ψ ÷A that results from an adjustment of Ψ to accommodate the retraction of A.

2.1 Single-step change

In terms of single-step change, revision and contraction are assumed to satisfy the pos-
tulates of Alchourrón, Gärdenfors and Makinson [1] (henceforth ‘AGM’), while the
behaviour of expansion is constrained by [Ψ + A] = Cn([Ψ ] ∪ {A}). AGM ensures
a useful order-theoretic representability of the single-shot revision or contraction dis-
positions of an agent, such that each Ψ is associated with a total preorder (henceforth
‘TPO’) 4Ψ over W , such that [[[Ψ ∗ A]]] = min(4Ψ , [[A]]) ([14,16]). In this context,
the AGM postulate of Success (A ∈ [Ψ ∗ A]) corresponds to the requirement that
min(4Ψ∗A,W ) ⊆ [[A]]. We denote by TPO(W ) the set of all TPOs over W and shall
assume that, for every 4∈ TPO(W ), there is a state Ψ such that 4=4Ψ .

Equivalently, these revision dispositions can be represented by a ‘conditional belief
set’ [Ψ ]c. This set extends the belief set [Ψ ] by further including various ‘conditional
beliefs’, expressed by sentences of the formA⇒ B, where⇒ is a non-truth-functional
conditional connective and A,B ∈ L (we shall call Lc the language that extends L
to include such conditionals). This is achieved by means of the so-called Ramsey Test,
according to which A ⇒ B ∈ [Ψ ]c iff B ∈ [Ψ ∗ A]. In terms of constraints on [Ψ ]c,
AGM notably ensures that its conditional subset corresponds to a rational consequence
relation, in the sense of [19] (we shall say, in this case, that [Ψ ]c is rational).

Following convention, we shall call principles couched in terms of belief sets ‘syn-
tactic’, and call ‘semantic’ those principles couched in terms of TPOs, denoting the
latter by subscripting the corresponding syntactic principle with ‘4’.

The operations ∗ and÷ are assumed to be related in the single-shot case by the Levi
and Harper identities, namely

(LI) [Ψ ∗A] = Cn([Ψ ÷ ¬A] ∪ {A})
(HI) [Ψ ÷A] = [Ψ ] ∩ [Ψ ∗ ¬A]

with single-shot revision determining single-shot expansion via a third identity:

(TI) [Ψ +A] = [Ψ ∗A], if ¬A /∈ [Ψ ]

= L, otherwise

(LI) can of course alternatively be presented as [Ψ ∗A] = [(Ψ ÷¬A) +A]. Note that,
given (HI) and (LI), the constraint [[[Ψ ∗ A]]] = min(4Ψ , [[A]]) is equivalent to [[[Ψ ÷
¬A]]] = min(4Ψ ,W )∪min(4Ψ , [[A]]), so that 4Ψ equally represents both revision and
contraction dispositions.

The motivation for (LI) is the following: The most parsimonious way of modifying
[Ψ ] so as to include A is to simply add the joint logical consequences of [Ψ ] and A.
However, Cn([Ψ ] ∪ {A}) needn’t be consistent. Hence we first ‘make room’ for A
by considering instead the belief set [Ψ ÷ ¬A] that results from making the relevant
minimal change necessary to achieve consistency.



4 J. Chandler and R. Booth

2.2 Iterated change

In terms of iterated revision, we shall considerably simplify the discussion by restricting
our attention to the three principal operators found in the literature. These are natural
revision [8]:

x 4Ψ∗NA y iff (1) x ∈ min(4Ψ , [[A]]), or (2) x, y /∈ min(4Ψ , [[A]]) and x 4Ψ y

restrained revision [6]:

x 4Ψ∗RA y iff (1) x ∈ min(4Ψ , [[A]]), or (2) x, y /∈ min(4Ψ , [[A]]) and either (a)
x ≺Ψ y or (b) x ∼Ψ y and (x ∈ [[A]] or y ∈ [[¬A]])

and lexicographic revision [22]:

x 4Ψ∗LA y iff (1) x ∈ [[A]] and y ∈ [[¬A]], or (2) (x ∈ [[A]] iff y ∈ [[A]]) and
x 4Ψ y.3

See Figure 1.

A ¬A
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z
y
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w

y

∗R A
∗L A ∗N A

Fig. 1: Elementary revision by A. The boxes represent states and associated TPOs. The lower
case letters, which represent worlds, are arranged in such a way that the lower the letter, the
lower the corresponding world in the relevant ordering. The columns group worlds according to
the sentences that they validate. So, for example, in the initial ordering, we havew ≺ y ≺ x ∼ z,
with y, z ∈ [[A]] and x,w ∈ [[¬A]] and then, after lexicographic revision by A, y ≺ z ≺ w ≺ x.

All three suggestions operate on the assumption that a state Ψ is to be identified with
its corresponding TPO 4Ψ and that belief change functions map pairs of TPOs and
sentences onto TPOs, in other words, they entail:

(Red) If 4Ψ=4Ψ ′ , then, for any A, 4Ψ∗A=4Ψ ′∗A

3 These are three of the four iterated revision operators mentioned in Rott’s influential survey
[23]. The remaining operator the irrevocable revision operator of [24], which has the unusual
characteristic of ensuring that prior inputs to revision are retained in the belief set after any
subsequent revision.
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The proposals ensure that ∗ satisfies the postulates of Darwiche & Pearl [10]. In their
semantic forms, these are:

(C1∗4) If x, y ∈ [[A]] then x 4Ψ∗A y iff x 4Ψ y

(C2∗4) If x, y ∈ [[¬A]] then x 4Ψ∗A y iff x 4Ψ y

(C3∗4) If x ∈ [[A]], y ∈ [[¬A]] and x ≺Ψ y, then x ≺Ψ∗A y
(C4∗4) If x ∈ [[A]], y ∈ [[¬A]] and x 4Ψ y, then x 4Ψ∗A y

Regarding÷, we assume that it satisfies the postulates of Chopra et al [9], given seman-
tically by:

(C1÷4) If x, y ∈ [[¬A]] then x 4Ψ÷A y iff x 4Ψ y

(C2÷4) If x, y ∈ [[A]] then x 4Ψ÷A y iff x 4Ψ y

(C3÷4) If x ∈ [[¬A]], y ∈ [[A]] and x ≺Ψ y then x ≺Ψ÷A y
(C4÷4) If x ∈ [[¬A]], y ∈ [[A]] and x 4Ψ y then x 4Ψ÷A y

Concerning the relations between the belief change operators in the iterated case, we
will be discussing the extension of (LI), as well as that of (TI), later in the paper. Re-
garding (HI), a proposal for extending the principle to the two-step case was recently
floated in [3]. Semantically speaking, this involved the characterisation of a binary TPO
combination operator ⊕, such that 4Ψ÷A=4Ψ ⊕ 4Ψ∗¬A. Among the baseline con-
straints on ⊕, were a pair of conditions that were shown to be respectively equivalent,
in the presence of (C1∗4) and (C2∗4), to the following joint constraints on 4Ψ÷A, 4Ψ
and 4Ψ∗¬A:

(SPU4) If x ≺Ψ y and x ≺Ψ∗¬A y then x ≺Ψ÷A y
(WPU4)If x 4Ψ y and x 4Ψ∗¬A y then x 4Ψ÷A y

We called operators satisfying such postulates, in addition to (HI), ‘TeamQueue com-
binators’.

3 Elementary revision operators

In this section, we demonstrate the relative generality of the results that follow by pro-
viding a characterisation result according to which natural, restrained and lexicographic
revision operators are the only operators satisfying a small set of potentially appealing
properties. We shall call operators that satisfy these properties elementary revision op-
erators. We define elementary revision operators semantically by:

Definition 1. ∗ is an elementary revision operator iff it satisfies (C1∗4)–(C4
∗
4),

(IIAP∗4), (IIAI∗4) and (Neut∗4).

We have already introduced (C1∗4)-(C4
∗
4). The remaining principles are new. We call

the first of these ‘Independence of Irrelevant Alternatives with respect to the prior TPO’,
after an analogous precept in social choice. For this, we first define the notion of ‘agree-
ment’ between TPO’s on a pair of worlds:
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Definition 2. Where 4Ψ ,4Ψ ′∈ TPO(W ), 4Ψ and 4Ψ ′ agree on {x, y} iff
4Ψ ∩{x, y}2 = 4Ψ ′ ∩{x, y}2.

then offer:

(IIAP∗4) If x, y /∈ min(4Ψ , [[A]]) ∪min(4Ψ ′ , [[A]]), then, if 4Ψ and 4Ψ ′ agree on
{x, y}, so do 4Ψ∗A and 4Ψ ′∗A

The second new principle–‘Independence of Irrelevant Alternatives with respect to the
input’–is formally similar to the first. For this we first introduce some helpful notation:

Definition 3. (i) x 4A y iff x ∈ [[A]] or y ∈ [[¬A]], (ii) x ∼A y when x 4A y and
y 4A x, and (iii) x ≺A y when x 4A y but not y 4A x.

The principle is then given by:

(IIAI∗4) If x, y /∈ min(4Ψ , [[A]]) ∪min(4Ψ , [[B]]), then, if 4A and 4B agree on
{x, y}, so do 4Ψ∗A and 4Ψ∗B

The final principle is a principle of ‘Neutrality’, again named after an analogous condi-
tion in social choice. To the best of our knowledge, it appears here for the first time in
the context of belief revision. Its presentation makes use of the following concept:

Definition 4. Where A ∈ L, π is an A-preserving order isomorphism from 〈W,4Ψ
,4A〉 to 〈W,4Ψ ′ ,4A〉 iff it is a 1:1 mapping from W onto itself such that

(i) x 4Ψ y iff π(x) 4Ψ ′ π(y), and
(ii) x 4A y iff π(x) 4A π(y)

and proceeds as follows:

(Neut∗4) x 4Ψ∗A y iff π(x) 4Ψ ′∗A π(y), for any A-preserving order isomorphism π
from 〈W,4Ψ ,4A〉 to 〈W,4Ψ ′ ,4A〉

(IIAP∗4) and (IIAI∗4) say that the relative ordering of x and y after revising by A de-
pends on only (i) their relative order prior to revision (from (IIAP∗4)) and (ii) their
relative positioning with respect to A (i.e., whether or not they satisfy A) unless one
of x or y is a minimal A-world, in which case this requirement acquiesces to the Suc-
cess postulate (from (IIAI∗4)). (Neut∗4) is a form of language-independence property,
stating that the labels (in terms of valuations) of worlds are irrelevant in determining
the posterior TPO. The prima facie appeal of these principles is similar to that of their
analogues in social choice, substituting a doxastic interpretation of the ordering for a
preferential one.

With this in hand, we can now report that:

Theorem 1. The only elementary revision operators are lexicographic, restrained and
natural revision.
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Proof sketch: The claim that lexicographic, restrained and natural revision operators
are elementary operators is straightforward to establish and we shall not provide it here.

Regarding the other direction of the result: (IIAP∗4) and (Neut∗4) jointly allows us
to represent revision by a given sentence A as a quadruple of functions from prior to
posterior relations between two arbitrary worlds x and y, such that x, y /∈ min(4Ψ
, [[A]]), one for each of the three following possibilities: (1) x ∈ [[A]], y ∈ [[¬A]], (2)
x, y ∈ [[A]], (3) x, y ∈ [[¬A]] (the case in which x ∈ [[¬A]], y ∈ [[A]] is determined
by (1), by virtue of (Neut∗4)). These functions can be represented by state diagrams in
which the set of states is {x ≺ y, x ∼ y, y ≺ x} and the edges represent revisions by
A. The postulates (C1∗4) and (C2∗4) entail that, whatever degrees of freedom there are,
they are associated with (1). Furthermore, (C3∗4) and (C4∗4) then leave us with at most
six possible diagrams for (1) (see Fig 2).

Diagrams (a), (b) and (c) respectively correspond to ∗RA, ∗LA and ∗NA. However,
(d) and (e) are inconsistent with (C2∗4), on pains of triviality. Indeed assume that there
exist two worlds y, z ∈ [[¬A]] and a world x ∈ [[A]], such that z ≺Ψ y ≺Ψ x. Then
z ∼Ψ∗A y, in violation of (C2∗4). (f) exhibits a similar inconsistency. Consider this
time the prior TPO given by y ≺Ψ {x,w}. We have z ≺Ψ∗A y. Given y ≺Ψ z, this is
again inconsistent with (C2∗4).

So we have established that (IIAP∗4) and (Neut∗4) collectively entail that, for any
A, Ψ ∗A is equal to one of either Ψ ∗RA, Ψ ∗LA or Ψ ∗NA. But it still remains the case
that ∗ coincides with one elementary operator for one input but with another elementary
operator for another, so that, for example, Ψ ∗A = Ψ ∗RA while Ψ ∗A = Ψ ∗LA. This
is ruled out by the final condition (IIAI∗4). ut

x ≺ y

x ∼ y

y ≺ x

(a)

x ≺ y

x ∼ y

y ≺ x

(b)

x ≺ y

x ∼ y

y ≺ x

(c)

x ≺ y

x ∼ y

y ≺ x

(d)

x ≺ y

x ∼ y

y ≺ x

(e)

x ≺ y

x ∼ y

y ≺ x

(f)

Fig. 2: State diagrams for all x ∈ [[A]] and all y ∈ [[¬A]].

(IIAP∗4) significantly weakens a principle introduced under the name of ‘(IIA)’ in [12],
which simply corresponds to the embedded conditional: If 4Ψ and 4Ψ ′ agree on {x, y},
so do 4Ψ∗A and 4Ψ ′∗A. (IIAI∗4) amounts to a similar weakening of a condition found
in [7]. An interesting question, therefore, arises as to why the stronger principles do not
figure in our characterisation.

The unqualified version of (IIAP∗4) is only satisfied by ∗L, assuming (C1∗4) and
(C2∗4) and that the domain of the revision function is TPO(W ). Indeed, let x ∈ [[A]] and
y ∈ [[¬A]]. Then, for any 4Ψ , there will exist 4Ψ ′ in TPO(W ) that agrees with 4Ψ on
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{x, y} and is such that x ∈ min(4Ψ ′ , [[A]]) (and, since y ∈ [[¬A]], y /∈ min(4Ψ ′ , [[A]])).
But by AGM, if x ∈ min(4Ψ ′ , [[A]]) but y /∈ min(4Ψ ′ , [[A]]), then x ≺Ψ ′∗A y. So, by
the unqualified version of (IIAP∗4), x ≺Ψ∗A y. Hence, if x ∈ [[A]] and y ∈ [[¬A]], then
x ≺Ψ∗A y, a condition only satisfied by ∗L, assuming (C1∗4) and (C2∗4).

4

Similarly, Booth & Meyer’s strong version of (IIAI∗4), in conjunction with (C1∗4)–
(C4∗4), can be shown to entail a principle that we have called ‘(β1+∗4)’ in previous work
[5], where we showed (see Corollary 1 there) to characterise lexicographic revision,
given AGM and (C1∗4)-(C2

∗
4).

4 Extending the Levi Identity

4.1 A proposal involving rational closure

The most straightforward syntactic extension of (LI) would involve replacing all belief
sets by conditional belief sets, leaving all else unchanged. This would require extending
the domain of Cn to subsets of the conditional language Lc, which can be naturally
achieved by setting, for∆ ⊆ Lc, Cn(∆) = ∆∪Cn(∆∩L). So we would be considering
the claim that [Ψ ∗ A]c = Cn([Ψ ÷ ¬A]c ∪ {A}). This, however, is a bad idea, since it
is easy to show that:

Proposition 1 If [Ψ ∗A]c = Cn([Ψ ÷¬A]c ∪ {A}), then there are no consistent belief
sets, given the two following AGM postulates:

(K2∗) A ∈ [Ψ ∗A]
(K2÷) [Ψ ÷A] ⊆ [Ψ ]

Proof: Assume [Ψ ∗ A]c = Cn([Ψ ÷ ¬A]c ∪ {A}). By Success, A ∈ [Ψ ∗ A]. By the
Ramsey Test, > ⇒ A ∈ [Ψ ∗ A]c and so > ⇒ A ∈ Cn([Ψ ÷ ¬A]c ∪ {A}). But then,
since > ⇒ A /∈ L and, as we have stipulated, for ∆ ⊆ Lc, Cn(∆) = ∆ ∪ Cn(∆ ∩ L),
it must be the case that > ⇒ A ∈ [Ψ ÷ ¬A]c. Hence, by the Ramsey Test again, it
follows that A ∈ [Ψ ÷ ¬A]. From (K2÷), we then have A ∈ [Ψ ]. By a similar chain of
reasoning, we can establish that ¬A ∈ [Ψ ]. ut

The core issue highlighted by this result is that the right hand side of the equality won’t
generally correspond to a rational consequence relation, due to the fact that Cn simply
yields too small a set of consequences. So a natural suggestion here would be to make
use of the rational closure operator Crat of [19] instead of Cn. Indeed, Crat has been
touted as offering the appropriately conservative way of extending a set of conditionals
to something that corresponds to a rational consequence relation (see [19]). This gives
us the ‘iterated Levi Identity using Rational Closure’ (or ‘(iLIRC)’ for short):

(iLIRC) [Ψ ∗A]c = Crat([Ψ ÷ ¬A]c ∪ {A})5

4 We note that [12] offers a rather different characterisation of lexicographic revision that also
involves the unqualified version of (IIAP∗4).

5 Strictly speaking, Crat is an operation on purely conditional belief sets. However, it can be
obviously generalised to the case in which the set includes non-conditionals, since for any
A ∈ L, A ∈ [Ψ ]c iff > ⇒ A ∈ [Ψ ]c.
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4.2 Nayak et al’s ‘New Levi Identity’

An alternative extension of (LI) can be obtained by using an iterable expansion operator
+. This is the ‘New Levi Identity’ of Nayak et al, which is briefly presented in [21].
Semantically, it is given by:

(NLI4) 4Ψ∗A=4(Ψ÷¬A)+A

Syntactically, in terms of conditional belief sets, we then would have: [Ψ ∗A]c = [(Ψ ÷
¬A) +A]c.

It is easily verified that (LI) follows from (NLI4), if one assumes, for instance, that
÷ satisfies (C1÷4). Indeed, (LI) amounts to min(4Ψ , [[A]]) = min(4Ψ÷¬A,W )∩[[A]] =
min(4Ψ÷¬A, [[A]]), which immediately follows from (C1÷4). (NLI4) also has some
other interesting general properties. For example, one can show, rather trivially, that:

Proposition 2 If ∗ and÷ satisfy (NLI4), then, for i ∈ {1, 2, 3, 4}, (Ci÷4) entails (Ci∗4),
if + also satisfies (Ci∗4).

This result mirrors a result in [3], in which it was shown that TeamQueue combination
allows one to move from each (Ci∗4) to the corresponding (Ci÷4).

Assuming, as Nayak et al do, the following natural semantic iterated version of (TI):

(iTI4) 4Ψ+A =4Ψ∗A, if min(4,W ) * [[¬A]]
=4Ψ⊥ , otherwise

where Ψ⊥ is an ‘absurd’ epistemic state such that [Ψ⊥] = L,6 (NLI4) is equivalent to:

(iLI∗4) 4Ψ∗A=4(Ψ÷¬A)∗A

In what follows, then, we shall use (NLI4) and (iLI∗4) interchangeably. Importantly,
while the proposal considered in the previous section was reductive, in the sense that the
operator ∗ on the left-hand side of the identity did not appear on the right, (iLI∗4) fea-
tures ∗ on both sides.

To date, however, the implications of this principle have not been studied in any
kind of detail. In what follows, we offer some new results of interest. We first note:

Theorem 2. If ∗ is an elementary revision operator and÷ satisfies (C1÷4)-(C4
÷
4), then

∗ and ÷ satisfy (NLI4) iff they satisfy the following:

(C1÷/∗
4 ) If x, y ∈ [[A]], then x 4Ψ÷¬A y iff x 4Ψ∗A y

(C2÷/∗
4 ) If x, y ∈ [[¬A]], then x 4Ψ÷¬A y iff x 4Ψ∗A y

(C3÷/∗
4 ) If x ∈ [[A]], y ∈ [[¬A]] and x ≺Ψ÷¬A y, then x ≺Ψ∗A y.

(C4÷/∗
4 ) If x ∈ [[A]], y ∈ [[¬A]] and x 4Ψ÷¬A y, then x 4Ψ∗A y.

6 Nayak et al have little to say about Ψ⊥, aside from its being the case that 4Ψ⊥÷A is such that
x ∼Ψ⊥÷A y for all x, y ∈ W . More recently, [11] have suggested that the state resulting
from expansion into inconsistency be defined in a more fine-grained manner, in a proposal that
involves introducing an ‘impossible’ world such that w⊥ |= A for all A ∈ L. We refer the
reader to their paper for further details, since nothing here hinges on the distinction between
these views.
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Proof sketch: Each direction is proven separately. Regarding the right-to-left direction:

Lemma 1 If ∗ is an elementary revision operator,÷ satisfies (C1÷4)-(C4
÷
4), and÷ and

∗ satisfy (C1÷/∗
4 )-(C4÷/∗

4 ), then ∗ and ÷ satisfy (NLI4).

Regarding the left-to-right direction, we actually prove the following stronger claim:

Lemma 2 If ∗ satisfies (C1∗4)–(C4
∗
4), then there exists ÷ such that ∗ and ÷ satisfy

(NLI4) only if ∗ and ÷ satisfy (C1÷/∗
4 )–(C4÷/∗

4 ). ut

The principles (C1÷/∗
4 )-(C4÷/∗

4 ) are new to the literature and bear an obvious formal
resemblance to the postulates of Darwiche & Pearl and of Chopra et al. Taken together,
they require contraction by ¬A to be a kind of ‘mild revision’ by A, since they tell us
that the position of any A-world with respect to any ¬A-world is at least as good after
revision by A as it is after contraction by ¬A.

Somewhat surprisingly (to us), it turns out that these principles are also closely
connected to the semantic ‘TeamQueue combinator’ approach to extending the Harper
Identity to the iterated case that was proposed in [3]. Indeed, one can show that:

Theorem 3. If ∗ satisfies (C1∗4)-(C4
∗
4) and ÷ satisfies (C1÷4)-(C4

÷
4), then ∗ and ÷

satisfy (C1÷/∗
4 )-(C4÷/∗

4 ) iff they satisfy (SPU4) and (WPU4).

Proof: We prove the result in two parts. Firstly we establish the following strengthening
of the right-to-left direction of the claim:

Lemma 3 Given (SPU4) and (WPU4), for all 1 ≤ i ≤ 4, (Ci∗4) entails (Ci÷/∗
4 ).

Regarding i = 1, 2: We provide the proof for i = 1, since the case in which i = 2 is
handled analogously. Assume x, y ∈ [[A]]. From left to right: Assume x 4Ψ÷¬A y. By
the contrapositve of (SPU4), either x 4Ψ y or x 4Ψ∗A y. If the latter holds, we are
done. So assume that x 4Ψ y. Then the required result follows by (C1∗4). From right to
left: Assume x 4Ψ∗A y. By (C1∗4), x 4Ψ y. By (WPU4), x 4Ψ÷¬A y, as required.

Regarding i = 3, 4: We provide the proof for i = 3, since the case in which i = 4 is
handled analogously (using (SPU4) rather than (WPU4)). We derive the contraposi-
tive. Assume x ∈ [[A]], y ∈ [[¬A]] and y 4Ψ∗A x. If y 4Ψ x, then, from y 4Ψ∗A x, we
have y 4Ψ÷¬A x, by (WPU4), as required. So assume x ≺Ψ y. By (C3∗4), x ≺Ψ∗A y.
Contradiction. This completes the proof of Lemma 3.

Concerning the left-to-right direction of our principal claim, we show:

Lemma 4 (C3÷4), (C4
÷
4), and (C1÷/∗

4 )–(C4÷/∗
4 ) entail (SPU4) and (WPU4).

We just prove this in relation to (WPU4), using (C1÷/∗
4 ), (C2÷/∗

4 ), (C3÷/∗
4 ) and (C4÷4).

The proof in relation to (SPU4) is analogous but uses (C1÷/∗
4 ), (C2÷/∗

4 ), (C4÷/∗
4 ) and

(C3÷4) instead. Assume that x 4Ψ y and x 4Ψ∗A y. We want to show x 4Ψ÷¬A y.
If (a) x, y ∈ [[A]], (b) x, y ∈ [[¬A]], or (c) x ∈ [[¬A]] and y ∈ [[A]], this follows from
x 4Ψ∗A y, by (C1÷/∗

4 ), (C2÷/∗
4 ) or (C3÷/∗

4 ), respectively. If (d) x ∈ [[A]] and y ∈ [[¬A]],
then it follows from x 4Ψ y, by (C4÷4). ut

In conjunction with Theorem 2, Theorem 3 entails:
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Corollary 1 If ∗ is an elementary revision operator and÷ satisfies (C1÷4)-(C4
÷
4), then

∗ and ÷ satisfy (NLI4) iff they satisfy (SPU4) and (WPU4).

In this particular context, then, (NLI4) simply amounts to the conjunction of a pair of
constraints proposed in the context of extending (HI) to the iterated case.

4.3 Rational closure and the New Levi Identity

At this stage, we have considered both a potentially promising reductive proposal and
a promising non-reductive one. A natural question, then, is: How would these two sug-
gestions fare in conjunction with one another? To answer this question, we provide the
semantic counterpart for our first principle, which was formulated only syntactically:

Theorem 4. Given AGM, (iLIRC) is equivalent to :

(iLIRC4) 4Ψ∗A=4(Ψ÷¬A)∗NA
7

Proof sketch: We prove the claim by establishing that (iLIRC) ensures that 4Ψ∗A is
the ‘flattest’ TPO such that the following lower bound principle is satisfied: [Ψ÷¬A]c∪
{A} ⊆ [Ψ ∗A]c. In view of Definitions 20 and 21 of [19], the upshot of this is then that
4(Ψ÷¬A)∗NA corresponds to the rational closure of [Ψ ÷ ¬A]c ∪ {A}.

We first note that, given AGM, the lower bound principle can be semantically ex-
pressed as follows: (a) If x ≺Ψ÷¬A y, then x ≺Ψ∗A y and (b) min(4Ψ∗A,W ) ⊆ [[A]].
With this in hand, we prove two lemmas, which are individually easy to establish. First:

Lemma 5 If ∗ and ÷ satisfy (iLIRC4), then they satisfy the lower bound principle.

For the second lemma, we make use of the convenient representation of TPOs by their
corresponding ordered partitions of W . The ordered partition 〈S1, S2, . . . Sm〉 of W
corresponding to a TPO 4 is such that x 4 y iff r(x,4) ≤ r(y,4), where r(x,4)
denotes the ‘rank’ of x with respect to 4 and is defined by taking Sr(x,4) to be the cell
in the partition that contains x. The lemma is given as follows:

Lemma 6 4(Ψ÷¬A)∗NA w 4, for any TPO 4 satisfying the lower bound principle.

where:

Definition 5. w is a binary relation on the set of TPOs over W such such that,
for any TPOs 41 and 42, whose corresponding ordered partitions are given by
〈S1, S2, . . . , Sm〉 and 〈T1, T2, . . . , Tm〉 respectively, 41 w 42 iff either (i) Si = Ti
for all i = 1, . . . ,m, or (ii) Si ⊃ Ti for the first i such that Si 6= Ti.

w partially orders TPO(W ) according to comparative ‘flatness’, with the flatter TPOs
appearing ‘greater’ in the ordering, so that 41 w 42 iff 41 is at least as as flat as 42.

Let 〈T1, . . . , Tm〉 be the ordered partition corresponding to the TPO 4(Ψ÷¬A)∗NA,
which we will denote by 4N. Let 4 be any TPO satisfying the lower bound condition:
(a) If x ≺Ψ÷¬A y, then x ≺ y and (b) min(4,W ) ⊆ [[A]]. Let 〈S1, . . . , Sn〉 be its



12 J. Chandler and R. Booth

corresponding ordered partition. The proof of the lemma then amounts to showing that
4N w 4. ut

With this in hand, the consequences of endorsing (iLIRC) on the heels of (NLI4)
should be obvious: rational iterated revision would have to coincide with natural revi-
sion.

This raises an interesting question: For each remaining elementary operator ∗, does
there exist a suitable alternative closure operator C, such that [Ψ ∗A]c = C([Ψ÷¬A]c∪
{A}) iff 4Ψ∗A=4(Ψ÷¬A)∗A?8 Indeed, although rational closure is by far the most pop-
ular closure operator in the literature, alternative closure operators have been proposed,
including, for instance the lexicographic closure operator of [18] or again the maxi-
mum entropy closure operator of [13]. Furthermore, there has been some limited work
on potential connections between closure operators and revision operators (namely [2]).
However, this work has only focussed on the relation between lexicographic closure and
lexicographic revision and its pertinence to the current problem remains unclear.

Although we do not currently have an answer to our question, we can report that
the existence of suitable relevant closure operators will very much depend on the man-
ner in which one extends (HI) to the iterated case. To illustrate, in a previous dis-
cussion of the issue [3], we considered a particular TeamQueue combinator, ⊕STQ.
We showed, in Section 6 of that paper, that for ∗ = ∗L or ∗ = ∗R, the equality
4Ψ÷A=4Ψ ⊕STQ 4Ψ∗¬A entails that ÷ = ÷STQL, where ÷STQL is an iterated con-
traction operator that we call ‘STQ-Lex’. We can, however, show the following:

Proposition 3 If ∗ = ∗L or ∗ = ∗R and ÷ = ÷STQL, then there exists no closure
operator C, satisfying the property of Rational Identity:

(RIDc) If ∆ is rational, then C(∆) = ∆.

such that both (NLI4) and [Ψ ∗A]c = C([Ψ ÷ ¬A]c ∪ {A}) are true.

(RIDc) seems a desirable property of closure operators, which aim to extend a set of
conditionals ∆ to that rational set of conditionals whose endorsement is mandated by
that of ∆. The standard postulate of Inclusion (∆ ⊆ C(∆)) tell us that C must extend
∆ to a rational superset of ∆. (RIDc) adds to this the notion that if ∆ ‘ain’t broke’, it
needn’t be ‘fixed’.

Interestingly, the proof of this impossibility result fails to go through when ∗ = ∗L
and ÷ = ÷P, where ÷P is the priority contraction operator of [21]. In [3] we note
that priority contraction can be recovered from lexicographic revision via a particular
TeamQueue combinator. Furthermore, the same combinator can be used to define a
contraction operator from restrained revision (call it÷R). Again, the proof of the above
result breaks down when ∗ = ∗R and ÷ = ÷R.

7 Note that [17] explicitly mention (iLIRC4) and flag it out as a potentially desirable principle.
8 Note the importance of (Red) in making this kind of correspondence even prima facie possi-

ble. Indeed, if (Red) fails, then 4Ψ÷¬A andAwill fail to jointly determine 4Ψ∗A. In syntactic
terms, [Ψ ÷ ¬A]c and A will fail to jointly determine [Ψ ∗A]c.
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5 Is iterated revision reducible to iterated contraction?

Konieczny and Pino Pérez [17, Theorem 5] plausibly claim that, for a finitely generated
language, the cardinality of (i) the set of revision operators that satisfy both the AGM
postulates for revision and (C1∗4)–(C4

∗
4) is strictly greater than the cardinality of (ii)

the set of contraction operators that satisfy both the AGM postulates for contraction
and (C1÷4)–(C4

÷
4). From this, they conclude that there is no bijection between rational

iterated revision and contraction operators and hence no reduction of iterated revision
to iterated contraction.

But this conclusion is not warranted without a further argument to the effect that
every member of (i) is rational. In other words, it could be the case that (C1∗4)–(C4

∗
4)

need supplementing. This has certainly been the belief of the proponents of the various
elementary revision operators that we have discussed in the present paper. And indeed,
the proponent of ∗N could claim, endorsing our ⊕STQ-based extension of (HI), that
rational contraction goes by natural contraction. By the same principle, proponents of
∗R or ∗L could respectively claim that rational contraction goes by natural contraction
or STQ-Lex contraction, respectively (see [3, Section 6]). Those are three candidate
bijections that are all consistent, furthermore, with (NLI4).

One could nevertheless run an arguably plausible argument to Konieczny and Pino
Pérez’s desired conclusion based on the observation that natural and restrained revision
are both mapped onto natural contraction by the ⊕STQ method. Even if one thinks that
it is implausible to claim that iterated change must comply with one of either restrained
or natural revision, it is not implausible to claim that it sometimes may comply with
either. In other words: There plausibly exists at least one prior TPO that is rationally
consistent with two distinct potential posterior TPOs, respectively obtained via natural
and restrained revision by a given sentenceA. Given the⊕STQ-based extension of (HI),
only one posterior TPO can be obtained by contraction by ¬A, namely the one obtained
by natural contraction by ¬A. But if this is true, iterated revision dispositions cannot be
recovered from iterated contraction dispositions.

6 Conclusions and further work

We have considered two possible extensions of (LI) to the iterated case: a reductive
proposal (iLIRC) based on the rational closure operator, and a non-reductive proposal
(NLI4) that involves a contraction step, followed by an expansion. We have shown
that, when restricted to a popular class of ‘elementary’ revision operators, (NLI4) is in
fact equivalent, under weak assumptions, to both (i) a new set of postulates (C1÷/∗

4 )-
(C4÷/∗

4 ) and (ii) a pair of principles recently defended in the literature on (HI).
However, it has also been noted that (iLIRC) has strong consequences when con-

joined with (NLI4). This suggests the need for (1) a future consideration of various
alternatives to the former that make use of surrogate closure operators.

Furthermore, the revision operators of the class that we have focussed on have been
criticised for their equation of belief states with TPOs (the principle (Red); see [4]).
One obvious extension of our work would be (2) an exploration of the extent to which
the results reported in Section 4 carry over to operators that avoid this identification,
such as the POI operators of [5].
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